Extension Operators for Sobolev Spaces Commuting with a Given Transform

Viktor Burenkov¹, B.-W. Schulze² and Nikolai N. Tarkhanov³

University of Wales Cardiff 23 Senghennydd Road Cardiff CF2 United Kingdom

2

1

Max-Planck-Arbeitsgruppe "Partielle Differentialgleichungen und komplexe Analysis" Universität Potsdam Am Neuen Palais 10 14469 Potsdam Germany Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn Germany

3

Institut für Mathematik Universität Potsdam Postfach 601553 14415 Potsdam Germany

Extension Operators for Sobolev Spaces Commuting with a Given Transform

Viktor Burenkov University of Wales Cardiff 23 Senghennydd Road Cardiff CF2 United Kingdom Bert-Wolfgang Schulze Max-Planck AG "Analysis" Universität Potsdam Postfach 60 15 53 14415 Potsdam Germany

Nikolai N. Tarkhanov^{*} Institut für Mathematik Universität Potsdam Postfach 60 15 53 14415 Potsdam Germany

October 29, 1996

Abstract

We consider a real-valued function r = M(t) on the real axis, such that M(t) < 0 for t < 0. Under appropriate assumptions on M, the pull-back operator M^* gives rise to a transform of Sobolev spaces $W^{s,p}(-\infty, 0)$ that restricts to a transform of $W^{s,p}(-\infty, \infty)$. We construct a bounded linear extension operator $W^{s,p}(-\infty, 0) \to W^{s,p}(-\infty, \infty)$, commuting with this transform.

AMS subject classification: 46E35.

Key words and phrases: Sobolev spaces, extension operator.

^{*}Supported by the Deutsche Forschungsgemeinschaft.

1 Motivation

As described in Schulze [S], Sobolev embedding theorems may be treated in the framework of pseudodifferential operators with operator-valued symbols whose definition is based on the "twisted" homogeneity.

In particular, consider the strongly continuous group action $(\kappa_{\lambda})_{\lambda \in (0,\infty)}$ on a space $L = H^{\mathfrak{o}}(\mathbb{R}_{-}), s \in \mathbb{R}$, given by $\kappa_{\lambda} u(t) = \lambda^{\frac{1}{2}} u(\lambda t)$. Obviously, κ_{λ} acts continuously also on $V = H^{\mathfrak{o}}(\mathbb{R})$. It is easy to verify that

$$W^{s}(\mathbb{R}^{q}, H^{s}(\mathbb{R}_{-})) = H^{s}(\mathbb{R}_{-}^{q+1}),$$

$$W^{s}(\mathbb{R}^{q}, H^{s}(\mathbb{R})) = H^{s}(\mathbb{R}^{q+1}),$$

where $W^{s}(\mathbb{R}^{q}, L)$ is defined to be the completion of $C_{comp}^{\infty}(\mathbb{R}^{q}, L)$ with respect to the norm $||u|| = \left(\int_{\mathbb{R}^{q}} \langle \eta \rangle^{2s} ||\kappa_{\langle \eta \rangle}^{-1} F_{y \mapsto \eta} u||_{L}^{2} d\eta\right)^{\frac{1}{2}}$, F being the Fourier transform. Each continuous linear extension operator $T : H^{s}(\mathbb{R}_{-}) \to H^{s}(\mathbb{R})$ commuting with κ_{λ} gives rise to a constant operator-valued symbol $a(y, \eta)$ in $S_{cl}^{0}(T^{*}(\mathbb{R}^{q}), \mathcal{L}(L \to V))$ simply by $a(y, \eta) = T$. The symbol space in question is defined on the base of the group action κ_{λ} , so that $a(y, \eta)$ satisfies

$$\|\kappa_{\langle \eta \rangle}^{-1} D_y^{\alpha} D_{\eta}^{\beta} a(y,\eta) \kappa_{\langle \eta \rangle} \|_{\mathcal{L}(L \to V)} \le c \langle \eta \rangle^{-|\beta|}$$

