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ON BAKER’S EXPLICIT abc-CONJECTURE

KWOK CHI CHIM, TARLOK N. SHOREY, AND SNEH BALA SINHA

Dedicated to the memory of Professor Alan Baker.

Abstract. We derived from Baker’s explicit abc-conjecture that (1.1) implies that c < N1.72

for N ≥ 1 and c < 32N1.6 for N ≥ 1. This sharpens an estimate of Laishram and Shorey. We

also show that it implies c < 6
5
N1+G(N) for N ≥ 3 and c < 6

5
N1+G1(N) for N ≥ 297856 where

G(N) and G1(N) are explicitly given positive valued decreasing functions of N tending to zero

as N tends to infinity given by (1.4) and (1.6), respectively. Finally we give applications of

our estimates on the greatest prime factor of product of consecutive positive integers, triples of

consecutive powerful integers and generalized Fermat equation.

1. Introduction

The well known abc-conjecture was formulated by Joseph Oesterlé [7] and David Masser [4]

in 1988. It states that

Conjecture 1.1. For any given ε > 0, there exists a number Kε depending only on ε such that

if

a+ b = c (1.1)

where a, b and c are relatively prime positive integers, then

c ≤ Kε

( ∏
p|abc

p
)1+ε

where the product is taken over all primes p dividing abc.

The name abc-conjecture derives from letters a, b, c that are used in the statement. There are

several works on abc-conjecture and its variations.

For a positive integer ν, we define the radical N(ν) of ν by the product of primes dividing

ν and ω(ν) for the number of distinct prime divisors of ν. The letter p always denote a prime

number in this paper except in Theorem 1.6 and its proof. We denote the radical of abc by

N = N(abc) =
∏
p|abc

p (1.2)

unless otherwise specified. Further we write ω = ω(N) for the number of distinct prime divisors

of N . We see when ω ∈ {0, 1} or N is odd then (1.1) does not hold. Therefore we always

have ω ≥ 2 unless (a, b, c) = (1, 1, 2) and N is even. We understand that log2 x = log log x for

x ≥ 2 and log3 x = log log log x for x ≥ 3. We observe that Conjecture 1.1 is not explicit in the
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sense that Kε is not explicit. Alan Baker [1] in 2004 formulated the following explicit version of

Conjecture 1.1.

Conjecture 1.2. Let a, b and c be relatively prime positive integers satisfying (1.1) with N > 2.

Then

c <
6

5
N

(logN)ω

ω!
(1.3)

where N = N(abc) and ω = ω(N).

We refer to Conjecture 1.1 as abc-conjecture and Conjecture 1.2 as explicit version of abc-

conjecture. For integer N > 2, let

A(N) = log2N − log3N,A1(N) = A(N) + logA(N)− 1.076869

and

G(N) =
1 + logA(N)

A(N)
. (1.4)

Further we define G(x) = G([x]) for x > 2. We observe that G(N) is positive valued function

that tends to zero as N tends to infinity. It is decreasing if A
′
(N) logA(N) > 0 which is the

case when N ≥ 16 since

A
′
(N) =

1

N logN

(
1− 1

log2N

)
. (1.5)

Thus G(N) is decreasing for N ≥ 16. Further for integer N ≥ 40, let

G1(N) =
1 + logA1(N)

A1(N)
(1.6)

andG1(x) = G1([x]) for x ≥ 40. We observe thatG1(N) is positive forN ≥ 574 and tends to zero

as N tends to infinity. Further G1(N) is decreasing if A
′
1(N) logA1(N) > 0. Let N ≥ 297856.

Then A1(N) > 1. Further A(N) > 0 and A
′
(N) > 0 by (1.5). Since

A
′
1(N) = A

′
(N) +

A
′
(N)

A(N)
=
A
′
(N)

A(N)
(1 +A(N)),

we see that A
′
1(N) logA1(N) > 0. Hence G1(N) is decreasing whenever N ≥ 297856.

We compare these functions. For this, we observe that the function F (x) = 1+log x
x is decreas-

ing for x > 1 and

1 < A(N) < A1(N) for N ≥ 1.5× 1036

since A(N) > e1.076869 for N ≥ 1.5× 1036. Therefore

G(N) = F (A(N)) ≥ F (A1(N)) = G1(N) for N ≥ 1.5× 1036 (1.7)

and similarily we derive that

G(N) ≤ G1(N) for 297856 ≤ N ≤ 1036.

Conjecture 1.2 implies the following sharper and explicit version of abc-conjecture in which

we allow ε to be a function of N tending to zero as N tends to infinity.
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Theorem 1.3. Let a, b and c be relatively prime positive integers satisfying (1.1). Then (1.3)

implies that

c <
6

5
N1+G(N) for N > 2 (1.8)

and

c <
6

5
N1+G1(N) for N ≥ 297856. (1.9)

On the other hand, Stewart and Tijdeman [9] showed that there are infinitely many relatively

prime positive integers a, b, c satisfying (1.1) such that for δ > 0, we have

c > N
1+ 4−δ√

logN log logN .

Laishram and Shorey [3] showed that Conjecture 1.2 implies that for N > 2, we have

c < N1+θ with θ =
3

4
. (1.10)

Further they also derived under Conjecture 1.2 that for 0 < θ < 3/4, (1.10) holds when N ≥ Nθ

where Nθ is an effectively computable number depending only on θ. Theorem 1.3 provides a

value of Nθ for every 0 < θ < 1 determined by an explicitly given function; we do not have to

compute for every θ. Now we prove the following Theorem with a sharper exponent than (1.10).

