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Consider the class of real semilinear parabolic Neumann boundary value problems of the

form

u,(x,t) = Au(x,t) +s(t)g(u(xt)), (xt) € MR

Ran(u) € (ug,u;) (1)
g% (x,t) = 0 , (xt) € onxRT

In (1), 1 denotes an open connected bounded subset of RY with smooth boundary 1
and N € [2,0) N Nt , while A stands for Laplace’s operator in the x—variable.
Furthermore, 8 : Rt — R is the restriction to RT of a Bohr almost—periodic function
on R which we shall also denote by 8, while g € ¢ (5)(IR,[R) possesses at least two zeroes
ug and u; such that g(u) >0 for every u € (uj,u;), with the property that

g’ (uy) >0 and g’(u;) < 0. Finally, Ran(u) denotes the range of u and g stands for
the normalized outer normal vector to & .

Problems of the form (1) occur in various fields of sciences, such as the theory of nerve
pulse propagation and population genetics ( [2] —[4] ). It is then natural to ask whether
there are conditions on the function s such that gvery classical solution (x,t) —— u(x,t)
to Problem (1) which exists globally in time stabilizes around a stable attractor as

t — o . It is the purpose of this article to show that this is indeed possible. We shall refer
to the above properties of g as being the following hypothesis:

(G) Wehave g€ 9’(5)(IR,IR) and there exist up,u; €R such that g(uy) =g(u)) =0,
8’ (up) >0, g"(u;) <0 and g(u) >0 forevery u € (uy,u,).

Now let Ry be the Bohr compactification of the real line ([7], [8], [9]). We shall
identify the real Bohr almost—periodic function s of Problem (1) with its uniformly
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continuous extension on Ry , namely s € #(Rp,R) . We shall also write
£
pp(s) = Lim €7 [ des(e) 2)
£~ 0 N

for the time average of 8 . We shall moreover assume that the following two hypotheses

hold:

t
S Wehave pn(s8)#0 and t— | d€s(¢) =0(1) as |t| — o, where
1 B
R 0
8 =8—pup(s) .
(S5) The restriction of § to RT is Holder continuous.

Finally, we proceed to give the definition of classical solution which we shall use
throughout this article. Let [N/2] be the integer part of N/2; in the remaining part of
this paper we shall assume that {1 has a g5t [N/2] —boundary in the sense of [1], in
such a way that 0 lies on only one side of its boundary, and that it satisfies the interior
ball condition for every x € 9 [5]. We denote by ¢ 2’1(!])<l]%'+',[|2) the set consisting of

all functions z € S’(QIIR+,[R) such that (x,t) — 0ZDaz(x,t) € ?(ﬂxﬂ%+,m) for all
N
a= (al,...,aN) € IHN, v € N, satisfying z a; + 27 < 2. In asimilar way we define
j=1
#10(TIxRT R) . We then have the following

Definition 1. A function u € #2(xRT R) n #(@xRT R) n #1O(MIxRT R) is said to be

a classical solution to Problem (1) if the following conditions hold:

(C)) The partial derivative (x,t) — ut(x,t) exists for every t € RT uniformly in
x€ell.
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(C,) x—iu(x,t) € € (2)(H,IR) for every t € Rt .

(Cy) (x,t) — u,(x,t) € S(MxRTR) and t — u,(xt) € #(RT,R) uniformly in
x€ll.

(Cy) u satisfies relations (1) identically.

The main result of this article is then the following

Theorem 1. Consider Problem (1) where g satisfies hypothesis (G); assume moreover that

8 satisfies hypotheses (S, ) and (S,). Set r, = g’(uo)pB(s), I, = g’(ul)pB(s) and let
0 1
u be any classical solution to Problem (1). Then there exist €, € (0,»), t, € (0,), and
0

a positive constant ¢, such that the following statements hold:

(1) If pp(s) <0, then the exponential decay estimates

§up |u(x,t)—u0| < Co€p €XP [ru (t_te )] (3)
x€fl 0 0
sup | Vu(x,t)| Scepegexplr, (t—t, )] (4)
x€ll 0 0

hold for every t € [t ¢ ) .
0

(2) If pp(s) > 0, then a completely similar statement holds provided that we replace Uy

by u, everywhere in relations (3) and (4).

