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Abstract. In modern number theory there are famous theorems on the modular-
ity of Dirichlet series attached to geometric or arithmetic objects. There is Hecke’s
converse theorem, Wiles proof of the Taniyama-Shimura conjecture, and Fermat’s
Last Theorem to name a few. In this article in the spirit of the Langlands philos-
ophy we raise the question on the modularity of the GL2-twisted spinor L-function
ZG⊗h(s) related to automorphic forms G, h on the symplectic group GSp2 and
GL2. This leads to several promising results and finally culminates into a pre-
cise very general conjecture. This gives new insights into the Miyawaki conjecture
on spinor L-functions of modular forms. We indicate how this topic is related to
Ramakrishnan’s work on the modularity of the Rankin-Selberg L-series

1. Introduction

This article is dedicated on the modularity of Dirichlet series. One of the funda-

mental questions in the field of number theory is how to decide whether an a priori

defined Dirichlet series is modular. Sources of these series are Shimura varieties, con-

volutions of L-functions, and series of numbers with certain global properties. Since in

general this question has a long history and influenced several areas in mathematics

we briefly recapture some of its aspects and applications.

We begin with the prototype of a Dirichlet series which inherits the property to be

modular. Hecke’s converse theorem states the following: Given a sequence a0, a1, a2 . . .

of complex numbers with polynomial growth in n. Assume that Φ(s) :=
∑∞

n=1 an n
−s

satisfy certain demanded analytic properties and fulfills a functional equation, then

the function f(τ) :=
∑∞

n=0 an e
2π i nτ (τ ∈ H := {x + iy|y > 0}) is a modular form.

This was generalized by Weil. As an application one has the Shimura correspondence

between modular forms of half-integral weight and integer weight [17].
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Let E/Q be an elliptic curve over Q with conductor N . Since for p with (p,N) = 1

the curve has good reduction one can count the points on the reduced curve (mod p).

This leads to the numbers

Ap(E) := p+ 1− |E(Fp)|,

and more general to An(E) for (n,N) = 1. Then the Taniyama-Weil-Shimura conjec-

ture states that the Dirichlet series D(s) :=
∑∞

n=1,(n,N)=1An(E) n−s is modular, i.e.,

there exists a primitive new form of weight k = 2, such that the Fourier coefficients

an, n coprime to N , coincide. This has been proven by Wiles [19] and has let him to

the solution of Fermat’s Last Theorem.

Let F ∈ M2
k be a Siegel modular form of degree 2 and weight k with respect to

Γ2 = Sp2(Z). Let F be a Hecke eigenform with eigenvalues (λn(F ))∞n=1. Armed with

a rich amount of numerical data Saito and Kurokawa [12] discovered, that for certain

weights k and eigenforms F the Andrianov spinor L-function L(s, F ) :=
∏

p Lp(p
−s, F )

degenerates. Let µF0,p, µ
F
1,p, µ

F
2,p be the p-local Satake parameters of an arbitary Hecke

eigenform F of degree 2. Then the local spinor factor Lp(X,F ) is given by

(1.1)
{

(1− µF0,pX)(1− µF0,pµF1,pX)(1− µF0,pµF2,pX)(1− µF0,pµF1,pµF2,pX)
}−1

.

The functions considered by Saito and Kurokawa turned out to be locally equal to

Lp(X,F ) =
{

(1− pk+1X)(1− pk+2X)(1− Bp(F )X + p2k−3X2)
}−1

for p = 2, 3, 5. Then they conjectured that

(1.2) L(s, F ) = ζ(s− k + 1)ζ(s− k + 2)
∞∑
n=0

Bn(F )n−s

where DF (s) :=
∑∞

n=0 Bn(F )n−s is modular. Moreover it should belong to an ele-

ment of M2k−2, the space of elliptic modular forms of weight 2k − 2 with respect to

Γ = SL2(Z). Finally it had been proven in the eighties by Andrianov, Maass, Saito,

Kurokawa and Zagier [21] that DF (s) has this property and that the correspondence

is 1− 1. These so-called Saito-Kurokawa lifts have been generalized by Ikeda [10] to

Siegel modular forms of even degree.

The type of modularity we are most interested in is given by Ramakrishnan [16]
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related to a question first raised by Langlands on the modularity of the Rankin-

Selberg product. Let g, h be two primitive new forms, not necessary holomorphic, of

level N and M , respectively, with Hecke L-functions

L(s, g) =
∑
n

an n
−s =

∏
p

{
(1− αp p−s)(1− βp p−s)

}−1

(1.3)

L(s, h) =
∑
n

bn n
−s =

∏
p

{
(1− α′p p−s)(1− β′p p−s)

}−1

.(1.4)

For p not dividing NM , we define Lp(X, g ⊗ h) by{
(1− αpα′pX)(1− αpβ′pX)(1− βpα′pX)(1− βpβ′pX)

}−1

.

Let L∗(s, g⊗h) denote the product of Lp(p
−s, g⊗h) over all p not dividing NM . Then

this L-function is closely related to the Rankin-Selberg Dirichlet series
∑

n anbn n
−s.

The precise form of the question is now: Does there exist an automorphic form

F := g � h on GL4/Q, whose L-function equals L∗(s, g ⊗ h) after removing the ram-

ified factors? This was finally positive solved by Ramakrishnan [16].

