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Abstract. Let C be a projective irreducible non-singular curve over
an algebraic closed field k of characteristic 0. We consider the Jacobian
J(C) of C which is a projective abelian variety parametrizing topologi-
cal trivial line bundles on C. We consider its Brill-Noether loci, which
correspond to the varieties of special divisors. The Torelli theorem al-
lows us to recover the curve from its Jacobian as a polarized abelian
variety. We approach in the same way the analogous problem for the
Quot scheme Qd,r,n(C) of degree d quotients of a trivial vector bundle
on C, defining Brill-Noether loci and Abel-Jacobi maps. We define a po-
larization on the compactification RC,d of the variety of ruled surfaces
considered as a Quot scheme and we prove an analogue of the Torelli
theorem by applying a Fourier-Mukai transform.

1. Introduction

Let C be a complete nonsingular algebraic curve of genus g over an al-
gebraic closed field k of characteristic 0, and let D(X) denote the bounded
derived category of coherent sheaves on a variety X. This is the category
obtained by adding morphisms to the homotopic category of bounded com-
plexes of coherent sheaves on X in such a way that any morphism of com-
plexes which induces isomorphism in cohomology becomes an isomorphism.

For smooth projective curves, a derived equivalence always corresponds
to an isomorphism. In particular this implies the classical Torelli theorem.
If there is an equivalence between the derived categories of two smooth
projective curves, then there is an isomorphism between the Jacobians of
the curves that preserves the principal polarization, [Ber]. In general, for
higher dimensional smooth projective varieties this is not true. The problem
of the existence of smooth, projective non birational Calabi-Yau threefolds
that have equivalent derived categories, has been studied by A. Caldararu
in [Cal], where the author suggests a way to construct such examples of CY
threefolds.

Due to a result of Orlov ([Orl]), an equivalence F : D(X) → D(X ′) be-
tween derived categories of coherent sheaves on smooth projective manifolds
X,X ′ is always of Fourier-Mukai type, that is, there exists a unique (up to
isomorphism) object E ∈ D(X ×X ′) such that the functor F is isomorphic
to the functor:

ΞE(−) := q∗(E ⊗ p∗(−)),
where p and q are the projections of X ×X ′ onto X and X ′ respectively.
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In particular, two smooth projective manifolds that have equivalent derived
categories of coherent sheaves have isomorphic rational cohomology groups
([Huy]):

H∗(X,Q) ∼= H∗(X ′,Q).
In general, it is of interest to know how much information about a space

X can be recovered from Hodge data on X.
Let M(r, d) be the projective non-singular variety of isomorphism classes

of stable bundles on C of rank r and degree d. This space is closely related
to the curve. Narasimhan and Ramanan proved in [NR] that the canoni-
cally polarised intermediate Jacobian of M(r, d) corresponding to the third
cohomology group, is naturally isomorphic to the canonically polarised Ja-
cobian of C. It is believed that the theory of motives is an effective language
for clearly and precisely expressing how the algebro-geometric properties of
the curve influence those of the moduli space of stable vector bundles. S.
del Baño studied in [Ba] the motive of the moduli space of rank two stable
and odd determinant vector bundles over a curve. Here we show that a
smooth projective curve C over k is determined by a certain Quot scheme
compactification of the scheme of degree d morphisms from the curve to the
Grassmannian G(2, 4) with a certain polarization on this Quot scheme. The
proof uses the Fourier-Mukai transform along the lines of the Beilinson-
Polishchuk proof of the classical Torelli theorem, [BP]. In the genus 0
case, these spaces are considered in [Mar1] as parameter spaces for rational
ruled surfaces in order to solve a certain enumerative problem. However the
Fourier-Mukai transform is defined on a general Quot scheme parametrizing
quotient sheaves of a trivial bundle on C. This method was also applied to
Prym varieties by J. C. Naranjo in [Nar].

2. Geometry of the Jacobian and Quot schemes

2.1. Torelli problem for smooth projective curves. Let C be a com-
plete non-singular curve of genus g, and k an algebraically closed field. By
Pic (C) (resp. Picd(C)) we denote the Picard group of C (resp. the degree
d subset within it). The Jacobian J = J(C) of C is an abelian variety such
that the group of k−points of J is isomorphic to Pic0(C), (resp. all topo-
logical trivial line bundles). Let j : C → J(C) be the canonical embedding
of C into its Jacobian, normalized such that j(P ) = 0 for some P ∈ C.

