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ON THE HOMOTOPY CATEGORY OF

MOORE SPACES AND THE COHOMOLOGY

OF THE CATEGORY OF ABELIAN GROUPS

HANS-JOACHIM BAUES AND MANFRED HARTL

An abelian group Adetermines the Moore space M(A) = M(A,2) which up to
homotopy equivalence is the unique simply connected CW-space X with homology
groups H2 X = A and HiX = 0 for i > 2. Since M(A) can be chosen to be a
suspension the set of homotopy classes [M(A), M(B)] is a group which is part of a
classical central extension of groups

(1) Ext(A,rB) ~ [M(A),M(B)] ~ Hom(A,B)

due to Barratt. It is known that (1) in general is not split, for example [M(Z/2), M(Z/2)] =
Z/4. We here are not interested in this additive structure of the sets [M(A), M(B)]
but in the multiplicative structure given by the composition of maps, in particular
in the extension of groups

(2) Ext(A, r A) ~ E(M(A)) -# Aut(A)

where E(M(A)) is the group of homotopy equivalences of the space M(A). The
extension (2) determines the cohomology dass

(3) {E(Atf(A))} E H 2 (Aut(A), Ext(A, r A))

Though the group E(M(A)) is defined in an "easy" range of homotopy theory the
cohomology dass (3) is not yet computed for all abelian groups A. In this paper
we prove a nice algebraic formula for the dass (3) if A is a product of cyclic groups
and we show that {E(M(A))} is trivial if Ext(A, r A) has no 2-torsion; see (3.6)
and (5.2). Moreover we compute for all abelian groups A the image of the class (3)
under the surjection of coefficients

(4) Ext(A, r A) ~ Ext(A, H(rA)).

Here H(rA) is the image of H : rA --+ A C9 Aj see (4.2). We do such computations
not in the cohomology of groups but more distinctly in the cohomology of categories.
In fact the homotopy category M 2 of Moore spaces M (A) leads to a topological
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"characteristic class" in the cohomology of the category Ab of abelian groupSj see
(2.2). It is the computation of such topologically defined cohomology classes which
motivated the results in this paper. For example the topological James-Hopf invari­
ant on the category M 2 or the "chains on the loop space" functor C*f! on M 2 have
interesting interpretations on the level of the cohomology of the category Ab; see

(4.11). As an application we describe algebraically the image category (C.!1) (M 2
)

in the homotopy category of chain algebras showing fundamental differencesbe­
tween the homotopy category of spaces and chain algebras respectively; see (4.12).
This implies that the image of the group E(M(A)) under the functor C.!1 is part
of an extension

(5) Ext(A, H(rA)) >--t (C*!1)E(M(A)) -.. Aut(A)

which we compute explicitly in terms of A for all abelian groups A.

§ 1 Linear extensions of categories and the cohomology of categories

An extension of a group G by aG-module A is a short exact sequence of groups

O-tA-+E-+G-+O
i P

where i is compatible with the action of G. Two such extensions E and E' are
equivalent if there is an isomorphism € : E ~ E' of groups with p'e = p and ei = i'.
It is weH known that the equivalence classes of extensions are classified by the
cohomology H 2 ( G, A).

We now recall from [2] basic notation on the cohomology of categories. We
describe linear extensions of a small category C by a "natural system" D. The

equivalence classes of such extensions are classified by the cohomology H 2 (C, D).
A natural system D on a category C is the appropriate generalization of aG-module.

(1.1) Definition. Let C be a category. The category of factorizations in C, denoted
by FC, is given as foHows. Objects are morphisms f, 9, ... in C and lnorphisms
f -t 9 are pairs (0:, ß) for which

A
(} A'

II 19

B (ß B'

commutes in C. Here a f ß is factorization of g. Cornposition is defined by (a.' , ß') (0:, ß) =
(a'o:,ßß'). We clearly have (a,ß) = (a, l)(l,ß) = (l,ß)(a,l). A natural system
(of abelian groups) on C is a functor D : FC -+ Ab. The functor D carries the
object f to D I = D(f) and carries the morphism (0:, ß) : f -+ 9 to the inducecl
homomorphism
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D(0:, ß) = a*ß* : D f -t Dofß = Dg

Here we set D(o:,l) = 0:*, D(l,ß) = ß*.

We have a canonical forgetful functor rr : FC -t Cop X C so that each bifunctor
D : Cop x C --t Ab yields a natural system- Drr,~ weildenoted by D. Such a
bifunctor is also called a C -bimodule. In this case D f = D (B , A) depends only on
the objects A, B for all / E C(E, A). Two functors F, G : Ab --+ Ab yield the Ab
-bimodule - - - -

H om(F, G) : Abop x Ab --+ Ab

which carries (A, B) to the group of homomorphisms Hom(FA, GE). If F is
the identity functor we write Hom(-, G). Similarly we define the Ab -bimodule
Ext(F, G).

For a group G and aG-module A the corresponding natural system D on the
group C, considered as a category, is given by Dg = A for 9 E G and g*a = g' a for
a E A, g*a = a. If we restrict the following notion of a "linear extension" to the
case C = G and D = A we obtain the notion of a group extension above.

(1.2) Definition. Let D be a natural system on C. We say that

D!..E~C

is a linear extension of the category C by D if (a), (b) and (c) hold.

(a) E and C have the same objects and p is a full functor which is the identity
on objects.

(b) For each I ; A --+ E in C the abelian group Dfacts transitively and
effectively on the suhset p-l (/) of morphisms in E. We write /0 + 0: for the

action of 0: E D f on 10 E p-l (/).
(c) The action satisfies the linear distributivity law:

(/0 + 0:) (gO + ß) = logo + /*ß + g*o:.

