Extension Operators for Sobolev Spaces Commuting with a Given Transform

Viktor Burenkov ${ }^{1}$, B.-W. Schulze ${ }^{\mathbf{2}}$ and Nikolai N . Tarkhanov ${ }^{3}$

University of Wales Cardiff
23 Senghennydd Road
Cardiff CF2
United Kingdom

2

Max-Planck-Arbeitsgruppe
"Partielle Differentialgleichungen und komplexe Analysis"
Universität Potsdam
Am Neuen Palais 10
14469 Potsdam
Germany

Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
Germany

3
Institut für Mathematik
Universität Potsdam
Postfach 601553
14415 Potsdam
Germany

Extension Operators for Sobolev Spaces Commuting with a Given Transform

Viktor Burenkov
University of Wales Cardiff
23 Senghennydd Road
Cardiff CF2
United Kingdom

Bert-Wolfgang Schulze
Max-Planck AG "Analysis"
Universität Potsdam
Postfach 601553
14415 Potsdam
Germany

Nikolai N. Tarkhanov*
Institut für Mathematik
Universität Potsdam
Postfach 601553
14415 Potsdam
Germany

October 29, 1996

Abstract

We consider a real-valued function $r=M(t)$ on the real axis, such that $M(t)<0$ for $t<0$. Under appropriate assumptions on M, the pull-back operator M^{*} gives rise to a transform of Sobolev spaces $W^{, p}(-\infty, 0)$ that restricts to a transform of $W^{s, p}(-\infty, \infty)$. We construct a bounded linear extension operator $W^{s, p}(-\infty, 0) \rightarrow W^{s, p}(-\infty, \infty)$, commuting with this transform.

AMS subject classification: 46E35.
Key words and phrases: Sobolev spaces, extension operator.

[^0]
1 Motivation

As described in Schulze [S], Sobolev embedding theorems may be treated in the framework of pseudodifferential operators with operator-valued symbols whose definition is based on the "twisted" homogeneity.

In particular, consider the strongly continuous group action $\left(\kappa_{\lambda}\right)_{\lambda \in(0, \infty)}$ on a space $L=H^{s}\left(\mathbb{R}_{-}\right), s \in \mathbb{R}$, given by $\kappa_{\lambda} u(t)=\lambda^{\frac{1}{2}} u(\lambda t)$. Obviously, κ_{λ} acts continuously also on $V=H^{s}(\mathbb{R})$. It is easy to verify that

$$
\begin{aligned}
W^{s}\left(\mathbb{R}^{q}, H^{s}\left(\mathbf{R}_{-}\right)\right) & =H^{s}\left(\mathbb{R}_{-}^{q+1}\right) \\
W^{s}\left(\mathbb{R}^{q}, H^{s}(\mathbb{R})\right) & =H^{s}\left(\mathbb{R}^{q+1}\right)
\end{aligned}
$$

where $W^{s}\left(\mathbb{R}^{q}, L\right)$ is defined to be the completion of $C_{\text {comp }}^{\infty}\left(\mathbb{R}^{q}, L\right)$ with respect to the norm $\|u\|=\left(\int_{\mathbb{R}^{a}}\langle\eta\rangle^{2 s}\left\|\kappa_{\langle\eta\rangle}^{-1} F_{y \mapsto \eta} u\right\|_{L}^{2} d \eta\right)^{\frac{1}{2}}, F$ being the Fourier transform. Each continuous linear extension operator $T: H^{s}\left(\mathbb{R}_{-}\right) \rightarrow H^{s}(\mathbb{R})$ commuting with κ_{λ} gives rise to a constant operator-valued symbol $a(y, \eta)$ in $\mathcal{S}_{c l}^{0}\left(T^{*}\left(\mathbb{R}^{q}\right), \mathcal{L}(L \rightarrow V)\right)$ simply by $a(y, \eta)=T$. The symbol space in question is defined on the base of the group action κ_{λ}, so that $a(y, \eta)$ satisfies