Since Hecke L-functions are spinor L-functions of elliptic modular forms, it seems

to be natural to go one step further and ask about modularity if one exchanges one of

the elliptic modular forms in the Ramakrishnan setting by a Siegel Hecke eigenform

G of degree 2. We look at the convolution L-function ZG⊗h(s) (GL2-twisted spinor

L-function) of the spinor L-functions attached to G and h. Hence we are searching

for an automorphic form F := G� h such that the L-series of F is equal to ZG⊗h(s).

But at this point we have to confess that this question is somehow vague and has to

be formulated in a more precise way.

It is not clear to which group the automorphic form F should belong and for which

type of L-function one has to look for. Of course the general philosophy of Langlands

predicts that we may should look for the standard L-function of an automorphic forms

on GL8/Q, since the L-function ZG⊗h(s) has locally degree 8.

On the other side we would like to have holomorphic automorphic forms, without

any assumption on cohomology, to get arithmetic results on critical values in the sense

of Deligne [5], [20]. Here one of the first main results has been to find the appropriate



4 BERNHARD HEIM

group and L-function to be able to sharpen the question on modularity. We believe

that it is always a good advice to look at the properties of Eisenstein series. Let En
k

be the Siegel type Eisenstein series of degree n and weight k. Then we have

L(s, E3
k) = ZE2

k⊗Ek−2
(s),

where the left side is the spinor L-function of E3
k . So the question of modularity of

ZG⊗h(s) can be formulated in the final form: For which weights k1 and k2 and Hecke

eigenform G ∈M2
k1
, h ∈Mk2 does there exist a Siegel modular form F of degree 3 of

weight k3, which is a Hecke eigenform, such that the spinor L-function of F is equal

to the twisted spinor L-function ZG⊗h(s). Does there exist a Siegel Hecke eigenform

F := G� h of degree 3 such that

(1.5) L(s,G� h) = ZG⊗h(s).

We prove that the set of weight triples (k1, k2, k3)⊂ N3 which can have this property

is distinguished. All this is also related to the Miyawaki conjectures. These are two

types of conjectures on the spinor L-function of a Siegel modular form of degree 3.

Miyawaki considered the two cuspidal Siegel Hecke eigenforms F12 ∈ S3
12, F 3

14 ∈ S3
14

of degree 3 and weight 12 and 14. His conjectures are generalizations of the expected

degeneration of the spinor L-functions related to this two cusp forms.

Recently [9] we have proven the Miyawaki conjecture of the first type of F12. Up

to some non-vanishing condition our method covers mainly the full conjecture of the

first type. Here we want to notice that our approach is related to the Miyawaki

conjectures related to F14, of the second type. We show in this paper that our

modularity conjecture includes Miyawaki’s second type conjecture completely.
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2. Statements of results

We first have to fix some notation and recall well-known properties of modular

forms. Let n, k be positive integers and let R be a subring of R. Then we put

G+Spn(R) :={
γ ∈ GL2n(R)

∣∣ γ( 0n −1n
1n 0n

)
γt = µ(γ)

(
0n −1n
1n 0n

)
, µ(γ) > 0

}
.

We define the symplectic group Spn(R) := G+Spn(R) ∩ SL2n(R). Then the Siegel

modular group is given by Γn := Spn(Z). The group G+Spn(R) acts on the Siegel

upper half-space Hn of degree n by((
A B

C D

)
, Z

)
7→

(
A B

C D

)
(Z) := (AZ +B) (CZ +D)−1 .

Let j(γ, Z) := det (CZ +D) for γ = ( A B
C D ) and Z ∈ Hn. LetMn

k be the space of Siegel

modular forms of weight k and degree n, i.e., complex valued holomorphic functions

F on Hn with the transformation law F (γ(Z)) = j(γ, Z)k F (Z) for all γ ∈ Γn and

certain growth conditions at the cusp∞ in the case n = 1. We denote the subspace of

cusp forms by Snk . Moreover let Hn be the Hecke algebra attached to the Hecke pair(
Γn,G

+Spn(Q)
)
. For convenience we drop the index in the case n = 1 and use the

symbols Γ,H,H, . . . . The Hecke algebra Hn acts on Mn
k and stabilizes the subspace

of cusp forms. There exists a basis of Hecke eigenforms of Snk which can be extended

to a basis of Hecke eigenforms of Mn
k for all Hecke operators.

Suppose F ∈Mn
k is a Hecke eigenform with p-Satake parameters µ0, µ1, . . . , µn for

every finite prime p. These are complex numbers, which are unique up to the action

of the Weyl group of the symplectic group and normalized with µ2
0µ1 · . . . · µn =

pnk−n(n+1)/2. Then we define the spinor L-function L(s, F ) by
∏

p Lp(p
−s, F ). Here

(2.1) Lp(X,F ) := (1− µ0X)−1
n∏
r=1

∏
i1<...<ir

(1− µ0µi1 · . . . · µirX)−1 .

The analytic properties of the spinor L-function are well understood in the cases

n = 1 and n = 2 (meromorphic continuation to the complex plane, poles, functional

equation). Recently, some progress has been made in the cases of Ikeda and Miyawaki
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lifts for n ≥ 3 ([11], [9]). Let h ∈ Mk be a Hecke eigenform with eigenvalues λn(h)

and Fourier expansion

h(τ) =
∞∑
n=0

an(h) qn (q = e2πiτ ).