Two linear extensions E and E' are equivalent if there is an isomorphism of cate­
gories E: E f'oJ E' with p't: = p and with E(/O + 0:) = E(/o) + a for /0 E Mor(E), 0: E
Dpfo' Th-; extension E is split if there is a functor s : C --+ E with ps -1. Let
M (C , D) be the set of equivalence classes of linear extensions of C by D. Then
there is a canonical bijection

(1.3)

which maps the split extension to the zero element, see [2] and IV §6 in [4]. Here
Hn(C,D) denotes the cohomology of C with coefficients in D which is defined
below. We obtain a representing cocycle-ßt of the cohomology class {E} = 'IjJ(E) E
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H 2 (C, D) as follows. Let t be a "splitting" function for p which associates with
each morphism 1 : A -t B in C a morphism 10 = t(f) in E with pfo = f. Then t
yields a cocycle D..t by the formula -

(lA) t(g f) = t(g )t(f) + D.. t (g, f)

with D..t(g, I) E D(gf). The cohomology dass {E} = {D.. t } is trivial if and only if
E is a split extension.

(1.5) Definition. Let C be a small category and let l'ln(C) be the set of sequences
(Al, . .. ,An) of n composable morphisms in C (which are the n-simplices of the
nerve of C). For n = 0 let No(C) = Ob(C) be the set of objects in C. The cochain
group pn = pn (C, D) is the abelian group of all functions

(1) C : Nn(C) -t ( U Dg ) = D
gEMor(Q)

with C(AJ,' .. ,An) E D>'1 0 ... 0 >'n' Addition in pn is given by adding pointwise in the
abelian groups Dg • The coboundary a: Fn-J -t Fn is defined by the formula

(2)
n-1

+ L(-l)ie(AJ, ... ,AiAi+J, ... ,An)
i=l

For n = 1 we have (Be)(A) = A.e(A) - A·c(B) for A : A -t B E NI (C). One can
check that Be E pn for c E pn-I and that aa = O. Hence the cohomology groups

(3)

are defined, n 2: O. These groups are discussed in [2] and [4]. By change of
the universe cohomology groups Hn (C, D) can also be defined if C is not a small
category. A functor 4> : C' -t Cinduces the homomorphism

(4)

where 1>. D is the natural system giyen by (4). D) f = Dq,( f) . On cochains the map
cf;* is given by the formula
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where (A',... ,'\~) E Nn ( C'). If <p is an equivalence of categories then <p* is an
isomorphism. A natural transformation T : D -+ D' between natural systems
induces a homolnorphislll

(5)

by (T*/)(,\}, ... ,'\n) = TA/('\}, ... ,An) where TA : DA -+ D~ with A = A} 0 ••• 0 An
is given by the transfonnation r. Now let

I T

D" >---t D ~ D'

be a short exact sequence of natural systems on C. Then we obtain as usual the
natural long exact sequence -

where ß is the Bockstein homomorphism. For a cocyde e" representing a dass {e"}
in Hn(C, D") we obtain ß{e"} by choosing a cochain e as in (1.5) (1) with Te = e".
This is possible since T is surjective. Then l. -} oe is a cocycle which represents
ß{elf}.

(1.7) Remark. The cohomology (1.5) generalizes the cohomology of a group. In
fact, let G be a group and let G be the corresponding category with a single object
and with morphisms given by the elements in G. AG-module A yields a natural
system D. Then the dassical definition of the cohomology Hn(G, A) coincides with
the definition of

given by (1.5). Further results and applications of the cohomology of categories
can be fOlmd in (2], [3], [4], [5], [13], [lf].

§2 The homotopy category M 2 of Moore spaces in degree 2

Let A be an abelian group. A Moore space M(A, n), n 2: 2, is a simply con­
nected CW-space X with (reduced) homology groups HnX = A and HiX = 0 for
i # n. An Eilenberg-Mac Lane space K(A, n) is a CW-space Y with homotopy
groups 1T n Y = A and 1TiY = 0 for i #- n. Such spaces exist and their homotopy
type is weil defined by (A, n). The homotopy eategory of Eilenberg-Mac Laue
spaces K(A, n), A E Ab, is isomorphie via the functor 1Tn to the category Ab of
abelian groups. The corresponding result, however, does not hold for the homo­
topy category Mn of Moore spaces M(A, n), A E Ab. This creates the probleIn
to find a suitable algebraic model of the category Mn. For n 2: 3 such a model

category of Mn is known (see (V.3a.8) in [4] and (I~6) in [6]). The category M 2
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is not completely understood. We shall use the cohomology of the category Ab to

describe various properties of the category M 2
. -

Let r : Ab -+ Ab be J.H.C. Whitehead's quadratic functor [15] with

(2.1) r(A) = 7r3JvI(A, 2) = H4 I{(A, 2)

Then we obtain the Ab -bimodule

Ext(-, r) : Abop x Ab -+ Ab

which carries (A, B) to the group Ext(A, r(B)).

(2.2) Proposition. The category M 2 is part of a non split linear extension

+ 2 H2
Ext(-, r) >-+ Al ~ Ab

and hence M 2
, up to equiva1ence, is characterized bya cohomology dass

Since the extension is non split we have {M2
} =I O.

Proo(. For a free abelian group Ao with basis Z let

M Ao = V51
Z

be a one point union of I-dimensional spheres 51 such that H 1M A o = ~. For an
abelian group A we choose a short exact sequence

do --+ A 1 ~ Ao --+ A --+ 0

where Ao, Al are free abelian. Let

d~ : MAI --+ MAo

be a map which induces dA in homology and let MA be the mapping cone of d~.