for all multi-indices α and β , uniformly in y on compact subsets of \mathbb{R}^q and $\eta \in \mathbb{R}^q$. Then, the corresponding pseudodifferential operator $\operatorname{op}(a)u = F_{\eta \mapsto y}^{-1}a(y,\eta)F_{y \mapsto \eta}u$ extends to a continuous mapping of $W^{\mathfrak{s}}(\mathbb{R}^q, L) \to W^{\mathfrak{s}}(\mathbb{R}^q, V)$. Moreover, it is an extension operator of $H^{\mathfrak{s}}(\mathbb{R}^{q+1}) \to H^{\mathfrak{s}}(\mathbb{R}^{q+1})$, for if $R : H^{\mathfrak{s}}(\mathbb{R}) \to H^{\mathfrak{s}}(\mathbb{R}_{-})$ is the restriction mapping, then $\operatorname{op}(R)$ is the restriction operator of $H^{\mathfrak{s}}(\mathbb{R}^{q+1}) \to H^{\mathfrak{s}}(\mathbb{R}_{-}^{q+1})$ and

$$op(R)op(a) = op(RT)$$

= 1

on $H^{s}(\mathbb{R}^{q+1}_{+})$. This operator-valued boundary symbol is of particular interest in Boutet de Monvel's algebra (cf. *ibid.*, Subsection 4.2.2).

With this as our starting point, we are looking in this paper for a bounded extension operator of $H^{\mathfrak{s}}(\mathbb{R}_{-}) \to H^{\mathfrak{s}}(\mathbb{R})$ commuting with a general transform of these spaces.

2 Statement of the main result

For $s \in \mathbb{Z}_+$, $1 \leq p \leq \infty$ and $-\infty \leq a < b \leq \infty$, let $W^{s,p}(a, b)$ stand for the Sobolev space of all functions $f \in L^p(a, b)$ having weak derivatives $f^{(s)}$ of order s on (a, b), such that

$$||f||_{W^{s,p}(a,b)} = ||f||_{L^{p}(a,b)} + ||f^{(s)}||_{L^{p}(a,b)} < \infty.$$

It is well-known (see Nikol'skii [N1], Babich [B]) that there exists a bounded linear extension operator

$$T: W^{s,p}(-\infty,0) \to W^{s,p}(-\infty,\infty)$$
(2.1)

(i.e., (Tf)(t) = f(t) if t < 0). It can be constructed in the following way: for t > 0,

$$(Tf)(t) = \sum_{j=1}^{s} \alpha_j f(-\beta_j t), \qquad (2.2)$$

where β_j are arbitrary distinct positive numbers and α_j are defined by

$$\sum_{j=1}^{s} \alpha_j (-\beta_j)^i = 1, \qquad i = 0, 1, \dots, s - 1.$$

(This construction was first used in Hestenes [H].)

Denote by κ a dilation transform of the type

$$(\kappa f)(t) = A f(\lambda t), \quad t \in (-\infty, \infty),$$

where A and λ are positive numbers. Then the extension operator T defined by (2.2) commutes with κ :

$$T\kappa = \kappa T. \tag{2.3}$$

(Note that in the left side κ is considered as an operator acting from $W^{s,p}(-\infty,0)$ to $W^{s,p}(-\infty,0)$, while in the right side it is considered as an operator acting from $W^{s,p}(-\infty,\infty)$ to $W^{s,p}(-\infty,\infty)$.)

Below we consider a more general transform κ defined by

$$(\kappa f)(t) = A f(M(t)), \qquad x \in (-\infty, \infty), \tag{2.4}$$

where A is a positive number and M a function satisfying appropriate conditions. We construct a bounded linear extension operator commuting with this transform.

Theorem 2.1 Suppose $s \in \mathbb{Z}_+$, $1 \le p \le \infty$, and κ is a transform defined by (2.4), where A > 0 and M satisfies the following conditions:

1) $M \in C^{s}_{loc}(-\infty,\infty)$ and all derivatives $M^{(i)}$, $i = 1, \ldots, s$, are bounded;

2) *M* is odd;

3) M(t) > 0 for all $t \in (0, \infty)$;

4) there exists c > 0 such that M'(t) > c for $t \in (-\infty, \infty)$, moreover, $M'(0) \neq 1$; 5) $M''(0) = \ldots = M^{(s-1)}(0) = 0$.

Then, there exists a bounded linear extension operator (2.1) satisfying (2.3).

