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Beweis: Das folgt offensichtlich aus den Definitionen und der vorher-
gehenden Proposition. g.e.d.

Lemma 1 Sei M € Dp(}). Es gibt eine Multimenge P(M) C h* so
daf fir alle ¢ € h* N SpecT der g-Modul M ®1 €. eine Filtrierung
mit Subquotienten M(u + ¢),u € P(M) hat.

Beweis: Fiir M € g ® T-mod® und v € h* definiere ich den h-
Gewichtsraum MY = {v € M|Xv = (X + »(X))vWX € h}, wo die
erste Multiplikation mit X € h C g aufzufassen ist, die zweite jedoch
mit (X +v(X)) € S. Jedes M € Dr(A) zerfdllt in Gewichtsrdume, die
iber T lokal frei sind von endlichem Rang. Den Rest des Beweises
{iberlasse ich dem Leser. g.e.d.

Sei speziell R = S§(p) die Lokalisierung von § an der Stelle 0 €
h* C SpecT. Es gibt genau einen einfachen R-Modul €y = €.

Proposition 4 Seien M,N € Dg(\). Liefert 6 : M — N einen
Isomorphismus euf der Nullfaser M ®p € — N &g L, s0 ist ¢ schon
selbst ein Isomorphismus.

Beweis: Man kann jedes Objekt von Dgr(A) in h-Gewichtsraume zer-
legen. Diese sind freie R-Moduln von endlichem Rang. Das Lemma
von Nakayama beendet den Beweis. g.e.d.

Proposition § Zu jedem M € Dg(A) gibt es eine Lokalisierung T
von S nach einem Element und M € Dp(A), so def T C R und
M®r R=M.

Beweis: Die Projektoren einer Zerlegung von £ @ Mpg(\) in eine di-
rekte Summe “leben” nach Proposition 2 auf einer offenen affinen
Umgebung U = SpecT von 0 € h*. g.e.d.

Wir kénnen in diesem Zusammenhang auch Verschiebungsfunkto-
ren einfiihren. Zunachst bemerken wir, da £ ® M7(A) = E® (U Qy
(€r®T)) = UL (E® L), ®T) eine Kompositionsreihe mit Fak-
toren Mr(A + v) hat, wo v die Gewichte von F mit Multiplizitaten
durchlduft.

Weiter betrachten wir den Triger Supp(Mp(u)) von Mp(u) in
Spec(Z ® R). Man erkennt, dal Supp(Mpg(p)) N Supp(Mg(n)) # 0 =
W.u = W.n. Fiir alle M € Dg(A) induziert die Zerlegung von SuppM
in Zusammenhangskomponenten eine Zerlegung von M in eine direkte
Summe.



Introduction. The purpose of this paper and its sequel is to provide an algebraic framework
for the cohomological study of finite group actions on spaces and chain complexes which
are possibly infinite dimensional but with finitely generated total cohomology. In Part I,
we introduce and study a new algebraic invariant for G—spaces and G—chain complexes
(where G is a finite group) through the theory of varieties in modular representation theo-
ry. This invariant, called "the rank variety family" of a G—space (or a G—hain complex) is
an algebraic substitute for the family of isotropy subgroups of a finite dimensional

G-space. In Part II, we apply the theory of coherent algebraic sheaves to further study
those aspects of the theory which involve the notion of an "orbit space". Some of the re-
sults of this paper have been announced in [6].

The traditional concepts and tools of finite transformation groups which have been
successfully applied to study finite dimensional G—spaces (e.g. manifolds and CW comple-
xes) are not sufficient for the cohomological study of infinite dimensional G—spaces and
G—chain complexes. Here, tools and the language of abstract algebraic geometry provide us
with a natural and suitable medium to enlarge the domain of study of transformation
groups. Such generalizations are natural, and they arise in studying function spaces, homo-
topy actions, symmetries of varieties (e.g. defined over a field of positive characteristic)
and modular representation theory to mention a few. We refer the reader to [1] [2] [5]
(6] [71 [8] [9] [12] [19] for further motivation and discussion in this direction. We
have also provided some applications to classical finite dimensional problems (Sections
6—8) in order to illustrate the usefulness and flexibility of this algebraic approach to the
subject.

The main algebric tool in Part I comes from some recent achievements in modular
representation theory, namely the theory of varieties developed by J. Carlson [23] [24]
and Avrunin—Scott [17]. This theory is in turn inspired and built on the works of Borel
[20], Atiyah—Segal [15], Quillen [40] [41], E. Dade [59] , G. Avrunin [16],
Alperin—Evens [3] and O. Kroll [38] among others. In the context of restricted Lie
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algebras, there has been a parallel theory developed by Friedlander—Parshall [31] and
Janzen [36] [37].

