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Consider the dass of real semilinear parabolic Neumann boundary value problems of the

form

{

u t (x, t) = &u(x, t) + s(t)g(u(x,t)), (x,t) EnxlR+ 1
Ran( u) (. (Uo'u1)

~ (x,t) = 0 (x,t) E 8fllC!R+

(1)

In (1), n denotes an open connected bounded subset of [RN with smooth boundary an
and N E [2,CD) n IN+ ,while !J. stands for Laplace's operator in the x-variable.

Furthermore, s: [R+ --+ [R is the restrietion to IR+ of a Bohr almost-periodic function

on IR which we shall also denote by 8, while g E ~(5)(1R,1R) possesses at least two zeroes

Uo and u1 such that g(u) > 0 for every u E (uO,u1) I with the property that

g' (uO) > 0 and g' (u1) < 0 . Finally, Ran(u) denotes the range of u and J! stands for

the normalized outer normal vector to lKl.

Problems of the form (1) occur in various fields of sciences, such as the theory of nerve

pulse propagation and population genetics ( [2] - [4]). It is then natural to ask whether

there are conditions on the function s such that~ classical solution (x,t) --+ u(x,t)

to Problem (1) which exists globally in time stabilizes around a stable attractor as

t -----+ CD . It is the purpose of this article to show that tbis is indeed possible. We shall refer

to the above properties of g as being the following hypothesis:

(G) We have g E ~(5)(IR,lR) and there exist uO,u1 E IR such ~hat g(uO) = g(u1) = 0 ,

g' (uo) > 0, g' (u1) < 0 and g(u) > 0 for every u E (uO,u1) .

Now let IRB be the Bohr compactification of the realline ( [7], [8], [9]). We shall

identify the real Bohr almost-periodic function B of Problem (1) with Hs uniformly
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continuous extension on IRB , na.mely s E ~(IRB,IR). We shall also write

t
J13(s) = 1 im Cl JdesW

f.-+CD ° (2)

for the time average of s . We shall moreover assume that the following two hypotheses

hold:

t

(SI) We have J'B(s):f: 0 and t ---;Jde;W = 0(1) aB It I ---; CD , where

°

(82) The restrietion of 8 to IR+ is Hölder continuous.

Finally, we proceed to give the definition of c1assical solution whichwe shall use

throughout this article. Let [N/2] be the integer part of N/2 ; in the remaining part of

this paper we shall assume that n has a ~5+ [N/2] -boundary in the sense of [1], in

such a way that n lies on only one aide of its boundary, and that it satisfies the interior

ball condition for every x E 80 [5]. We denote by ~2,1(nxlR+ ,IR) the set consisting of

all functions z E ~(nxlR+ ,IR) such that (x,t) --t OlDaz(x,t) E ~(nxlR+ ,IR) for all

N

. a = (al' ... ,aN) E IHN, i EIN, satisfying I lrj + 27 ~ 2 . In a similar way we define

j=l

ljf1,°(OxlR+ ,IR) . We then have the following

Definition 1. A function u E '62,1(OxlR+,IR) n ~(IlXIRÖ ,IR) n ~1,O(nxlR+,IR) ia said to be

a classical solution to Problem (1) if the following conditions hold:

(Cl) The partial derivative (x,t) --t ut(x,t) exists for every t E IR+ uniformly in

xE n.
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(C
2

) x ----t u(x,t) E ~(2)(n,lR) for every t e IR+ .

(C3) (x,t)----tut(x,t) E ff(n)(IR+,IR) and t--+ut(x,t) E ff(JR+,IR) uniformlyin

xE n.
(C4) u satisfies relations (1) identically.

The main result of trus article is then the following

Theorem 1. Consider Problem (1) where g satisfies hypothesis (G)j assume moreover that

s satisfies hypotheses (S1) and (S2)' Set run = g' (uO)JlB(s), r
U1

= g' (u1)J.'B(s) and let

u be any classical solution to Problem (1). Then· there exist €O E (0,00), t E (0,00) , and
€O

a positive constant Co such that tbe foUowing statements hold:

(1) If Jl.B(s) < 0 , then the exponential decay estimates

(3)

(4)

hold for every t E [t ,00).
€O

(2) If ~(s) > 0 , then a completely similar statement holds provided that we replace Uo
by u1 everywhere in relations (3) and (4).