Let a1(h) = 1 then λn(h) = an(h). We introduce the local parameters αp and βp and

the Hecke L-function L(s, h) of the Hecke eigenform h:

(2.2) L(s, h) =
∞∑
n=1

λn(h)n−s =
∏
p

{
(1− αp(h) p−s)(1− βp(h) p−s)

}−1

.

Here αp(h) + βp(h) = λp(h) and αp(h)βp(h) = pk−1. With this normalization the

Hecke L-function of h is equal to the spinor L-function. We now recall the definition

of the twisted spinor L-function [8], already mentioned in the introduction.

Definition. Let k1, k2 be positive even integers and let G ∈ M2
k1

, h ∈ Mk2 be two

Hecke eigenforms. Then the twisted spinor L-function ZG⊗h(s) attached to G and h

is defined by

(2.3) ZG⊗h(s) :=
∏
p

{
Lp
(
αp(h)p−s, G

)
Lp
(
βp(h)p−s, G

)}
.

This series converges absolutely and locally uniformly for Re(s)� 0. We will show

in this paper the following

Theorem 2.1. Let k1, k2 be positive even integers. Let G ∈M2
k1

and h ∈Mk2 be two

Hecke eigenforms. If G and h are cuspidal we have to assume that the first Fourier

coefficient of G is not identical zero. Then the twisted spinor L-function ZG⊗h(s) has

a meromorphic continuation to the whole complex plane and posesses a functional

equation.

Now we come to the question of modularity. The twisted spinor L-function ZG⊗h(s)

is modular if there exists a Hecke eigenform F ∈M3
k3

such that the spinor L-function

of F is equal to ZG⊗h(s). If this is the case we put F := G � h. Here F is not

unique. To be more precise, G � h should denote the vector space of all Hecke

eigenforms F satisfying the modularity condition from above. There is also a local

definition of modularity. We say G and h are p-modular for a prime p if there exists a

Siegel Hecke eigenform F of degree 3 such that ZG⊗h,p(X) = Lp(X,F ). Then we put
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F = G �p h. We would like to mention that it is an open questionwheter is follows

from p-modularity for all finite primes p that G, h are globally modular.

Similar as in the approach of Maass towards the Saito-Kurokawa conjecture and the

finding of the Maass Spezialschar [21], we look at properties of Eisenstein series. It

turns out that a first result of global modularity, and hence p-modularity, is given by

Siegel type Eisenstein series. Let k > n+ 1 be even. Then the Siegel type Eisenstein

series is defined by

(2.4) En
k (Z) :=

∑
γ∈Γ∞\Γn

j(γ, Z)−k (Z ∈ Hn).

Here Γ∞ := {( A B
C D ) |C = 0}. Then it is well-known that this series is a Siegel

modular form of weight k and degree n and an eigenform with respect to the Hecke

algebra Hn. In the case n = 3 it can been shown via Hecke summation that there

exists a Eisenstein series of weight 4 (see also [18]).

Theorem 2.2. Let k be an even positive integer. Then ZE2
k⊗Ek−2

(s) is modular.

The next step is to open the door toward the modularity of cuspidal Hecke eigen-

forms. Again, as in the fundamental paper of Kurokawa [12] on the possible existence

of a certain subspace of Siegel modular forms which servers as a counter example for

the Ramanujan-Petersson conjecture, we have a result on p-modularity. Let

∆(τ) := q
∏
p

(1− qn)24

be the Ramanujan function. The Fourier coefficients and eigenvalues are usually

denoted by τ(n). It is the unique elliptic cusp forms of weight 12 with first Fourier

coefficient equal to 1. The normalization of Siegel modular form is not canonical, since

we do not know which Fourier coefficient is non-zero. Only in the case of Eisenstein

series this can been done. Hence if we say that a Hecke eigenform F ∈ Snk is unique,

we mean unique up to a scalar. Employing results from Miyawaki [13] lead to the

Theorem 2.3. Let G be the unique Siegel Hecke eigenform of weight 14 and degree

2. Then the pair (G,∆) is p-modular for the prime 2.

It would be desirable to have a clear picture, which pairs of weights (k1, k2) can be

candidates for modularity. Theorem 2.3 provides us with the pair (14, 12). But there

are also counter examples. Let χ12 ∈ S2
12 be a Hecke eigenform of weight 12 Then it
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is easy to see by direct considerations that Zχ12⊗∆(s) is not modular. Nevertheless

using analytic properties of the standard L-function [3], [14], [18] attached to Siegel

Hecke eigenforms of degree 1, 2 and 3 leads to the following sharp result.

Theorem 2.4. Let k1, k2 be positive even integer. Let G ∈ S2
k1

and h ∈ Sk2 be Hecke

eigenforms. If we assume that the twisted spinor L-function ZG⊗h(s) is modular. Let

F := G� h be cuspidal. Then F ∈ S3
k1

and k2 = k1 − 2.

Let k be an even positive integer. From now on we consider pairs of the form

(k, k − 2). Although the map � is not unique, it makes sense to define the space Lk
obtained by the subspace generated by all G � h, if they exist, where G ∈ S2

k and

h ∈ Sk−2. Here we define G�h to be equal to zero if ZG⊗h(s) is not modular to get a

useful notation. Hence the map � : S2
k ×Sk−2 −→ S3

k is well defined if we fix a Hecke

eigenbasis of S2
k and Sk−2 and choose a suitable image.