We briefly mention the role of this theory in what follows. Let G be a finite group
and p bea prime divisor of |G| , k an algebraically closed field of characteristic p , and
M a finitely generated kG—module. For E ~ (Ep)11 C G, Dade [29] introduced certain
well-behaved cyclic subgroups of the group algebra kE (called "shifted cyclic subgroups")
which detect kE—projectivity of M . To measure the deviation from kE—projectivity of
M, Jon Carlson [23] associated a homogeneous affine k—variety V}E(M) which "parame-
trizes" those shifted cyclic subgroups of kE which do not act freely on M . There is also a
cohomological support variety VE(M) associated to M . This was inspired by Quillen’s
work [40] [41] in transformation groups and group cohomology and is defined to be the
support of the module H*(E;M) in the maximal spectrum Max HE , where

Hp=©@ Hzi(E;k) . For the trivial module k, there is a natural identification

i20
Vg(k) - Vg(k) . Carlson [23] showed that V(M) C VR(M) with
dim Vg(M) = dim VE(M) , and conjectured their equality. This conjecture was proved by
Avrunin—Scott [17]. They used it in conjunction with Green’s theory of vertices and
sources [28] [32] to prove that for a general finite group G, and a kG—module M, a
suitably defined cohomological support variety VG(M) possesses a Quillen stratification
[17]. That is, VG(M) is obtained from gluing together the collection V(M) , where E
ranges over p—elementary abelian subgroups of G . A similar stratification is demonstrated
by S. Jackowski [35] for the equivariant cohomology with local coefficients, reproving
Avrunin—Scott’s stratification theorem along Quillen’s original topological approach. See
Section One for definitions and precise statements.

In our context, the above theory is interpreted and applied as follows. The "shifted
subgroups of kG " enlarge the notion of "subgroups of G ". A suitably defined rank varie-
ty VE.'(X) (or VE(X*) for a kG—complex X, ) parametrizes the shifted cyclic subgroups
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of kG which (algebraically) behave like elements of E with non—empty fixed point sets.
The cohomological support variety Vg(X) using equivariant cohomology Hé(x;k) (or
its algebraic version H*(G;X*) ) i8 related to the rank variety in much the same way as for
kG—modules: VE(X) & Vp(X) . See Section Two. The theory is extended to arbitrary finite
groups G via the above mentioned stratification theory. The interplay between the coho-
mological variety and the rank variety allows us to formulate and prove a suitable alge-
braic analogue for The Localization Theorem in equivariant cohomology of finite dimen-
sional G—spaces. The topological form of this theorem is due to Borel [20], Quillen [40],
and W.Y. Hsiang [34] in cohomology, and to Atiyah—Segal [15] in equivariant K—theory.
See Section Three below for precise statements and a discussion. The mosf basic invariant
of a variety is its (Krull) dimension, and this leads to the notion of complexity. In Section
Three, Alperin’s complexity theory [3] is adapted to this context, and it is used in Section
Seven to apply the above—mentioned algebraic localization to topological circumstances.
The organization and contents of the paper are as follows. In Section One, we have
collected some concepts and background material from the theory of varieties in modular
representation theory, stratification theory, and more specialized aspects of transformation
groups. Also, much of the notations and conventions are introduced. The heading of each
subsection is intended to help the reader to choose only the needed definition or discussion.
The basic notion of varieties are introduced in Section Two, and studied in Section Three
via localization, complexity and the role of shifted subgroups. We found it useful (also for
the sake of future reference) to include a comparison of the above varieties with their finite
dimensional predecessors, namely the Quillen variety [40] and the support variety defined
and studied by Jackowski [35]. The analogy between "the rank variety family" and the
"family of p—elementary abelian isotropy subgroups" of a finite dimensional G—space (allu-
ded to in the above) is made explicit in Section Five. The material of these sections are
applied in Section Six to some problems regarding finite dimensionality and finite domi-

nation of spaces with finite fundamental group. Further applications in this direction
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appear in [7] [9] and [11]. Section Seven contains applications to a very old and
classi—cal area of topological transformation groups. It contains an extension of the
Borsuk—Ulam Theorem to infinite dimensional G—spaces and chain complexes, as well as a
new and simple proof of a generalized form (for p—elementary abelian groups) in finite
dimensions. Recall that the classical Borsuk—Ulam Theofeﬁ states that there are no
cohomologically essential maps from the real porjective space RP" for m > n.
Considering ™ and S equipped with Z,—actions, another formulation of the

Borsuk—Ulam theorem is that if there exists an equivariant map f: ST, S" with

/4
m > n, then the fixed point set (S") 2 # ¢ . We have the following generalization to
infinite dimensions. The statement VE(Y) = Vﬁ(k) is the algebraic analogue of
"YE 4 4" when dmY<o.

Theorem. Let G be a finite group, and let X and Y be G—spaces (possibly infinite
dimensional) with finitely generated homology, and let f: X —— Y be an equivariant
map. Suppose for some p| |G|, Hi(X,IFp) =0 for i<n, and Hi(YJFp) =0 for i>n.
Then Vg(Y)=Vg(k) forall E€ &.

The finite dimensional version has a more familiar statement:
Corollary. In the above theorem, assume that G & (ﬂp)m and dim(Y) < o in addition
to the hypotheses on homologies of X and Y . Then there exists an equivariant map

f:X——Y ifandonlyif YO # 4.

Also, one may relate in this way the growth rate of the equivariant Betti numbers of

Y to the existence of equivariant maps f: X —— Y as in the corollary below:
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Corollary. Suppose that X and Y are G—spaces (possibly infinite dimensional) as in the
*
above theorem. If the growth rate of dim HG(Y;IFP) is less than the maximal rank of the

elementary abelian subgroups of G, then there are no equivariant maps f: X —— Y .