$$
\left\|\kappa_{\langle\eta\rangle}^{-1} D_{y}^{\alpha} D_{\eta}^{\beta} a(y, \eta) \kappa_{\langle\eta\rangle}\right\|_{\mathcal{L}(L \rightarrow V)} \leq c\langle\eta\rangle^{-|\beta|}
$$

for all multi-indices α and β, uniformly in y on compact subsets of \mathbb{R}^{q} and $\eta \in \mathbb{R}^{q}$. Then, the corresponding pseudodifferential operator $\operatorname{op}(a) u=F_{\eta \mapsto y}^{-1} a(y, \eta) F_{y \mapsto \eta} u$ extends to a continuous mapping of $W^{s}\left(\mathbb{R}^{q}, L\right) \rightarrow W^{s}\left(\mathbb{R}^{q}, V\right)$. Moreover, it is an extension operator of $H^{s}\left(\mathbb{R}_{-}^{q+1}\right) \rightarrow H^{s}\left(\mathbb{R}^{q+1}\right)$, for if $R: H^{s}(\mathbb{R}) \rightarrow H^{s}\left(\mathbb{R}_{-}\right)$is the restriction mapping, then op (R) is the restriction operator of $H^{s}\left(\mathbb{R}^{q+1}\right) \rightarrow H^{s}\left(\mathbb{R}_{-}^{q+1}\right)$ and

$$
\begin{aligned}
\mathrm{op}(R) \operatorname{op}(a) & =\mathrm{op}(R T) \\
& =1
\end{aligned}
$$

on $H^{s}\left(\mathbb{R}_{-}^{q+1}\right)$. This operator-valued boundary symbol is of particular interest in Boutet de Monvel's algebra (cf. ibid., Subsection 4.2.2).

With this as our starting point, we are looking in this paper for a bounded extension operator of $H^{s}\left(\mathbb{R}_{-}\right) \rightarrow H^{s}(\mathbb{R})$ commuting with a general transform of these spaces.

2 Statement of the main result

For $s \in \mathbb{Z}_{+}, 1 \leq p \leq \infty$ and $-\infty \leq a<b \leq \infty$, let $W^{s, p}(a, b)$ stand for the Sobolev space of all functions $f \in L^{p}(a, b)$ having weak derivatives $f^{(s)}$ of order s on (a, b), such that

$$
\|f\|_{W^{\prime}, p(a, b)}=\|f\|_{L^{p}(a, b)}+\left\|f^{(s)}\right\|_{L^{p}(a, b)}<\infty
$$

It is well-known (see Nikol'skii [N1], Babich [B]) that there exists a bounded linear extension operator

$$
\begin{equation*}
T: W^{s, p}(-\infty, 0) \rightarrow W^{s, p}(-\infty, \infty) \tag{2.1}
\end{equation*}
$$

(i.e., $(T f)(t)=f(t)$ if $t<0$). It can be constructed in the following way: for $t>0$,

$$
\begin{equation*}
(T f)(t)=\sum_{j=1}^{s} \alpha_{j} f\left(-\beta_{j} t\right) \tag{2.2}
\end{equation*}
$$

where β_{j} are arbitrary distinct positive numbers and α_{j} are defined by

$$
\sum_{j=1}^{\dot{s}} \alpha_{j}\left(-\beta_{j}\right)^{i}=1, \quad i=0,1, \ldots, s-1
$$

(This construction was first used in Hestenes [H].)
Denote by κ a dilation transform of the type

$$
(\kappa f)(t)=A f(\lambda t), \quad t \in(-\infty, \infty)
$$

where A and λ are positive numbers. Then the extension operator T defined by (2.2) commutes with κ :

$$
\begin{equation*}
T \kappa=\kappa T \tag{2.3}
\end{equation*}
$$

(Note that in the left side κ is considered as an operator acting from $W^{s, p}(-\infty, 0)$ to $W^{s, p}(-\infty, 0)$, while in the right side it is considered as an operator acting from $W^{s, p}(-\infty, \infty)$ to $W^{s, p}(-\infty, \infty)$.)

