ON AFFINE ALGEBRAS

BY

Martin Lorenz

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3 Sonderforschungsbereich 40 Theoretische Mathematik Beringstraße 4 D-5300 Bonn 1

SFB/MPI 85-28

ON AFFINE ALGEBRAS

Martin Lorenz Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3, Fed. Rep. Germany

These notes contain a unified approach, via bimodules, to a number of results of Artin-Tate type. Throughout we will keep the following notation:

> k is a commutative ring (with 1), and R and S are k-algebras.

As is customary and convenient, (R,S)-bimodules V are assumed to have identical k-operations on both sides: $\xi v = v\xi$ ($v \in V, \xi \in k$).

1. BIMODULES AND AFFINE ALGEBRAS

<u>LEMMA 1</u>. Let $0 \longrightarrow U \longrightarrow V \longrightarrow W \longrightarrow 0$ be a short exact sequence of (R,S)-bimodules and assume that V_S and $_RW$ are finitely generated, say $V = Rv_1 + \ldots + Rv_m + U$ for suitable $v_i \in V$.

If S is affine over k , then there exists an affine k-subalgebra $R' \subseteq R$ and a finitely generated (R',S)-subbimodule $U' \subseteq U$ such that

$$V = R'v_1 + ... + R'v_m + U'$$
.

<u>PROOF</u>. Write $V = w_1 S + \ldots + w_n S$ and let $x_1, \ldots, x_t \in S$ be k-algebra generators for S. Then

$$w_{i} = \sum_{h=1}^{m} r_{ih} v_{h} + u_{i}$$
, $v_{i} x_{j} = \sum_{h=1}^{m} r_{ijh} v_{h} + u_{ij}$

for suitable r_{ih} , $r_{ijh} \in R$ and u_i , $u_{ij} \in U$. Let $R' \subseteq R$ be the k-subalgebra generated by the r_{ih} 's and r_{ijh} 's, and let $U' \subseteq U$ be the (R',S)-subbimodule generated by the u_i 's and u_{ij} 's. Then $V' = R'v_1 + \ldots + R'v_m + U'$ contains w_i and $v_h x_j$ for all i, j, h.

Hence

$$V'x_j = \sum_{h=1}^{m} R'v_hx_j + U'x_j \subseteq R'V' + U' = V'$$

Since $V'k = kV' \subseteq V'$, it follows that $\sum_{i=1}^{n} w_i S \subseteq V'S \subseteq V'$, whence V' = V.

<u>COROLLARY 1</u>. Let $R \subseteq S$ be k-algebras such that S is affine over k and finitely generated as a left module over R. Then S is also finitely generated as a left module over some <u>affine</u> subalgebra $R' \subseteq R$, with the same module generators.

PROOF. Take
$$U = 0$$
 and $V = {}_{R}S_{S}$ in the lemma.

Recall that, for a left R-module V , the trace of V in R is defined by

$$\operatorname{Tr}_{R}(V) = \sum \{\operatorname{Im} f \mid f \in \operatorname{Hom}_{R}(V, R) \}$$

 $Tr_R(V)$ is a two-sided ideal of R, and V is a generator for R-mod, the category of left R-modules, if and only if $Tr_R(V) = R$.

LEMMA 2. Let V be an (R,S)-bimodule such that $_{R}V$ and V_{S} are finitely generated, and assume that S is affine over k. Suppose that R contains an affine k-subalgebra $A \subseteq R$ and a finitely generated left ideal I with $I \subseteq Tr_{R}(V)$ and $R = \langle A, I \rangle_{k-algebra}$ (=A + IA). Then R is affine over k. This happens in particular if $_{R}V$ is a generator for R-mod.

<u>PROOF.</u> By assumption on I, there exist finitely many $f_i \in Hom_R(V,R)$ with $I \subseteq \sum Im f_i$. After enlarging I if necessary we may therefore assume that a finite direct sum of copies of R^V maps onto I. By Lemma 1, with U = 0, there exists an affine k-subalgebra

 $R' \subseteq R$ such that $_{R'}V$ is finitely generated. Hence $_{R'}I$ is also finitely generated, and A, R', and the generators of I over R' together generate $\langle A, I \rangle_{k-algebra} = R$.