As a final application in this paper, we have considered an algebraic generalization of
a conjecture of Conner and Floyd [26] [27] regarding the non—existence of periodic
diffeomorphsms of odd prime power order of oriented closed connected n—manifolds with
one single fixed point. This conjecture was proved first by Atiyah and Bott [13] (and
hence known as the Atiyah—Bott theorem in literature) using their Lefschetz—type fixed
point formula for elliptic complexes, and by Conner and Floyd [27] via equivariant
cobordism theory methods. The generation of this conjecture to abelian p—group actions on
smooth manifolds is due to W. Browder [21]. See Section 8 for further remarks and precise

statements.

Further References and Acknowledgement. Since the completion of an earlier version of

this work in 1985—86, there has been further developments which are related to this paper.
A. Adem has extended independently the notion of complexity and also applied shifted
cyclic subgroups to study group actions [1] [2], see also 3.7 (b) below. M. Ozaydin has
also obtained some generalizations of the Borsuk—Ulam Theorem for finite dimensional
G—spaces (Section Seven) which will appear in his forthcoming paper. D. Puppe and V.
Puppe have informed the author that they give different proofs of Corollary 7.4. There are
also related works of A. Dold [47], Fadell-Husseini—Rabinowitz [48], Fadell-Husseini
[49], and C.T. Yang [50] on generalizations of the Borsuk—Ulam Theorem among the
extensive literature in this direction. Frank Quinn has also observed that the results of the
author [5] lead to a finite domination criterion similar to Corollary 6.4.

The author would like to thank the above mathematicians for communicating their

results to him. He is grateful to W. Browder, E. Fadell, S. Husseini, S. Jackowski, and
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M. Ozaydin for inspiring and informative conversations. Special thanks to the referee for

helpful comments and corrections which has led to an improved exposition.



Section One: Preliminaries

1.1. Notation and Conventions. G denotes a finite group of order |G| , and p is a prime
number dividing the order of G .[F is the field with pelements and k = Tl-’p is an alge-
braic closure. The cyclic group with p—elements is denoted by ﬂp , and a p—elementary

belian group of rankn E (Hp)11 with generators {x,,...,x_} is also denoted by

def def
E = <x,..,x > . Then 1k(E) = rank(E)=n, rkp(G) = max{n: (Hp)n_C G}, and

tk(G) = max{rkp(G) : p divides |G|} . The collection of p—elementary abelian subgroups
of G isdenoted by &, orif emphasis on p is needed, by Jp or Jp(G) . We may
consider a category whose set of objects is & and whose morphisms are inclusions of
subgroups and inner automorphisms of G . By a slight abuse of notation, this category is
also denoted by & (or é’p(G) appropriately). Let ¥ be a category and let

F : & —— € be a functor. Then the inductive (or direct) limit of ¥ is denoted by

lim é nd F(E). For a G—space X, XS is the fixed point set of G, and Hé(X) i the
E€ &

Borel—equivariant cohomology, cf. [34]. If C* i8 a cochain complex with G—action,
H*(G;C*) denotes the cohomolog of G with coefficients in c (cf. Brown [22] or Car-
tan—Eilenberg [25] who call it hypercohomology).

Throughout this paper, all G—spaces and G—chain complexes are required to have
finitely generated total homology with appropriate coefficients. Chain and cochain
complexes are often assumed to be connected, i.e. positively graded and their zero—degree
homology is equal to the coefficient ring. Whenever needed, such complexes will be aug-
mented and chain maps will be augmentation preserving of degree zero. Further notation

and terminology will be introduced in the following paragraphs.

1.2. Equivariant Cohomology. Let EG —— BG be the universal principal G=bundle,
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and let X be a G—space. The Borel construction EG ale X —X . BG is the associated
fibre bundle with fibre X . The notation XG = EG XG X is often used. For a commuta-

tive ring R with identity, the Borel equivariant cohomology with coefficients in R is

* def ) * * *
Ho(X;R) = H (Eg xg XiR) . Using 7 : H (G;R) —— H (Eg x5 X;R) , we may

* * * *

regard HG(X;R) as a graded H (G;R)—module, where H (G;R) = H (BG;R) . It is well-
* *

—known that H (G;R) is a finitely generated R—algebra and HG(X;R) is a finitely gene-

* @ .
rated graded H (G;R)—module whenever © H'(X;R) is finitely generated. Similar re-
i=0

marks apply to a pair of G—spaces (X,Y).

1.3. Equivari homology for Chain Compl Hypercohomol . Now assume that
* *
C is an RG—cochain complex and Q is an injective resolution of R over RG . In ana-

* *
logy with G—spaces, we form the double complex Q QG C and define the cohomology of

* * « def o *
G with coefficientsin C :H (G;C ) = H (Q ®5 C ) = cohomology of the associated

* *
total complex. In the terminology of Cartan—Eilenberg [25], H (G;C ) is called "the
hypercohomology" of G with coefficients in C* . See also Brown [22] for further details.