Then

M(A,2) = ~MA

is the suspersion of M A. The homotopy type of M A, however, depends on the
choice of d~ and is not determined by A. Using the cofiber sequence for d~ we
obtain the wen known exact sequence of groups [11]

. ~ ~o-+ Ext(A,1T"3X) --+ [M(A, 2), X] ~ H om(A, 1T"2X) --+ 0

where [Y, X] denotes the set of homotopy classes of pointed maps Y --+ X. We now
set X = M(B, 2). Then J.l is given by the homology functor. We define the action
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of a E Ext(A, r B) on ~ E [M(A, 2), M(B, 2)] by ~ +0: = ~ + ß(O:) where we use the
group structure in [E MA l M(B, 2)]. This action satisfies the linear distributivity
law so that we obtain the linear extension in (2.2). Compare also (V.§ 3a) in [4]
where we show {M2

} i- O.

(2.3) Remark. A Pontriagin map rA for an abelian group A is a map

rA : ]((A, 2) -r ]((f(A), 4)

which induces the identity of f(A),

Such Pontrjagin maps exist and are weH defined up to homotopy. The map rA

induces the Pontrjagin square which is the cohomology operation [15]

H 2 (X, A) = [X, K(A, 2)] (~. [X, ]((f(A), 2)] = H 4 (X, r(A))

The fiber of rA is the 3-type of M(A,2). Therefore one gets isomorphisms of
categories [9]

M 2 = P(X) = Hopair(X)

where X is the dass of all Pontrjagin maps r A, A E Ab. Here P(X) is the hOlnotopy
category of fibers P(rA), rA EX, and H opair(X) is the category of homotopy pairs

[10] between Pontrjagin maps. We have seen in [9] that via these isomorphisms
the dass {M2

} is the image of the universal Toda bracket ([{)n E H 3
([{, Dn )

where [{ is the full subcategory of the homotopy category consisting of ]((A, 2)
and [((r(A), 4), A E Ab. Hence we get by (2.2):

(2.4) Corollary. (K)n i- 0

§3 On the cohomology class {M2
}

The quadratic functor r can also be defined by the universal quadratic map
, : A ---+ r(A). vVe have the natural exact sequence in Ab

(3.1 )

where H is defined by H,(a) = a 0 a, a E A E Ab, and where A2 A = A 0 A/{a 0
a "-' O} is the exterior square with quotient map q. We also need the natural
homomorphism

(3.2) (l, 1] = P : A 0 A --+ r(A)
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with P(a0b) = ,(a+b) -,(a) -,(b) = [a,b). One readily checks that PH is
multiplication by 2 on r(A) and that H P(a 0 b) = a 0 b + b 0 a. For A E Ab we
obtain by P and H and q above the following natural short exact sequences of Z/2
-vector spaces

(3.3)

Here er carries ,(a)01 to a01, a E A. Ifwe apply the functor H orn(-, r(B)0Z/2)
to the exact sequence Si(A), i = 1,2, we get the corresponding exact sequence of
Ab -bimodules denoted by H om(Si( -), r( -) 0 Z/2). The associated Bockstein
homomorphisms ßi yield thus homomorphisms

(3.4)

HO(Ab, Hom(r( -) 0 Z/2, r( -) 0 Z/2))

t ß2

H 1 (Ab, H O1n(A2
( -) 0 Z/2, r( -) 0 Z/2))

.J.. ßl
H 2 (Ab, H on~( - 0 Z/2, r(-) 0 Z/2))

Moreover we use the natural homomorphism

X : H om(A 0 Z/2, r(B) 0 Z/2) ~ Ext(A 0 Z/2, r B)~ Ext(A, r B)

where 9 is the natural isomorphism and where p : A -t A 0 Z/2 is the projection.
Let

Ir E HO(Ab, H om(r(-) 0 Z/2, r(-) 0 Z/2))

be the canonical dass which carries the abelian group A to the identity of r(A) 0
Z/2. Then one gets the element

determined by Ir and the hOlnomorphisms above.

(S.5) Coniecture.

We shall prove various results which support this conjecture.
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(3.6) Theorem. Let A be the full subcategory of Ab consisting of direct sums of
cyc1ic groups and let i A : A ~ Ab be the inc1usion functor. Then we have

= - -

Proo(. We write C = (Z / a)a if C is a cydic group isolllorphic to Z / a wi th generator
a , a 2: O. A direct surn of cydic groups

A = EB(Z/ai)eti
i

is indexed by an ordered set if the set of generators {eti, <} is a weIl ordered set.
The generator Q' i also denotes the indlision Q' i : Z / ai C A and the corresponding
indusion

(3.7)

Here Pn = SI Un e2 is the pseudo proiective plane for n > 0 and Po = SI so that
~Pn = M(71/n, 2). Let Q'i : A ~ Z/ai be the canonical retraction of Q'i with
Q'iQ'i = 1 and Q'jQ'i = 0 for j =f:. i. Let

(3.8) lfJ : A = ffi(Z/ni)ni -t B = ffi(Z/bj)ßj
j

be a homomorphism. The coordinates 'Pji E Z, CPji : Z/ai -t 7l/bj, 1 t-------+ 'Pji1, are
given by the formula

Let B 2 be the splitting function

[~Pn, ~Pm] +:- Hom(Z/n, Z/1n)
B2

obtained in (III, Appendix D) of [5]. We define the rnap S'P E [M(A,2), l\1(B,2)]
by the ordered surn

<
(SCP)Qi = 'LßjB 2 (cpjd

j

where we use the ordering < of the generators in B. Hence we obtain a splitting function
s

(3.9)
H2

[M(A, 2), M(B, 2)] ~ Hom(A, B)
"
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with H2s('P) = 'P. Each element <p E [M(A,2),M(B,2)] is of the fonn rp =
s('P) + ~ where ~ E Ext(A, f B). This way we can characterize all elements in
[M(A, 2), M(B, 2)] provided A and B are ordered direct sums of cyclic groups. We
use s in (3.9) for the definition of the cocycle ß s representing i* {M2

} in (3.6), that
is by (1.4):

S(VJ'P) = s(VJ)s(cp) + ßtf(VJ,'P)

Below we compute ß s - Ta this end we have to introduce the following groups.

q.e.d.

