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ON THE HOMOTOPY CATEGORY OF
MOORE SPACES AND THE COHOMOLOGY
OF THE CATEGORY OF ABELIAN GROUPS

HANS-JOACHIM BAUES AND MANFRED HARTL

An abelian group A determines the Moore space M(A) = M(A,2) which up to
homotopy equivalence is the unique simply connected CW-space X with homology
groups Ho X = A and H;X = 0 for : > 2. Since M(A) can be chosen to be a
suspension the set of homotopy classes [M(A), M(B)] is a group which is part of a
classical central extension of groups

(1) Ezt(A,TB) » [M(A), M(B)] - Hom(A, B)

due to Barratt. It is known that (1) in general is not split, for example [M(Z/2), M(Z/2)] =
Z /4. We here are not interested in this additive structure of the sets [M(A), M(B)]

but in the multiplicative structure given by the composition of maps, in particular

in the extension of groups

(2) Ext(A,TA) — E(M(A)) —» Aut(A)

where £(M(A)) is the group of homotopy equivalences of the space M(A). The
extension (2) determines the cohomology class

(3) {E(M(A))} € H*(Aut(A), Ext(4,TA))

Though the group E(M(A)) is defined in an “easy” range of homotopy theory the
cohomology class (3) is not yet computed for all abelian groups A. In this paper
we prove a nice algebraic formula for the class (3) if A is a product of cyclic groups
and we show that {E(M(A))} is trivial if Ezt(A,I'A) has no 2-torsion; see (3.6)
and (5.2). Moreover we compute for all abelian groups A the image of the class (3)
under the surjection of coefficients

(4) Eaxt(A,TA) - Ext(A, H(T A)).
Here H(T'A) is the image of H : TA — AQ A; see (4.2). We do such computations

not in the cohomology of groups but more distinctly in the cohomology of categories.
In fact the homotopy category M % of Moore spaces M(A) leads to a topological
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“characteristic class” in the cohomology of the category Ab of abelian groups; see
(2.2). Tt is the computation of such topologically defined cohomology classes which
motivated the results in this paper. For example the topological James-Hopf invari-
ant on the category M? or the “chains on the loop space” functor €, on M? have
interesting interpretations on the level of the cohomology of the category £ Ab; see
(4.11). As an application we describe algebraically the image category (C,Q)(M?)
in the homotopy category of chain algebras showing fundamental differences be-
tween the homotopy category of spaces and chain algebras respectively; see (4.12).
This implies that the image of the group £(M(A)) under the functor C.£ is part
of an extension

(5) Ext(A, H(TA)) — (C.Q)EM(A)) - Aut(A)

which we compute explicitly in terms of A for all abelian groups A.

§1 Linear extensions of categories and the cohomology of categories

An extension of a group G by a G-module A is a short exact sequence of groups
0 A— E-—G-0
i P

where 1 is compatible with the action of G. Two such extensions E and E’ are
equivalent if there is an isomorphism ¢ : E = E’ of groups with p’e = p and e = 7',
It 1s well known that the equivalence classes of extensions are classified by the
cohomology H*(G, A).

We now recall from [2] basic notation on the cohomology of categories. We
describe linear extensions of a small category C by a “natural system” D. The

equivalence classes of such extensions are classified by the cohomology H?*(C, D).
A natural system D on a category C is the appropriate generalization of a G-module.

(1.1) Definition. Let C be a category. The category of factorizations in C, denoted
by FC, is given as follows. Objects are morphisms f,g,... in € and morphisms
f — g are pairs («a, 3) for which

A =25 A

fT Tg

B2 p

commutes in C. Here o ff3 is factorization of g. Composition is defined by (¢, BYe,B) =
(o'a, BB'). We clearly have (a, ) = (e,1)(1,8) = (1,8)(e,1). A natural system
(of abelian groups) on C' is a functor D : FC — Ab. The functor D carries the

object f to Dy = D(f) and carries the morphism («,8) : f = g to the induced
homomorphism




D(a,ﬁ) = a*ﬂ* : Df — .Dafﬁ =D
Here we set D(a, 1) = oy, D(1,8) =

We have a canonical forgetful functor 7 : FC — C°” x C so that each bifunctor
: C°? x € — Ab yields a natural system Dm, as well denoted by D. Such a
blfunctor is also called a C -bimodule. In this case D § = D(B, A) depends only on

the objects A, B for all f € C(B,A). Two functors F, G : Ab — Ab yield the Ab
-bimodule

Hom(F,G) : A" x Ab — Ab

which carries (A, B) to the group of homomorphisms Hom(FA,GB). If F is
the identity functor we write Hom(—,G). Similarly we define the Ab -bimodule
Ezt(F,G).

For a group G and a G-module A the corresponding natural system D on the
group G, considered as a category, is given by D, = A for g € G and g.a = g-a for
a € A, g*a = a. If we restrict the following notion of a “linear extension” to the
case ¢ = G and D = A we obtain the notion of a group extension above.

(1.2) Definition. Let D be a natural system on C. We say that

pLELC
is a linear extension of the category C by D if (a), (b) and (c) hold.
(a) E and C have the same objects and p is a full functor which is the identity
on objects.
(b) For each f : A — B in C the abelian group Dy acts transitively and
effectively on the subset p~!(f) of morphisms in E. We write fo+ « for the

action of @ € Dy on fo € p~(f).
(c) The action satisfies the linear distributivity law:

(fo +a)(go + B) = fogo + fuf + g"a.