Before presenting several illustrative examples, we first recall the two types of the

conjectures of Miyawaki [13] that relate to investigations directly.

Miyawaki conjecture - Type I: There exists a map Sk × S2k−4 −→ S3
k such

that for pairs of Hecke eigenforms (f, g) the image F is a Hecke eigenform and the

eigenvalues of F are expressed in terms of the eigenvalues of f and g.

Miyawaki conjecture - Type II: There exists a map Sk−2 × S2k−2 −→ S3
k such

that for pairs of Hecke eigenforms (f, g) the image F is a Hecke eigenform and the

eigenvalues of F are expressed in terms of the eigenvalues of f and g.

Let F12 ∈ S3
12 and F14 ∈ S3

14 be the two Hecke eigenforms analyzed by Miyawaki

[13]. Then F12 belongs to Type I and F14 belongs to Type II. The Miyawaki conjec-

tures are mainly based on these two examples and the consistency of the funcional

equation of the standard L-function, which had been a highly non-trivial approach.

Recently [9] we built on the work of Ikeda [11] to prove Miyawaki’s Conjecture ( [13],

Conjecture 4.3). The conjecture of type II is still open. For further remarks and a

different way to attack the conjectures as given in this paper, we refer to Ikeda’s work

[11]. Since dimSk = 0 for k < 12. The smallest possible k for modularity is given by
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14.

Example: k=14

Since dimS12 = dimS2
14 = dimS3

14 = 1 every non-trivial cusp form in this case is a

Hecke eigenform. Let a Hecke eigenform G ∈ S2
14 be given, then the claim is that

ZG⊗∆(s) = L(s, F14), i.e., F14 = G � h. This restates the conjecture suggested by

Theorem 2.3 and gives a new interpretation of Miyawaki’s conjecture of type II for

k = 14.

Summary. We claim that the map � : S2
14 × S12 −→ S3

14 is an isomorphism.

Example: k=18

It is well known that dimS2
18 = 2, dimS16 = 1 and dimS3

18 = 4. We expect that

dim
(
S2

18 � S16

)
= 2.

Moreover the complement of L18 in S2
18 with respect to the Petersson scalar product is

expected to be generated by lifts of Miyawaki Type I. Since S2
18 is generated by Saito-

Kurokawa lifts, our modularity question is equivalent in this case to the Miyawaki

conjecture of type II.

Summary. We expect that the space S3
18 decomposes into the direct sum of two

Hecke invariant subspaces. These spaces are invariant with respect to Aut(C) and if

one normalizes the Hecke eigenforms in an appropriate way and considers the corre-

sponding vector spaces over Q, then these spaces should be preserved by the action

of the absolute Galois group Gal
(
Q/Q

)
. The action is given on the Fourier coeffi-

cients. Hence the space S3
18 contains no Hecke eigenform which fulfills the generalized

Ramanujan-Petersson conjecture.

Next, we arrive a very interesting case since it goes beyond the scope of Miyawaki’s

work and can be viewed as a touchstone of the new viewpoint.

Example: k=20

It is well known that dimS2
20 = 3, dimS18 = 1, and dimS3

20 = 6. We expect that

dim
(
S2

20 � S18

)
= 3.
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Miyawaki’s conjectures of type I and II would give two Hecke invariant subspaces

of S3
20 of dimension 3 and 2. The space S2

20 is generated by three Hecke eigenforms

χa, χb, G, where χa, χb are Saito-Kurokawa lifts. Let h18 ∈ S18 be a Hecke eigenform,

then χa � h18 and χb � h18 correspond exactly to Miyawaki’s conjecture of type II.

Hence the modularity of ZG⊗h18(s) would provide a new lifting to S3
20 with many

applications. This would lead for example to a proof of Andrianov’s conjecture on

the functional equation of the spinor L-function of a Siegel Hecke eigenform of degree

3 for the full space of weight k = 20 (see [2], or [13] for further details).

Summary. We expect that the space S3
20 decomposes into an orthogonal sum of Hecke

invariant subspaces. We would have:

(2.5) S3
20 = LI20 ⊕ LII20 ⊕ L!

20,

where dimLI20 = 3 and corresponds to Miyawaki lifts of type I, dimLII20 = 2 and

corresponds to Miyawaki lifts of type II, and finally dimL!
20 = 1. The space L!

20 is

generated by G � h18, where G ∈ S2
20 is a Hecke eigenform, which is not a Saito-

Kurokawa lift. These spaces are invariant with respect to Aut(C), and invariant with

respect to Gal(Q/Q), if the setting is suitable chosen.

All this observations lead us to the following

Main Conjecture

Let k be a positive even integer.

(1) Let G ∈ M2
k be a Hecke eigenform. Then there exists a F ∈ M3

k with F =

G� Ek−2.

(2) Let G ∈ S2
k and h ∈ Sk−2 Hecke eigenforms. Then ZG⊗h(s) is modular and

F := G� h ∈ S3
k . Hence we have

ZG⊗h(s) = L(s, F ).

(3) The Hecke invariant subspace Lk of S3
k has the asymptotic dimension formula

dim
(
Lk
)

= O (k4).

Let F ∈ Srk and k > n + r + 1. Then we denote by En,r
k (F ) the Klingen Eisenstein

series attached to F . The Klingen Eisenstein series is an element of Mn
k . Let F be
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a Hecke eigenform then En,r
k (F ) is also a Hecke eigenform. We have the following

explicit result.