For every d > 0 we denote by SymdC the dth symmetric power of a
curve C. By definition, SymdC is the quotient of Cd by the action of the
symmetric group Sd. We can identify the set of effective divisors of degree d
on C with the set of k−rational points of the symmetric power SymdC, that
is, SymdC represents the functor of families of effective divisors of degree d
on C.

Theorem 2.1. (Torelli) Let C1 and C2 be two smooth projective curves of
genus g > 1 over k. If there is an isomorphism between the Jacobians J(C1)
and J(C2) preserving the principal polarization then C1

∼= C2.

The subset in Picg(C) consisting of line bundles L with h0(L) = 1 cor-
responds to the set of k−points of an open subset in SymgC. Translating
this subset by various line bundles of degree −g we obtain algebraic charts
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for Pic0(C). The Jacobian variety J is constructed by gluing together these
open charts. It is a consequence of Torelli’s theorem that if

Symg−1C1
∼= Symg−1C2, then C1

∼= C2.

The next theorem states that the same result continues to hold for all
d ≥ 1 with one exception:

Theorem 2.2. [Fak] Let C1 and C2 be two smooth projective curves of genus
g ≥ 2 over an algebraically closed field k. If SymdC1

∼= SymdC2 for some
d ≥ 1, then C1

∼= C2 unless g = d = 2.

It is well known that there exist non-isomorphic curves of genus 2 over C
with isomorphic Jacobians.

2.2. Varieties of special divisors. The closed subset W r
d ⊂ Jd = J(C)

consists of all line bundles L of degree d such that h0(L) > r. One has a
canonical scheme structure on W r

d , since it can be described as the degenera-
tion locus of some morphism of vector bundles on Jd. The subscheme W 0

g−1

is exactly the theta divisor Θ ⊂ Jg−1. All theta divisors in the Jacobian are
translations of the natural divisor Θ ⊂ Jg−1. We have a canonical involution
corresponding to the map ν : Θ→ Θ, L→ KC⊗L−1, where KC denotes the
canonical line bundle over the curve C and L−1 is the dual line bundle of L.
There is a canonical identification of Pic0(Jg−1) with Pic0(J) = Ĵ induced
by any standard isomorphism J → Jg−1 given by some line bundle of degree
g − 1. The corresponding Fourier transform F on the derived categories of
coherent sheaves on Ĵ and Jg−1 is an equivalence.

Denote by Θns the open subset of smooth points of Θ. We can identify
Θns with an open subset of Symg−1C consisting of effective divisors D of
degree g − 1, such that h0(D) = 1.

For sufficiently large d, the morphism σd

SymdC
σ→ Jd

D → isomorphism class of OC(D)

is a projective bundle. The fiber of σd over L is the variety of effective
divisors D such that OC(D) ∼= L. Further, (σd)−1(L) ∼= PH0(C,L). Let
us identify Jd with J using the line bundle OC(dp), where p ∈ C is a fixed
point. Then we can consider σd as a morphism SymdC → J sending D
to OC(D − dp). In more invariant terms, let L be a line bundle of degree
d > 2g − 2 on C. Then the morphism σL : SymdC → J sending D to
OC(D) ⊗ L−1 can be identified with the projective bundle associated with
F(L), the Fourier transform of L.

2.3. Higher rank divisors. A divisor of rank r and degree d or (r, d)divisor,
will be any coherent sub OC-module of kr = k⊕r, having rank r and degree
d.

This set can be identified with the set of rational points of an algebraic
variety Divr,dC/k which may be described as follows. For any effective ordinary
divisor D, set:

Divr,dC/k(D) = {E ∈ Divr,dC,k|E ⊂ OC(D)r},
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where OC(D) is considered as a submodule of kr.
The set of all (r, d)−divisors can be identified with the set of rational

points of QuotmOC(D)r/C/k parametrizing torsion quotients of OC(D)r having
degree m = r ·deg D−d. This is a smooth projective irreducible variety. As
in the Jacobian case, tensoring by OC(−D) defines an isomorphism between
Qr,d(D) = QuotmOC(D)r/C/k and QuotmOrC/C/k. Since the whole construction is
algebraic, it can be performed over any complete normal field, for example,
a p−adic field.