Theorem 1.4. Let a, b and c be relatively prime positive integers satisfying (1.1). Then (1.3)

implies that for N > 2, we have

c < N1.72. (1.11)

Further

c < 10N1.62991 (1.12)

and

c < 32N1.6. (1.13)

E. Reyssat [13] considered (1.1) with a = 2, b = 310 × 109, c = 235 and N = 15042. This

implies c > N1.62991 which we may compare with (1.12).

The following theorem gives the comparison among bounds of c and it follows immediately

from (1.11), (1.13), (1.9).

Theorem 1.5. Let a, b and c be relatively prime positive integers satisfying (1.1). Then (1.3)

implies that

c <


N1.72 if N > 2

32N1.6 if N ≥ 1012.55

6
5N

1+G1(N) if N ≥ 1080.53.

Remark. Note that N1.72 > 32N1.6 for N ≥ 1012.55 and 32N1.6 > 6
5N

1+G1(N) for N ≥
1080.53.

The result can be applied to give an explicit bound for the magnitude of solutions of the

generalized Fermat equation. Let (p, q, r) ∈ Z≥2 with (p, q, r) 6= (2, 2, 2). The equation

xp + yq = zr, (x, y, z) = 1 with integers x > 0, y > 0, z > 0 (1.14)
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is called the generalized Fermat equation. We consider (1.14) with p ≥ 3, q ≥ 3, r ≥ 3. For

solving (1.14), there is no loss of generality in assuming x > 1, y > 1 and z > 1 since otherwise

(1.14) is completely solved by Mihăilescu [5].

Let [p, q, r] denote all permutations of the ordered triple (p, q, r). Let

Q = {[3, 5, p] : 7 ≤ p ≤ 23, p prime} ∪ {[3, 4, p] : p prime}.

Then Laishram and Shorey [3] proved that (1.14) with x > 1, y > 1, z > 1, p ≥ 3, q ≥ 3, r ≥ 3

implies that [p, q, r] ∈ Q such that

max (xp, yq, zr) < e1758.3353

whenever (1.3) holds. We sharpen the above result as follows. Let

Q1 = {[3, 5, p] : 7 ≤ p ≤ 19} ∪ {[3, 4, p] : p ≥ 11}

where p is a prime number. Then

Theorem 1.6. Assume (1.3). Then (1.14) with x > 1, y > 1, z > 1, p ≥ 3, q ≥ 3 and r ≥ 3

implies that [p, q, r] ∈ Q1. Further for each [p, q, r] ∈ Q1, we have the following upper bound for

max(xp, yq, zr).

[p, q, r] Upper bound for max(xp, yq, zr) [p, q, r] Upper bound for max(xp, yq, zr)

[3, 4, p], p ≥ 37 8.1× 1075 [3, 5, 19] 1.6× 1061

[3, 4, 31] 1.3× 10123 [3, 5, 17] 6.7× 1069

[3, 4, 29] 4.3× 10130 [3, 5, 13] 3.9× 10107

[3, 4, 23] 1.2× 10167 [3, 5, 11] 3.9× 10155

[3, 4, 19] 9.8× 10217 [3, 5, 7] 6.6× 10645

[3, 4, 17] 1.2× 10263

[3, 4, 13] 1.5× 10481

[3, 4, 11] 2.2× 10599

Next we give some applications of our theorems to powerful numbers. An integer ν is called

powerful if ν > 0 and p2|ν whenever p|ν for every prime p. Golomb [2] proved in 1970 that there

are infinitely many pairs of consecutive powerful integers and there exists no four (or more)

consecutive powerful integers. Erdős conjectured that there does not exist three consecutive

powerful integers. Trudgian [12] proved, under Conjecture 1.2, that t < 1020000 whenever (t −
1, t, t+1) is a triple of consecutive powerful integers. Mollin and Walsh [6] obtained the following

results. Assume t− 1, t, t+ 1 are powerful. Put

P = t, Q = (t− 1)(t+ 1) = my2

where m is squarefree. Then m ≡ 7 (mod 8) and (t, y) is a solution of x2 −my2 = 1. For the

case when m = 7, Mollin and Walsh [6] proved that

t > 10108 . (1.15)

Hence, together with the result by Trudgian [12], there is no triple (t− 1, t, t+ 1) of consecutive

powerful integers such that t2− 7y2 = 1. By following the arguments given in Mollin and Walsh
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[6], we have checked that if m = 7 is replaced by m ∈ {15, 23, 31, 39, 47, 55, 87}, then (1.15) can

be replaced by

t > 103×1013 .

Therefore, combining with the result by Trudgian [12], there is no triple (t − 1, t, t + 1) of

consecutive powerful integers such that t2 −my2 = 1 with m ∈ {7, 15, 23, 31, 39, 47, 55, 87}.
Next, we prove the following result on triples of (a+kd, a+(k+1)d, a+(k+2)d) of consecutive

powerful integers in arithmetic progression.