Remarks. (1) The above theorem asserts that if JlB(s) < 0 , then Uo ia a global

exponential attractor for Problem (1): every classical solution to Problem (1) stabilizes
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around Uo exponentially rapidly, with a rate of decay depending solelyon g' (uO) and

JlB(s) , irrespective of the spectral propenies of Laplace's operator. We can thereby also

conclude that the global stabilization phenomenon described above is primarily governed

by the reaction process in equation (1). Of course, a similar remark holds if Jlß(s) > 0 .

(2) Dur reault immediately implies that Problem (1) has no time almost-periodic

classical solution. For if t --+ u(x,t) were such a solution, relation (3) would immediately

imply that· u(x,t) = Uo for every (x,t) En )( IR+ , a contradiction since Uo is not a

solution to Problem (1).

t

(3) If JlB(s) = 0 and if t --IJdes(e) = 0(1) as It I --Im , then it is possible

o
to show that both Uo and u1 become unstable, but that the classical solutions to

Problem (1) still stabilize around non constant almost-periodic attractors as t --+ m .

However, the proof of these facts requires the elaboration of a suitable stable - and center­

manifold theory, and is much more complex than that of the above theorem. We refer the

reader to [11] and [12] for details.

(4) The simplest equation of the form (1) is the so---called Fisher's equation of

population genetics, namely

{

Ut (x, t) = äu(x,t) + s(t)u(x,t)(l-u(x,t)), (x,t) EO)([R+ }

Ran(u)C (0,1)

~ (x,t) = 0 (x,t) E aoxlR+

(5)

Under the conditions of the above theorem, every classical solution to Problem (5)
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stabilizes exponentially rapidly toward Uo= 0 or u1 = 1 , depending on whether

Ji3(s) < 0 or J'B(s) > 0 . In the ronten oe population genetics, equation (5) models for

instance the fraction u of one of two alleles in the population of a migrating diploid

species located in n, when the so-called selection function stakes almost-periodic

seasonal variations into account. In tbis caBe, our result means that only one of the two

alleles will eventually survive in the population.

(5) Dur work coneerning Problem (1) was primarily inspired by the recent results of

[6]. In fact, the authors of [6] obtained resu1ts concerning the case where t ----+ s(x,t) is

periodie and may also depend on x E n.However, their method of proof seems to be

strictly limited to the periodie case and does not pravide the actual rates of decay.

The proof of the theorem rests upon the combination of a loeal geometrie argument with a

global one. We begin with the formulation of the IDeal result. For p E (N,m) , let

LP({) = LP(O,d:) be the usua! Lebesgue space with respect to Lebesgue's measure on 0 i

define

H]..P(IR) = {z EH2,P(IR) :~ (x) = 0, x E an} (6)

where H2,P(IR) = H2,P(O,IR) is the usual real Sobolev space of functions on O. We may

then assurne that H j.P(IR) becomes a commut~tive Banaeh algebra with respeet to the

usual operations and the norm

(7)

([1], [11]). In relation (7),!J. ..#' is the LP(()-realization of Laplace's operator whosep,
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domain is given by the complexification of (6), while n·llp denotes the usual LP-norm

and ~O E p(6. ..,y), the resolvent set of A ..,.r. Endowed with the norm (7), the abovep, p,

Banach algebra will henceforth be denoted by Bi'P .".{IR) . Dur local result is then the
0'

following proposition, which we also believe to be new.

Proposition 1. Let s and g satisfy all of the hypotheses of Theorem 1, and fix

p E (N,oo) . Then there exist E1 E (O,m), k1 E [l,m) and, for each E E (0,E 1] , an open

spherical neighborhood,A/ -1 of radius (2k1)-1 E centered at the origin of
(2k1) E

H~ ,P .".{IR) , such that the following statements hold for every toE IR :
0'

(1) If JlB(s) < 0 , and if we define St by St (t) = s(t+tO) for every t EIR , then for
o 0

each TI E r 1 = { TI E f 1: TI > 0 on n} ,there exists a classical
(2k1)- E (2k1)- E

solution (x,t) ---t u{xJt,1]) to the problem

[

U t (x, t) = ~u(x, t) + St
o
(t)g(u(x,t)), (x,t) E OxlR+ }

Ran(u) C (uO,u1)

~ (x,t) = 0 , (x,t) E aflxlR+

(8)

which satisfies u{xJO,f]) = f](x) + Uo for every xE". Moreover, the exponential decay

estimates

sup Iu{x,t,1J)-uOI ~ cl E exp [ru t]
xEn 0

sup IVu{x,t,fJ) I ~ cl E exp [ru t]
xE" 0

(9)

(10)
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hold for every t EIRt and for some positive constant cl .