Let Qd,r,n(C) be the Quot scheme parametrizing rank r coherent sheaf
quotients of OnC of degree d. There is a universal exact sequence over
Qd,r,n(C)× C:

0→ K → OnQd,r,n(C)×C → E → 0

The universal quotient E is flat over the Qd,r,n(C) Quot scheme, that is, for
each q ∈ Qd,r,n(C), Eq := E|{q}×C is a coherent sheaf over C and

h0(Eq)− h1(Eq) = d+ 2 (1− g),

is constant by Riemann-Roch, that is, does not depend on q.
By analogy with SymdC, it is natural to define maps

v : QuotmOrC/C/k → J(C),

of Abel-Jacobi type. The geometry of the curve C interacts with the geom-
etry of Qd,r,n(C) and J(C) via these maps.

Proposition 2.3. For d sufficiently large and coprime with r, there is a
morphism from the Quot scheme Qd,r,n(C) to the Jacobian of the curve Jd.

Proof. Let U be a universal bundle over C ×M (r, d). We consider the
projective bundle ρ : Pd,r,n(C) → M(r, d) whose fiber over a stable bundle
[F ] ∈ M(r, d) is P(H0(C,F )⊕n). We take the degree sufficiently large to
ensure that the dimension of P(H0(C,F )⊕n) is constant. Globalizing,

Pd,r,n(C) = P(U⊕n).

Alternatively, Pd,r,n(C) may be thought of as a fine moduli space for n−pairs
(F ;φ1, . . . , φn) of a stable rank r, degree d bundle F together with a non-
zero n−tuple of holomorphic sections φ = (φ1, . . . , φn) : On → F considered
projectively. When φ is generically surjective, it defines a point of the Quot
scheme Qd,r,n(C),

0→ N → On → E → 0

where N = F∨. The induced map ϕ : Qd,r,n(C) → Pd,r,n(C) is a birational
morphism, so that Qd,r,n(C) and Pd,r,n(C) coincide on an open subscheme
and also the universal structures coincide.

From the universal quotient

OnQd,r,n(C)×C → EQd,r,n(C)×C

for all q ∈ Qd,r,n(C), we have a surjective morphism

OnC → E → 0.



ON FOURIER MUKAI TRANSFORM ON THE COMPACT VARIETY OF RULED SURFACES5

We now consider the canonical morphism to the Jacobian of the curve:

det : M(r, d)→ Jd.

Then the composition of the morphisms, ρ = det ◦ ρ ◦ ϕ which gives a
morphism from Qd,r,n to the Jacobian Jd. �

Remark 2.4. For L a degree d line bundle on C, ρ−1([L]) ∼= P(H0(C,L)⊕n),
where L =

∧r F for some [F ] ∈M(r, d). In particular, if r = 0 then ρ−1([L])
corresponds to the variety of higher rank (n,d)-divisors E ⊆ OC(D)n.

3. The Torelli problem for the RC,d−Quot scheme

Let KC be the canonical bundle over C and π1, π2 be the projection maps
of Qd,r,n(C) × C over the first and second factors respectively. Tensorizing
the sequence

0→ K → OnQd,r,n(C)×C → E → 0 over Qd,r,n(C)× C

with the linear sheaf π∗2(KC ⊗ L−1), yields the exact sequence:

(1)
0→ K⊗π∗2(KC⊗L−1)→ OnQd,r,n×C⊗π

∗
2(KC⊗L−1)→ E⊗π∗2(KC⊗L−1)→ 0

Here L is a line bundle of fixed degree. The π1∗ direct image of the above
sequence yields the following long exact sequence on Qd,r,n(C):

0→ π1∗(K ⊗ π∗2(KC ⊗ L−1))→ π1∗(OnQd,r,n ⊗ π
∗
2(KC ⊗ L−1))→

→ π1∗(E ⊗ π∗2(KC ⊗ L−1))→ R1π1∗(K ⊗ π∗2(KC ⊗ L−1))→
→ R1π1∗(OnQd,r,n ⊗ π

∗
2(KC ⊗ L−1))→ R1π1∗(E ⊗ π∗2(KC ⊗ L−1))→ 0.

The universal element E considered as an object in the derived category
Db(Qd,r,n(C)×C) of the product, defines an integral transform φE(−) with
kernel E to be the functor Db(Qd,r,n(C)) → Db(C) between the bounded
derived categories of coherent sheaves over Qd,r,n(C) and C respectively,
given by the formula:

φE(−) = R1π1∗(E ⊗ π∗2(−)).

If such an integral transform is an equivalence, it is called a Fourier-Mukai
equivalence.