Two linear extensions £ and E are equivalent if there is an isomorphism of cate-
gories € : E = E' with p'e = p and with e(fo+a) = e(fo) + a for fo € Mor(E), a €
Dyy,. The extension E is split if there is a functor s : C — E with ps = 1. Let
M(C, D) be the set of equivalence classes of linear exte*_nsiongof C by D. Then
there is a canonical bijection -

(1.3) ¥:M(C,D) = H*(C, D)

which maps the split extension to the zero element, see [2] and IV §6 in [4]. Here
H™(C,D) denotes the cohomology of €' with coeﬁicwnts in D which is defined
below. We obtain a representing cocycle A, of the cohomology class {E} =¥(E) €
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H?*(C, D) as follows. Let t be a “splitting” function for p which associates with
each morphism f : A = B in C a morphism fo = ¢(f) in E with pfo = f. Then ¢
yields a cocycle A; by the formula

(1.4) t(gf) = Ht(f) + Adg, f)

with A(g, f) € D(gf). The cohomology class {E} = {A.} is trivial if and only if
E is a split extension.

(1.5) Definition. Let  be a small category and let N,(C) be the set of sequences
(A1y... ,An) of n composable morphisms in ' (which are the n-simplices of the
nerve of C). For n = 0 let No(C) = Ob(C) be the set of objects in C. The cochain

group F™ = F*(C, D) is the abelian group of all functions

(1) C:Nn(g)—)( U D9)=D

g€Mor(L)

with ¢(A1,... ,An) € Dijo...0a,. Addition in F" is given by adding pointwise in the
abelian groups Dy. The coboundary @ : F*~' — F" is defined by the formula

By s hn) = (A)ecOhzy - 5 An)
(2) +Z(—1)ic(’\l"” ’Af/\i-{'—l,"- a’\n)
=1

+(=1)"(An)e(M,y- - s Ano1)

For n = 1 we have (9c)(A) = Auc(A) — A*¢(B) for A : A — B € N;(C). One can
check that dc € F" for ¢ € F*! and that 89 = 0. Hence the cohomology groups

(3) H*(C,D) = H"(F*(C, D),9)

are defined, n > 0. These groups are discussed in [2] and [4]. By change of
the universe cohomology groups H"(C, D) can also be defined if C' is not a small
category. A functor ¢ : g’ — C induces the homomorphism

(4) ¢ H"(C, D)= H*(C',¢"D)

where ¢*D is the natural system given by (¢*D)s = Dy(s). On cochains the map
@* is given by the formula

(@ )AL, - A) = f(dA1,. ., 8A0)
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where (X,...,A,) € No(C'). If ¢ is an equivalence of categories then ¢* is an
isomorphism. A natural transformation 7 : D — D’ between natural systems
induces a homomorphism

5) r.: H'(C, D) = H(C, D')
by (e f)( A1y s An) =72 f (A1, ..., An) where 7 : Dy = D) with A=) 0...0),
is given by the transformation 7. Now let

D”L’D:»D’

be a short exact sequence of natural systems on C. Then we obtain as usual the
natural long exact sequence

(16) — H™(C,D') s H"(C,D) = H"(C,D") 25 H"(C, D) —

where 3 is the Bockstein homomorphism. For a cocycle ¢” representing a class {c"}
in H*(C, D") we obtain #{c"} by choosing a cochain ¢ as in (1.5) (1) with ¢ = ¢".
This is possible since 7 is surjective. Then :~!éc is a cocycle which represents

ﬂ{cll}‘

(1.7) Remark. The cohomology (1.5) generalizes the cohomology of a group. In
fact, let G be a group and let G be the corresponding category with a single object
and with morphisms given by the elements in G. A G-module A yields a natural
system D. Then the classical definition of the cohomology H"*(G, A) coincides with
the definition of

H™(G,D) = H"(G, A)

given by (1.5). Further results and applications of the cohomology of categories
can be found in [2], 3], 4], [5], [13], [14.

§2 The homotopy category gz of Moore spaces in degree 2

Let A be an abelian group. A Moore space M(A,n), n > 2, is a simply con-
nected CW-space X with (reduced) homology groups H,X = A and H;X =0 for
1 # n. An Eilenberg-Mac Lane space K(A4,n) is a CW-space Y with homotopy
groups m,Y = A and m;Y = 0 for ¢ # n. Such spaces exist and their homotopy
type is well defined by (A4,n). The homotopy category of Eilenberg-Mac Lane
spaces K(A,n), A € Ab, is isomorphic via the functor 7, to the category Ab of
abelian groups. The corresponding result, however, does not hold for the homo-
topy category M™ of Moore spaces M(A4,n), A € Ab. This creates the problem
to find a suitable algebraic model of the category M"™. For n > 3 such a model

category of M" is known (see (V.32.8) in [4] and (1.§6) in [6]). The category M*
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is not completely understood. We shall use the cohomology of the category Ab to
describe various properties of the category M 2,

Let T': Ab — Ab be J.H.C. Whitehead’s quadratic functor [15] with

(2.1) ['(A) = m3M(A,2) = HyK(A,2)
Then we obtain the g -bimodule

Ext(—,T) : Ab°? x Ab — Ab
which carries (A, B) to the group Ext(A,T'(B)).
(2.2) Proposition. The category M? is part of a non split linear extension
Eat(—,T) 5 M? 55 4b
and hence M % up to equivalence, is characterized by a cohomology class
{M?*} € H*(Ab, Ext(—,T)).
Since the extension is non split we have {gz} # 0.

Proof. For a free abelian group Ao with basis Z let
My, =\ 8
Z

be a one point union of 1-dimensional spheres S such that Hy M4, = Ag. For an
abelian group A we choose a short exact sequence

0— Ay 3 Ap 4+ A0
where Ag, A; are free abelian. Let
dh . .E"WA1 — MAo

be a map which induces d4 in homology and let M4 be the mapping cone of d';.
Then

M(A4,2) =S My

is the suspersion of M4. The homotopy type of M4, however, depends on the
choice of d’, and is not determined by A. Using the cofiber sequence for d; we
obtain the well known exact sequence of groups [11]

0= Ezt(A,mX) 3 [M(4,2),X] - Hom(4,7X) =0

where [Y, X| denotes the set of homotopy classes of pointed maps ¥ — X. We now
set X = M(B,2). Then u is given by the homology functor. We define the action
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of « € Ext(A,I'B) on € € [M(A,2),M(B,2)] by £+« = £+ A(a) where we use the
group structure in [L M4, M(B,2)]. This action satisfies the linear distributivity
law so that we obtain the linear extension in (2.2). Compare also (V.§3a) in [4]

where we show {gg} # 0.