(9.1 0) Definition. Let A be an abelian group. We have the natural homomorphism
between Z /2 -vector spaces

(1)

with H(,(a) 0 1) = (a 0 1) 0 (a 0 1). This homomorphism is injective and hence
admits a retraction homomorphism

(2)

with rH = id. For example, given a basis E of the Z/2 -vector space A 0 Z/2
and a weIl ordering < on E we can define a retraction r< on basis elements by the
formula (b, b' E E)

(3)
{

,(b) 0 1

"«b 0 b') = ~' b'] 01

for

for

for

b = b'

b> b'

b < b'

Now let q ~ 1 and let

(4) jA: Hom(Zjq,A) = A * Z/qC A ~ A0Z/2

be giyen by the projection p wi th p(x) = x (9 1. Also let

(5)

PA : r(A) (9 Z/2 ~ r(A) (9 Z/20 Z/q = Ext(Z/20 Z/q, r(A))~ Ext(Z/q, r(A))

be defined by the indicated projections p. Then we obtain the homomorphism

(6)
{

ßA: Hom(Z/q,A) 0 Hont(Z/q,A) -+ Ext(Z/q,fA)

ßA = PAr(jA (9 jA)
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which depends on the choice of the retraction r in (2). Clearly ~A is not natural
in A since r cannot be chosen to be natural. However one can easily check that ~A
is natural for homomorphisms I..p : Z/q -t 7l/t between cyclic groups that is

(7)

We now define a group

(8) G(q,A) = Hom(71/q , A) x Ext(Z/q,f(A))

where the group law on the right hand side is given by the cocycle ~Al that is

(9) (a,b) + (a',b') = (a+a',b+b' +~A(a@a')).

For any abelian group A there is by (XII.1.6) [6] an isomorphism

(3.11) p : G(q, A) ~ (L;Pq , M(A, 2)]

which is natural in Z/q, q > 1, and which is compatible with ~ and p in the proof
of (2.2). If A is a direct sum of cyclic groups as above we obtain maps

Qi : 'EPaj -+ 1\f(A, 2)

by ai = p(ai,O) where Cti E Hom(Z/ai,A) is the inclusion. These maps yield the
homotopyequivalence

VY:.Paj ~ M(A,2)
I

which we use as in identification. Hence we mayassurne that p in (3.11) satisfies

(*) p(ailO)=Cti

where ai is the inclusion in (3.7). We need the following function \lA, defined for
an ordered direct surn A of cyclic groups,

(3.12) \lA : Hom(Z/q, A) -+ Ext(Z/q, r A)

V'A (x) = L~A(aixi 0D:jxj).
i<j

Here Xi E Hom(Z/q,Z/ai) is the coordinate of x = L:iD:iXi' We observe that
V' A = 0 is trivial if we define ~A by r< in (3.10) where tbe ordered basis E in
A @ Z/2 is given by the ordered set of generators in A. Clearly 2 V' A (x) = °since
2~A = 0. Tbe function V' A has tbe following crucial property:
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(3.13) Lemma. In the group G(q, A) we have the formula

<
L xi(ai'O) = (x, \7 A(X))

i

lvhere the left hand side is the ordered sum of the e1ements xi (a i, 0) = (a iX i, 0) in
the group G(q, A).

The lemma is an immediate consequence of the group law (3.10) (9).

For cp E Hom(A, B) in (3.8) and q 2:: 1 we define the function

(3.14) \7(<p) : Hom(Z/q,A) ~ Ext(Z/q,r(B))

via the commutative diagram

7r2(Z/q, M(A, 2))

11

G(q, A)

11

HOln(Z/q,A) X Ext(Z/q,rA)

7r2(Z/q, M(B, 2))

I1

G(q, B)

11

Hom(Z/q,B) x Ext(Z/q,rB)

where the isümorphisms are giyen as in (3.11). The homomorphism (scph, induced
by scp in (3.9), determines \7 (cp) by the formula

(sCPh(x,a) = (cp.x,r(cp).Q +V(cp)(x))

für x E Hom(Z/q,A) and 0 E Ext(Z/q,rA). The function \7(cp) is not a homo­
morphism.

(3.15) Lemma. Forx EHom(Z/q,A) webave

\7(cp)(x) = f(cp). \7 A (x) + L \7B(cpD:i X d
i

+ L ßB(cpaixi 0 cpatxt}
i<t

Since all summands are 2-torsion we have v(cp) = °if q is odd.

Proof. For (Oi,O) E G(ai,A) oue has the formula

<
(scph(ai, O) = L(ßiCPii,O)

i

12



as follows from property (3.11) (*) of the isomorphism x. Hence we get by (3.13)
the following equations

(SCPh(x,O) + (o,r(cp). 'VA (X)) = (sCPh(x, \JA(X))
<

= (scph(Lxi(ai'O))
i

<
= L xi(Scp)~(Qi,O)

i

< <
= L(L(ßjCPjiXi, 0))

i j

<
= L(CPaiXi, 'VB(cpaixd)

l

Here we have in G(q, B) the equation

<
L (cpD:iXi, 0) = (cpx, L !:i. B(CPD:iXi (9 cpatxt})

i i<t

This yields the result in (3.15).

q.e.d.
We now describe cocycle J in the dass ßI ß2 (1r ). For this let A,B, C be ordered

direct sums of cyclic groups and consider homomorphisms

(3.16) 7/Jcp : A~ B ~ C.

Let rA = r< be the retraction of H in (3.10) (3)

H
r(A) (9 Z/2 +::::t (92(A) (9 Z/2

r .....