The functor φE has the left and right adjoint functors φ∗E and φ!E defined
by the following formulas:

φ∗E(−) = π1∗(E∨ ⊗ π∗2(KC ⊗ (−))),

φ!
E(−) = KQd,r,n(C)[dimQd,r,n(C)]⊗ π1∗(E∨ ⊗ (−))),

where KQd,r,n(C) is the canonical sheaf on Qd,r,n(C), and
E∨ := R∗Hom(E ,OQd,r,n(C)×C).
Note that the existence of the left adjoint functor immediately implies the
existence of the right adjoint functor φ!

E by means of the formula:

φ!
E = SRC,d ◦ φ

∗
E ◦ S−1

C ,
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where SQd,r,n(C), SC are the Serre functors on Db(Qd,r,n(C)) and Db(C).

Remark 3.1. Since Quotd,r,n(C) and C have different dimension, the func-
tor φE cannot be an equivalence between the corresponding derived cate-
gories of coherent sheaves.

Remark 3.2. The definition of the Fourier-Mukai transform uses the uni-
versal quotient sheaf E which is defined over the product Quotd,r,n(C)×C.
However, since the Fourier-Mukai transform φE pushes forward the corre-
sponding coherent sheaf on the product to Quotd,r,n(C), it can be defined
without reference to the curve C. In other words, we can take any E ⊗π∗1N ,
where N is a line bundle over Quotd,r,n(C), to define a Fourier-Mukai trans-
form on Db(Quotd,r,n(C)).

Recalling the notation of [Mar2], RC,d will be the Quot scheme com-
pactifying the variety of morphisms Mord(C,G(2, 4)), so that we are fix-
ing the integers r, n to be 2, 4 respectively. The image of a curve C by
f is a geometric curve in G(2, 4) or equivalently a ruled surface in P3.
For each f : C → G(2, 4) there exists a unique corresponding quotient
O4
C → f∗Q → 0 in RC,d, where Q is the universal quotient over the Grass-

mannian. Let us denote by s the Segre invariant s of the bundle f∗Q, which
is defined as the maximal degree of f∗Q∨ ⊗ L having a non-zero section
and which satisfies s ≡ d (mod 2) and 2 − 2g ≤ s ≤ g. Since the universal
quotient E is flat over RC,d, for each q ∈ RC,d, Eq := E|{q}×C is a coherent
sheaf over C and Mord(C,G(2, 4)) sits inside RC,d as the open subscheme of
locally free quotients of O4

C .
Analogously to the case of the Jacobian, we can consider the following Brill-
Noether loci associated with a line bundle L of degree d+s

2 on C for a fixed
integer k.:

RkC,d,s = {q ∈ RC,d|h0 (C,E∨q ⊗ L) ≥ k, deg L =
d+ s

2
} =

{q ∈ RC,d|h1 (C,Eq ⊗KC ⊗ L−1) ≥ k, deg L =
d+ s

2
} =

{q ∈ RC,d|h0 (C,Eq ⊗KC ⊗ L−1) ≥ d+ 3− 2g + k, deg L =
d+ s

2
}.

The subset RkC,d,s has a canonical scheme structure on RC,d, since it can
be described as the degeneration locus of some morphism of vector bundles
on RC,d. These sets are analogous to the varieties of special divisors in the
Jacobian of a curve. Note that in the case k = 1, this scheme corresponds
exactly to the points q ∈ RC,d such that f∗qQ has Segre invariant s, (see
[Mar2]), and when s takes the value 2 (g−1), this defines a codimension one
locus inside RC,d which we will later take as a polarization for RC,d.

3.1. Tangent spaces. Let 0 → Nq → O4
C → Eq → 0 be the quotient

represented by a point q ∈ Qd,r,n(C). We consider the tangent space to that
point,

TqQd,r,n(C) ∼= Hom (Nq, Eq) ∼= H0(N∗q ⊗ Eq).
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If H1(C,N∗q ⊗ Eq) ∼= Ext1(Nq, Eq) is trivial, then q is a smooth point in
Qd,r,n(C). In that case, we compute using the Riemann-Roch theorem the
dimension of TqQd,r,n(C) to be deg (N∗q ⊗ Eq) + r · (1− g).

Lemma 3.3. The singular locus of RkC,d,s is exactly equal to Rk+1
C,d,s.

Proof. Since the schemes RkC,d,s are determinantal varieties, locally there
exists a morphism from RkC,d,s to the variety of matrices Mk(n,m) of rank
less or equal than k, such that RkC,d,s is the pull-back of the variety of
matrices Mk(n,m) of rank equal or less than k. Then the result follows
from the analogous statement for the tangent space at Mk(n,m). �

Lemma 3.4. For d sufficiently large depending on s, the expected codimen-
sion of RkC,d,s as a determinantal variety is (2g − s− 2 + k) · k.