We may take a projective resolution P, of R over RG , and form the hypercohomology

‘ def
of an RG—chain complex C, similarly: Hy(G;Cs) = Hy(P4 ® Cy) . These notions are

the suitable algebraic analogues of equivariant homology and cohomology, and as such,
they enjoy similar properties. Just as in the case of G—spaces, H*(G;C*) is a module over
H*(G;R) . In fact, the usual spectral sequence E;’j = Hi(G;Hj(C*))‘ converging to
E[*(G;C*) is the analogue of the Serre spectral sequence for the fibration

) s %
Eg g X —— BG with a similar construction. In our situation, ® H'(C) is finitely
1

¥ * *
generated over R . Hence H (G;C ) is a finitely generated H (G;R)—module using the
above spectral sequence. 1t is useful to remark that if M is a finitely generated RG—mo-

*
dule, and we regard M as an RG—cochain complex 4 concentrated in one dimen-
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sion only, then H ( 4 )=M and H (G; 4 )~ H (G;M) (= cohomology of G with
coefficients in M ) with a suitable shift in dimension. Thus, H*(G;C*) is also a
generalization of the usual group cohomology H*(G;M) with twisted coefficients. Part of
our task will be to study this two—fold generalization of G—spaces and G—modules to

G—chain complexes from both geometric and algebraic view—points.

1.4. Supports. Let A be a commutative ring with identity and let M be a finitely gene-
rated A—module. The set of maximal ideals of A , denoted by Max A , together with the
Zariski topology is the subspace of closed points of Spec A . The support of M in

Spec(A) is defined as usual: supp(M) = { /4 € Spec(A}|M /:4: 0}, and
def

Max supp(M) = Max(A) N Supp(M) , where M y is the localization of M at the ideal
/4 - Let ann, (M) C A be the annihilating ideal of M . Then supp(M) and

Max supp(M) are equivalently defined as "the varieties" determined by the ideal

ann , (M) in Spec(A) and respectively Max(A) . See Kunz [39] and Atiyah—Mac Don-

ald [14]. Max supp(M) is often abbreviated to supp(M) as well.

def
Recall that "reduction by the radical" A —— A, = A/Radical induces a ho-

meomorphism of topological spaces Spec(A ) —= Spec(A) and

Ma.x(Ar ed) = Max(A) . This homomorphism respects the supports of modules as well,

def
i.e. considering M, = M ®\ Ared as an Ared—module, we have

supp(Mr e d) o supp(M) and Max supp(Mre d) ~ Max supp(M) . These comments apply to

*
our situation as follows. The ring H (G;R) is graded commutative, and we will consider

® .
the strictly commutative ring ® H2(G;R) when char(R) # 2. Define Hg to be

1=
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® B2(G;k) when p = char(k) = odd and Hg =®B'(G;k) if p= 2. Reduction mo-
0

dulo radical does not affect the supports, hence we may use the unreduced ring HG in-
stead of (Hg) .4 = Hg/Radical which is commonly used in the literature (e.g. Quillen

ev def 21
[40] or Benson [18]). In fact, even for p = 2 we may use Hy' = ? H*(G;k) in-
>0
stead of ? H'(G;k) and obtian the same answers. However, we will not insist on this
>0
technicality and follow the established notation Avrunin—Scott [17], Jackowski [35],

Quillen [40], Carlson [23] [24].

1.5. The Cohomological Variety of Elementary Abelian p—Groups. Let
*
Ev ('ﬂp)’:l = <x1;...,xn> , and recall that H (BfF ) & A(uy,....u) ®F [t),..6.] for
p=odd,and H (EF,) 2F,[t,...t ] otherwise (using the Kiinneth formula and the
*
explicit computation of H (le;IFp) ). Here, A(ul,...,un) is the exterior algebra associated
to the vector space Hl(E;IFp) whose basis {ul,...,un} is determined by the choice of
i i

generators {x;,...,x } C E. Namely, u; is dual to x; when we consider E as an IFp—vec—

. . . . . . 1 —
tor space of dimension n with basis {x;,...x } andidentify H (E;IFp) = Homnp(E,ﬂ p) .

Moreover, the Bockstein 3: HI(E;IFP) —_— H2(E;IF p) is an isomorphism and ﬁ(ui) =t
It follows that the radical of H*(E;le) is generated by HI(E;IFp) for p=o0dd, and it is
zeto for p = 2. Thus changing rings from F to k yields Hp'/Radical ¥ k[t;,...,t ]
and the radical of HEV is complementary to the subalgebra k [tl,...,t n] . Moreover,
Max Hp = Ma‘x(HE)re g i isomorphic to the n—dimensional affine space k™ over k, and
we may regard k[t,,...,t ] asits coordinate ring.

Following Avrunin—Scott [17], we denote Max Hp by Vg, and proceed to de-
scribe VE in terms of the group algebra kE . Let 0 - J S kE Sk -0 be

2

8
the augmentation sequence, and 0 »J W JE—— 31 +0 be a splitting of

32 CJ as k—vector spaces where we will identify L and s(L) sothat J = 2oL .1t will



be convenient to choose L = k—vector space generated by {xl—l,...,xn—l} for

E = <x;,...%,> . Since H'(E,k) & Hom, (J/J%k)  Bom,(Lk) and

pe1, : Hl(E,k) I H2(E,k) is a natural isomorphism, we obtain a natural identifi-
cation of affine k—spaces: L & Max(Hy) .4 ¥ Max Hp = Vg for p =o0dd and similarly
for p =2 where (HE)red =Hp.