(2.3) Remark. A Pontrjagin map 74 for an abelian group A is a map

T4 K(A,2) = K(I'(A),4)
which induces the identity of I'( A),
T(A) = HyK(A,2) — HK(T(A),4) = T(A)

Such Pontrjagin maps exist and are well defined up to homotopy. The map 74
induces the Pontrjagin square which is the cohomology operation {15]

H2(X, A) = [X, K(4,2)) ™% [X, K(T(4),2)] = H*(X,T(4))

The fiber of 74 is the 3-type of M(A,2). Therefore one gets isomorphisms of
categories [9]

M?* = P(X) = Hopair(X)

where X is the class of all Pontrjagin maps 74, A € Ab. Here P(X’) is the homotopy
category of fibers P(74), 74 € X, and Hopair(X) is the category of homotopy pairs
[10] between Pontrjagin maps. We have seen in [9] that via these isomorphisms
the class {M”} is the image of the universal Toda bracket (K)o € H*(K, Dq)
where K is the full subcategory of the homotopy category consisting of K(A4,2)

and K(I'(A),4), A € Ab. Hence we get by (2.2):
(2.4) Corollary. {(K)a #0

§3 On the cohomology class {£2}
The quadratic functor I' can also be defined by the universal quadratic map

v : A = T'(A). We have the natural exact sequence in Ab
(3.1) T(4) L 404 -1 A4 50
where H is defined by Hy(a) =a®a, a € A € Ab, and where ANMA=AQA/{a®

a ~ 0} is the exterior square with quotient map q. We also need the natural
homomorphism

(3.2) (1,1]=P: A® A - T'(4)
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with P(a ® b) = v(a + b) — v(a) — v(b) = [a,b]. One readily checks that PH is
multiplication by 2 on I'(A4) and that HP(a @ b) =a®b+b® a. For A € Ab we
obtain by P and H and ¢ above the following natural short exact sequences of Z /2
-vector spaces

2 )i °
(3.3) {SI(A):A(A)®Z/2 T(A)RZ/2» ARQZ/2

S2(A) i T(A) ®Z/2 5 @A) ®Z/2 5 AX(A) ® Z/2

Here o carries y(a)®1 to a®1, a € A. If we apply the functor Hom(—,['(B)®Z/2)
to the exact sequence S;(A), ¢ = 1,2, we get the corresponding exact sequence of
Ab -bimodules denoted by Hom(Si(—),I'(-=) @ Z/2). The associated Bockstein
homomorphisms f; yield thus homomorphisms

H(Ab, Hom(T'(-) ® Z/2,T(-) @ Z/2))
} B2
(3.4) H'(Ab,Hom(A*(~)® Z/2,T(-) ® Z/2))
1 B
H?(Ab, Hom(— ® Z/2,T(-) ® Z/2))

Moreover we use the natural homomorphism

x: Hom(A® Z/2,T(B) @ Z/2) £ Ezt(A ® Z/2,TB) 2 Ext(A,TB)

where ¢ is the natural isomorphism and where p: A = A ® Z/2 is the projection.
Let

Ir € HO(4b, Hom(I(-) ® Z/2,T(-) © £/2))

be the canonical class which carries the abelian group A to the identity of I'(A) @
Z /2. Then one gets the element

X«B1P2(1r) € H?(Ab, Ext(—,T))
determined by 1r and the homomorphisms above.

(3.5) Conjecture.

{M*} = x+ 51 (1r)

We shall prove various results which support this conjecture.



(3.6) Theorem. Let A be the full subcategory of Ab consisting of direct sums of
cyclic groups and let 1 ia A — Ab be the inclusion functor. Then we have

Ié{gz} = i*éXt/BlﬁZ(lT) € Hz(é,EfEt(—,P))

Proof. We write C = (Z/a)a if C is a cyclic group isomorphic to Z /a with generator
a, a > 0. A direct sum of cyclic groups

A= @(z Jas)a

is indexed by an ordered set if the set of generators {a;, <} is a well ordered set.
The generator ¢; also denotes the inclusion a; : Z/a; C A and the corresponding
inclusion

(3.7) @i : BPa; C\/ TPy, = M(4,2)

Here P, = 5! U, €? is the pseudo projective plane for n > 0 and Py = S! so that
EP, = M(Z/n,2). Let o' : A — Z/a; be the canonical retraction of «; with
aa,—landaJa.—Oforjaéz Let

(3.8) 0 A= @(z Jai)a; = B = @(Z/bj)ﬁ,-

be a homomorphism. The coordinates ¢j; € Z, pji : Z/a; = Z [b;, 1 — pji1, are
given by the formula

pa; = Z B; eji-
Let B be the splitting function
[SP,, ZP,] BI—" Hom(Z [n,Z/m)
2

obtained in (III, Appendix D) of [5]. We define the map sp € [M(A4,2), M(B,2)]
by the ordered sum

(sp)a; = ZﬁJBZ 50.?!

where we use the ordering < of the generators in B. Hence we obtain a splitting function