Proof. RkC,d,s is exactly the locus of degeneration of the morphism of
vector bundles:

φ : R1π1∗(K ⊗ π∗2(L−1 ⊗KC))→ R1π1∗(OnRC,d×C ⊗ π
∗
2(L−1 ⊗KC)),

where L is a line bundle of degree d+s
2 and d ≡ s mod 2, (see Theorem 3.2 of

[Mar2]). Then by the theory of determinantal varieties, a simple dimension
computation gives the result. �

3.2. A polarization and Torelli-type result for the variety RC,d. Let
F be a flat family of coherent sheaves on a relative smooth projective curve
π : C → S, such that for each member of the family χ(Cs,Fs) = 0. We
associate to F a line bundle det−1Rπ∗(F) (up to isomorphism) equipped
with a section θF . We define the theta line bundle on J associated with
a line bundle L of degree g − 1 on C by applying this construction to the
family p∗1L ⊗ P on C × J , where P is the Poincare line bundle. Zeroes of
the corresponding theta function θL constitute the theta divisor ΘL = {ξ ∈
J : h0(L(ξ)) > 0}, which gives rise to a polarization for the Jacobian J .
This means that isomorphism classes of theta line bundles have the form
det−1S(L), where S(L) is the Fourier-Mukai transform of a line bundle L of
degree g−1 considered as a coherent sheaf on the dual Jacobian Ĵ supported
on C.

Beilison and Polishchuk give a proof of the Torelli theorem for the Jaco-
bian J of a curve in [BP], based on the observation that the Fourier-Mukai
transform of a line bundle of degree g − 1 on C, is a coherent sheaf (up to
shift), supported on the corresponding theta divisor in J . Here we present
an analogue of the Torelli theorem for the variety RC,d of ruled surfaces,
defining a polarization or theta divisor of RC,d. Let C be an algebraic curve
of genus g ≥ 2 and define the map ν : Pic

d+s
2 (C) → Pic

g−d−s−1
2 (C) by

ν(L) = KC ⊗ L−1.

Theorem 3.5. For d > 2 (g − 1), and L ∈ Pic
d+s
2 (C), the Fourier-Mukai

transform with kernel E of the line bundle ν(L) on C is a coherent sheaf
F supported on the divisor R1

C,d,2(g−1) in RC,d. Moreover, the restriction of
F to the non-singular part of this divisor (understood as a polarization for
RC,d) is a line bundle and F can be recovered from this line bundle.
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Proof. For L a line bundle of degree d+s
2 on C (d ≡ s mod 2), let us

consider the map ν : L → KC ⊗ L−1 and the Fourier Mukai transform
φE(ν(L)), which is a coherent sheaf F supported on the divisor R1

C,d,2(g−1) in
RC,d, that is, on the locus of points q ∈ RC,d such that h0 (C,E∨q ⊗L) ≥ 1, or
dually h1(C,Eq⊗KC⊗L−1) ≥ 1. Furthermore, F is the derived pushforward
of E⊗π∗2(KC⊗L−1), so that we can represent it as the cone of the morphism
of vector bundles on RC,d, [Mar2]:

(2)
φ : L0 := R1π1∗(K⊗π∗2(L−1⊗KC))→ L1 := R1π1∗(OnRC,d×C⊗π

∗
2(L−1⊗KC)),

that is, by the complex V. = [L0 → L1] in Db(RC,d).
Since φ is an isomorphism outside of R1

C,d,2(g−1), it is injective and F =
cokerφ. Moreover, when s = 2 (g − 1), R1

C,d,2(g−1) is a divisor and it is a
polarization for RC,d. We see that

detφ = detR1π1∗(E ⊗ π∗2(KC ⊗ L−1)) =

det
(
R1π1∗(K ⊗ π∗2(L−1 ⊗KC))

)
⊗det

(
R1π1∗(OnRC,d×C ⊗ π

∗
2(L−1 ⊗KC)

)−1
.

The line bundle det(φE(ν(L))−1 on RC,d has a canonical (up to non-zero
scalar) global section θφ (canonically up to isomorphism). The zeroes of
θφ ∈ H0(RC,d, det(φE(L))−1) constitute a divisor which is supported on
R1
C,d,2(g−1), that is, det F is an equation of R1

C,d,2(g−2).
If we change the resolution L0 → L1 for F , the pair (det F, θφ) gets replaced
by an isomorphic one.
There is a natural locally closed embedding i :

(
R1
C,d,2(g−1)

)ns
↪→ RC,d.