<u>COROLLARY 2</u>. Let $R \subseteq S$ be k-algebras with S affine over k. Assume that S and $\operatorname{Tr}_{R}(S)$ are finitely generated as left modules over R. Then R is affine over k if and only if $R/\operatorname{Tr}_{R}(S)$ is affine over k.

<u>PROOF</u>. Apply Lemma 2 with $V = {}_{R}S_{S}$ and $I = Tr_{R}(S)$.

2. SOME APPLICATIONS

(A) CORNERS OF RINGS. Assume that S is affine over k and let $e = e^2 \in S$. If SeS is finitely generated as left ideal of S, then ese is affine over k. (Montgomery-Small [6]).

<u>PROOF.</u> By [6, Lemma 1], eS is finitely generated as left module over eSe. Now take V = eS and R = eSe in Lemma 2 and note that $_{\rm P}$ V maps onto $_{\rm P}$ R via es \longmapsto see (S \in S).

(B) MORITA EQUIVALENCE. If A and B are Morita equivalent rings, then there exists an (A,B)-bimodule P such that $_AP$ and $_BP$ are finitely generated projective generators for A-mod, resp. mod-B. In case A and B are k-algebras, and the left and right k-operations on P agree, we conclude from Lemma 2 that A is affine over k if and only if B is affine over k. (Wadsworth, cf.[6,Acknowledgement]).

(C) RESULTS OF ARTIN-TATE TYPE. Let $R \subseteq S$ be k-algebras with S affine over k and R^S finitely generated. Then R is affine over k in each of the following cases:

- R is a finitely generated left module over a commutative subalgebra and k is Noetherian;
- ii. S is left Noetherian and $R \subseteq S$ is a finite centralizing extension (i.e., $S = \sum_{i=1}^{n} Rx_i$ with $x_i r = rs_i$ for all $r\in R$);
- iii. $_{R}S$ is projective and, for each proper two-sided ideal M of R, MS \neq S (e.g., if $_{R}S$ is free or if $_{R}S$ is projective and maximal ideals of R are localizable);
- iv. k is Noetherian and, for some commutative subalgebra $C \subseteq R$, the module $\left(\frac{S}{R}\right)_C$ is Noetherian.

<u>PROOF</u>.(i). One can clearly assume that R itself is commutative. Choose R' \subseteq R as in Corollary 1. Then R' is Noetherian, by the Hilbert basis theorem, and hence R'R is finitely generated, as R'S is. Thus R is affine.

(ii). Again, Corollary 1 yields $R' \subseteq R$ affine such that $R' \subseteq S$ is a finite centralizing extension. As S is left Noetherian, the Eisenbud-Eakin theorem [3] implies that R' is likewise. Now argue as in (i).

(iii). Set $T = Tr_R(S)$. Then TS = S, by the dual basis lemma, and so we must have T = R. (Actually, by [2], R^S maps onto R^R .) The result now follows from Corollary 2.

(iv). Let $C \subseteq R$ be commutative with $\left(\frac{S}{R}\right)_{C}$ Noetherian and set $X = \{r \in R | Sr \subseteq R\} = ann \left(\frac{S}{R}\right)_{R}$. Then $X = SX \subseteq \operatorname{Tr}_{R}(_{R}S)$ and $X = \bigcap_{V} rt. ann_{R}(v+R)$, where v runs over a finite generating set for $\left(\frac{S}{R}\right)$. Therefore, $\left(\frac{R}{X}\right)_{R} \xrightarrow{C} \left(\frac{S}{R}\right)_{R}^{n}$ for some n. Since $\left(\frac{S}{R}\right)_{C}$ is Noetherian, we conclude that $\left(\frac{R}{X}\right)_{C}$ is Noetherian, and hence $\left(\frac{S}{X}\right)_{C}$ is also Noetherian. By Lemma 1, with $V = {}_{S}S_{C}$ and $W = {}_{S}\left(\frac{S}{X}\right)_{C}$ (and with sides interchanged), we can find an affine subalgebra $C' \subseteq C$ and a finitely generated (S,C')-subbimodule $X' \subseteq X$ with $\left(\frac{S}{X'}\right)_{C'}$, finitely generated. Now C' is Noetherian and so $\left(\frac{R}{X'}\right)_{C'}$, is finitely generated too. Moreover, since ${}_{R}S$ is finitely generated, X' is also finitely generated as (R,C')-bimodule, say