Remarks. (1) The above theorem asserts that if pp(8) <0, then u, is a global

exponential attractor for Problem (1): every classical solution to Problem (1) stabilizes
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around u, exponentially rapidly, with a rate of decay depending solely on g’ (uy) and
pB(s) , irrespective of the spectral properties of Laplace’s operator. We can thereby also
conclude that the global stabilization phenomenon described above is primarily governed A

by the reaction process in equation (1). Of course, a similar remark holds if pp(s) > 0.

(2) Our result immediately implies that Problem (1) has no time almosi—periodic
classical solution. For if t — u(x,t) were such a solution, relation (3) would immediately
imply that u(x,t) = uj for every (x,t) €T x R, a contradiction since u, is not a

solution to Problem (1).

t
(8) I pp(s)=0 and if t — J dés(€) = 0(1) as |t] — o, then it is possible
0

to show that both uy and u, become unstable, but that the classical solutions to
Problem (1) still stabilize around non constant almost—periodic attractors as t — o .
However, the proof of these facts requires the elaboration of a suitable stable — and center —
manifold theory, and is much more complex than that of the above theorem. We refer the

reader to [11] and [12] for details.

(4) The simplest equation of the form (1) is the so—called Fisher’s equation of

population genetics, namely

u,(x,t) = Au(xt) +s(t)ulx,t)(l-u(xt)), (xt) € MxRT
Ran(u) C (0,1) (5)

gﬁ (x,t) = 0 . (xt) € xRt

Under the conditions of the above theorem, every classical solution to Problem (5)
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stabilizes exponentially rapidly toward yy=0oruy =1, depending on whether
pp(8) <0 or pp(s) > 0. In the context of population genetics, equation (5) models for
instance the fraction u of one of two alleles in the population of a migrating diploid
species located in 1, when the so—called selection function s takes almost—periodic
seasonal variations into account. In this case, our result means that only one of the two

alleles will eventually survive in the population.

(5) Our work concerning Problem (1) was primarily inspired by the recent results of
[6]. In fact, the authors of [6] obtained results concerning the case where t — s(x,t) is
periodic and may also depend on x € 1. However, their method of proof seems to be

strictly limited to the periodic case and does not provide the actual rates of decay.
The proof of the theorem rests upon the combination of a local geometric argument with a
global one. We begin with the formulation of the local result. For p € (N,m), let

LP(€) = LP(N,C) be the usual Lebesgue space with respect to Lebesgue’s measure on 1 ;
define

H2PR) = {z € H2P(R) : % (x)=0, x€ an} (6)

where H2’p([R) = H2’p(ﬂ,IR) is the usual real Sobolev space of functions on 2. We may
then assume that sz,p(IR) becomes a commutative Banach algebra with respect to the

usual operations and the norm
el 5.0 = 103685, el Y

([1], [11]). In relation (7), Ap _y 18 the LP(€)—realization of Laplace’s operator whose
b
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domain is given by the complexification of (6), while ||| p denotes the usual LP—norm

and A, € p(Ap, /) , the resolvent set of Ap, _ - Endowed with the norm (7), the above

Banach algebra will henceforth be denoted by H?\ P I(IR) . Our local result is then the
0 ’

following proposition, which we also believe to be new.

Propogition 1. Let s and g satisfy all of the hypotheses of Theorem 1, and fix
p € (N,m) . Then there exist ¢, € (0,»), k; € [1,0) and, for each € € (0,¢;] , an open
spherical neighborhood /( )—1 of radius (21:1)_15 centered at the origin of
2k €
1
H?\(’J? /(IR) , such that the following statements hold for every t; ER:

(1) If pg(s) <0, andif we define s, by 8, (t) =s(t+t)) forevery t €R, then for
0

to

ne A

4 = { —1 in>0on ﬂ} , there exists a classical
(2k,) e (2k;) e

solution (x,t) — U(x,t,7) to the problem

uy (1) = dux,t) +5; (Vglulxt)), (xt) € AR

Ran(u) C (uo,ul) (8)
P e

which satisfies u(x,0,7) = n(x) + u, for every x € {1 . Moreover, the exponential decay

estimates

sup |?1‘(x,t,17)-u0| < Ci€ exp[ru t] (9)
x€fl 0
sup | Vi(x,t,n)| < c € exp[ruot] (10)

xeN



hold for every t € IR'(')' and for some positive constant ¢ -

(2) pB(s) > 0, a completely similar result holds, provided that we replace

Vel by 4

={n€ N :1;<00nn}a.ndu by u
(2k,) te (2k) e { (2k) e 0= 1

everywhere in Statement (1).