Theorem 1.7. Let a > 0, d > 0 and k ≥ 0 be integers such that (a, d) = 1. Assume that a+kd,

a+ (k + 1)d and a+ (k + 2)d are all powerful integers. Then (1.3) implies the following:

(1). Let ε > 0. There exists an effectively computable number k0 depending only on ε such that

for k ≥ k0, we have

ak+1 < (1.2d)2+ε. (1.16)

(2). We have

ak+1 < max{2.31× 10158d2666, 1051075}. (1.17)

If (t − 1, t, t + 1) is a triple of powerful integers, then N(t,(t2−1))

t3/2
< 1. In the next result we

show that N(t,(t2−1))

t3/2
> 1 for all sufficiently large t whenever (1.3) holds.

Theorem 1.8. If t > 1051075, then (1.3) implies that

N > t1.52

where N is the square free part of t(t2 − 1).

For an integer ν > 1, we denote by P (ν) the greatest prime factor of ν. For n ≥ 1 and k ≥ 2,

we write

P (n, k) = n(n+ 1) · · · (n+ k − 1).

If n ≤ k3/2 and n is sufficiently large, we see from the results on difference between consecutive

primes that P (n, k) ≥ n. Therefore we always suppose that n > k3/2. It is, perhaps, conjectured

by Erdős that

P (n, k) > (1− ε)k log n for k ≥ k0 = k0(ε).

It remains open even after assuming abc-conjecture. Shorey and Tijdeman [11] proved that there

exists a number k1 depending only on ε such that for integers n and k ≥ 2 with n ≥ k3/2, we

have

P (n, k) >
(1

2
− ε
)
k log n for k ≥ k1

under abc-conjecture. We derive from Theorem 1.3 the following effective sharpening of the

above inequality.

Theorem 1.9. Assume Conjecture 1.2. There exist effectively computable absolute positive

constants k2 and k3 such that for integers n and k ≥ k2 with n ≥ k3/2, we have

P (n, k) >
(1

2
− k3G2(n)

)
k log n

where G2(n) =
(

log3 n
log2 n

)1/2
.
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We use SAGE for calculation and, in particular, for extracting values of a, b, c that fulfill

specified conditions to come to the conclusion that (1.11) holds for 5 ≤ ω ≤ 9 when proving

Theorem 1.4.

2. Preliminaries

For any real number x > 0, let θ(x) =
∑

p≤x log p. In 1983, G. Robin [8] proved the following

lemma for θ(x).

Lemma 2.1. Let pn be the nth prime. Then

θ(pn) ≥ n
(

log n+ log2 n− 1.076869
)

for n > 1. (2.1)

Lemma 2.2. For N ≥ 4, the function g(x) = ( e logN
x )x is increasing in 1 ≤ x < logN.

Proof. To show g(x) is increasing, we see the positivity of its derivative. Let u = e logN. We

have

g(x) =
(u
x

)x
= ex log(u/x).

Now

g′(x) = ex log(u/x)
(

log(u/x) + x(x/u)(−u/x2)
)

= ex log(u/x)
(

log(u/x)− 1
)
.

Thus g′(x) > 0 if e logN = u > ex. Hence g(x) is increasing in 1 ≤ x < logN. �

Lemma 2.3. Let ω = ω(N) ≥ 13. Then

logN > ω logω.

Proof. Let N = Q1Q2 · · ·Qω where Q1 < Q2 < · · · < Qω are prime numbers. Now if pi denotes

the ith prime, then we have

N =

ω∏
i=1

Qi ≥
ω∏
i=1

pi.

This gives

logN ≥
ω∑
i=1

log pi = θ(pω).

Therefore it suffices to show that θ(pω) > ω logω for ω ≥ 13. This follows by Lemma 2.1 for

ω ≥ 19 since log2 ω− 1.07869 is positive. Further we check that θ(pω) > ω logω for 13 ≤ ω ≤ 18

by direct computation. �

Lemma 2.4. Assume that logN > ω logω. Then

ω <
logN

A(N)
.
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Proof. Let logN > ω logω. Then we have

ω <
logN

logω
. (2.2)

Let

ω >
logN

log2N
.

Then

logω > log2N − log3N = A(N). (2.3)

By combining (2.2), (2.3) and A(N) < log logN, we get ω < logN
A(N) . �

Lemma 2.5. The equation (1.1) with (1.3) implies that c < 6
5N

1+G(N) for logN > ω logω

where G(N) is given by (1.4).

Proof. Let N < 16. Then ω = 2 and N = 2p with p ∈ {3, 5, 7}. Now we re-write (1.1) as

2x − py = ±1 where x ≥ 1 and y ≥ 1 are integers. We may suppose that x > 1 and y > 1

otherwise the assertion follows. Mihăilescu [5] proved that Catalan equation xp − yq = 1 with

p > 1, q > 1 has unique integral solution (x, y, p, q) = (3, 2, 2, 3) and this implies that the

solutions of (1.1) are given by (a, b, c) ∈ {(8, 1, 9), (1, 8, 9)} and the assertion follows for each of

these triplets.

Thus we may assume that N ≥ 16. Let logN > ω logω. Since ω! ≥ ωωe−ω by induction on

ω, we derive from (1.3) that

c <
6

5
N

(logN)ω

ω!
≤ 6

5
N
(e logN

ω

)ω
. (2.4)

Since A(N) > 1 for N ≥ 16, we derive from Lemma 2.4 that

ω <
logN

A(N)
< logN.

Then Lemma 2.2 implies that(e logN

ω

)ω
≤ (eA(N))

logN
A(N) = NG(N).