1.6. Shifted Subgroups. Next, we discuss "shifted cyclic subgroups of kE ", introduced by
E. Dade [29] and subsequently used by J. Carlson [23] [24] in his theory of rank varie-
ties. We will continue to follow Avrunin—Scott [17] in our exposition below, and refer the

reader to [18] [23] and [24] for further developments and details. Corresponding to each
n
vector a = (ap,...,a;) € k" = J/I" , we consider the element u =1+ E a;(x;-1) € kE
i=1

which is seen to be a unit of order p, so that <u g ﬂp . The subgroup <u o« is called
a "shifted cyclic subgroup", and although it is not in general a subgroup of E , it behaves
very much like one. For example, kE is a free k<u a)—a.lgebra, and induction and restric-
tion of representations, as well as Mackey’s formula hold as in the case of genuine sub-

groups of E . Choosing m linearly independent vectors a(l),...,a(m) € k", thereis a

corresponding subgroup <u (1),...,u (m)> which is isomorphic to (llp)m,a.nd it is
a a

called a "shifted subgroup of rank m ". Just as in the above kE is a free

k<u (1),...,u (m)> — module. The choice of a vector a € L leads to the inclusions
a a

Poik<u,>——kE, p"z : k{a} —— L and projections
* Ta * T;
H (Bk) —*— K (<up>ik) and Hp—2—H_, . Let

7, MaxH___ —— Max Hp be induced by xc’, . Then the naturality of the above-

—mentioned isomorphisms and identifications yields the following commutative diagram:
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kE +———— L 2 Max(Hp) .4 2 MaxHp =Vg
A o) [74 *)

k<u, > +——k{a} ¥ Max(H yMaxH_ =V_

<u a> red a a

In analogy with our previous notation, we will use the notation (H < “a>)re g = kit a] to

indicate this correspondence on the level of cohomology.

1.7. Varieties for Modules Now suppose M is a finitely generated kE—module. Let S C kE
be a shifted subgroup of rank m corresponding to the m—dimensional linear subspace

k{a(l),...,a(m)} =1L, C L asin the above paragraph. "The cohomological support of M "

- def *
is defined via Vp(M) = Max suppy (H (E;M)) and similarly
E

def *
V(M) = Max suppy (H (S;M|S)) . Then the induced homomorphism Hp — Hg
S

induces the morphism TSE' Vg —— Vg such that TS’E(VS(M)) = V(M) . On the
level of group algebra, J. Carlson [23] [24] has defined an algebraic analogue of support
for M, which he calls "the rank variety of M " and denotes by VE}(M) . The definition of
the rank variety appears at first to depend on the choice of L . Namely, "Carlson’s rank

variety of M with respect to L " is theset {a € L|M|<u 5 18 not a free
a

k<u ,>-module} U {0} CL together with the induced Zariski topology of L . However,
according to Carlson ([23] Lemma 6.4), if a,b € J CkE such taht a—b € 32 , then
Ml <l+a> is k<1+a>-free if and only if M|, <l+b> is k<1+b>~free. Therefore, the

def
above subvariety of L is isomorphic to V.II:J(M) = {a€k'=]J /J2|M | <y > i8n0t
a

freeor a = 0} , which is well—defined and does not depend on the choice of L. VE(M) is
a homogeneous affine subvariety of J/J 2 (or of L under our choice of identification), see

Carlson [23]. Since <u g le is k <ua>—ﬁ'ee if and only if

’M|<ua>
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i , _ : .
H(<u >; M| <ua>) =0 forall i > 0. It follows that V<ua>(M) o V<ua> if and

only if Viua>(M | <ua>) is the one—dimensional subspace k{u a} C L. Accordingly,
the commutative diagram (*) and the above discussion show that under the identification
L & V4, the subset VE(M) C L corresponds to a subset of V(M) C V5 . The inclusion
VE(M) € VR(M) (due to Carlson [23]) was proved by Avrunin—Scott [17] to be an
equality, thus confirming Carlson’s conjecture. Note that Vi(k) =L and Vg(k) = Ve
for the trivial E~module k . We rephrase slightly Carlson’s conjecture for future reference.

See Avrunin—Scott [17], and Carlson [24] for a different proof.

1.7.1. Theorem ([17] Theorem 1.1) Let M be a finitely generated kE~module where
E= (zzp)n . Under the identification Vp(k) & V(k) , we have VE(M) & V(M) . (Fur-
ther, these identifications are natural with respect to the inclusion of shifted subgroups of
kE in the above sense.) The following result of Avrunin—Scott [17] will be also useful in
the sequel.

1.7.2. Propogition ([17] Corollary 1.3). Let S be a shifted subgroup of kE , and let
Tg g VS — Vg be the induced morphism as in the above. For any finitely generated

-1
See Jackowski ([35] Lemma 2.3) also for a related result.

1.8. w—-Stability. Two kG—modules M1 and M2 are called projectively stably isomorphic
if there are kG—projective modules P, and P, such that P, ® M, 2P, ® M, (kG—iso-
morphism). Projective stable isomorphism is an equivalence relation and the equivalence
class of M is denoted by <M> . We define an operator w on the set of projective stable

equivalence classes as follows. Let M represent <M> , and choose a kG—projective mo-

dule P and a short exact sequence of kG—modules 0 -+ N - P - M 1 0 .
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Then the projective stable equivalence class of N is8 well-defined by Schanuel’s Lemma
[18], and we set <N> = w{<M>).Foreach n € I, we define " inductively via

o ol , where <M> = v

wl =w and " <N> from the above sequence. To
avoid excessive notation, we write »"(M) instead of w"(<M>). By a slight abuse of
notation, we call two kG—modules M1 and M2 w—stably equivalent, if for some integers
nm €7, «(M,) = (M,) . This is also an equivalence relation for kG—modules. If we
consider finitely generated kG—modules, then we require that all the projective kG—mo-

dules in the above definitions be finitely generated.