Below we consider a more general transform κ defined by

$$
\begin{equation*}
(\kappa f)(t)=A f(M(t)), \quad x \in(-\infty, \infty) \tag{2.4}
\end{equation*}
$$

where A is a positive number and M a function satisfying appropriate conditions. We construct a bounded linear extension operator commuting with this transform.

Theorem 2.1 Suppose $s \in \mathbb{Z}_{+}, 1 \leq p \leq \infty$, and κ is a transform defined by (2.4), where $A>0$ and M satisfies the following conditions:

1) $M \in C_{l o c}^{s}(-\infty, \infty)$ and all derivatives $M^{(i)}, i=1, \ldots, s$, are bounded;
2) M is odd;
3) $M(t)>0$ for all $t \in(0, \infty)$;
4) there exists $c>0$ such that $M^{\prime}(t)>c$ for $t \in(-\infty, \infty)$, moreover, $M^{\prime}(0) \neq 1$;
5) $M^{\prime \prime}(0)=\ldots=M^{(s-1)}(0)=0$.

Then, there exists a bounded linear extension operator (2.1) satisfying (2.3).

3 Proof

1° For $f \in W^{s, p}(-\infty, 0)$, we set $f_{-}(t)=f(-t)$ and

$$
(T f)(t)=\sum_{j=1}^{s} \alpha_{j}\left(\kappa^{j} f_{-}\right)(t), \quad t>0
$$

where $\alpha_{j}, j=1, \ldots, s$, are defined by

$$
\begin{equation*}
\sum_{j=1}^{s} \alpha_{j} A^{j}\left(M^{\prime}(0)\right)^{i j}=(-1)^{i}, \quad i=0,1, \ldots, s-1 \tag{3.1}
\end{equation*}
$$

We note that, since $M^{\prime}(0) \neq 1$, the determinant of this system with respect to the variables $\alpha_{j} A^{j}$, being a Van-der-Mond determinant, is not equal to 0 .

Put

$$
M_{j}(t)=\underbrace{M(\cdots(M(t)) \cdots) .}_{j}
$$

Then

$$
(T f)(t)=\sum_{j=1}^{s} \alpha_{j} A^{j} f\left(-M_{j}(t)\right), \quad t>0
$$

As by condition 3) $M_{j}(t)>0$ for $t>0$, the value $(T f)(t)$ is well-defined.
2° Suppose $f \in W^{s, p}(-\infty, 0)$. In order to prove that $T f \in W^{s, p}(-\infty, \infty)$ it is enough to prove that $T f \in W^{s, p}(0, \infty)$ and

$$
\begin{equation*}
(T f)^{(i)}(0+)=f^{(i)}(0-), \quad i=0,1, \ldots, l-1 \tag{3.2}
\end{equation*}
$$

where $f^{(i)}(0-)$ and $(T f)^{(i)}(0+)$ are boundary values of $f^{(i)}$ and $(T f)^{(i)}$ respectively (see for instance Nikol'skii [N2], Triebel [T]).
3° Since $f \in W^{s, p}(-\infty, 0)$, it is equivalent to a function F defined on $(-\infty, 0]$, such that the ordinary derivatives $F^{(i)}, i=1, \ldots, s-1$, exist on $(-\infty, 0]$ and $F^{(s-1)}$ is absolutely continuous on $[a, 0]$ for each $a<0$. Moreover, $f^{(i)}(0-)=F^{(i)}(0)$ for $i=$ $1, \ldots, s-1$. We note also that the ordinary derivative $F^{(s)}$ exists almost everywhere on $(-\infty, 0)$ and is equivalent to the weak derivative $f^{(s)}$. (See for example Nikol'skii [N 2].)