(3.9) (M(4,2), M(B,2)] & Hom(A, B)



with Hy3(¢) = ¢. Each element ¢ € [M(A,2),M(B,2)] is of the form ¢ =
s(p) + € where £ € Ezt(A,I'B). This way we can characterize all elements in
[M(A,2), M(B,2)] provided A and B are ordered direct sums of cyclic groups. We
use s in (3.9) for the definition of the cocycle A, representing i*{gﬁ in (3.6), that
is by (1.4):

s(p) = s(¥)s(p) + As(h, )

Below we compute A,. To this end we have to introduce the following groups.

q.e.d.
(8.10) Definition. Let A be an abelian group. We have the natural homomorphism

between Z /2 -vector spaces
(1) H TARZ/I2=T(ARZ/2)QZ/2— @*(ARQZ/2)

with H(y(a) ® 1) = (¢ ® 1) ® (a @ 1). This homomorphism is injective and hence
admits a retraction homomorphism :

(2) r:®(A®Z/2) - T(A)QZ/2
with rH = id. For example, given a basis E of the Z/2 -vector space A ® Z/2

and a well ordering < on E we can define a retraction < on basis elements by the

formula (b, b’ € E)

7(b)® 1 for b=V
(3) r<beb)=<{ bl for b>V
0 for b< b

Now let ¢ > 1 and let

(4) jaiHom(Z/q,A)=A+Z/qCAD AQZ/2
be given by the projection p with p(z) = z @ 1. Also let

(5)
pa:T(A)®Z/2 5 T(A)®Z/2®Z/q= Ext(Z/2®Z/q,(A)) X Ext(Z/q,T(A))

be defined by the indicated projections p. Then we obtain the homomorphism

) { Aa:Hom(Z/q,A)® Hom(Z/q, A) — Ext(Z/q,TA)

Aa=par(ja®Ja)

10



which depends on the choice of the retraction r in (2). Clearly A4 is not natural
in A since r cannot be chosen to be natural. However one can easily check that A 4
is natural for homomorphisms ¢ : Z/q — Z/t between cyclic groups that is

(7) Aalp* ® ") = p*Aa.

We now define a group

(8) G(q,A) = Hom(Z /q, A) x Ext(Z/q,T(A))

where the group law on the right hand side is given by the cocycle A 4, that is

(9) (a,b) + (a, b)) =(a+d,b+b +Asle®d)).

For any abelian group A there is by (XII.1.6) [6] an isomorphism

(311) p- G(QaA) = [EPQ’M(Aa2)]

which is natural in Z/q, ¢ > 1, and which is compatible with A and p in the proof
of (2.2). If A is a direct sum of cyclic groups as above we obtain maps

& : TP, — M(A,2)

by @ = p(ai,0) where «; € Hom(Z /a;, A) is the inclusion. These maps yield the
homotopy equivalence

\/ P, ~ M(A,2)
i
which we use as in identification. Hence we may assume that p in (3.11) satisfies

*) plas0) = a

where a; is the inclusion in (3.7). We need the following function 7 4, defined for
an ordered direct sum A of cyclic groups,

(3.12) Ta: Hom(Z]q, A) = Ext(Z/q,TA)
VA (:C) = ZAA(O&,E,' & ij:t:j).
t<j

Here z; € Hom(Z/q,Z/a;) is the coordinate of z = 3, aix;. We observe that
V4 = 0 is trivial if we define A4 by r< in (3.10) where the ordered basis E in
A®7Z/2is given by the ordered set of generators in A. Clearly 2/ 4 (z) = 0 since
2A 4 = 0. The function 57 4 has the following crucial property:
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(3.13) Lemma. In the group G(q, A) we have the formula

<

Z mf(a,-,O) = (:L‘, Va(z))
where the left hand side is the ordered sum of the elements ¢} (;,0) = (eiz;,0) in
the group G(q, A).

The lemma is an immediate consequence of the group law (3.10) (9).

For ¢ € Hom(A, B) in (3.8) and ¢ > 1 we define the function

(3.14) V(p): Hom(Z/q,A) = Ext(Z/q,T'(B))

via the commutative diagram

m2(Z /g, M(4,2)) SCLIN (2 /g, M(B, 2))
[ I
G(q, A) (eoh, G(q, B)
[ I
Hom(Z/q,A) x Ext(Z/q,TA) Hom(Z/q,B) x Ext(Z/q,T'B)

where the isomorphisms are given as in (3.11). The homomorphism (s¢)y, induced
by s in (3.9), determines /() by the formula

(sp)i(z, @) = (paz, T(9)s + V(0)(2))

for z € Hom(Z/q,A) and a € Ezt(Z/q,I'A). The function 7(¢) is not a homo-
morphism.

(3.15) Lemma. For z € Hom(Z/q, A) we have

V(p)(z) =T(¢)s Va(z) + Z VB(paizi)

+ Z Ap(paiz; ® paTy)
i<t
Since all summands are 2-torsion we have 7(p) = 0 if ¢ is odd.
Proof. For (a;,0) € G(a;, A) one has the formula

<

(s0)s (i, 0) =) (Bie5i, 0)

)
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as follows from property (3.11) (*) of the isomorphism x. Hence we get by (3.13)
the following equations

(s¢)4(=,0) + (0, T(¢)s Va4 (2)) = (s¢)i(z, v alz))

<
= (s@)(}_ i (00,0)

z; (sp)(ei, 0)

<

(> (Bjgsiz:,0))

J

A -M/\ —-MA

= Z(goa,‘.’ci, v B(paizi))

Here we have in G(q, B) the equation

<
Z(‘Paﬂ'h 0) = (ez, Z Ap(pa;z; @ payzy))

: i<t
This yields the result in (3.15).

q.e.d.
We now describe cocycle ¢ in the class 8;8,(1r). For this let A, B, C be ordered
direct sums of cyclic groups and consider homomorphisms

(3.16) po: A5 B0
Let 74 = r< be the retraction of H in (3.10) (3)

H
T(A)RZ/22 R*(A)QZ/2  (see S2(A) in (3.3))

A

Moreover let s4 be a splitting of o
TNA)®Z/22 AQZ/2  (see Si(A)in (3.3))
a4

defined by

)

SA(Z Tio; @ 1) = Z:{:;"y(a,‘) ®1.