(2) H I'ß(S) > 0 I a completely similar result holds, provided that we replace

r 1 by f 1 = {11 E .A' 1: 11 < 0 on n} and Uo by u1(2k
1
)- E (2k

1
)- E (2k

1
)- E

everywhere in Statement (1).

Remark. Proposition 1 is in fact a result which amounts to constructing an

infinite-dimensional stable manifold for Problem (8). For the sake of clarity, we postpone

its proof until the end of this paper.

For to= 0 , Proposition 1 provides particu1ar classical solutions of small nOrnlS to

Problem (1) which s&tisfy exponential decay estimates similar to relations (3) and (4). In

order to extend the validity of such estimates to all classical solutions of Problem (1), and

thereby obtain a proof of Theorem 1, we do need the arbitrariness of to in Proposition 1

(compare with the proof of Theorem 1 below), aB well as the following global stabilization

result.

Proposition 2. Let s and g satisfy all of the hypotheses of Theorem 1, and let

p E (N,tD) . Let u be 2nI classical solution to Problem (1) and define t ---+ u(t) by

u(t)(x) = u(x,t) for every (x,t) En>c!R+ . Then the following statements hold:

(1) If JlB(S) < 0 , we have

(2) ~ JlB(s) > 0 , we have

lim lIu(t) - uoll" 2 p = 0
t-+oo 0' ,

(11)
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I im 11 u(t) - u I I! ~ 2 P = 0
t~oo 0' t

(12)

•

Proof. The fact that u(t) E H~ ,p ~[R) follows from condition (C2) of Definition 1. The
0'

rest is a nearly verbatim adaptation of the proof of Theorem 3.1 of [10] .

Besides Proposition 1, the other main contribution of tbis article is to show that we can

prove Theorem 1 just by combining Propositions 1 and 2 in a suitable way. The main idea

of the argument is very simple: since we already know that u(t) --+ uo1 in H~ ,p ~lR)
, 0'

as t --+ 00 by Proposition 2, and since the sets /= 1 of Proposition 1 are in fact
(2k

1
)- f

smooth stable manifolds in H~ ,p ~[R), we just have to wait long enough until
0'

u(t) - uo1 hits the stable manifold /= -1 at sorne time t = t . Using the
, (2k

1
) f f

parabolic maximum principle, we then proceed to identify u(t) for t ~ t f with a small

norm-ßolution of Proposition 2. The precise argument ia given in the following

Proof oI Theorem 1. Let f 1 and ki be as in Proposition 1, and fix f OE (0,f1) . If

J.13(s) < 0 ,then u(t) ----+ uo in H~ ,p ~lR) as t ----+ m • Therefore, there exists
0'

t E (0,00) such that lIu(t) - uoll, 2 p < (2k1)-1 f O for every t E [t ,00). With this
f O "0' , f O

in mind, define 110 = u(t f

O
) - Uo j since u is a classical solution to Problem (1), we may

conclude that 110 E r -1 . 1t then follows from Proposition 1 with to= t f that
(2k1) f O 0

the boundary value problem
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[

U t (x, t) = L1u(x, t) + \'0(t)g(u(x,t)), (x,t) E (lxlR+ }

Ran(u) C (uO,u1)

~ (x, t) = 0 (x,t) E IKIxlR+

possessea a classical solution (x,t) --+ u(x,t, '10) which satisfies

for every x En.Moreover, the exponential decay estimates

(13)

(14)

sup Iu(x,t-t f
O

' '70) - UoI ~ cl fOexp [luD(HfO)l (15)

xE"

sup IVu(x,t-t ,110) I 5CI EOexp [r (t-t )] (16)
EO Uo EOxE"

hold for every t E [t ,(0). We now define (x,t) --+ w(x,t) = u(x,t-t ,110) for every
EO €O

(x,t) En)( [t € ,(0). It then follows from relations (13), (14) and the definition of St
o €O

that w satisfies the initial boundary value problem

,xEn

, (x, t) E an)((t ,(0)
€O

w. (x, t) = &w(x,t)+s(t)g(w(x,t)), (x,t) E O)«(t ,(0)
.. (0

Ran(w) ( (u O,u1)

w(x, t ) - u(x,t )
€O E 0

-ij (x,t) - 0

(17)
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along with the exponential decay estimates (15) and (16). In order to complete the proof of

Statement (1) of Theorem 1, it thus remaina to prove that w(x,t) = u(x,t) for every

(x,t) En x [t Eo'to) . We first notiee that Ran(u) t. (uO'U1) , Ran(w) t. (uO'u l ) ; moreover

I

s is uniformly bounded on IR and g is smooth. The conclusion then follows from the

third relation in (17) and the parabolic maximum principle. The proof of Statement (2) is

of course similar.