It follows that $T f$, defined on $(0, \infty)$, is equivalent to $T F$, defined on $[0, \infty)$, the ordinary derivatives $(T F)^{(i)}, i=1, \ldots, s-1$, exist on $[0, \infty)$ and $(T F)^{(s-1)}$ is absolutely continuous on $[0, b]$ for each $b>0$. The latter is due to the fact that the functions M_{j} are absolutely continuous and monotonic. Consequently, the ordinary derivative $(T F)^{(s)}$ exists almost everywhere on $(0, \infty)$, is equivalent to the weak derivative ($T f)^{(s)}$ and

$$
\begin{equation*}
\|T f\|_{W^{s, p}(0, \infty)}=\|T F\|_{L^{p}(0, \infty)}+\left\|(T F)^{(s)}\right\|_{L^{p}(0, \infty)} \tag{3.3}
\end{equation*}
$$

Moreover, condition (3.2) is equivalent to

$$
\begin{equation*}
(T F)^{(i)}(0)=F^{(i)}(0), \quad i=0,1, \ldots, l-1 . \tag{3.4}
\end{equation*}
$$

4° Our next observation is that, for $i=1, \ldots, s$ and $t \geq 0$, we have

$$
\begin{aligned}
\left(F\left(-M_{j}(t)\right)\right)^{(i)}= & (-1)^{i} F^{(i)}\left(-M_{j}(t)\right)\left(M^{\prime}\left(M_{j-1}(t)\right) M^{\prime}\left(M_{j-2}(t)\right) \cdots M^{\prime}(t)\right)^{i} \\
& +\sum_{k=1}^{i-1} F^{(k)}\left(-M_{j}(t)\right) A_{i, k}(t)
\end{aligned}
$$

where $A_{i, k}$ are linear combinations of products of some natural powers of derivatives $M^{(l)}\left(M_{m}(t)\right)$, where $0 \leq m \leq j-1$ and $1 \leq l \leq i-k+1$. This equality is valid everywhere on $[0, \infty)$, if $i<s$, and almost everywhere, if $i=s$.

It is worth pointing out that every summand in $A_{i, k}$ contains as a factor at least one derivative of M of order greater than 1 . Consequently, we can assert, by conditions 2) and 5), that

$$
\left.\left(F\left(-M_{j}(t)\right)\right)^{(i)}\right|_{t=0}=(-1)^{i}\left(M^{\prime}(0)\right)^{i j} F^{(i)}(0)
$$

for all $i=0,1, \ldots, s-1$. Hence it follows that

$$
\begin{equation*}
(T f)^{(i)}(0)=(-1)^{i}\left(\sum_{j=1}^{s} \alpha_{j} A^{j}\left(M^{\prime}(0)\right)^{i j}\right) F^{(i)}(0) \tag{3.5}
\end{equation*}
$$

for $i=0,1, \ldots, s-1$.
Moreover, since the derivatives $M^{(1)}, \ldots, M^{(s)}$ are bounded, there exists a constant $c_{1}>0$ such that

$$
\left|\left(F\left(-M_{j}(t)\right)\right)^{(i)}\right| \leq c_{1} \sum_{k=1}^{i}\left|F^{(k)}\left(-M_{j}(t)\right)\right|, \quad t \geq 0
$$

for $i=1, \ldots, s$. Thus,

$$
|(T F)(t)| \leq c_{2} \sum_{j=1}^{s}\left|F\left(-M_{j}(t)\right)\right|, \quad t \geq 0
$$

and

$$
\left|(T F)^{(i)}(t)\right| \leq c_{2} \sum_{j=1}^{s} \sum_{k=1}^{i}\left|F^{(i)}\left(-M_{j}(t)\right)\right|, \quad t \geq 0
$$

for $i=1, \ldots, s$, the constant c_{2} being independent of F.
5° By condition 4), there is a constant $c_{3}>0$ with the property that