Theorem 2.5. Let k be a positive even integer. Let G ∈ M2
k be a Hecke eigenform.

Then F := G�Ek−2 is equal to E3
k, E3,1

k (f) or E3,2
k (G) if G = E2

k, E2,1
k (f) or a cusp

form. Here f ∈ Sk is a Hecke eigenform.

Hence by applying the so called Darstellungssatz of Klingen for k > 6 and the

procedure of Hecke summation in the case k = 4 we obtain:

Corollary 2.6. Part (1) of the Main conjecture is true.

Remark.

a) The result of the Corollary is maybe not expected, since it states that Klingen

type Eisenstein series are in the image of the modularity map �. Hence we have

an interpretation of the Klingen lifts on the level of L-functions. This is different

to the case of Saito-Kurokawa lifts. Since LG⊗Ek−2
(s) is modular for all Hecke eigen-

forms G ∈ S2
k , we have another hint that part (2) of the Main conjecture could be true.

b) Let k = 16 then there exists no modularity subspace. But since dimS3
16 = 3

we expect that S3
16 decomposes into a direct sum of two non-trivial Hecke invariant

subspaces. The subspace with dimension 2 should correspond to the Miyawaki lifts

of type I. We suggest that there is one eigenform of weight 16 which satisfies the

Ramanujan-Petersson conjecture.

Finally we have:

Theorem 2.7. Assume that part (2) of the Main conjecture is satisfied then Miyawaki’s

conjecture of type II is true.

3. Proofs

We begin by recalling briefly the definition of the so called Siegel Φ-operator intro-

duced by Siegel. This operator has several remarkable properties. Let F ∈ Mn
k be a

Hecke eigenform and let F be not in the kernel of the Φ operator. Then the eigen-

values of F can be expressed by eigenvalues of Hecke eigenforms of smaller degrees.
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This can be used to determine the spinor and standard L-function of non-cuspidal

eigenforms in an interated way.

Let n, r, be integers and let 0 < r ≤ n. Consider the sequence τ (m) (m = 1, 2, . . .)

in Hn,

τ (m) :=

(
τ τ

(m)
2

(τ
(m)
2 )t τ

(m)
4

)
,

such that τ ∈ Hr is fixed, τ
(m)
2 is bounded and all the eigenvalues of Imτ

(m)
4 tend to

infinity. Then the limit (
Φn−rF

)
(τ) := lim

m→∞
F (τ (m))

exists and represents a modular form of weight k and degree r.

Moreover we have Φl = Φl−1 ◦ Φ. This can be extended to r = 0 if we put

M0
k := S0

k := C. The map Φ : Mn
k −→Mn−1

k is linear and surjective if k > 2n.

Let F be a Hecke eigenform with ΦF 6= 0 then we have the following very use-

ful result of Zarakovskaya [7]: The modular form ΦF is a Hecke eigenform and let

µΦF
0,p , µ

ΦF
1,p , . . . µ

ΦF
n−1,p be the p-Satake parameters of ΦF , then the p-Satake parameters

of F are given by

(3.1) µΦF
0,p p

k−n, µΦF
1,p , . . . µ

ΦF
n−1,p, p

n−k.

Let F be any Hecke eigenform with ΦF 6= 0, then the Zarakovskaya relation for the

spinor L-function of F states that

(3.2) L(s, F ) = L(s,ΦF )L(s− k + n,ΦF ).

Here for c ∈ Cx we put L(s, c) := ζ(s).

3.1. Liftings of type II and the proof of Theorem 2.7 and Theorem 2.3.

We first work out a precise formulation of Miyawaki’s conjecture of type II (see also

Ikeda [11]). We briefly recall Miyawaki’s approach. His observation had been that the

spinor L-function of certain Hecke eigenforms of degree 3 degenerate. This lead him

to essentially to types of liftings (see [13], Proposition 7.7). Let f ∈ Sk1 and g ∈ Sk2
be two Hecke eigenforms. Then we restrict to k1 = k − 2 and k2 = 2k − 2 for k > 4

even, since the other possible case k1 = k and k2 = 2k− 4 corresponds to type I. Let

F ∈ S3
k be a Hecke eigenform with the property that the spinor L-function L(s, F ) of
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F is equal to

(3.3) L(s− k2/2, f)L(s, k2/2− 1, f)L(s, f ⊗ g).

Here L(s, f ⊗ g) is the Rankin-Selberg L-function of f and g, which we already have

defined in the introduction. This leads to the conjecture of Type II: Let f, g be

as above. Then there exists a Hecke eigenform F ∈ S3
k such that the spinor L-

function of F is is equal to the expression (3.3). Conjecture 4.5 in Miyawaki’s paper

explicitly predicts that the spinor L-function of the Hecke eigenform F14 ∈ S14 has

the decomposition

L(s, F14) = L(s− 13,∆)L(s− 12,∆)L(s,∆⊗ g26),

where g26 ∈ S26 is a primitive new form. Theorem 4.4 [13] states that this is true

for p = 2. Let g ∈ S2k−2 be a primitive Hecke eigenform. Then there exists a Siegel

Hecke eigenform G ∈ S2
k , such that for the spinor L-function of G and g we have have

the relation

(3.4) L(s,G) = ζ(s− k + 1) ζ(s− k + 2) L(s, g).