1.8.1. Lemma. Suppose M; and M, are w—stably eqivalent. Then V}I‘J(Ml) = VE(M2)

1.9. Localization in Equivariant Cohomology. Let X be a finite dimensional paracompact

G-space and consider E € & asin 1.5 above. The simplest form of the localization theo-
* *
rem, originally due to Borel [20] states that Hp(XF p) is isomorphic to HE(XE;IFP)
*
modulo H (E;IFp)—torsion.

1.9.1 The Localization Theorem. Let tg € H*(E;IF p) be the product of all non—nilpotent
elements of Hl(E;[Fp) where i=1if p=2 and i=2 if p> 2, and let
Sg = {t"" : m € I} . Then for any pair of G—spaces (X,Y) with dim(X~Y) < and
XE CY, we have SEIHE(X;R) Y SEIHE(Y;R) where R=TF p O k . In particular, if
dim X <o then XE = ¢ if and only if Sz Hg(X;R)=0.

See [20] [40], and for a generalized version [34]. This simple statement has far—
reaching consequences, but it fails to be true if dim X = o . See Section Three below for

further discussion.

1.10. The Steenrod Algebra. We need a brief discussion of the role of the Steenrod algebra
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in this context. Let ¢ denote the Steenrod algebra of reduced power operations mod p
[44] It is convenient to ignore the Bockstein when p > 2, so that ¢ is generated by

, i 21, subject to the Adem relations. Let #:H (XIF )—H (XIF )J[t] bethe
total operation 2 (x)=x+ £ (x)t +o Pl(x)t + ... Then % isa ring homo-
morphism by the Cartan formula. If k is any field of characteristic p, the operation of
# and P are defined on H (X k) by extending the scalars. The action of £ on
Hp CH (BE;k) is quite simple to describe. Let Hp =k [xl,...,xm] . Then
P(x)=x + xli)tp . The following theorem of Serre characterizes ¢ —invariant ideals of
HG .

1.10.1. Theorem (Serre [43]). Let TCK[x;,....x ] be a homogeneous ideal, where

k= IFp . Suppose the ideal I is invariant under the transformation X —x + xli) .
Then I is generated by products of [Fp——ra.tional (i.e. with [Fp—coefﬁcients) linear polyno-
mials.

In [40], Quillen applied 1.10.1 to identify the prime ideals in HG(X)(k) which are

/6 —invariant. See 1.11 below.

1.11. Stratification. For a paracompact connected G—space X with dim X < o, Quillen

considered the commutative ring H(X) dif Hé(X;[Fp)/Radica.l and defined the cohomo-
logical variety of X , denoted by H(X)(k) to be the set of ring homomorphisms

H(X) —— k endowed with the Zariski topology. One of the main results of [40] is a
precise description of HH(X)(k) as a stratified set obtained by "gluing" the strata
Hp(X)(k) in a precise manner. We describe briefly the combinatorially simpler case where
XE are connected forall E € & . Define & (X)={E€ & |XE# ¢} and consider it as
a full subcategory of & . The stratification theorem of Quillen is conveniently incapsu-

lated as the inductive limit in the category of affine varieties:



—16 —

Hn(X)(k) = lim ind Hp(X)(k) . An analogue of Quillen’s theorem is extended by
EE & (X)

S. Jackowski [35] to the case of equivariant cohomology with local coefficients.

Following Avrunin—Scott [17], the cohomological variety VG(M) is defined for a
finitely generated kG—module M as the union of the supports of H*(G;M ®L) in
Max Hs where L ranges over the (finite) set of isomorphism classes of simple kG—modu-
les. Thus, V5(k) = Max H, and V4(M) is & subvariety of V5(k) . In particular, for
E€ &, Vg(M) is the subvariety of Max Hp % k8() gefined by the annihilating ideal
mHE(H*(E;M)) . Avrunin—Scott [17] proved that V(M) has a stratification similar

to Quillen’s stratification of H~(X)(k) . Accordingly, VA(M) 2 1im ind V(M) . See
G G Ees B

Jackowski [35] also for a "topological" proof of this theorem. J. Carlson [24] has a tech-
nically different definition using the Ext;l(k,k)—module ExtE(M,M) , but the identifica-
tion Ext;;(k,k) N H*(E;k) leads to the same answer. See also G. Avrunin [16] for an
ideal—theoretic treatment.

For a kG—complex X* , one defines the cohomological support variety in a manner

similar to the case of modules.

*
1.11.1. Definition. VG(X ) is the union of the supports of the H—module

* *
H (G;X 8, L), where L ranges over all simple kG-modules, in Max Hg, . Fora
def

kG—complex X, , VG(X*) VG(Hom(X,.,,k)) JIf £:Z2, —— Y, is a kG—chain

homomorphism of degree zero, and X, is the mapping cone of f, then

def *
Vg(f) = Vg(Xs) . Thereis a stratification for V(X') just as for the case of modules

[17] and finite dimensional G—spaces [35].