Here the «; are the generators of A as in (3.7). We now obtain derivations D;, D,
by setting
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Dy(¥)qg = —thurp +¢'rc,
P Di(p) = —pusa + ¢ sp.

For this we use the exact sequences Si(A) in (3.3). We define a 2-cocycle § which
carries (¥, ¢) to the composition

§(b,0): A0Z/22% A3 B0 z/2 Y r(C) 0 Z/2
and we observe

(3.17) Lemma.

PrB2(1r) = {6}

where 31, 82 are the Bockstein homomorphisms in (3.4). We leave the proof of the
lemma as an exercise. The lemma yields a cocycle representing the right hand side

in (3.6).

Next we determine the cocycle &, in (3.9). For this we use the injection
g: Exzt(A,TC) C >><]Hom(Hom(Z/q,A), Ezt(Z/q,TC))
q
The element gA,(1,¢) is given by the Z/q -natural homomorphism

(9Ds(,9))g : Hom(Z/q, A) = Ext(Z/q,TC)

which satisfies

(G8:(¥,9))e(z) =T(¥)s ¥ (¢)() + V(&) pz) — V(dp)(2)

This equation is an easy consequence of (3.14). As in the remark following (3.12)
we may assume that Y4 = VB = Y¢ = 0 are trivial. Moreover we may assume
that g is even since (gA,(v,¢))q is trivial if ¢ is odd. We define a function

pa:A®Z/2— A(AR®Z/2)
pA(Z zia; ®1) = Z(.’ciai @ 1) A(zra; @ 1)

i<t
(8.18) Lemma.

V(#)(@) = Xq D2(¢)pa(c @ Z/2)
Here we have z € Hom(Z /¢, A) and

c®Z/2€ Hom(Z/q® L2, AQZL/2) = AR ZL/2

since q is even. Moreover y, in lemma (3.18) is the composition
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Xq:T(B)®Z/2= Ezt(Z/2,TB) — Ezt(Z/q,T'B)

induced by Z/q — Z/qQ®7Z/2 = Z /2. Lemma (3.18) is a consequence of the formula
in (3.15) and the definition of r4 = r< in (3.10) (3). We apply Lemma (3.18) to
the formula for (¢9A,(3,¢))q above and we get for & = ¢ ® Z/2

(8.19) Lemma.

(9A:(¥,9))e(2) = XgD2(¥)(pB(9T) — Pupa(Z))

This follows easily from (3.18) since D, is a derivation. Finally we observe:

(3.20) Lemma.

pB($Z) — :pa(Z) = Di(p)(Z)

The proof of lemma (3.20) requires a lengthy computation with the definitions of
pB,pa and Dy(p). By (3.19) and (3.20) we thus get

(3.21) (984(%,#))g(2) = xq D2 () D1 (9)(2)

and this yields the formula in (3.6). In fact (3.21) yields an easy algebraic de-
scription of the cocycle A, in terms of the derivation [y and D, above since g is
injective.

q.e.d.

§4 On the cohomology class {nil} and James-Hopf invariants on gz

In this section we prove a further formula for the class {g 2} which, however,
does not determine {M %} completely.

For the exterior square A?(B) of an abelian group B we have the exact sequence
(3.1) which induces the exact sequence

Ext(A,TB) % Ext(4,®2B) = Ext(4,A’B) - 0

and hence we have the binatural short exact sequence

(4.1) H.Ext(A,TB) »+ Ext(A,*B) 5 Ext(A,A?B)

together with the surjective map

H': Ezt(A,TB) -» H,Ect(A,TB)

induced by H,. The short exact sequence induces the Bockstein homomorphism

ﬂ : H](&aExt(_aAz)) — HZ(A=b$H*E$t(_:F))

15



(4.2) Theorem. The algebraic class {nil} € H'(Ab, Ext(—,A?)) defined below

and the class {M 2} of the homotopy category of Moore spaces in degree 2 satisfy
the formula

Hi{ﬁz} = B{nil} € HQ(Qa H.Ext(-,T))

This result is true in the cohomology of Ab. For the algebraic definition of the
class {nil} we need the following linear extension nil.

(4.8) Definition. Let (Z) be the free group generated by the set Z and let I',,{Z)
be the subgroup generated by n-fold commutators. Then

Z)T2(Z) = @ Z (1)
is the free abelian group generated by Z and

Ea=(2)[Ts(2) (2)

is the free nil(2)-group generated by Z. We have the classical central extension of
groups

A?AS By A (3)
The map w is induced by the commutator map with

w(gz Aqy) =z 'y ay. (4)

Here the right hand side denotes the commutator in the group E4. Using (3) we
get the linear extension of categories (compare also (3], [5])

Hom(—,A%-) 3 nil & ab. (5)

Here ab and nil are the full subcategories of the category of groups consisting of
free abelian groups and free nil(2) -groups respectively. The functor ab in (3) is
abelianization and the action + is given by

f+a=f+waq (6)

for f : Ea4 — Ep, o € Hom(A,A?B). The right hand side of (6) is a well defined
homomorphism since (3) is central.