3 Proof

1° For $f \in W^{s,p}(-\infty,0)$, we set $f_{-}(t) = f(-t)$ and

$$(Tf)(t) = \sum_{j=1}^{s} \alpha_j (\kappa^j f_-)(t), \qquad t > 0,$$

where $\alpha_j, j = 1, \ldots, s$, are defined by

$$\sum_{j=1}^{s} \alpha_j A^j (M'(0))^{ij} = (-1)^i, \qquad i = 0, 1, \dots, s-1.$$
(3.1)

We note that, since $M'(0) \neq 1$, the determinant of this system with respect to the variables $\alpha_j A^j$, being a Van-der-Mond determinant, is not equal to 0.

Put

$$M_j(t) = \underbrace{M(\cdots(M_j(t))\cdots)}_{j}.$$

Then

$$(Tf)(t) = \sum_{j=1}^{s} \alpha_j A^j f(-M_j(t)), \quad t > 0.$$

As by condition 3) $M_j(t) > 0$ for t > 0, the value (Tf)(t) is well-defined.

2° Suppose $f \in W^{s,p}(-\infty,0)$. In order to prove that $Tf \in W^{s,p}(-\infty,\infty)$ it is enough to prove that $Tf \in W^{s,p}(0,\infty)$ and

$$(Tf)^{(i)}(0+) = f^{(i)}(0-), \qquad i = 0, 1, \dots, l-1,$$
(3.2)

where $f^{(i)}(0-)$ and $(Tf)^{(i)}(0+)$ are boundary values of $f^{(i)}$ and $(Tf)^{(i)}$ respectively (see for instance Nikol'skii [N2], Triebel [T]).

3° Since $f \in W^{s,p}(-\infty,0)$, it is equivalent to a function F defined on $(-\infty,0]$, such that the ordinary derivatives $F^{(i)}$, $i = 1, \ldots, s - 1$, exist on $(-\infty, 0]$ and $F^{(s-1)}$ is absolutely continuous on [a,0] for each a < 0. Moreover, $f^{(i)}(0-) = F^{(i)}(0)$ for $i = 1, \ldots, s - 1$. We note also that the ordinary derivative $F^{(s)}$ exists almost everywhere on $(-\infty, 0)$ and is equivalent to the weak derivative $f^{(s)}$. (See for example Nikol'skii [N2].)

It follows that Tf, defined on $(0, \infty)$, is equivalent to TF, defined on $[0, \infty)$, the ordinary derivatives $(TF)^{(i)}$, $i = 1, \ldots, s - 1$, exist on $[0, \infty)$ and $(TF)^{(s-1)}$ is absolutely continuous on [0, b] for each b > 0. The latter is due to the fact that the functions M_j are absolutely continuous and monotonic. Consequently, the ordinary derivative $(TF)^{(s)}$ exists almost everywhere on $(0, \infty)$, is equivalent to the weak derivative $(Tf)^{(s)}$ and

$$||Tf||_{W^{s,p}(0,\infty)} = ||TF||_{L^{p}(0,\infty)} + ||(TF)^{(s)}||_{L^{p}(0,\infty)}.$$
(3.3)

Moreover, condition (3.2) is equivalent to

$$(TF)^{(i)}(0) = F^{(i)}(0), \quad i = 0, 1, \dots, l-1.$$
 (3.4)

4° Our next observation is that, for i = 1, ..., s and $t \ge 0$, we have

$$(F(-M_{j}(t)))^{(i)} = (-1)^{i} F^{(i)}(-M_{j}(t)) (M'(M_{j-1}(t))M'(M_{j-2}(t))\cdots M'(t))^{i} + \sum_{k=1}^{i-1} F^{(k)}(-M_{j}(t)) A_{i,k}(t),$$

where $A_{i,k}$ are linear combinations of products of some natural powers of derivatives $M^{(l)}(M_m(t))$, where $0 \le m \le j-1$ and $1 \le l \le i-k+1$. This equality is valid everywhere on $[0,\infty)$, if i < s, and almost everywhere, if i = s.

It is worth pointing out that every summand in $A_{i,k}$ contains as a factor at least one derivative of M of order greater than 1. Consequently, we can assert, by conditions 2) and 5), that

$$(F(-M_j(t)))^{(i)}|_{t=0} = (-1)^i (M'(0))^{ij} F^{(i)}(0)$$

for all i = 0, 1, ..., s - 1. Hence it follows that

$$(Tf)^{(i)}(0) = (-1)^{i} \left(\sum_{j=1}^{s} \alpha_{j} A^{j} (M'(0))^{ij} \right) F^{(i)}(0), \qquad (3.5)$$

for $i = 0, 1, \ldots, s - 1$.