Remark. Proposition 1 is in fact a result which amounts to constructing an
infinite—dimensional stable manifold for Problem (8). For the sake of clarity, we postpone

its proof until the end of this paper.

For t0 = 0, Proposition 1 provides particular classical solutions of small norms to
Problem (1) which satisfy exponential decay estimates similar to relations (3) and (4). In
order to extend the validity of such estimates to all classical solutions of Problem (1), and
thereby obtain a proof of Theorem 1, we do need the arbitrariness of to in Proposition 1
(compare with the proof of Theorem 1 below), as well as the following global stabilization
result.

Proposition 2. Let 8 and g satisfy all of the hypotheses of Theorem 1, and let

p € (N,») . Let u be any classical solution to Problem (1) and define t — u(t) by
u(t)(x) = u(x,t) for every (x,t) € fixR™ . Then the following statements hold:

(1) If pg(s) <0, we have

lim fju(t)—u =0 11
tim [l =gl o, (1)

(2) If pp(s) >0, we have



1j uf{t) —u =0 12
t_l’?; ” (t) 1”,\0,2,13 (12)

Proof. The fact that u(t) € Hi’p (R) follows from condition (C,) of Definition 1. The
0 ]

rest is a nearly verbatim adaptation of the proof of Theorem 3.1 of [10]. -

Besides Proposition 1, the other main contribution of this article is to show that we can
prove Theorem 1 just by combining Propositions 1 and 2 in a suitable way. The main idea

of the argument is very simple: since we already know that u(t) — u,; in Hi P HR)
) 0 )

as t — o by Proposition 2, and since the sets //:; )_1 of Proposition 1 are in fact
2k €
1

smooth stable manifolds in Hi P J,(IR) , we just have to wait long enough until
0 ’

u(t) —uy , hits the stable manifold #*

y @t some time t =t _. Using the
(2k;) e €

parabolic maximum principle, we then proceed to identify u(t) for t 2 t, with a small

norm—solution of Proposition 2. The precise argument is given in the following

Proof of Theorem 1. Let € and kl be as in Proposition 1, and fix €0 € (0,61) I
pp(8) <0, then u(t) — u, in Hi’p/(ER) as t — o . Therefore, there exists
01

- | . .
t ¢ € (0,0) such that [[u(t) —u,|| Ap2p < (2k;) "¢, forevery t€ [t Eo,m) . With this
in mind, define 7, =u(t_)—u,;since u is a classical solution to Problem (1), we may
0
conclude that 7, € /'E' )—1 - Tt then follows from Proposition 1 with t; =t . that
2k € 0
1 0

the boundary value problem
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u,(x,t) = Au(x,t) +5, (t)g(u(x), (xt) € DRT

t

Ran(u) € (ug,u) 0 (13)
g% (x,t) =0 , (x,t) € mxm-*-

possesses a classical solution (x,t) — ﬁ'(x,t,no) which satisfies
5(1,0,1]0) = ng(x) + vy = u(x,teo) (14)

for every x € 1. Moreover, the exponential decay estimates

sup [¥(xtt, m) —ug] < e eqemplr, (i, )] (13
0 0 0
x€efl
sup |V?1'(x,t—tf ;ﬂo)l < C1€oCXP [ru (t—te )] (16)
x€fl 0 0 0

hold for every t € [t_ ,m) . We now define (x,t) — w(x,t) = ?l‘(x,t—te 1) for every
0 0

(x,t) €11 x [t, @) . It then follows from relations (13), (14) and the definition of s,
0 €9
that w satisfies the initial boundary value problem

[w, (x,t) = Aw(x,t)+s(t)g(w(xt)), (x,t) Eﬂx(tfo,m) )
Ran(w) C (‘10:‘11)

(17)
w(xt,) = it ) x€m
ow
x,t =0 , x,t E Hix t '
2T (x1) (x,0) € 20t 0)
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along with the exponential decay estimates (15) and (16). In order to complete the proof of
Statement (1) of Theorem 1, it thus remains to prove that w(x,t) = u(x,t) for every

(x,t) €T x [t, ;o) . We first notice that Ran(u) C (no,ul) » Ran(w) C (u,u,) ; moreover
0