(4.4)Definition. We define a derivation

nil : Ab — Ext(—, A%

which carries a homomorphism ¢ : A — B in Ab to an element nil(p) € Ext(A, A’B).
The cohomology class {nil} represented by the derivation nil is the class used in
(4.2). For the definition of nil we choose for each abelian group A a short exact
sequence
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05 AT 2% A4 -5 A= 0

where Ag, A; are free abehan groups. We also choose a homomorphism

JA : EA1 —¥ EAO

between free nil(2) -groups such that the abelianization of d4 is d4. For the
homomorphism ¢ : A — B we choose a commutative diagram in Ab

da

Ay y Ag —— A
wl lvo l”’
B %, B, —> B

and we choose a diagram of homomorphisms

d
EA; -—-—-i—> EAO

al e

dp
EB1 ? EBO

which by abelianization induces (o,¢1). This diagram, in general, cannot be

chosen to be commutative. Since, however, pod 4 = dgyp; there is a unique element
o € Hom(A,,A*By) with @oda +a =dp@.

Here we use the action in (4.3) (6). Now let

nil(p) € Ext(A,A’B) = Hom(A,,A*B)/d% Hom( Ao, A’B)

be the element represented by the composition

(A%q)a: A) ~ A’By — A’B

One can check that nil(y) does not depend on the choice of (¢o, 1) and (@o, 1)
respectively and that nil is a derivation, that is nil(py) = p.nil(P) + ¥ nil(p).
This completes the definition of the cohomology class {nil}.

Next we use the derivation Dy on Ab defined as in (3.16). The derivation D,
carries p : A = B to
Di(¢) € Hom(A®Z/2,A¥(B) @ Z/2) = Ext(A ® Z/2, A%B)

and hence represents a cohomology class

{D1} € H'(Ab, Ext(— ® Z/2,AY)).

Let
po: Ext(AQ® Z/Z,AzB) — E:r:t(A,AzB)

be induced by the projection A -» A® Z/2.
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(4.5) Proposition. Let A be the full subcategory of Ab consisting of direct sums
of cyclic groups. Then we have

i3(p2)+{D1} = if {mil}

in H'(A, Ezt(—, A?)).

We do not know whether this formula also holds if we omit i};. Proposition (4.5)

implies that the formulas in (4.2) and (3.6) are compatible. For the proof of (4.5)
we need the following properties of nil(2) -groups. A group G is a nil(2)-group
if all triple commutators vanish in G. The commutators in G yield the central
homomorphism

(4.6) w: AY(G™) = G

where G — G°®*, z — {z}, is the abelianization of G. We define w by the com-
mutator

w({z} A{g}) =27y ey

for z,y € G. Let M be a set and let f : M — G be a function such that only
finitely many elements f(m), m € M, are non trivial and let <, << be two total
orderings on the set M. Then we have in & the formula

<< <
Sofm)y= Y fm)+w | YO {fm}a{fm}
meM meM m<<m'

m'<m

Forae€ Gandn € Z let na = a+...+ a be the n-fold sum in G in case n > 0, and

let na = —|nja for n < 0. Then one gets in G the formula
< < "
n Y fm)= 3 nflm) - w ((2) S {fm) /\{fm'})
meM meM m<m'

where (;) =n(n—1)/2.
Proof of (4.5). Let A and B be direct sums of cyclic groups and let ¢ : A —+ B
be given by @i € Z as in (3.8). Let Ay be the free group generated by the set of

generators {c;} of A and let A; be the free group generated by the {a;, a; # 0}.
Then we choose, see (4.4),

CTA :EAI — EAD
da(a;) = ;e

Similarly we define dg. Moreover we define ¢; and @ by the ordered sum
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<
Z WJlﬁJ € EBO
J

<

Z t‘PJ:/b ﬁj EEBl

i

Hence we get « in (4.4) by the formula, see (4.6),

< <
dp@r1{a;) — @odala:) = Z aip;if; — a; Z ©;il;

i
=w (az) > {e5iBi} AMpubi)
i<t
Hence nil(yp) € Ext(A,A%B) is given by the formula (a; : Z/a; C A as in (3.7))
@amitte) = (5 ) X pseats 06510
j

where 1 @ 8; A B: € Z/a; ® A’B = Ext(Z/a;, A’B). Using the definition of Dy in
the proof of (3.16) it is easy to check that (o;)*p2D1(y) coincides with the right
hand side of the formula so that we actually have

nil(¢) = p2 D1 ().
This proves the proposition in (4.5).

q.e.d.
We will need the following element which projects to nil(¢) above.

(4.7) Definition. For ¢ in the proof above let

nil(¢) € Ext(A,®*B)
be given by the formula
()" ntl() = (azi) Z ;i1 ® B; @ Br)
i<t
We clearly have Ext(A,p)nil(p) = nil(p) where p: B —» A?B is the projection.

Recall that we have for the bifunctor Ezt(—, ®?) on Ab the canonical split linear
extension

Egxt(—,®%) — Abx Ezt(—,®%) —» Ab
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Objects in Ab x Ezt(—,®?%) are abelian groups and morphisms (p, ) : A — B are
given by ¢ € Hom(A, B) and a € Ezt(A4,®*B) with composition (¢, a)(¢,8) =
(¥, 0 + ¥*a). The derivation nil in (4.4) defines a subcategory

(4.8) Ab(nil) C Ab x Ext(—,®%)

consisting of all morphisms (¢, @) : A — B which satisfy the condition

p«(@) = nil(p) € Ext(A,A’B).
Here p: @B —» A’B induces p, = Ext(A,p). The exact sequence (4.1) shows that
we have a commutative diagram of linear extensions of categories
H,Ezt(—,T') —X Ab(nil) —— Ab
N N I
Egt(—,®%) —F— Abx Eat(—,8%) — Ab

(4.9) Lemma. The cohomology class represented by the linear extension for Ab(nil)
satisfies

{Ab(nil)} = B{nil} € H*(Ab, H,Ext(—,T))
where 3 is the Bockstein operator in (4.2).