Thus, by (2.4) , we get

c <
6

5
N1+G(N).

�

Corollary 2.6. The equation (1.1) with (1.3) implies that c < 6
5N

1+G(N) for ω ≥ 13 where

G(N) is given by (1.4).

Proof. The assertion follows from Lemma 2.3 and 2.5. �

Lemma 2.7. The equation (1.1) with (1.3) implies that c < 6
5N

1+G(N) for N > 2.
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Proof. By Corollary 2.6 and Lemma 2.5, we have to consider 2 ≤ ω ≤ 12 and logN ≤ ω logω.

Let ω = 2. Then 6 ≤ N ≤ 4 which is not possible. Let ω = 3. Then N ≤ 27 which is not

possible since the product of the first three prime numbers is equal to 30. Thus ω ≥ 4 and

N ≥ 210. Therefore G(N) is decreasing. We check that G(1023) > 3
4 and therefore G(N) > 3

4

for N ≤ 1023 since G(N) is decreasing. Hence the assertion follows for N ≤ 1023 by (1.10).

Thus we may assume that N > 1023. Then ωω ≥ N > 1023 which implies that ω > 12. This is a

contradiction. �

For given 0 < θ < 1, m ≥ 2 and K > 0, let

f(x) =
(log x)m

m!
−Kxθ.

Then

g(x) = x1−θ(m− 1)!f ′(x) =
(log x)m−1

xθ
−Kθ(m− 1)!

and

g′(x) =
(log x)m−2

x1+θ

(
m− 1− θ log x

)
. (2.5)

Then we have the following Lemma.

Lemma 2.8. Assume that there exist positive numbers x0 and x1 with 1 < x1 ≤ x0 such that

f(x0) < 0, g(x0) < 0 and g′(x1) < 0. (2.6)

Then f(x) < 0 for x ≥ x0.

Proof. Since g′(x1) < 0, we see from (2.5) that g′(x) < 0 for x ≥ x1. Therefore g is a decreasing

function for x ≥ x1. Then, since g(x0) < 0 and x0 ≥ x1, we derive that g(x) < 0 for x ≥ x0

which implies that f ′(x) < 0 for x ≥ x0. Thus f(x) is decreasing for x ≥ x0. Hence the assertion

follows since f(x0) < 0. �

Lemma 2.9. Let a, b and c be relatively prime positive integers satisfying (1.1). Then (1.3)

implies that

c < 32N1.6 for N > 2.

Proof. Following the same proof as in [3, Theorem 1], we have ω1 = ωε = 42 for ε = 0.6 such

that

ε ≥ 1 + logX0(i)

X0(i)
for i ≥ ω1 and

i!Θ(pi)
ε

θ(pi)i
>
√

2πi for i ≥ ωε (2.7)

holds. HereX0(i) = log i+log2 i−1.076869 and i!Nε

(logN)i
> i!Θ(pi)

ε

θ(pi)i
. We check that for 35 ≤ ω < 42,

we have
ω!Θ(pω)ε

θ(pω)ω
>

6

5
. (2.8)

Then
(logN)ω

ω!
<

5

6
N0.6 for N > 2, ω ≥ 35

and the assertion follows from (1.3). Let 2 ≤ ω ≤ 34. We check that, for all ω, we may choose

x0, x1 as in Lemma 2.8 with x1 = x0 =
∏
p≤pω p, K = 80/3 and θ = 0.6 so that (2.6) is satisfied.

Thus f(x) < 0 for x ≥ x0. Therefore f(N) < 0 since N ≥
∏
p≤pω p = x0. Hence Lemma 2.9

follows. �
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Lemma 2.10. Let a, b and c be relatively prime positive integers satisfying (1.1). Then (1.3)

implies that

c < 10N1.62991 for N > 2.

Proof. Let ε = 0.62991. As in Lemma 2.9, we have ω1 = 33, ωε = 32 such that (2.7) holds. We

check that for 26 ≤ ω < 32, we have (2.8). Therefore c < 10N1.62991 for N > 2 with ω ≥ 26.

Let 2 ≤ ω ≤ 25. We may choose x1 = x0 =
∏
p≤pω p with K = 25/3 and θ = 0.62991 in

Lemma 2.8, we get f(x) < 0 for x ≥ x0 which implies that f(N) < 0 for N ≥
∏
p≤pω p = x0.

Hence Lemma 2.10 follows. �

3. Proof of Theorem 1.3

By Lemma 2.7, we have (1.8). Now by (1.7), we have

c <
6

5
N1+G(N) ≤ 6

5
N1+G1(N) for 297856 ≤ N ≤ 1036.

Therefore we may assume that N > 1036. By Lemma 2.1 with n = ω, we have

ω ≤ logN

logω + log2 ω − 1.076869
. (3.1)

Let

ω ≥ logN

log2N
.

Then logω ≥ A(N), log2 ω ≥ logA(N). Thus (3.1) gives ω ≤ logN
A1(N) . Therefore

ω ≤ max
( logN

log2N
,

logN

A1(N)

)
<

logN

A1(N)
< logN. (3.2)

since A1(N) ≤ log2N−1.076869 < log2N and A1(N) > 1 by N ≥ 297856. Then we derive from

(1.3), (3.2) and Lemma 2.2 that

c <
6

5
N
(e logN

ω

)ω
≤ 6

5
N(eA1(N))

logN
A1(N) =

6

5
N1+G1(N).

4. Proof of Theorem 1.4

The assertions (1.12) and (1.13) follows from Lemma 2.10 and Lemma 2.9, respectively. We

proceed with the proof of assertion (1.11).

