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A differential operator is said to be elliptic if its principle symbol is invertible.

An ‘hypoelliptic operator’ is usually an operator which is not elliptic, but which is
almost as good as an elliptic operator from the point of view of the regularity of
the solutions of the corresponding partial differential equations.

The purpose of my talk was to introduce a deformation of classical Hodge theory,
which interpolates between classical Hodge theory and the geodesic flow. The
corresponding Laplacian is an hypoelliptic operator of the cotangent bundle of the
considered manifold. The construction has been announced in the notes [1, 2, 3, 4]
and developed in the paper [5]. Crucial analytic results have been obtained jointly
with Lebeau in [6].

Let X be a compact manifold of dimension n, and let
(

F,∇F , gF
)

be a complex

flat vector bundle on X . Let
(

Ω· (X, F ) , dX
)

be the de Rham complex of smooth
forms on X with coefficients in F , whose cohomology is denoted H · (X, F ).

Let gTX be a Riemannian metric on TX , let gF be a Hermitian metric on F .
Then Ω· (X, F ) is equipped with a corresponding L2 Hermitian product. Let dX∗

be the formal adjoint of dX . Let �
X be the associated Laplacian,

(1) �
X = dXdX∗ + dX∗dX .

The Laplacian is an elliptic self-adjoint operator. Let H = ker�
X be the harmonic

forms. Then the basic result of Hodge theory asserts that H ' H · (X, F ).
Let f : X → R be a smooth Morse function. In [14], Witten has intro-

duced a deformation of Hodge theory. For T ∈ R, set dX
T = e−TfdXeTf . Let

dX∗
T = eTfdX∗e−Tf be the formal adjoint of dX

T , and let �
X
T be the correspond-

ing Laplacian. Set HT = ker�
X
T . Still, HT ' H · (X, F ). As T → +∞, all the

eigenvalues except a finite family of them tend to +∞, the other eigenvalues are 0
or are exponentially small as T → +∞. Let FT be the finite dimensional complex
of eigenbundles associated to small eigenvalues. In [14], Witten showed that FT

localizes near the critical points of f , which is enough for a proof of the Morse
inequalities. Assume that ∇f is Morse-Smale. Witten argues that FT converges in
the appropriate sense to the combinatorial Thom-Smale complex associated to ∇f .
This was proved rigorously by Helffer-Sjöstrand [9]. The Witten deformation was
used in [7] to establish the equality of the Ray-Singer and Reidemeister torsions.

We tried to adapt the above formalism to the loop space LX of X . On one
hand, LX does not have a Hodge theory, in particular because of the lack of a
satisfactory L2 scalar product on the de Rham complex. On the other hand, LX
carries many natural S1-invariant functionals associated to Lagrangians L (x, ẋ).

Prominent among this, there is the energy functional E (x) = 1

2

∫

1

0
|ẋ|2 dt. Morse

theory has been used successfully on LX , in particular by Bott [8] in his proof of
Bott periodicity.

Our strategy consists in trying to make sense of the small ‘time’ asymptotics of

the heat kernel e−s�
LX

(x, x) on the diagonal (this heat kernel does not make sense
anyway. . . ), by describing it in terms of classical partial differential operators on
T ∗X . To avoid the singularity as s → 0 of the heat kernel, one only considers index
theory supertraces, for which such a singularity does not occur.

The functional integral approach is most useful. Indeed let F =
∫

1

0
f(xt)dt be

the obvious lift of f to a S1-invariant function on LX . Then at least formally,
1



2

localization of certain eigenforms near the critical points of f as T → +∞ can
be properly understood via the pull-back by ∇F of the Mathai-Quillen forms [11]
of TLX . These are Gaussian shaped closed differential forms of degree n, which
represent canonically the Thom class of TLX .

The idea is now to replace F by E. Note that

(2) ∇E = −ẍ.

The path integral to be considered takes the form

(3)

∫

LX

exp

(

−
1

2

∫

1

0
|ẋ|

2
dt

2
−

T 2

2

∫

1

0

|ẍ|
2
dt + . . .

)

.

The expression . . . consists of differential forms on LX .
The dynamic interpretation of (3) just says that

ẋ = p, ṗ =
1

T
(−p + ẇ) ,(4)

which is equivalent to

(5) ẍ =
1

T
(−ẋ + ẇ) .

In (4), (5), w is a standard Brownian motion along the fibres of TX . The second
order differential operator on T ∗X which describes the dynamic in (4), (5) is given
by

(6)
1

2T 2

(

−∆V + |p|
2
− n

)

+
1

T
∇Y H .

In (6), ∇Y H is the Hamiltonian vector field on T ∗X associated to the Hamiltonian

H = 1

2
|p|

2
, i.e. the generator of the geodesic flow.

Our problem can then be reformulated as follows. Is there a natural deformation
of classical Hodge theory, whose Laplacian on T ∗X would ‘look like’ the operator
in (6)? The answer to this question is positive. Put c = 1/T 2. Let π : T ∗X → X
be the canonical projection. Let ω be the symplectic form of T ∗X . Let η be the
bilinear form on T ∗X ,

(7) η (U, V ) = 〈π∗U, π∗V 〉gT X + ω (U, V ) .

This bilinear form induces a corresponding bilinear form on Ω· (T ∗X, π∗F ). Then

we take the adjoint d
T∗X

φ,Hc one obtains with respect to this bilinear form, while
making a Witten twist with respect to Hc = cH. The corresponding Laplacian is
indeed of the type (6). It is not self-adjoint, and not elliptic. Still it is hypoellip-
tic by a key result of Hörmander [10]. This Laplacian is indeed self-adjoint with
respect to a Hermitian form of signature (∞,∞). It interpolates between classi-
cal Hodge theory for c → +∞, and the generator of the geodesic flow for c → 0.
It has a number of analytical properties described in joint work with Lebeau [6].
Using a pseudodifferential calculus adapted to the situation, one shows in that the
hypoelliptic Laplacian has a smooth heat kernel, that its spectrum is discrete and
conjugation-invariant. Also the basic conclusions of classical Hodge theory still
hold, except maybe for a discrete family of values of c.

Moreover it is shown in [6] that the hypoelliptic Laplacian also has an analytic
torsion. By using methods of Quillen [12], this defines in turn a generalized Hermit-

ian metric ‖ ‖
2,T

λ on λ = det H · (X, F ). On the other hand let ‖ ‖
0

λ be the classical



3

Ray-Singer metric [7] on λ, which is defined via the Ray-Singer analytic torsion of
[13]. One key result in [6] is as follows.

Theorem. For T > 0,

(8) ‖ ‖
T,2

λ = ‖ ‖
0,2

λ .
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Palaiseau, 2004.

[5] J.-M. Bismut. The hypoelliptic Laplacian on the cotangent bundle. J. Amer. Math. Soc.,
18(2):379–476, 2005.

[6] J.-M. Bismut and G. Lebeau. The hypoelliptic Laplacian and Ray-Singer metrics. to appear,
2005.

[7] J.-M. Bismut and W. Zhang. An extension of a theorem by Cheeger and Müller. Astérisque,
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