8 is uniformly bounded on R and g is smooth. The conélusio_n then follows from the
third relation in (17) and the parabolic maximum principle. The proof of Statement (2) is

of course similar. =

We conclude this article in providing a

Proof of Proposition 1. If tg=0, Proposition 1 is nothing but Corollary 3.1 to Theorem
3.1 of [11], which provides the existence of a local stable manifold around the trivial

solution for initial value problems of the form

(18)

b

{y'(t) = (A fs(t)g’(uo,l))y(t)+s(t)éu0 (), ve m*}

y(0) = A

. 2 i g 2 :
in HA(')I’) /(IR) . In expression (18), we have defined g“o 1 : HA(;]: _//(IR) - HA(’]I,) /([R)

by
éuo,l(”) = go(ug 1+2) — & (g )2 (19)

and, using the Banach algebra properties of Hi P //([R) , we can easily verify that the
0 H

. 5 . . N 2) 2 2
hypothesis g € #! )([R,IR) implies that guo . € ¢! )(HA(’) /(m), H,\(’JI: AR)).

Moreover, A , stands for the g2P realization of Laplace’s operator on the domain
v 4 AO, Ve



—-12 -

D0m(A/)={zEH4’p( ) p'szH2’p/(dZ)} (20)

where Hi(’]l’) AC) and HP(€) are the complexifications of Hial,’ /(R) and

Hif’,p([R) , respectively. In order to prove Proposition 1, we therefore fix to €R and

consider initial value problems of the form

¥ (1)=(8_y+s, (8" (ap N¥(D)+s, (g, (1), ¢ €RY
0 , 0o Yo,1 (21)

y(0) = Yo

on H2 /([R) Since s € ¥(Ryx,R), and since s, is just the translate of s, we have
’\0’ B to

stO € ¢(Rg,R) “as well and pB(s,‘O) = pp(s) . In addition, sto also satisfies hypotheses

(S;) and (8,) since 8 does. The proof of Proposition 1 then becomes identical to that of

Theorem 3.1 of [11], if we can show that the basic estimates of exponential dichotomy

remain valid uniformly in t; . In order to see this let {wW A /(t)}tEIR + be the restriction
0

to HE(’]I’) J(IR) of the diffusion semigroup generated by A . on H?‘[’: Q) and, for

every ty € R, define the family of evolution operators {U110 1,t0(t’r)}t2r20 by

Up.1¢

t
Uy ()= exp 8" (g ) I des, o)W, (=) (22)

It is easily verified that relation (22) with r = 0 provides the evolution operators which

solve the linear part of equation (21). Moreover, since up(s, ) = pg(s) , we may write
0
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t
Uuo,l,to“")=e"p[‘uo,l““)]“p[“"“ﬂﬂ)ld‘ﬁo("]wﬂ ) (2

where {?0 = sto — pg(8) - But since s satisfies hypothesis (S, ), we have

H"—'——\ﬁ

t
457 (€)= [ dete), (€)= o() (24)
r

uniformly in r,t and t,. Since {W, (t)} is a contraction semigroup on
’ 0 Ar 7 iemd
Hg P //([R) , we conclude that there exists a positive constant c, , independent of t,,
O)

such that the exponential decay estimates

< cpexp [ru

|HUu (t,r | (t—r)] (25)
: O,I,to m,A0,2,p

0,1
hold for the corresponding operator norms. But estimates (25) are identical to the
estimates (3.3) and (3.4) of [11], so that the remaining part of the proof of Proposition 1
is identical to that of Corollary 3.1 of [11]. In particular, the constants €, and k; may
be chosen uniformly in to € R, an absolutely essential fact in the proof of Theorem 1. g

Remarks. (1) It is not clear whether our main result remains true if g is not at least five

times continuously differentiable, for then 8, is not any longer twice continuously
0,1

Fréchet differentiable on H2'P _(R) . However, Proposition 2 still holds if g € #(J(®R)
0’

[10].

~.
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t
(2) In the case where pp(s) =0 and t——»J’dfs(f)=0(1) as |t| — o, the
0

stabilization of the classical solutions of Problem (1) around the appropriate
almost—periodic attractors is in general not any longer exponentially rapid, because of a
typical center manifold behavior due to the fact that A = 0 is an eigenvalue of A v We
refer the reader to [12] for details.
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