Moreover let SA be a splitting of (1

(7

r(A) 0 Z/2 f2 A 0 Z/2
"A

defined by

(see S2(A) in (3.3))

(see 51 (A) in (3.3))

SA(L XiD:i 0 1) = L xi,(ad 01.
i i

Here the aj are the generators of A as in (3.7). We now obtain derivations D 1 , D 2

by setting
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D2('ljJ)q = -'ljJ*rB + 'ljJ*rCl

p Dl(~) = -~*SA + ~*SB.

For this we use the exact sequences Si(A) in (3.3). We define a 2-cocycle J which
carries ('ljJ, ~) to the composition

o(~,~) : A 0 Z/2 D~) A2(B) 0 Z/2 D~) r(C) (9 Z/2

and we observe

(9.17) Lemma.

where ßll ß2 are the Bockstein homomorphisms in (3.4). We leave the proof of the
lemma as an exercise. The lemlna yields a cocycle representing the right hand side
in (3.6).

Next we determine the cocycle J.! in (3.g). For this we use the injeetion

9 : Ext(A, rC) c x HO1n(Hom(Z/q, A), Ext(Z/q, rC))
q>l

The element 9~ s (~, ~) is giyen by the Z / q -natural homomorphism

(g~s(7/J,~))q : Hom(Z/q,A) -t Ext(Z/q,rC)

whieh satisfies

This equation is an easy eonsequenee of (3.14). As in the remark following (3.12)
we may assume that \J A = 'V B = \Jc = 0 are trivial. Moreover we may assume
that q is even sinee (g~.!(~, ~))q is trivial if q is odd. We define a funetion

PA : A 0 Z/2 -t A2 (A ® Z/2)

PA(L XiO'i 0 1) = L(XiO:i 0 1) 1\ (XtO't ® 1)
i i<t

(9.18) Lemma.

\J(~)(x) = Xq D2(~)PA(X ® Z/2)

Here we have x E H om(Z / q, A) and

x ® Z/2 E Hom{Z/q ® Z/2, A ® 7l/2) = A 0 Z/2

since q is even. Moreover Xq in lelnma (3.18) is the composition
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Xq : r(B) 0 Z/2 = Ext(Z/2, r B) -+ Ext(Z/q, rB)

induced by Z/q -+ Z/q0Z/2 = Z/2. Lemma (3.18) is a consequence of the formula
in (3.15) and the definition of rA = r< in (3.10) (3). We apply Lemma (3.18) to
the formula for (g~ fl ( 7jJ, r.p ))q above and we get for x = x 0 Z/2

(3.19) Lemma.

(g~ .. (1f',r.p))q(x) = XqD 2 ('l/J)(PB(r.pX) - r.p*PA(X))

This follows easily from (3.18) since D 1 is a derivation. Finally we observe:

(3.20) Lemma.

PB(r.pX) - r.p*PA(X) = D 1 (r.p)(x)

The proof of lemma (3.20) requires a lengthy computation with the definitions of
PB, PA and D 2 ( r.p). By (3.19) and (3.20) we thus get

(3.21 )

and this yields the formula in (3.6). In fact (3.21) yields an easy algebraic de­
scription of the cocyde ~s in terms of the derivation D 1 and D 2 above since 9 is
injective.

q.e.d.

§4 On the cohomology class {nil} and James-Hopf invariants on M 2

In this section we prove a further formula for the dass {M2
} which, however,

does not determine {M2
} completely. -

For the exterior square A2 (B) of an abelian group B we have the exact sequence
(3.1) which induces the exact sequence

Ext(A, r B) H.) Ext(A, 0 2 B)~ Ext(A, A2 B) -+ 0

and hence we have the binatural short exact sequence

(4.1 )
i 2 p. 2

H*Ext(A, r B) >-t Ext(A, 0 B) --# Ext(A, A B)

together with the surjective map

H' : Ext(A, r B) -* H*Ext(A, r B)

induced by H*. The short exact sequence induces the Bockstein homomorphism

15



(4.2) Theorem. Tbe algebraic dass {nil} E H 1 (Ab, Ext( -, A2 )) defined below

and the dass {M2
} oE tbe bomotopy category oE Moore spaces in degree 2 satisEy

the Eormula -

This result is true in the cohomology of Ab. For the algebraic definition of the
dass {nil} we need the following linear extension nil.

(4. 3) Definition. Let (Z) be the free group generated by the set Z and let r n (Z)
be the subgroup generated by n-fold commutators. Then

A = (Z)/r 2 (Z) = EBZ
z

is the free abelian group generated by Z and

(1)

(2)

is the free nil(2)-group generated by Z. We have the dassical central extension of
groups

The map w is induced by the commutator map with

( A) -}-1
'W qx 1\ qy = x y xy.

(3)

(4)

Here the right hand side denotes the commutator in the group E A . Using (3) we
get the linear extension of categories (compare also (3], [5))

(5)

Here ab and nil are the fuH subcategories of the category of groups consisting of
free abelian groups and free nil(2) -groups respectively. The functor ab in (3) is
abelianization and the action + is given by

f + a = f +waq (6)

for f: E A -+ EB, a E Hom(A,A 2 B). The right hand side of (6) is a weil defined
homomorphism since (3) is central.