As in Lemma 2.9, we have ω = 18 and ωε = 17 for ε = 0.72 such that (2.7) holds. We check

that for 10 ≤ ω < 17, we have (2.8). Thus we get

(logN)ω

ω!
<

5

6
N0.72 for N > 2, ω ≥ 10.

Let ω ≤ 9. We apply Lemma 2.8 with x1 = x0,K = 5/6 and θ = 0.72. Then N ’s lies in the

range
[∏

p≤pω p, x0

)
.

We observe that for ω ≤ 4, we may choose x1 = x0 =
∏
p≤pω p so that (2.6) is satisfied. Then

(1.11) follows by Lemma 2.8 with K = 5/6.

For 5 ≤ ω ≤ 9, we choose x1 = x0 as given in Table 1 so that they satisfy (2.6) and we extract

all square free N with ω(N) = ω that lie in the range
[∏

p≤pω p, x0

)
. Hence we obtain Table 1.
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Table 1. Data for 5 ≤ ω ≤ 9.

ω
∏

p≤pω
p x0, x1 N ∈

[∏
p≤pω

p, x0

)
5 2310 4100 2310, 2730, 3570, 3990.

6 30030 8.79× 104
30030, 39270, 43890, 46410, 51870, 53130,

62790, 66990, 67830, 71610, 72930, 79170,

81510, 82110, 84630, 85470.

7 510510 1.51× 106

510510, 570570, 690690, 746130, 870870,

881790, 903210, 930930, 1009470, 1067430,

1111110, 1138830, 1193010, 1217370, 1231230,

1272810, 1291290, 1345890, 1360590, 1385670,

1411410, 1438710, 1452990, 1504230.

8 9.69969× 106 2.45× 107

9699690, 11741730, 13123110, 14804790,

15825810, 16546530, 17160990, 17687670,

18888870, 20030010, 20281170, 20930910,

21111090, 21411390, 21637770, 21951930,

23130030, 23393370, 23993970.

9 2.2309287× 108 3.91× 108
223092870, 281291010, 300690390, 340510170,

358888530, 363993630, 380570190.

By (1.3), for each N = Q1Q2 · · ·Qω where Q1, Q2, . . . , Qω are distinct primes and 5 ≤ ω ≤ 9,

it suffices to restrict c ∈
[
N1.72, 6

5N
(logN)ω

ω!

)
otherwise (1.11) holds. We perform searching of

c with SAGE by identifying all integers falling in this interval having only prime factors in

the set {Q1, . . . , Qω}. This can be done as follows: We write Qγ11 · · ·Q
γω
ω where γ1, . . . , γω are

non-negative integers and estimate

0 ≤ γi ≤

 log
(

6
5N

(logN)ω

ω! Q−γ11 · · ·Q−γi−1

i−1

)
logQi

 for 1 ≤ i ≤ ω.

After all γi’s are determined, we take c = Qγ11 · · ·Q
γω
ω if Qγ11 · · ·Q

γω
ω ∈

[
N1.72, 6

5N
(logN)ω

ω!

)
is

satisfied. For each c with rad(c) < N , we construct all possible choices of a satisfying a < b,

which we may assume without loss of generality, so that a < c
2 and the property that a has

only prime factors in {Q1, . . . , Qω} and (a, c) = 1. Similar to the case of obtaining c, we let

a = Qµ11 · · ·Q
µω
ω where µ1, . . . , µω are non-negative integers and we estimate

0 ≤ µi ≤


 log

(
c
2Q
−µ1
1 · · ·Q−µi−1

i−1

)
logQi

 , if γi = 0,

0 , if γi > 0

for 1 ≤ i ≤ ω. Then for each pair of (c, a) obtained with rad(ac) < N , we construct the

corresponding b by (1.1). We note that (a, b, c) = 1. We check that for each case there does not

exist any a, b, c such that the radical of abc is equal to N . Besides, it is clear that if rad(c) = N

or rad(ac) = N , then there exists no relatively prime positive integers a, b, c satisfying (1.1) with

rad(abc) = N . Hence (1.11) holds.
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To illustrate, for ω = 5, N = 3990 = 2×3×5×7×19, the only c extracted is 1562500 = 22×58.

There are a total of 117 a’s each having only prime factors in {2, 3, 5, 7, 19} and is relatively

prime to c. For ω = 7, N = 1504230 = 2 × 3 × 5 × 7 × 13 × 19 × 29 the only c’s ex-

tracted are 42168581000, 42169420800, 42174006784, 42174732915, 42176295000, 42178070844,

42182400000, 42185786580 and 42185937500. For each c in the above list, the number of cor-

responding a’s having only prime factors in {2, 3, 5, 7, 13, 19, 29} and is relatively prime to c is

22, 54, 599, 181, 10, 71, 186, 147 and 115 respectively.

Table 2 lists the number of c extracted for some selected cases of ω and N .

Table 2. Number of c extracted in selected cases of ω and N .