Moreover this correspondence is 1− 1, although we do not have multiplicity one for

S2
k available. It is useful to describe this result on the level of p-Satake parameters.

Here the p-Satake parameters of G are given by:

(3.5) µG0,p = pk−1, µG1,p = αp(g)p1−k, µG2,p = βp(g)p1−k.

Up to the action of the Weyl group of the symplectic group, these parameters are

unique. Here αp(g), βp(g) are the local parameters of g, with the normalization

αp(g)βp(g) = p2k−3 and αp(g) + βp(g) = λp(g). This can be employed to get the

following

Lemma 3.1. Let h ∈ Sk−2 and g ∈ S2k−2 be Hecke eigenforms. Let G be a Saito-

Kurokawa lift of g. Assume that the Hecke eigenform F := G � h exists. Then the

p-Satake parameters of F are:

µF0,p = αp(h)pk−1 µF1,p = αp(g)p1−k

µF2,p = βp(g)p1−k µF3,p =
βp(h)

αp(h)
.
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Assume that the Main Conjecture (2) is true for the pair (G, h) of Hecke eigenforms,

where G ∈ S2
k Saito-Kurokawa lift of g ∈ S2k−2 and h ∈ Sk−2. Then ZG⊗h,p(X) =

Lp(X,F ). Hence it follows that

Lp(X,F )−1 =
(
1− αp(h)pk−1X

) (
1− αp(h)pk−1αp(g)p1−kX

)
×

(
1− αp(h)pk−1βp(g)p1−kX

)(
1− αp(h)pk−1 βp(h)

αp(h)
X

)
×
(
1− αp(h)pk−1αp(g)p1−kβp(g)p1−kX

)
×
(

1− αp(h)pk−1αp(g)p1−k βp(h)

αp(h)
X

)
×
(

1− αp(h)pk−1βp(g)p1−k βp(h)

αp(h)
X

)
×
(

1− αp(h)pk−1αp(g)p1−kβp(g)p1−k βp(h)

αp(h)
X

)
.

This can be further simplified and leads to the expression

(3.6) Lp(p
k−1X, h)Lp(p

k−2X, h) Lp(X, g ⊗ h).

This proves Theorem 2.7.

Finally we prove Theorem 2.3. The Theorem says that there exists a Hecke eigen-

form F of degree 3 such that

L2(X,F ) = ZG⊗h,2(X).

Let the Hecke eigenforms F14 ∈ S3
14 and g26 ∈ S26 be given. Miyawaki ([13] [Theorem

4.4]) has proven that the spinor L-function the of the Hecke eigenform F14 satisfies

locally

Lp(X,F14) = Lp(Xp
12,∆)Lp(Xp

13,∆)Lp(X,∆⊗ g26)

for the Hecke eigenform g26 ∈ S26 and the prime p = 2. With h = ∆ and for G the

Saito-Kurokawa lift of g26 we get the result.

3.2. Standard L-functions. In this subsection we prove Theorem 2.4. Although

the focus of this paper is on properties of the twisted spinor L-function ZG⊗h(s) and

the spinor L-function of a Siegel modular forms of degree 3, it turns out to be very

fruitful to use the related standard L-functions to obtain hidden properties.
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Let F ∈ Mn
k be a modular form of integer weight k with respect to Γn = Spn(Z).

Suppose F is a Hecke eigenform with p-Satake parameter µF0,p, µ
F
1,p, . . . µ

F
n,p. Langlands

attached to F the standard L-function:

(3.7) L(s, F, st) := ζ(s)
∏
p

{ n∏
i=1

(
1− µFi,p p−s

) (
1−

(
µFi,p
)−1

p−s
)}−1

.

The product converges absolutely and locally uniformly for Re(s) > n + k + 1, and

for Re(s) > n + 1 if F is a cusp form. Before we state the functional equation we

complete the L-function at infinity. Let

(3.8) ΓR(s) := π−s/2Γ(s/2) and ΓC(s) = 2 (2π)−sΓ(s).

We also put ε = 0 if n is even and 0 otherwise. Then

(3.9) L̂(s, F, st) := ΓR(s+ ε)

(
n∏
j=1

ΓC(s+ k − j)

)
L(s, F, st).

This completed L-function has a meromorphic continuation to the whole complex

s-plane and satisfies the functional equation

(3.10) L̂(s, F, st) = L̂(1− s, F, st).

Proof of Theorem 2.4. Let F ∈ Snk be a Hecke eigenform with degree at most three.

Then L̂(s, F, st) is entire [14]. In particular, let F (i) ∈ Sik be a Hecke eigenform for

i ≤ 3. Then

L̂(s, F (1), st) = ΓR(s+ 1) ΓC(s+ k − 1)L(s, F (1), st)

L̂(s, F (2), st) = ΓR(s) ΓC(s+ k − 1) ΓC(s+ k − 2)L(s, F (2), st)

L̂(s, F (3), st) = ΓR(s+ 1)ΓC(s+ k − 1) ΓC(s+ k − 2)ΓC(s+ k − 3)L(s, F (3), st).