(4.4)Definition. We define a derivation

nil: Ab -+ Ext(-, A2)

which carries a homomorphism '(J ; A -+ B in Ab to an element nil( '(J) E Ext(A, A2 B).
The cohomology dass {nil} represented by the derivation nil is the dass used in
(4.2). For the definition of nil we choose for each abelian group Aashort exact
sequence
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o--+ Al dA) Ao~ A --+ 0

where Ao, Al are free abelian groups. We also choose a homomorphism

dA : E A1 --+ EAo

between free nil(2) -groups such that the abelianization of dA is dA. For the
homomorphism<.p: A --+ B we choose a commutative diagram in Ab

Al
dA

Ao
q

) A)

4'1 1 1~o 14'
BI

dB Bo
q

B) )

and we choose a diagrarn of homomorphisms

EA1 JA
) E Ao

~11 1~o
dB

E B1 ) EBo

which by abelianization induces (<.po, <.pI)' This diagram, in general, cannot be
chosen to be commutative. Since, however, <.podA = dB<.p1 there is a ullique element

0' E Hom(Al, A2Bo) with

Here we use the action in (4.3) (6). Now let

nil(<.p) E Ext(A,A2 B) = Horn(A I ,A2B)/dAHom(Ao,A 2 B)

be the element represented by the composition

(A 2q)0' : Al --+ A2BQ --+ A2B

One can check that nil(<.p) does not depend on the choice of (<po, <.pI) and (soo, sod
respectively and that nil is a derivation, that is nil(<.p'ljJ) = <.p*nil(7/;) + 7/;*nil(<.p).
This completes the definition of the cohomology dass {nil}.

Next we use the derivation D 1 on Ab defined as in (3.16). The derivation D I
carries <p : A --+ B to

and hence represents a cohomology class

Let
P2 : Ext(A @ 7l/2, A2B) --+ Ext(A, A2 B)

be induced by the projection A ~ A 0 Z/2.
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(4.5) Proposition. Let A be the full subcategory of Ab consisting of direct sums
of cyc1ic groups. Then wehave -

in H l (A, Ext(-, A2)).

We do not know whether this formula also holds if we oUllt i.d,. Proposition (4.5)

implies that the formulas in (4.2) and (3.6) are compatible. For the proof of (4.5)
we need the following properties of nil(2) -groups. A group G is a nil(2)-group
if all triple commutators vanish in G. The commutators in G yield the central
homomorphism

(4.6)

where G --+ cab, X t------+ {x} l is the abelianization of G. We define w by the conl­
rnutator

for X, Y E G. Let M be a set and let f : M --+ G be a function such that only
finitely many elements f(m), 1n E M, are non trivial and let <, « be two total
orderings on the set M. Then we have in G the fonnula

f f(m) = t f(m) +10 ( L {fm} 1\ {fn~/})
mEM mEM m«ml

ml<m

For a E G and n E Z let na = a +... +a be the n-fold sum in G in case n ;::: 0, and
let na = -Inla for n < 0. Then one gets in G the formula

n t f(m) = t nf(m) -10 ((;) L {Im} i\ {ImI})
mEM mEfl.1 m<m'

where (~) = n(n - 1)/2.

Proof of (4.5). Let A and B be direct sums of cyclic groups and let e.p : A --+ B
be given by e.pji E Z as in (3.8). Let ~ be the free group generated by the set of
generators {O'i} of A and let Al be the free group generated by the {ai, ai #- O}.
Then we choose, see (4.4),

{

dA: E A1 --+ EAo

dA(ad = aiai

Similarly we define dB. Moreover we define 'Pl and 'Po by the ordered surn
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<
rpo(ad = L !pjißj E ERo

J

<
rpl(ai) = L(ai!pji/bj)ßj E ER l

J

Hence we get a in (4.4) by the formula, see (4.6),

< <
dRrpl(ad - rpodA(ai) = Lai!Piißj - ai L!Pjißj

i j

Hence nil(!p) E Ext(A, A2B) is given by the formula (ai: Z/ai C A as in (3.7))

(ad*nil(!p) = (~i) L!Pii!Pti(10ßj Aßt)
i<t

where 10ßi Aßt E Z/ai0A2B = Ext(Z/ai,A2 B). Using the definition of D 1 in
the proof of (3.16) it is easy to check that (ad*P2 D1 ( !p) coincides with the right
hand side of the formula so that we actually have

This proves the proposition in (4.5).

q.e.d.
We will need the following elelnent which projects to nil(!p) above.

(4.7) Definition. For!p in the proof above let

be given by the formula

(az)*nil('P) = ( ~ ) L 'Pji'Pti(l ® ßj ® ßt)
J<t

We clearly have Ext(A,p)nil(!p) = nil(!p) where p: 0 2 B ~ A2B is the projection.

Recall that we have for the biftu1ctor Ext(-,02
) on Ab the canonical split linear

extension
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Objects in Ab x Ext(-, ei) are abelian groups and morphisms (<f!, a) : A -+ Bare
given by <f! E Hom(A,B) and a E Ext(A,02 B) with cOlnposition (ep,a)(7/J,ß) =
(c.p7/J, rp.ß+ 7/J. a). The derivation nil in (4.4) defines a subcategory

(4.8)

consisting of all morphisms (ep, a) : A -+ B which satisfy the condition

p.(a) = nil(rp) E Ext(A,A2 B).

Here p : 0 2 B ~ A2 Binduces P* = Ext( A, p). The exact sequence (4.1) shows that
we have a commutative diagram of linear extensions of categories

+ )H*Ext( -, r)

n

Ext( _, ( 2 )

Ab(nil)

n

+ ) Ab x Ext(-,(2 )

11

-------7) Ab

(4.9) LeInma. Tbe cohomology dass represented by the linear extension for Ab(11,i l)
satisfies

wbere ß is tbe Backstein operator in (4.2).

Proof. Let s : Ext( A, A2 B) --+ Ext( A, 0 2 B) be a set theoretic splitting of Ext( A, p) =
P*. Then ß{nil} is represented by the 2-cocycle c = i-I J(s nil) where i is the inclu­
sion in (4.1) and where 0 is the coboundary in (1.5). Hence c carries the 2-simplex
(7/J, c.p) in Ab to

c(7/J,ep) = i- 1(7/J.snil(c.p) - snil(7./Jep) + ep*snil(7/J))

On the other hand we define a set theoretic section t for the linear extension Ab(nil)
by t(ep) = (ep, s nil(<p)). Then ß t in (1.4) is given by

Hence c = -ßt yields the proposition. In fact, since the elements in (4.9) are of
order 2 we cau omit the sign.

q.e.d.
For Moore spaces M(A, 2) = ~MA and M(B, 2) = ~MB as in (2.2) we have the

James-Hopf invariant [12], [7],

(4.10)

which satisfies for 0: E Ext(A, r B) the fonnula
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(1)

Henee /2 induees a weIl defined funetion

(2) 1'2 : Hom(A, B) --+ Ext( A, A2B)

defined by ')'2 (Cf') = q*/2(~) where ~ induees H2(~) = Cf' : A --+ B. One ean eheck
that 12 is a derivation whieh represents a eohomology dass in H 1 (Ab, E xt(-, A2 B) ).
This eohomology dass does not depend on the choiee of MA, MBäbove.