ω N Number of c extracted ω N Number of c extracted

5
2310 32

8
9699690 25548

3570 9 23993970 648

6
30030 631

9
223092870 98273

85470 18 380570190 4885

7
510510 4565

1452990 183

5. Proof of Theorem 1.6

We may assume that each of p, q, r is either 4 or an odd prime. Let [p, q, r] denote all

permutations of the ordered triple (p, q, r). An account of earlier results has been mentioned

in [3]. Hence we may suppose (p, q, r) is different from those values. We may assume that

x > 1, y > 1, z > 1. Then

x < zr/p, y < zr/q.

We observe that N (xpyqzr) = N(xyz) and we always write N = N(xyz) in the proof of

Theorem 1.6. Then by using (1.11), we get

zr < N1.72 ≤ (xyz)1.72 < z1.72(1+r/p+r/q),

implying
1

1.72
<

1

p
+

1

q
+

1

r
.

Thus we need to consider (p, q, r) ∈ Q1 and [3, 3, p] for p > 109. For N < 297856, we apply

(1.11) to get

max (xp, yq, zr) < N1.72 < 2978561.72 < 2.7× 109.

Therefore we may assume that N ≥ 297856. We deduce the upper bound for each case of [p, q, r]

separately. We present the proof of [3, 4, p] with p ≥ 37 as follows. Let N > e107.07 where we

observe that
∏
p≤p30 p < e107.07. By following the proof as in [3, Theorem 1], we have ω1 = 31,

ωε = 30 for ε = 173/271 such that (2.7) holds and

zr <
6

5
√

2πωε
N1+ε ≤ (xyz)1+ε.
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Then

zr < z(1+ε)(1+r/p+r/q)

implying
1

p
+

1

q
+

1

r
>

1

1 + ε
=

271

444
=

1

3
+

1

4
+

1

37
.

This is a contradiction. Therefore we may suppose that N < e107.07. By (1.13), we have

max (xp, yq, zr) < 32N1.6 < 32e107.07(1.6) < 8.1× 1075.

The proof of [3, 3, p] with p > 109 is similar. In this case, we argue with ε = 999999997
2000000003 ,

ω1 = 129, and ωε = 128 to conclude that N <
∏
p≤p128 p < e686.163 and then we derive

max (xp, yq, zr) < 32e686.163(1.6) < 2× 10478

which is not possible since max (xp, yq, zr) ≥ 2109 .

Let [p, q, r] = [3, 5, 7]. First we consider N ≥ e1004.763. We apply [3, Theorem 1] with

ε = 34/71. We observe that ωε = 175 and
∏
p≤p175 p < e1004.763. Therefore, by [3, Theorem 1],

we have

zr < N1+ε ≤ (xyz)1+ε < z(1+ε)(1+r/p+r/q).

This implies that
1

p
+

1

q
+

1

r
>

1

1 + ε
=

71

105
=

1

3
+

1

5
+

1

7

which is a contradiction. Therefore we may suppose that N < e1004.763. Now we apply Theorem

1.5 repetitively to obtain upper bound for zr as follows:

(1) For N < 1012.55,

zr < N1.72 < 1012.55(1.72) < 3.9× 1021.

(2) For 1012.55 ≤ N < 1080.53,

zr < 32N1.6 < 32
(
1080.53

)1.6
< 2.3× 10130.

(3) For 1080.53 ≤ N < e900, we use G1(1080.53) ≤ 0.61771 to get

zr <
6

5
N1+G1(1080.53) <

6

5
e900(1.61771) < e1457.

(4) For e900 ≤ N < e984, we use G1(e900) ≤ 0.49781 to get

zr <
6

5
N1+G1(e900) <

6

5
e984(1.49781) < e1475.

(5) For e984 ≤ N < e1004.763, we observe that
∏
p≤p172 p < e984. By following the proof as in [3,

Theorem 1] with ε = 0.48, ω1 = 173 and ωε = 172, we get

zr <
6

5
√

2πωε
N1+ε < e1004.763(1.48) < e1488.

Now we combine all the above estimates. We get

max (xp, yq, zr) < e1488 < 6.6× 10645.
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The proof of [3, 4, 11] is similar. In this case, we suppose N < e928.667 by following the proof

of [3, Theorem 1] with ε = 43/89 and observing that ωε = 164,
∏
p≤p164 p < e928.667. We apply

Theorem 1.5 repetitively to obtain

max (xp, yq, zr) < e1380 < 2.2× 10599.

We now present the proof of the case [3, 5, 19] with r = 3. We first suppose that z <

1.21× 1015 := Z[3,5,19]. By (1.13),

zr < 32N1.6 ≤ 32(xyz)1.6 < 32z1.6(1+r/p+r/q) < 32Z[3,5,19]
1.6(1+3/5+3/19)

< 8.5× 1043 := A[3,5,19].

Next, suppose that z ≥ Z[3,5,19]. From (1.9) we have

zr <
6

5
(xyz)1+G1(N) <

6

5
z(1+r/p+r/q)(1+G1(N))

< z0.00525+r(1/r+1/p+1/q)(1+G1(N)),

giving

1

1 +G1(N)
<

r

r − 0.00525

(
1

r
+

1

p
+

1

q

)
=

3

3− 0.00525

(
167

285

)
. (5.1)

If N ≥ 2 × 1037 := N[3,5,19], we use the fact that G1 is decreasing to get G1(N) ≤ 0.7036 :=

G1(N[3,5,19]). Then 1
1+G1(N) exceeds the right hand side of (5.1). Thus, we may assume N <

2× 1037 and hence

zr < 32
(
2× 1037

)1.6
< 1.6× 1061 := B[3,5,19].