Next we prove that F is the pushforward F = ins∗ M by i of a line bundle
M on the non singular part of R1

C,d,2(g−1).
The singular locus of R1

C,d,2 (g−1) is R2
C,d,2 (g−1) and by Lemma 3.4 it has

codimension in RC,d greater than 2 so that M := ins∗F .
Let θnsφ be the set RC,d,2(g−1)/R

1
C,d,2(g−1). This set corresponds to the non-

singular part of θφ by Lemma 3.3. The restriction of F to θnsφ is a line bundle
from which F can be recovered by taking the push-forward with respect to
the induced embedding θnsφ ↪→ θφ. By the base change theorem for a flat
morphism:

Lins∗F ∼= Rπ2∗(E ⊗ π∗2(KC ⊗ L−1))|C×θnsφ .

Since h0(C,Eq ⊗ KC ⊗ L−1) = 1 for every q ∈ θnsφ , by applying the base
change theorem again, we deduce that

rkM |q = 1 for every q ∈ θnsφ .

Since θnsφ is reduced, M is a line bundle on θns.
We can characterize the set M of all line bundles on θnsφ in terms of

(RC,d, θφ). The set M has two properties:

(1) For every M ∈ M, M ⊗ ν∗M ∼= Kθns , where ν is the map L →
KC ⊗ L−1.
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(2) The class of M generates the cokernel of the map

(3) Pic(RC,d)→ Pic(θnsφ ).

Since the Picard variety has the structure of a polarized abelian variety,
the morphism (3) is a homomorphism of abelian groups induced by the
inclusion i : θnsφ ↪→ RC,d. Its cokernel coker(Pic (RC,d) → Pic(θnsφ )) is a
group. Moreover it is isomorphic to Z for d sufficiently large, (Prop. 2.3).

Thus to recover the curve C from (RC,d, θφ), by the involutive property
of the Fourier-Mukai transform φE , we can recover the curve C by taking
a line bundle M on M, extending it to θφ(= R1

C,d,2(g−1)) by taking the
push-forward, and then apply Fourier-Mukai transform.

Now we show that M ∈M. First, we apply duality theory to the projec-
tion π1 : RC,d × C → RC,d to prove that

(4) RHom(F,ORC,d) ∼= ν∗F [−1],

where ν : Pic(C) → Pic(C) corresponds to the involution L → L−1 ⊗KC .
Applying the functor Lins∗ to the isomorphism 4, we obtain

(5) RHom(Lins∗F,Oθns) ∼= ν∗Lins∗F [−1].

Since Lins∗F has locally free cohomology sheaves, this implies that M−1 ∼=
ν∗Lins∗F [−1]. But

L−1ins∗F ∼= L−1ins∗ins∗ M
∼= M ⊗Oθns(−θ),

and that ν∗M−1 ∼= M(−θ), which proves condition (1) of M.
In order to prove the second condition, we consider the universal quotient
E|{p}×R1

C,d,2 (g−2)
restricted to {p} ×R1

C,d,2 (g−2). The line bundle M−1 on

θnsφ = {q ∈ RC,d|h0(C,E∨q ⊗ L) = 1, L ∈ Pic
d+s
2 (C)}

is isomorphic to ins∗ p2∗(O(RC,d,2 (g−2)))(−Rp), where p2 : C × RC,d → RC,d,
ins is the embedding ins : θnsφ ↪→ RC,d and Rp := RC,d,2 (g−2) ∩ p × RC,d.
Therefore M−1 ∼= α∗(ORC,d(−Rp)) which generates the cokernel of the map
Pic (RC,d)→ Pic (θnsφ ). �

Corollary 3.6. Given two smooth projective curves C1 and C2, if there exist
an isomorphism

f : (RC1,d, θ1) ∼→ (RC2,d, θ2)

of polarized Quot-schemes, then C1 ' C2.

Proof. By Theorem 3.5, the restriction of F = φE(ν(L)) to the non-
singular part of θi (L ∈ Pic

d+s
2 ), is a line bundle ins∗ M and F can be recov-

ered from this line bundle since M := ins∗F . Therefore

f |supp(ins1∗ ) : supp(ins1∗M1) ∼→ supp(ins2∗M2),

and C1
∼= C2, where i1 : θns1 ↪→ RC,d, and i2 : θns2 ↪→ RC,d. �
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