Proof. Let s : Ext(A,A?B) — Ext(A, ®*B) be a set theoretic splitting of Ext(A,p) =
p«. Then B{nil} is represented by the 2-cocycle ¢ = i~1§(snil) where i is the inclu-
sion in (4.1) and where 4 is the coboundary in (1.5). Hence ¢ carries the 2-simplex

(¥, ) in Ab to

e, 0) = i (Whus nil(p) — snil(shp) + p*snil())

On the other hand we define a set theoretic section t for the linear extension Q(nil)
by t() = (p, snil(p)). Then A, in (1.4) is given by

smil(p) = s nil(p) + s nil() +iAd(3h, )

Hence ¢ = —A, yields the proposition. In fact, since the elements in (4.9) are of
order 2 we can omit the sign.

g.e.d.
For Moore spaces M(A,2) = EM,4 and M(B,2) = £EMp as in (2.2) we have the
James-Hopf invariant [12], [7],

(4.10) [EM4, SMp] 2 [EM4, EMp A Mp) = Ezt(A, B ® B)
which satisfies for o € Ezt(A,T'B) the formula
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(1) Ma(E+ @) = Ao(€) + Huce

Hence 4, induces a well defined function

(2) ¥, : Hom(A, B) — Ext(A,A’B)

defined by F2(¢) = qu«v2(€) where € induces H2({) = ¢ : A = B. One can check
that ; is a derivation which represents a cohomology class in H'(Ab, Ext(~, A2B)).
This cohomology class does not depend on the choice of M4, Mp above.

(4.11) Theorem. The cohomology class {7,} given by the James-Hopf invariant
~9 coincides with

{32} = {nil} € H'(Ab, Ext(—,A?))

Moreover there is a full functor ,

M 5 Ab(nil) C Ab x Ext(—,®?%)
which is the identity on objects and which is defined on morphisms by

T(f) = (H2£, 726)

The functor T is part of the following commutative diagram of linear extensions

Eszt(-,T) —— M* 2, 4

vl L

H.Ezt(—,T) —— Ab(nil) —— Ab

Proof of (4.2). The existence of the functor = shows that H,{M*} = {Ab(nil)}.
Therefore we obtain (4.2) by (4.9).

q.e.d.

(4.12) Remark. We can give an alternative description of the functor 7 in (4.11) by
use of the singular chain complex of a loop space which yields the Adams-Hilton functor

C.Qd: Ho(Top®*) —» Ho(DA)

between homotopy categories (compare [1] and also [4]). The functor C,$ restriced

to M % leads to the following diagram where lﬂ:l__ ‘cH o(2A) is the full subcategory
consisting of C.QM(A,2), A € Ab,

&)

C,5

M*  —— M CHo(DA)
‘rl i1~
Ab(nil) —— AbxEzt(—,®?%)
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where 7 is an equivalence of categories such that ji7 is naturally isomorphic to C,Q.

Proof of (4.11). The image category of the functor

T ﬁz — Ab x Ext(—,®?)

is Ab(nil) since we show

(1) Ny = nil

for compatible choices of da, d/; in (4.4) and (2.2). We use the equivalence of
linear track extension described in (V1.4.7) of Baues [5]. This shows that a triple
(o, ?1,G) with G € Hom(A;,®*By) satisfying p,G = « (see (4.4)) corresponds
to a diagram

SMa, 2, S M.,

(2) Evil <, lE o

EMBl —_— EMBO
Ldy

Here d’;, and d3 induce d4 and dp respectively and ), ¢} induces @g, ¢; in
(4.4). The track G’ is determined by G. This track determines a principal map
@ € [EM4, ZMp] such that 7(@) = (¢, (®%¢)+{G}) where {G} € Ezt(A,Q*B)) is
represented by G. This follows from the bijection (6) ... (11) in (VI1.4.7) Baues [3].
Since p,G = a we get 2 = nil. q.e.d.

(4.18) Ezample. Let A and B be direct sums of cyclic groups as in (3.8) and let
sp € [M(A,2), M(B,2)] be defined as in (3.9). Then the functor 7 in (4.11) satisfies
7(sp) = (g, nil (¢))

where 71l () is defined in (4.7). We obtain this formula by the methods in the
proof of (4.11) above. In this case we also can compute the James-Hopf invariant
~2(8¢) which actually is y2(sp) = nil(yp).

As a corollary of (4.2) we get:
(4.14) Proposition. {gz} is a {non trivial) element of order 2.
Proof. We know that multiplication by 2 on I'( 4) is the composition

2=PH:TA—- ®A—-TA
where P = [1,1]. Hence also the composition
Est(A,TB) — H.Est(A,TB) —2— Est(A,T'B)
I N I
Ezt(A,TB) — Ezt(A,®*B) —— Ext(A4,T'B)
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is a multiplication by 2. Therefore we get by (4.2):

2{M’} = (P'H').{M"}
= P, H {M"}
= P] 3 {nil}

Here the commutative diagram of short exact sequences

0 — H,Ext(A,TB) —— Ext(A,@*B) —— Ezt(4,A’B) — 0

) | !
0 —— Ezt(A,TB) —— Ezt(A,TB) — 0 — 0
shows that P[# = 0.

g.e.d.

(4.15) Proposition. Each element in H'(4b, Ext(—, A?)) is of order 2, in particular,
2{nil} = 0.

Proof. Let A, B be abelian groups and let ¢ € Hom(A,B). Let 24 = 2id €
Hom(A, A) be multiplication by 2. Then we have

w024 =2¢p=2po0¢p.
Now the derivation property of N with {N} € H'(Ab, Ext(—,A?)) shows:

Hence we get

2N(p) = ¢« N(24) — " N(23)

so that 2N is an inner derivation.