For r = 5 and r = 19, the proofs are similar with the corresponding parameters Z[3,5,19], A[3,5,19],

G1(N[3,5,19]), N[3,5,19] and B[3,5,19] as shown in Table 4. Hence we conclude

max (xp, yq, zr) < 1.6× 1061 := C[3,5,19].

The proofs for the remaining cases of [p, q, r] can deduced similarly. The results for all cases of

[p, q, r] are shown in Table 3 and Table 4.

Table 3. Upper bound for max (xp, yq, zr) for [3, 4, p] (p ≥ 37), [3, 5, 7] and [3, 4, 11].

[p, q, r] Upper bound for max (xp, yq, zr)

[3, 4, p], p ≥ 37 8.1× 1075

[3, 5, 7] 6.6× 10645

[3, 4, 11] 2.2× 10599
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Table 4. Upper bound for max (xp, yq, zr) for the remaining cases of [p, q, r].

[p, q, r] r Z[p,q,r] A[p,q,r] G1(N[p,q,r]) N[p,q,r] B[p,q,r] C[p,q,r]

[3, 5, 19]

3 1.21× 1015 8.5× 1043 0.7036 2× 1037 1.6× 1061

1.6× 10615 1.12× 109 8.5× 1043 0.7036 2× 1037 1.6× 1061

19 241 8.7× 1043 0.7036 2× 1037 1.6× 1061

[3, 5, 17]

3 6.8× 1021 3.7× 1063 0.6867 5× 1042 6.7× 1069

6.7× 10695 1.26× 1013 3.7× 1063 0.6867 5× 1042 6.7× 1069

17 7125 3.7× 1063 0.6867 5× 1042 6.7× 1069

[3, 5, 13]

3 5.2× 1029 3.6× 1088 0.6372 2× 1066 3.9× 10107

3.9× 101075 6.8× 1017 3.7× 1088 0.6372 2× 1066 3.9× 10107

13 7.21× 106 3.6× 1088 0.6372 2× 1066 3.9× 10107

[3, 5, 11]

3 7.9× 1044 1.1× 10136 0.601 2× 1096 3.9× 10155

3.9× 101555 8.7× 1026 1.1× 10136 0.601 2× 1096 3.9× 10155

11 1.8× 1012 1.5× 10136 0.601 2× 1096 3.9× 10155

[3, 4, 31]

3 4.72× 1040 4.9× 10121 0.6234 1076 1.3× 10123

1.3× 101234 3.2× 1030 4.9× 10121 0.6234 1076 1.3× 10123

31 8635 5× 10121 0.6234 1076 1.3× 10123

[3, 4, 29]

3 3.4× 1042 4.3× 10127 0.6176 5× 1080 4.3× 10130

4.3× 101304 7.9× 1031 4.3× 10127 0.6176 5× 1080 4.3× 10130

29 25065 4.1× 10127 0.6176 5× 1080 4.3× 10130

[3, 4, 23]

3 1.3× 1048 1.9× 10146 0.5945 3× 10103 1.2× 10167

1.2× 101674 1.2× 1036 1.8× 10146 0.5945 3× 10103 1.2× 10167

23 1.9× 106 2.2× 10146 0.5945 3× 10103 1.2× 10167

[3, 4, 19]

3 1.4× 1058 1.1× 10179 0.5717 2× 10135 9.8× 10217

9.8× 102174 4.1× 1043 1.1× 10179 0.5717 2× 10135 9.8× 10217

19 1.52× 109 1.1× 10179 0.5717 2× 10135 9.8× 10217

[3, 4, 17]

3 3× 1074 1.2× 10231 0.5567 3× 10163 1.2× 10263

1.2× 102634 7.2× 1055 1.2× 10231 0.5567 3× 10163 1.2× 10263

17 1.4× 1013 1.4× 10231 0.5567 3× 10163 1.2× 10263

[3, 4, 13]

3 1.3× 10110 3.1× 10350 0.5142 6× 10299 1.5× 10481

1.5× 104814 3.8× 1082 2.9× 10350 0.5142 6× 10299 1.5× 10481

13 2.6× 1025 3.5× 10350 0.5142 6× 10299 1.5× 10481

6. Proof of Theorem 1.7

Let ak, ak+1 and ak+2 be powerful integers where

ak+i = a+ (k + i)d for 0 ≤ i ≤ 2.

We denote M = N(akak+1ak+2) and M1 = N(dakak+1ak+2). Note that

2ak+1 = ak + ak+2 (6.1)

and ak ≡ ak+2 (mod 2). First, we obtain a lower bound for M and M1 in terms of ak by using

(1.13). We consider the cases 2 - ak and 2|ak separately.

Case 1. 2 - ak. Then (2ak+1, ak) = 1 implying (2ak+1, ak, ak+2) = 1. Thus, by (1.13) after
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taking a = ak, b = ak+2 and c = 2ak+1 in (6.1), we obtain

2ak+1 < 32 (N(2akak+1ak+2))1.6 ≤ 98M1.6.

Case 2. 2|ak. Then 2|ak+2 so that from (6.1), we have

ak+1 =
ak
2

+
ak+2

2
(6.2)

where ak+1,
ak
2 ,

ak+2

2 ∈ Z and
(
ak+1,

ak
2 ,

ak+2

2

)
= 1. We observe that d is odd since (a, d) = 1 and

therefore ak+1 is odd. This time, by taking a = ak
2 , b =

ak+2

2 and c = ak+1 in (6.2) we obtain

from (1.13) that

ak+1 < 32

(
N

(
1

4
akak+1ak+2

))1.6

≤ 32M1.6.