We eonclude tbis article in providing a

•

Proof of Proposition 1. If to= 0 , Proposition 1 ia nothing but Corollary 3.1 to Theorem

3.10f [11], which provides the existenee of a local stable manifold around the trivial

solution for initial value problems of the form

{

y' (t) = (& ps(t)g' (uOl))y(t)+s(t)~ (y(t)), t E IR+ }
, 0,1

y(O) = yo
(18)

in H~ ,p .JIR). In expression (18), we have defined; : H2 ,P .JIR) ---+ H2 ,p .J[R)
""0' .A'\ ~O 1 ..\0' .,.t'\ ~O' .A'\,

by

A

g (z) =go(uO1+z) - g' (uO1)z
Uo1 ' ,,

(19)

and, using the Banaeh algebra properties of H~ ,p ~IR) , we can easily verify thai the
""0'

hypothesis g E ~(5)(1R,1R) implies that g E ~(2)(H~ ,p (IR), H~ ,p .JIR)).
Uo1 ""0 f AO' .A'\, ,

Moreover, f!.A' stands for the H~ ,p.r realization of Laplace's operator on the domain
0'
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Dom(4 ) = {Z E H4 ,p() : A l-Z E H2 ,P .J()} (20)
f f p, .A' ~o' ,$\

where H~ ,p .)() and Hl-P(() are the complexifications of H~ ,P .)IR) and
0' 0'

H l-P(IR) , respectively. In order to prove Proposition 1, we therefore fix to EIR and

consider initial value problems of the form

{

y' (t)=(4 rSt (t)g' (uO1))y(t)+St (t)~ (y(t)), t E IR+ }
o ' 0 0,1 (21)

y(O)=yo

on H~'P .)IR) . Since s E ~(IRB,IR), and since St is just the translate of 8 , we have
0' 0

St E ~(IRB,IR) 'as weil and ~(St ) = JlB(S) . In addition, St also satisfies hy}X>theses
o 0 0

(81) and (82) since s does. The proof of Proposition 1 then becomes identical to that of

Theorem 3.1 of [11], if we can show that the basic estimates of exponential dichotomy

remain valid uniformly in tO' In order to see this let {W4 (t)} + be the restriction
..A" tEIR 0

to H~ ,P .)IR) of the diffusion semigroup generated by &f on H~'P .)() and, for
0' 0'

every toE IR , define the family of evolution operators {Uu t (t ,r)}t >r>0 by
0,1' 0 - -

It is easily verified that relation (22) with r = 0 provides the evolution operators which

solve the linear part of equation (21). Moreover, since J.'B(St ) = JlB(S) , we may write
o
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where --&? = St - J'B(s) . But since a aatisfies hypothesis (SI)' we have
o 0

(24)

uniformly in r, t and tO' Since {W4 (t)} + ia a contraction semigroup on
.A' tEIR 0

H~ ,p vr<[R) , we conclude that there exists a positive constant c2 , independent of to'
0'

such that the exponential decay eatimates

(25)

hold for the corresponding operator norms. But estimates (25) are identical to the

estimates (3.3) and (3.4) of [11], so that the remaining part of the proof of Proposition 1

ia identical to that of Corollary 3.1 of [11]. In panicular, the constant8 f 1 and k1 may

be chosen uniformly in toEIR , an absolutely essential fact in the proof of Theorem 1. •

Remarks. (1) It ia not clear whether our main result remains true if g is not at least five
...

times continuously differentiable, for then g ia not any longer twice continuously
uo1,

Frechet differentiable on H~ ,p vr<1R). However, Proposition 2 still holds if g E ~(1)([RJIR)
0'

[10] .
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t

(2) In the case where J'B(S) = 0 and t --+Jdes(e) = 0(1) as Itl --+ lD , the

o
stabilization of the classical solutions of Problem (1) Mound the appropriate

almost-periodic attractors is in general not any longer exponentially rapid, because of a

typical center manifold behavio! due to the fad that ;\ = 0 is an eigenvalue of & vY. We

refer the reader to [12] for details.
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