$$
M_{j}^{\prime}(t) \geq c_{3}, \quad t \in(-\infty, \infty)
$$

for $j=1, \ldots, s$. Consequently,

$$
\begin{align*}
\|T F\|_{L^{p}(0, \infty)} & \leq c_{2} \sum_{j=1}^{s}\left\|F\left(-M_{j}(t)\right)\right\|_{L^{p}(0, \infty)} \\
& =c_{2} \sum_{j=1}^{s}\left(\int_{-\infty}^{0}|F(r)|^{p} \frac{d r}{M_{j}^{\prime}\left(M_{j}^{-1}(r)\right)}\right)^{\frac{1}{p}} \\
& \leq c_{2} c_{3}^{-\frac{1}{p}} \sum_{j=1}^{s}\|F\|_{L^{p}(-\infty, 0)} \\
& =c_{4}\|F\|_{L^{p}(-\infty, 0)} \tag{3.6}
\end{align*}
$$

where $c_{4}=c_{2} c_{3}^{-\frac{1}{p}}$. Similarly,

$$
\begin{equation*}
\left\|(T F)^{(s)}\right\|_{L^{p}(0, \infty)} \leq c_{5} \sum_{k=1}^{s}\left\|F^{(k)}\right\|_{L^{p}(-\infty, 0)} \tag{3.7}
\end{equation*}
$$

with c_{5} a constant independent of F.
Now we invoke a well-known result that

$$
\begin{equation*}
\left\|F^{(k)}\right\|_{L^{p}(-\infty, 0)} \leq c_{6}\left(\|F\|_{L^{p}(-\infty, 0)}+\left\|F^{(s)}\right\|_{L^{p}(-\infty, 0)}\right) \tag{3.8}
\end{equation*}
$$

for all $k \leq s$, where the constant c_{6} depends only on s (cf. Nikol'skii [N2]). Thus, combining (3.3), (3.6), (3.7) and (3.8) yields

$$
\begin{equation*}
\|T f\|_{W^{\prime}, p(0, \infty)} \leq c_{7}\|f\|_{W^{\cdot, p}(-\infty, 0)} \tag{3.9}
\end{equation*}
$$

where c_{7} is independent of f.
6° According to (3.5) condition (3.4) and, hence, (3.2) is equivalent to (3.1). Thus, from what has been said in item $\mathbf{2}^{\circ}$ it follows that $T f \in W^{s, p}(-\infty, \infty)$. The estimate (3.9) now shows that the operator T is bounded.
7° Finally, equality (2.3) is equivalent to

$$
\sum_{j=1}^{s} \alpha_{j} \kappa^{j}(\kappa f)_{-}=\sum_{j=1}^{s} \alpha_{j} \kappa^{j+1} f_{-}
$$

on $(0, \infty)$. The latter equality is valid for, by condition 2$)$,

$$
\begin{aligned}
(\kappa f)_{-}(t) & =(A f(M(t)))_{-} \\
& =A f(M(-t)) \\
& =A f(-M(t)) \\
& =\left(\kappa f_{-}\right)(t),
\end{aligned}
$$

which completes the proof.

References

[B] V. M. Babich, On the extension of functions. Uspekhi Mat. Nauk, 8 (2 (54)) (1953), 11-113.
[H] M. R. Hestenes, Extensions of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192.
[N1] S. M. Nikol'skiI, On the solution of the polyharmonic equation by a variational method. Dokl. Akad. Nauk SSSR, 88 (1953), 409-411 (Russian).
[N2] S. M. Nikol'skii, Approximation of Functions of Several Variables and Embedding Theorems, Springer-Verlag, Berlin and New York, 1974.
[S] B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators, J. Wiley, Chichester, 1997 (To appear).
[T] H. Triebel, Theory of Function Spaces, Birkhäuser; Basel et al., 1983.

[^0]: *Supported by the Deutsche Forschungsgemeinschaft.