Lk * *
1.11.2. Proposition. Let X be a kG—omplex. Then V(X ) 2lim ind VR(X ). Simi-
E €¢&
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larly, if f: Z, — Y,is a degree zero chain map of kG—complexes, then

VG(f) =1 ]13 meingd Vg(f) . See Sections Two and Four.
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Section Two. Varieties.

In this section, we define rank varieties for G-spaces and kG—chain complexes, and
we study their basic properties which will be used in the following sections and the sequel
to this paper.

The geometric motivation for the introduction of varieties as a basic object in study-
ing finite transformation groups is as follows. If a torus (Sl)]1 acts, say smoothly, on a
compact manifold X, then the collection of the isotropy subgroups of this action is in
one—to—one correspondence with certain @—rational linear subspaces of the Lie algebra
TI(SI)'1 ~ R™ . Such subspaces may be determined Lie theoretically from the Lie algebras
of vector fields, and such a linearization procedure reduces the questions about isotropy
subgroups of (Sl)n to the appropriate statements regarding linear subgroups of Tl(Sl)11 :
For the group E = (?.’lp)ll , the rank variety Vé(k) ~ k™ plays the role of the Lie algebra
of (Sl)n . Indeed, the spectrum of the local ring kE has a unique point which corresponds

to the augmentation ideal J in 0 » J + kE - k — 0 . The Zariski cotan-

gent space to Spec(kE) at the point J is the k—vector space J/J 2 , and the Zariski tan-
gent space is Hom, (J/J 2,k) N Hl(E;k) . Furthermore, the k—linear subspaces of J/ 32
give rise to shifted subgroups of kE , in close analogy with the case of the torus. For in-
stance, just as Q—rational linear subspaces of the Lie lagebra of T correspond to closed
subgroups of T , so do [Fp—-linear subspaces of J/ J2 to subgroups of E itself. However,
there are far more shifted subgroups of kE than subgroups of E . Therefore, in purely
algebraic situations, we need to enlarge the notion of "subgroup" to include "shifted sub-
groups". It turns out that shifted subgroups play an important role in the geometric situa-
tions a8 well. Through a systematic exploitation of the concept of rank and support varie-
ties which keep track of "distinguished subspaces" of J /J2 for the problem at hand, we

can play the same game with shifted subgroups as for ordinary isotropy subgroups in the
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familiar case of finite dimensional G—spaces.

Since the definition and properties of "rank" and "cohomological varieties" for
G-spaces and G—chain complexes are quite similar, we use the notation X, Y, etc. for
G—spaces and Xy, Yy oOr X*, Y* etc. for chain and cochain complexes with G—action.
Subject to the assumptions of Section One, G—spaces could be fairly general. In fact, we
apply the results about RG—chain comlexes to G—spaces by choosing suitable RG—chain
complexes associated to the G—spaces in question. For topological applications, the singular
chains, or when appropriate, simplicial or cellular chains are often sufficient. For more
general spaces, Cech cochain complex etc. may be used equally effectively. In particular, for
algebro—geometric applications when the varieties (or more generally schemes) are
considered equipped with Zariski, étale, or any of the other numerous non—Hausdorff
topologies, the Cech complex (suitably defined) is used. This point of view is illustrated in
Assadi [12] and will be investigated systematically elsewhere.

In Assadi [4], we introduced the notion of "free equivalence" for G—spaces and per-
mutation G—complexes as a useful technical device. This equivalence relation is particu-

larly suited for defining varieties and related applications as it is illustrated in Assadi [5]

(el (7 (8]

2.1. Definitipn. Two (connected) RG—chain complexes X, and Y, are called "freely
equivalent" if there exists a (connected) RG—chain complex Z, and injective chain homo-
morphisms X, 1, Zy and Y, i SN Zy such that Z4/X, and Z,/Y« are RG—free
chain complexes with finitely generated total complexes over RG . Similarly, free equiva-
lence of (connected) G—spaces X and Y is defined by requiring the existence of a
(connected) G—space Z and equivariant embeddingg X —— Z and Y —— Z such

that Z—X and Y-X are free G—spaces and Z/X and Z/Y are compact.

2.2. Remark. The hypotheses of finite generation and compactness in the above definition
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are for convenience, since in the applications below this will suffice. More generally, we
may require only the finite generation of the total cohomology together with finite dimen-
sionality of Z4/Xy, Z/X, etc. and modify the following arguments accordingly. The follo-

wing lemma is elementary.
2.3. Lemma. (a) Free equivalence is an equivalence relation. (b) In the category of G—CW
complexes, if two G—CW complexes are freely equivalent, then their cellular RG—chain

complexes are freely equivalent as RG—complexes. -

* *
2.4. Proposition. Suppose X and Y are kG—complexes which are freely equivalent.

Foreach E€ & ,let SE C HE be a non—empty multiplicatively closed subset. Then
there exist isomorphisms ¢p : SEIIH*(E;X*) —_— S—IIH*(E;Y*) . If the collection

{SE :E€ &} is chosen compatible with the morphisms of & , (i.e. Er— S isa
contravariant functor of & ), then p = {pg|E € & } describes a natural transformation

1k, J* 1k, %
between the functors E ——s SEliH (E;X ) and Ev— SEIEH (Y ).