(4.11) Theorem. The cobomology dass {1'2} given by the James-Hopf invariant
,2 coincides with

{1'2} = {nil} E H 1(Ab,Ext(-,A 2
))

Moreover tbere is a full functor T,

M 2
-: Ab(nil) c: Ab x Ext(-, <?l)

which is the identity on objeets and wbicb is defined on morphisms by

T(~) = (H2~, /2~)

The funetor T is part of the following commutative diagram of linear extensions

Ext(-, f) +
) M2 H2 Ab)

H'l lr 11

H*Ext( -, r) +
) Ab(nil) ) Ab

Proof of (4.2). The existenee of the funetor T shows that H~{M2} = {Ab(nil)}.
Therefore we obtain (4.2) by (4.9).

q.e.d.

(4.12) Remark. We cau give an alternative deseription of the funetor T in (4.11) by
use of the singular ehain eomplex of a loop spaee whieh yields the Adams-Hilton functor

c*n : Ho(Top*) --+ Ho(DA)

between homotopy eategories (compare [1] and also [4)). The functor C*11 restrieed

to M 2 leads to the foIlowing diagrarn where M2
C H o(DA) is the fuIl subcategory

eonsisting of C*11M(A, 2), A E Ab, - --

M 2 C.fl) 1\12 C Ho(DA)
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where) is an equivalence of categories such that )ir is naturally isomorphie to C*[l.

Proof of (4.11). The image category of the functor

is Ab(nil) since we show

(1) 12 = nil

for compatible choices of dA, d~ in (4.4) and (2.2). We 11se the equivalence of
linear track extension described in (VI.4.7) of Baues [5]. This shows that a tripie
(cpo,CPl,G) with G E Hom(A 1 ,&;2Bo) satisfying P.G = a (see (4.4)) corresponds
to a diagram

~d'

~MAl A ) ~MAo

(2) ~ <p~1 GI 1~ <P~:::::;:::}

~MBl ) ~MBo
~d~

Here dA and d'a induce dA and JB respectively and c.p~, c.p; induces 'Po, CPl in
(4.4). The track C' is determined by G. This track detennines a principal map
cP E [~MA,~MB] suchthat r(cp) = (c.p,(&;2 q).{C}) where {C} E Ext(A,&;2B)) is
represented by G. This follows from the bijection (6) ... (11) in (VI.4.7) Baues [5].
Since P.G = a we get 12 = nil. q.e.d.

(4.19) Example. Let A and B be direct sums of cyclic groups as in (3.8) and let
sc.p E [M(A,2),M(B ,2)] be definedas in (3.9). Thenthefunctorr in (4.11) satisfies

r(sc.p) = (c.p,nil(c.p))

where nil (c.p) is defined in (4.7). We obtain this formula by the methods in the
proof of (4.11) above. In this case we also can compute the James-Hopf invariant
r2(Sc.p) which actually is r2(Sc.p) = nil(r.p).

As a corollary of (4.2) we get:

(4.14) Proposition. {M 2
} is a (non trivial) element of order 2.

Proof. We know that multiplication by 2 on f(A) is the composition

2 = P H : rA -+ &;2 A -+ rA

where P = [1,1]. Hence also the composition

Ext(A, rB)

1I

Ext(A,rB)

H'
-~) H.Ext(A,rB)

n
H. ) Ext(A, ®2 B)

22
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is a multiplication by 2. Therefore we get by (4.2):

2{M2
} = (P' H').{M 2

}

= P; H~{M2}
== P; ß{nil}

Here the commutative diagrarn of short exact sequences

o

o

----+) H.Ext(A, r B)

p'1
Ext(A, rB)

----+) Ext( A, 0 2 B)

-~) Ext(A,rB)

-----t) Ext(A, A2 B)

1
o

-----t) 0

-----t) 0

shows that P~ß == o.
q.e.d.

(4.15) Proposition. Each element in H 1 (Ab, Ext(-, A2
)) is of order 2, in particular,

2{nil} == O.

Proof. Let A, B be abelian groups and let c.p E Hon~(A, B). Let 2A == 2 id E
H om(A, A) be multiplication by 2. Then we have

cp 0 2A == 2rp == 2B 0 rp.

Now the derivation property of N with {lV} E H 1 (Ab,Ext(-,A 2
)) shows:

N(cp 0 2A) == cp. N(2A) + (2A)· N(ep)

== cp. N(2A) +2N(cp)

N(2B 0 cp) == (2B).N(cp) + cp. N(2B)

== 4N(cp) + cp. N(2B)

Hence we get

so that 2N is an inner derivation.

q.e.d.

§ 5 A subcategory of M 2 given by diagonal elements

Let Z/2 * A be the 2-torsion of the abeliall group A. We here construct a
subcategory H of the category cf Moore spaces M 2 with the following property.
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(5.1) Theorenl. Tbere exists a subcategory H ofM 2 togetller with a commutative
diagram of linear extensions - -

Z/2 *Ext( -, f)

n

Ext( -, f)

+
) H

n
+ ) M 2

--+) Ab

11

The theorem shows that the dass {M2
} is in the image

i*: H 2 (Ab,Z/2*Ext(-,f)) -+ H 2 (Ab,Ext(-,f))

where i is the inclusion Z/2 *Ext(A, f(B)) c Ext(A, f(B)).