Moreover, since the derivatives $M^{(1)}, \ldots, M^{(s)}$ are bounded, there exists a constant $c_1 > 0$ such that

$$|(F(-M_j(t)))^{(i)}| \le c_1 \sum_{k=1}^{i} |F^{(k)}(-M_j(t))|, \quad t \ge 0,$$

for $i = 1, \ldots, s$. Thus,

$$|(TF)(t)| \le c_2 \sum_{j=1}^{s} |F(-M_j(t))|, \quad t \ge 0,$$

and

$$|(TF)^{(i)}(t)| \le c_2 \sum_{j=1}^{s} \sum_{k=1}^{i} |F^{(i)}(-M_j(t))|, \quad t \ge 0,$$

for $i = 1, \ldots, s$, the constant c_2 being independent of F.

5° By condition 4), there is a constant $c_3 > 0$ with the property that

 $M_j'(t) \ge c_3, \qquad t \in (-\infty, \infty),$

for $j = 1, \ldots, s$. Consequently,

$$||TF||_{L^{p}(0,\infty)} \leq c_{2} \sum_{j=1}^{s} ||F(-M_{j}(t))||_{L^{p}(0,\infty)}$$

$$= c_{2} \sum_{j=1}^{s} \left(\int_{-\infty}^{0} |F(r)|^{p} \frac{dr}{M_{j}'(M_{j}^{-1}(r))} \right)^{\frac{1}{p}}$$

$$\leq c_{2} c_{3}^{-\frac{1}{p}} \sum_{j=1}^{s} ||F||_{L^{p}(-\infty,0)}$$

$$= c_{4} ||F||_{L^{p}(-\infty,0)}$$
(3.6)

where $c_4 = c_2 c_3^{-\frac{1}{p}} s$. Similarly,

$$\|(TF)^{(s)}\|_{L^{p}(0,\infty)} \le c_{5} \sum_{k=1}^{s} \|F^{(k)}\|_{L^{p}(-\infty,0)}$$
(3.7)

with c_5 a constant independent of F.

Now we invoke a well-known result that

$$\|F^{(k)}\|_{L^{p}(-\infty,0)} \le c_{6} \left(\|F\|_{L^{p}(-\infty,0)} + \|F^{(s)}\|_{L^{p}(-\infty,0)}\right)$$
(3.8)

for all $k \leq s$, where the constant c_6 depends only on s (cf. Nikol'skii [N2]). Thus, combining (3.3), (3.6), (3.7) and (3.8) yields

$$||Tf||_{W^{\bullet,p}(0,\infty)} \le c_7 ||f||_{W^{\bullet,p}(-\infty,0)},\tag{3.9}$$

where c_7 is independent of f.

6° According to (3.5) condition (3.4) and, hence, (3.2) is equivalent to (3.1). Thus, from what has been said in item 2° it follows that $Tf \in W^{s,p}(-\infty,\infty)$. The estimate (3.9) now shows that the operator T is bounded.

7° Finally, equality (2.3) is equivalent to

$$\sum_{j=1}^{s} \alpha_j \, \kappa^j \, (\kappa f)_- = \sum_{j=1}^{s} \alpha_j \, \kappa^{j+1} \, f_-$$

on $(0,\infty)$. The latter equality is valid for, by condition 2),

$$\begin{aligned} (\kappa f)_{-}(t) &= (A f(M(t)))_{-} \\ &= A f(M(-t)) \\ &= A f(-M(t)) \\ &= (\kappa f_{-})(t), \end{aligned}$$

which completes the proof.

References

- [B] V. M. BABICH, On the extension of functions. Uspekhi Mat. Nauk, 8 (2 (54)) (1953), 11-113.
- [H] M. R. HESTENES, Extensions of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192.
- [N1] S. M. NIKOL'SKII, On the solution of the polyharmonic equation by a variational method. Dokl. Akad. Nauk SSSR, 88 (1953), 409-411 (Russian).
- [N2] S. M. NIKOL'SKII, Approximation of Functions of Several Variables and Embedding Theorems, Springer-Verlag, Berlin and New York, 1974.
- B.-W. SCHULZE, Boundary Value Problems and Singular Pseudo-Differential Operators, J. Wiley, Chichester, 1997 (To appear).
- [T] H. TRIEBEL, Theory of Function Spaces, Birkhäuser, Basel et al., 1983.