$$X' = \sum_{i=1}^{n} R x_{i} C'$$

Now set $I = \sum_{\substack{i=1 \\ i=1}}^{n} Rx_i$, so that I is a finitely generated left ideal of R with $I \subseteq Tr_R(S)$, and let $A \subseteq R$ be the subalgebra generated by C' and the generators of $\left(\frac{R}{X'}\right)_C$. Then A is affine and R = A + X' = A + IA. Thus Lemma 2 yields the result.

<u>REMARKS</u>. (i) is a mild generalization of the original Artin-Tate Lemma [1] and has been observed by a number of people.

17

(ii) is contained in [6]. Using a result of Formanek and Jategaonkar [4] instead of the Eisenbud-Eakin theorem, the same proof yields versions of (ii) which work for certain finite normalizing extensions $R \subseteq S$. For example, if $S = \sum_{i=1}^{n} Rx_i$ with $rx_i = x_i r^{\sigma_i}$ i=1 for certain automorphismus σ_i of R and if $G = \langle \sigma_1, \ldots, \sigma_n \rangle$ acts locally finitely on R, then the argument goes through, because we can then choose $R' \subseteq R$ to be affine and normalized by x_i 's. Also, for any finite normalizing extension $R \subseteq S$, proper right ideals of R extend to proper right ideals of S [5]. Thus (iii) above applies to finite normalizing extensions $R \subseteq S$ with R^S projective. The question as to whether the Artin-Tate lemma holds for general finite normalizing extensions $R \subseteq S$, with S left Noetherian, say, was raised in [6] and is still open as far as I know.

For the moment, let T denote the class of finitely generated left R-modules V such that $\operatorname{Tr}_{R}(V)V = V$. Then the assumptions in (iii) could be replaced by: $_{R}S \in T$ and, for each proper two-sided ideal M of R, MS \neq S. Now T contains all finitely generated projective modules over R as well as, clearly, all generators of R-mod, and T is closed under direct sums. But I don't know of an easy characterization of the modules in T.

The prototype of (iv) (with C = k) is due to Lance Small (oral communication).

ACKNOWLEDGEMENT. Research supported by the Deutsche Forschungsgemeinschaft/Heisenberg Programm (Lo 261/2-2). I would like to thank Lance Small for numerous interesting conversations about affine algebras and other things.

REFERENCES.

[1]	E. Artin and J.T. Tate: A note on finite ring extensions, J. Math. Soc. Japan $\underline{3}$ (1951), 74-77.
[2]	B. Cortzen, L.W. Small and J.T. Stafford: Decomposing overrings, Proc. Amer. Math. Soc. <u>82</u> (1981), 28-30.
[3]	D. Eisenbud: Subrings of Artinian and Noetherian rings, Math. Ann. <u>185</u> (1970), 247-249.
[4]	E. Formanek and A.V. Jategaonkar: Subrings of Noetherian rings, Proc. Amer. Math. Soc. <u>46</u> (1974), 181-186.
[5]	M. Lorenz: Finite normalizing extensions of rings, Math. Z. <u>176</u> (1981), 447-484.
[6]	S. Montgomery and L.W. Small: Fixed rings of Noetherian rings, Bull. London Math. Soc. 13 (1981), 33-38.