(5.2) Corollary. The extension M 2 -+ Ab is split on any full suhcategory of Ab
consisting of objects A, B with (Z/2) *Ext(A, r B) = O.

(5.3) Corollary. Let A be any abelian group for which the 2-torsion ofExt(A, r A)
is trivial. Then the group of homotopy equivalences of M(A, 2) is given by tbe split
extension

Ext(A, r A) >-t ~(M(A,2)) ~ Aut(A)

wbere cp E Aut(A) acts on a E Ext(A, r A) by cp. a = (rcp)*(cp-l )*(a).

Proof of (5.1). For a Moore space M(A,2) = EMA we have the diagonal element

(1)

which is given by the suspension of the reduced diagonal MA -+ MA !\ MA . Let
[lA, lA] : EMA !\ M A -+ ~MA be the Whitehead product for the identity lA of
EMA . Then

(2)

is the trivial commutator. This implies that also

(3) ~A E K er{[!, 1]* : Ext(A, A 0 A) -+ Ext(A, f A)}

with [1,1] in (3.2). We have the short exact sequences (see (3.3))

o-+ Ext(A, f(A) 0 Z/2) H.) Ext(A,02 (A) 0 Z/2) q.) Ext(A, A2 (A) 0 Z/2) -+ 0

{1,1]·1 1
Ext(A,f(A) 0 Z/2)
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which shows by (3) that for the projection p : 0 2 A --+ (02 A)0Z/2 there is a unique
element ~A E Ext(A, r(A) 0 Z/2) with

(4)

We now choose by the surjection

P* : Ext(A, r A) --+ Ext(A, r(A) C9 Z/2)

an element ~~ E Ext(A, r A) with

(5) A" A'p. L.1. A = L.1. A

We call 6.~ a diagonal structure for A. For the definition of the subcategory H in

M 2 we choose such a diagonal structure for each abelian group A in Ab. We define
the set of morphisms in H wi th -

(6)

by the composition (compare (4.10))

[EMA , EMBJ ~ Ext(A, B ~ B) [1
,
1)_ Ext(A, r B),

and by diagonal structures ~Ä, ~B' namely

(7)

We show that for r:p E H(A, B) and ;[J E H(B, C) we actually have 7fr:p E H(A, C)

so that H is a weil defined subcategory of M 2
• For this we need the fact that 12 is

a derivation, namely

Hence we get:

[1, 1].,2(7{;r:p) = [1, 1].(4'*12(CP) + 4'*'2(7f))

= 'ljJ. [1, 1].,2 ('P) + cp. [1, 1}*12 (cp )
= 1/;. (-4'.~~ +<p* ~'iJ) + cp. (-1/;*~ '1J + 1/;*~~)

= -(1jJ4')*~~ + (1jJ4').~'/::.

The crucial observation needed for the proof of theorem (5.1) is the following equa­
tion where we use the interchange map T : B ® B --+ B ® B with T(x ® y) = y 0 x,
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(8)

This equation follows from the corresponding known property of James-Hopf in­
variants (Appendix A [6]) with respect to "cup products" which in our case has the
form

r:p U <p = ~ 1,1 r:p +(1 +T2 ,l ) /2 ( r:p ).

This equation is equivalent to (10). We now consider the following commutative
diagram.

Ext(A,rB) - Ext(A,rB) Ext(A,rB)

1+ 1H. 1.2

[EMA,EMB] -Y2 ) Ext(A, B 0 B)
[1,1].

Ext(A, rB))

Ip 1 1
Hom(A,B) 1'2 Ext(A,A2 B)

[1,1] •
Ext(A, r(B) &;71/2))

the columns are exact sequences. Here /2 is not a homomorphislnj since however
(4.10) (1) holds we see that the induced function 12 is well defined. Moreover we
use [1, l]H = ·2 so that [1, I]. in the bottom row is well defined. We now claim
that (8) implies the fonnula

(9)

This shows by the diagram above that for any <p E Hom(A, B) there is an element
r:p which satisfies the condition in (7). Thus the functor H -t Ab is fuH, moreover
the diagram above shows that H is part of a linear extension as described in the
theorem. In fact for r:p E H(A, B) we have r:p + a E H(A, B) if and only if 2a = O.

It remains to prove (9). For this consider the commutative diagrarn

Ext( A, B C9 B)

1
Ext( A, B 1\ B)

Ext(A,rB)

Ext(A, B ® B)

Ext(A, r(B) C9 Z/2)

Ext(A,B 0 B 0 B)
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The square in trus diagram coincides with the corresponding square in the diagram
above. Since for x 0 y E B 0 B

H[l, l](x ® y) = x ® y + y ® x _ x ® y - y ® x Inod2

we see that the diagram commutes. The homomorphism t is induced by 1 - T.
On the other hand H. in the diagram is injective. This shows by the following
equations that (9) holds.

H.[l, 1].'72(CP) = H.p.[l, 1].'2<P

= p.(l - T)*12<P

= P.(cp.ßA - Cp*ßB)

= cp. (P. ßA) - cp. (P. ßB)

= cp*(H.fj,~) - cp*(H.ß~)

= H.(cp.fj,~ - cp·ß~).

This completes the proof of theorem (5.1).

Formula (9) in the proof of (5.1) above and (1) in the proof of (4.11) show

[1, 1]. nil(cp) = [1, 1]. <P2(cp)

= -cp. ß~ + cp* ß~

Hence the composition [1, 1J. nil with

[1,1]. : Ext(A, A2 B) --+ Ext(A, rB ® Z/2)

is an inner derivation. This implies

(5.4) Proposition.

in H 1 (Ab, Ext(-, Z /20 r)).
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