§5 A subcategory of gz given by diagonal elements

Let Z/2 x A be the 2-torsion of the abelian group A. We here construct a
subcategory H of the category of Moore spaces M 2 with the following property.
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(5.1) Theorem. There exists a subcategory H of M ? together with a commutative
diagram of linear extensions

Z/2x Ext(—,T) —— H —— 4b
N n I
Ezt(—,T) —Io M? —— 4b
The theorem shows that the class {M*} is in the image
te : H*(Ab,Z /2 x Ext(—,T)) — H?(Ab, Ezt(—,T))
where 1 is the inclusion Z/2x Ezt(A,['(B)) C Ezt(A,[(B)).
(5.2) Corollary. The extension M* — Ab is split on any full subcategory of Ab

consisting of objects A, B with (Z/2)* Exzt(A,I'B) = 0.

(5.3) Corollary. Let A be any abelian group for which the 2-torsion of Ext(A,T'A)
is trivial. Then the group of homotopy equivalences of M(A,2) is given by the split
extension

Ext(A,TA) — €(M(4,2)) — Aut(A)
where ¢ € Aut(A) acts on a € Ext(A,TA) by ¢ -a = (Tp).(¢')*(a).
Proof of (5.1). For a Moore space M(A,2) = M, we have the diagonal element

(1) Ap €E[EMA,EMAANMsl=Ezt(A,AQ A)

which is given by the suspension of the reduced diagonal My — M4 A M4. Let
[1a,14] : ZMa A Mg - EM4 be the Whitehead product for the identity 14 of
YM4. Then

(2) 4, 1a]Aa=-1a—-1a4+1a+14=0

is the trivial commutator. This implies that also

(3) Ay € Ker{[1,1]. : Ezt(A,A® A) = Ezt(A,TA)}

with [1,1] in (3.2). We have the short exact sequences (see (3.3))

0 = Ext(A,T(A) ®Z/2) — Ect(A, @A) ®Z/2) —*— Ext(A,A*(A)QZ/2) >0

| 1

Ezt(A,T(A) ® Z/2)
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which shows by (3) that for the projection p : ®2A — (®?A)®Z /2 there is a unique
element Ay € Ezt(A,T'(A) @ Z/2) with
We now choose by the surjection

P« Ext(A,TA) = Ext(A,T(A) Q@ Z/2)
an element A’} € Ezt(A,TA) with

(5) PO = A

We call A’} a diagonal structure for A. For the definition of the subcategory H in

M % we choose such a diagonal structure for each abelian group A in Ab. We define
the set of morphisms in H with

(6) H(A,B) C[EM4,EMB)
by the composition (compare (4.10))

[SMa, SMp] 22 Eot(A, B @ B) 2% Ezt(A,TB),

and by diagonal structures A’}, A5, namely

(7 ¢ € H(A,B) & [1,1lim@ = —p. 04 + ¢ A%

We show that for ¢ € H(A, B) and ¢ € H(B,C) we actually have ¢¢ € H(A,C)
so that H is a well defined subcategory of M %, For this we need the fact that +, is
a derivation, namely

Y2 (PP) = ha72(®) + ©*12(&).

Hence we get:

(1, 1uy2(¥@) = [1, 1]+ (puv2(B) + " 72())
= (1, 1en(@) + ¢°[1, 1]s72(@)
= Pu(—p A% + 9" AR) + 97 (%A + P AL)
= —(Yp) A% + (Vo) Ac.

The crucial observation needed for the proof of theorem (5.1) is the following equa-
tion where we use the interchangemap T': B B - BB withT(z Qy) =y Qz=z,
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(8) (1 =T)um2(p) = psBDa — ¢ Ap

This equation follows from the corresponding known property of James-Hopf in-
variants (Appendix A [6]) with respect to ”cup products” which in our case has the
form

pUP=A0110+ (14 T2)1)7(@).

This equation is equivalent to (10). We now consider the following commutative
diagram.

Ezt(A,TB) = Ect(A,TB) = Eat(A,T'B)
|+ | = E

[SMa, SMp) ™, Ect(A,B® B) e Bai(4,TB)
[ | |

Hom(A, B) 2, Egzt(A,A2B) Al Bot(A,T(B) @ Z/2)

the columns are exact sequences. Here 2 is not a homomorphism; since however
(4.10) (1) holds we see that the induced function 7, is well defined. Moreover we
use [1,1]H = -2 so that [1,1], in the bottom row is well defined. We now claim
that (8) implies the formula

(9) [1,1].72(p) = —p. Ay + " A
This shows by the diagram above that for any ¢ € Hom(A, B) there is an element
@ which satisfies the condition in (7). Thus the functor H — Ab is full, moreover

the diagram above shows that H is part of a linear extension as described in the
theorem. In fact for ¢ € H(A, B) we have @ + o € H(A, B) if and only if 2a = 0.

It remains to prove (9). For this consider the commutative diagram

Ezt(A,B®B)  ——  Eut(A,T'B)
l Ect(A,B ® B) 7
Ezt(A,B A B) — Ezt(A,I'(B)Q Z/2)

Ezt(A,B® B® B)
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The square in this diagram coincides with the corresponding square in the diagram
above. Since fort @y € B@ B
HL1(z®y)=zQy+y®z=2Qy—y®z mod?2

we see that the diagram commutes. The homomorphism ¢ is induced by 1 — T'.
On the other hand H, in the diagram is injective. This shows by the following
equations that (9) holds.

H.[1,1]92(¢) = Hapu[1,1)x72
=pe(1=T)uvep
= pu(psAa — p*AB)
= ps(psAa) — " (p+AB)
= 0. (H.AY) = " (H. A)
= H.(p.0) — ¢*Ap).

This completes the proof of theorem (5.1). q.e.d.

Formula (9) in the proof of (5.1) above and (1) in the proof of (4.11) show

= —ps Ay +p* A

Hence the composition [1, 1], nil with

[1,1], : Ext(A,A*B) - Ext(A,TB Q Z/2)
is an inner derivation. This implies

(5.4) Proposition.

1,1 {nil} = 0
in H'(Ab, Ext(—,Z/2®T)).
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