Let G ∈ S2
k1

and h ∈ Sk2 be Hecke eigenforms and G� h := F ∈ S3
k3

be modular. To

fix notation, let µG0,p, µ
G
1,p, µ

G
2,p be the p-Satake parameter of G with

(µG0,p)
2µG1,pµ

G
2,p = p2k1−3

and αp(h), βp(h) the local parameter of h with αp(h)βp(h) = pk2−1. Then we determine

the standard L-function of F . We expect that L(s, F, st) will be degenerated. Since

F = G � h, we can use the identity between the related spinor L-function to get an
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explicit form of the p-Satake parameters. This can been done in a straightforward

manner (we omit the details). Finally we obtain

µF0,p = µG0,pαp(h) µF1,p = µG1,p

µF2,p = µG2,p µF3,p =
βp(h)

αp(h)
.

This leads to the first relation between the even positive integers k1, k2, k3:

3k3 − k2 − 2k1 = 2 .

Further we clarify some notation: Let f ∈ Sl be a Hecke eigenform. The symmetric

square L-function of f is usually defined by

L(s, Sym2(f)) :=
∏
p

{
(1− αp(f)2p−s)(1− αp(f)βp(f)p−s)(1− βp(f)2p−s)

}−1
.

Then we have

(3.11) L(s, f, st) = L(s+ l − 1, Sym2(f)).

Armed with this data we determine the standard L-function directly.

L(s, F, st) = L(s,G, st)
∏
p

{(
1− βp(h)

αp(h)
p−s
)(

1− αp(h)

βp(h)
p−s
)}−1

=
L(s,G, st)

ζ(s)

×
∏
p

{(
1− αp(h)2p−s−k2+1

) (
1− βp(h)2p−s−k2+1

) (
1− αp(h)βp(h)p−s−k2+1

)}−1

=
L(s,G, st)L(s+ k2 − 1, Sym2(h))

ζ(s)
.

Here we also used the identities αp(h)/βp(h) = αp(h)2p1−k2 and βp(h)/αp(h) =

βp(h)2p1−k2 . Let further

(3.12) Zst
G⊗h(s) :=

L(s,G, st)L(s, h, st)

ζ(s)
.
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We put ζ̂(s) := ΓR(s)ζ(s) and

γk1,k2(s) := ΓR(s+ 1) ΓC(s+ k2 − 1) ΓC(s+ k1 − 1) ΓC(s+ k1 − 2)

γk3(s) := ΓR(s+ 1)ΓC(s+ k3 − 1) ΓC(s+ k3 − 2)ΓC(s+ k3 − 3).

With this notation we define

(3.13) Ẑst
G⊗h(s) := γk1,k2(s)Z

st
G⊗h(s).

This completed function satisfies the functional equation s 7→ 1−s. It follows directly

that

(3.14) Qk1,k2,k3(s) :=
γk3(s)

γk1,k2(s)

also satisfies the functional equation s 7→ 1− s. Since the kj (1 ≤ j ≤ 3) are positive

integers larger than 8, the function Qk1,k2,k3(s) has to be constant. This leads to the

equality

(3.15)
{
k2 − 1, k1 − 1, k1 − 2

}
=
{
k3 − 1, k3 − 2, k3 − 3

}
.

But this forces k1 = k3. Hence we obtain the desired result. �

3.3. On the Darstellungssatz and Eisenstein series.

Generalized Eisenstein series have been introduced by Klingen to analyze the kernel

of the Siegel Φ-operator and the metric structure of the space of Siegel modular forms

Mn
k of even weight k > 2n and degree n.

Let F ∈ Srk. For k > n + r + 1 even and n ≥ r, Klingen defined the following

element of Mn
k :

(3.16) En,r
k (F )(Z) := En,r

k (F,Z) :=
∑

γ∈Pn,r\Γn

F
(
γ(Z)(r)

)
j(γ, Z)−k,

where Z(r) = τ ∈ Hr with Z = ( τ ∗∗ ∗ ). Moreover Pn,r is the subgroup of Γn given by all

γ, with the property that the lower left (n− r, n+ r) block is zero. We declare in the

case r = 0 the Klingen Eisenstein series to be equal to the Siegel Eisenstein series En
k

and in the case r = n the series equal to the cusp form. Assume that k > n + r + 1

is even as above. Then we define

(3.17) Mn,r
k :=

{
En,r
k (F ) |F ∈ Srk

}
.
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We have for n > r:

(3.18) Φ (En,r
k (F )) = En−1,r

k (F ).

For r = n we have Φ(F ) = 0. Let F be a Hecke eigenform then En,r
k (F ) is also a

Hecke eigenform. Now the Darstellungssatz of Klingen states:

Let k be even and k > 2n. Then

Mn
k = ⊕nr=0M

n,r
k

= CEn
k ⊕M

n,1
k ⊕ . . .⊕M

n,n−1
k ⊕ Snk

and Φ(Mn,r
k ) = Mn−1,r

k . We know that this decomposition is preserved by the action

of the Hecke algebra Hn (see Harris [7] for more details and references).

For n = 1, 2, 3 we have the following decomposition. Let k be even and k ≥ 4 then

Ek exists. For k < 12 we have dimSk = 0. Moreover we have Mk = CEk ⊕ Sk. In

the case n = 2 we have for k = 4 : M2
k = CE2

k and for k > 4 even we have:

(3.19) M2
k = CE2

k ⊕
{
E2,1
k (f) |f ∈ Sk

}
⊕ S2

k .