Hence, in both cases, we get

ak+1 < 49M1.6,

which implies that

M1 ≥M >
(ak+1

49

)1/1.6
. (6.3)

Next, we note that

akak+2 = a2
k+1 − d2 < a2

k+1

and (d2, akak+2, a
2
k+1) = 1. Assume

M ≥ 297856. (6.4)

Then (1.9) holds. Since G1 is decreasing we have G1(M1) ≤ G1(M). By applying (1.9) with

a = akak+2, b = d2 and c = a2
k+1, we obtain

a2
k+1 <

6

5
M

1+G1(M1)
1 ≤ 6

5
M

1+G1(M)
1 .

Further

M1 ≤ N(d)M ≤ N(d) (akak+1ak+2)1/2 < da
3/2
k+1

since ak, ak+1 and ak+2 are powerful. Thus we get

a2
k+1 <

6

5

(
da

3/2
k+1

)1+G1(M)
,

that is

ak+1 < 1.2
2

1−3G1(M)d
2(1+G1(M))
1−3G1(M) (6.5)

implying

ak+1 < (1.2d)
2(1+G1(M))
1−3G1(M) . (6.6)

(1). Let ε > 0. We take ε1 = ε
8+3ε . We may assume that k ≥ k0 where k0 is a sufficiently large

effectively computable number depending only on ε such that from (6.3) the assumption (6.4)

is satisfied and G1(M) < ε1 using the fact that G1 is decreasing. From (6.6) we have

ak+1 < (1.2d)
2(1+G1(M))
1−3G1(M) < (1.2d)

2(1+ε1)
1−3ε1 = (1.2d)2+ε.

(2). Suppose on the contrary that (1.17) does not hold. Then we have

ak+1 ≥ max{2.31× 10158d2666, 1051075}. (6.7)



16 K. C. CHIM, T. N. SHOREY, AND SNEH BALA SINHA

Applying (6.7) to (6.3), we have

M1 ≥M >
(ak+1

49

)1/1.6
≥ e73500

so that the assumption (6.4) is satisfied. Further, we derive that G1(M1) ≤ G1(M) ≤ 0.333 by

(1.6), Now we derive from (6.5) to give

ak+1 < 1.22000d2666 < 2.31× 10158d2666.

This is a contradiction.

7. Proof of Theorem 1.8

We assume (1.3) and write

t2 = (t2 − 1) + 1.

By (1.1) with a = 1, b = t2 − 1 and c = t2 and (1.13), we have

102×51075 < t2 < 32N1.6 (7.1)

which implies that N > 1063842. Then

G1(N) < 0.317315. (7.2)

Thus we obtain a sharper upper bound for t2 and we can revise (7.1) to give

102×51075 < t2 <
6

5
N1.317315. (7.3)

This time we have N > 1077544. Then, by following as above, we obtain G1(N) < 0.313229 and

N > 1077785. Then

G1(N) < 0.313165. (7.4)

Finally we apply (1.9) and (7.4) to derive that

t2 <
6

5
N1.313165

which implies that

N > 0.87t1.523037 > t1.52.

8. Proof of Theorem 1.9

The proof is on the same lines as in Shorey and Tijdeman [11] which we refer in our proof

without reference. We do not fix ε but allow it to be a function of n. Let k2 be a sufficiently

large absolute constant and we shall choose it later suitably. We put ε = k2G2(n). Assume that

P (n, k) <
(1

2
− ε
)
k log n.

Then we proceed as in [11]. We choose Ai1 , Ai2 , Bi1 , Bi2 as in [11] and apply Theorem 1.3 in

place of abc-conjecture. We obtain

n < c1k
1
7 εn1− 2ε

3 .

We denote by c2, c3, c4, c5 absolute constants. The above inequality implies
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ε2 log n < c2 log k.

Further Shorey [10] proved that

P (n, k) > c3k log k
log2 k

log3 k
.

By combining the preceding two inequalities, we get

P (n, k) > c4ε
2k log n

log2 n

log3 n
= c4k

2
2k log n. (8.1)

Finally we take k2 such that k2 > c
−1/2
4 and fix it to conclude that P (n, k) > k log n.

Acknowledgements. The authors would like to thank Samrat Kadge* for his help in sage

programming. The first author is supported by the Austrian Science Fund (FWF) under the

projects P26114 and W1230. The second author is supported by INSA Senior Scientist award.

Part of the work in this paper was done when the first and second authors visited the Max Plank

Institute for Mathematics in Bonn. They would like to thank the MPIM for the invitation,

support, hospitality and computer facilities. The third author would like to thank SERB.

* samkadge@gmail.com

References

[1] A. Baker, Experiments on the abc-conjecture, Publ. Math. Debrecen 65 (2004), 253–260.

[2] S. W. Golomb, Powerful numbers, Amer. Math. Monthly 77 (1970), 848–855.

[3] Shanta Laishram and T.N. Shorey, Baker’s explicit abc-conjecture and applications, Acta Arith., no. 4,

155 (2012), 419–429.

[4] D. W. Masser, Note on a conjecture of Szpiro, in Les pinceaux de courbes elliptiques, Semin., Paris/Fr.
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