Here dimS2
k = 0 for k < 10. In the case n = 3 the case k = 4 is exceptional

(dimM3
4 = 1). The element comes from the real analytic Eisenstein series via Hecke

summation. Further we have M3
6 = CE3

6 and for k > 6 we have can apply the

Darstellungssatz of Klingen. Here dimS3
k = 0 for k < 12.

Let F ∈ Srk be a Hecke eigenform with k > n + r + 1 and n > r. Then the

Zarakovskaya relation leads to

(3.20) L(s, En,r
k (F )) = L(s, En−1,r

k (F )) L(s− k + n,En−1,r
k (F )).

Moreover such kind of relations also exist for the standard L-function. Let F ∈ Mn
k

with Φ(F ) 6= 0, then

(3.21) L(s, F, st) = ζ(s− k + n) ζ(s+ k − n)L(s,Φ(F ), st).

3.4. Proof of Theorem 2.2 and Theorem 2.5. We have normalized our Siegel

type Eisenstein series such that Φ(Ek) = 1. Since L(s, Ek) = ζ(s)ζ(s − k + 1) the

p-Satake parameters of Ek are given by

(3.22) µEk
0,p = 1 and µEk

1,p = pk−1.

Here want to note that this parametrization is equivalent to µEk
0,p = pk−1 and µEk

1,p =

p1−k.
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Proof of Theorem 2.2. Let k > 2n. Then it follows from the the Zarkovskaya relations

and the observations from above, that

(3.23) µ
En

k
0,p = 1, µ

En
k

1,p = pk−1, . . . , µ
En

k
n,p = pk−n.

The spinor L-function of E3
k is equal to

(3.24) ζ(s) ζ(s− 3k + 6)
3∏
j=1

ζ(s− k + j)
3∏
i=1

ζ(s− 2k + 2 + i).

On the other side we have in the case n = 2:

L(s, E2
k) = ζ(s) ζ(s− k + 1)ζ(s− k + 2) ζ(s− 2k + 3).

Since αp(Ek) = 1 and βp(Ek) = pk−1, this leads to the identity

ZE2
k⊗Ek−2

(s) = L(s, E3
k).

This proves that E2
k � Ek−2 is modular. �

Proof of Theorem 2.5. Let f ∈ Sk be a Hecke eigenform. Then En,1
k (f) is a Hecke

eigenform for n ∈ N with k > n + 2. We have αp(Ek−2) = 1 and βp(Ek−2) = pk−3.

From the Zarkovskaya relations for the spinor L-function and the known interaction

of the Siegel operator Φ with Klingen Eisenstein series we deduce that

(3.25) L(s, E3,1
k (f)) = L

(
s, E2,1

k (f)
)
L
(
s− k + 3, E2,1

k (f)
)
.

Twisting the spinor L-function of E2,1
k (f) locally with the parameters 1 and pk−3 leads

to E2,1
k (f) � Ek−2 = E3,1

k (f). Let G ∈ S2
k be a Hecke eigenform then

(3.26) L(s, E3,2
k (G)) = L (s,G) L (s− k + 3, G) .

We see that this is equal to ZG⊗Ek−2
(s) and to complete the proof we recall that we

have already shown that E2
k � Ek−2 = E3

k . �

Combining this result with the Darstellungssatz and the well-known fact that the

space Mn,r
k for k > 2n has a Hecke eigenbasis for all 0 ≤ r ≤ n leads to the proof of

Corollary 2.6, since the smaller weights can be examened case by case.
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3.5. Analytic properties of the modular twisted spinor L-function.

The modularity of ZG⊗h(s) for suitable Hecke eigenforms G ∈M2
k1

and h ∈Mk2 leads

to new insides towards the spinor L-function L(s, F ) of F := G� h.

Proof of Theorem 2.1. Let G ∈ S2
k1

and h ∈ Sk2 with k1, k2 even be Hecke eigenforms.

We assume that the first Fourier-Jacobi coefficient of G is not identically zero. Then

the twisted spinor L-function ZG⊗h(s) has a meromorphic continuation to the whole

s-plane and satisfies a functional equation [4], [8]. Let k1−k2 ≥ 0 then the functional

equation is given by

(3.27) ẐG⊗h(s) = ẐG⊗h(2k1 + k2 − 3− s).

Here ẐG⊗h := γ̃k1,k2(s)ZG⊗h(s) with

γ̃k1,k2(s) := (2π)−4s Γ(s− k1 + 2) Γ(s) Γ(s− k2 + 1) Γ(s− k1 + 1).

For k2 − k1 > 0 we have a similar functional equation (see [4] for more details). Let

h = Ek2 then αp(Ek2) = 1 and βp(Ek2) = pk2−1. This leads to the degeneration

(3.28) ZG⊗Ek2
(s) = L(s,G) L(s− k2 + 1, G)

and to the meromorphic continuation of the twisted spinor L-function. The functional

equation of L(s,G) gives a functional equation of ZG⊗Ek2
(s). The case G = E2

k1
and

h = Ek2 is obvious. Assume that G = E2
k1

or G = E2,1
k1

(f) with Hecke eigenforms

f ∈ Sk1 , h ∈ Sk2 then we have

ZE2
k1
⊗h(s) = L(s, h)L(s− k1 + 1, h)L(s− k1 + 2, h)L(s− 2k1 + 3, h)

ZE2,1
k1

(f)⊗h(s) = L(s, f ⊗ h)L(s− k1 + 2, f ⊗ h).

This finally proves the Theorem. �
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