Proof: Without loss of generality, we may assume that Sp has no nilpotent elements.
Further, the assertion of the proposition reduces to the case where we have a surjective

kG—chain map f: X —Y such that Ker(f) is a finitely generated bounded free

f

* *
kG—complex. The short exact sequence 0 —— Ker(f) -+ X —+Y — 0 yields

a long exact sequence in hypercohomology

*

..... — H(EKer(D)) — H(EX ) B, H(EY ) — ...

as in the case of group cohomology (see Cartan—Eilenberg [25] or Brown [22]). Since

localization is an exact functor, the first assertion of the proposition follows from the claim
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1 * def 1%
that SEII]-I (E;Ker(f)) = 0 . Setting ¢pp = SEle , the second assertion is easily verified

due to functoriality of the above argument. Thus the following lemma finishes the proof of

the proposition. -

*

2.5. Lemma. Suppose that C is a bounded free kG—complex, and E € & and SE are
1 % *

as in the above proposition. Then SE1[H (EsC )=0.

Proof: First assume that H ~length (C') aet {n:HY(C')#0} = 1. Consider the spec-
tral sequence H*(E;H*(C*)) 3 yr(lH*(E;C*)) in which the E;* , and hence all the E:*
are Hp—modules. This spectral sequence degenerates when H*—length (C*) =1, so that
[H*(E;C*) n H*(E;H*(C*)) with a suitable shift in the dimension. Moreover, it is easy to
see that in this case H*(C*) is also a free kE-module since C is bounded and kG—free
(e.g. by splitting C" into short exact sequences). Hence

SgIH (E;C) » SE'H (E{H (C')) = 0 . Next, assume that H —length (C') = m+1 . Then
we can "kill the first non—vanishing cohomology" of C* and obtain a short exact sequence

* * * * *
of kG—complexes 0 —— C —— B -+ A — 0 in which H —length (B ) =n

* *
and H —length (A ) = 1. The long exact sequence of hypercohomology, localization, and

* *
induction on H —length (C ) completes the proof of the lemma. g

* *
2.6. Corollary. Suppose X and Y are freely equivalent kG—complexes. Then:
* *
(a) foreach E € &, the support varieties V(X )= Vy(Y ).
* *
(b) VG(X )= VG(Y ).

* * *
Proof: By definition, VE(X ) is the support of the Hp—module H (E;X ). (a) follows
from Proposition 2.4 and elementary considerations about supports, (see Section One 1.4).

(b) follows from (a), the functoriality assertion in Proposition 2.4, and the stratification
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theorem:
Va(X) =lim ind V(X ) =lim ind V(Y ) = Va(Y )
=lim in =lim in = .
G Eecg E E€g F G
See 1.11. -

Just as in the case of modules, the next step is to describe cohomological support

varieties in terms of G itself (or rather kG ).

-~ ¥
2.7. Proposition. Let X be a kG—complex. There exists a kG—chain complex X freely
* * %

equivalent to X such that H (X ) is concentrated in one degree, say d. Further, the

~ % *x
rank varieties Vi(HY(X')) are welldefined for all E € & and they depend only on X

~ ~ ¥ *

and not on the choice of X . In fact, V}E(Hd(x )) = VR(X') under the identification
Vé(k) = Vg of Section One 1.5.

Proof: The existence of 5(* follows from the familiar procedure of "killing homology"
inductively as in the case of G—spaces. (See Assadi [5]). Namely, let n be the smallest
integer such that Hn(X*) # 0 . Consider a free kG-module F, and let F' be the cochain
complex with F =0 for i #1n and F' = F. We choose F and an injective kG—homo-
morphism f: Hn(X*) —— F . As usual, there is a cochain map ¢ : X* — F* of de-
gree zero such that the induced homomorphism go* : Hn(X*) — Hn(F*) =F is the
above f. The mapping cone of ¢, say Y* , i8 a kG—complex such that Hi(Y*) =0 for

i < n. The repetition of this procedure yields a kG—complex 5(* as desired above. To see
that VEI}(Hd(}:(*)) does not depend on the choice of 5(* , we may proceed directly as in
Assadi [5] and show that Hd(i*) and Hd,(}:(’ *) are w—stably equivalent for two choi-

~ % -k
cesof X and X’ satisfying the assertion of the proposition (cf. 1.8). Since the rank
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variety of a module does not change under the operation w (see 1.8.1), the result follows.
Alternatively, we may proceed as follows. According to Corollary 2.6, VE(X*) = VE(J:(*) :
But ﬂi*(E;i*) n H*(E;Hd()}*)) since the hypercohomology spectral sequence

H (EHY(X")) 3 W (E;X') degenerates. Thus V(X ) = VR(EY(X")) . By Avrunin-
—Scott’s affirmative answer to the Carlson Conjecture [17], VE(Hd(f{*)) = VE(Hd(i*))
(see 1.7.1.). Therefore, VFI)(Hd(k*)) = VE(X*) and VE(Hd()A{*)) does not depend on the

~ %
choiceof X . g

* ~ ¥
2.8. Definition. Let X be a kG—omplex, and let X be a kG—complex freely equivalent
* *
to X asin Proposition 2.7. For each E € & , the E—rank variety of X is defined via

) P def QU Pk I P
VE(X') = VR(H(X )). For a chain complex Xy, Vy(Xy) = V(X ) . For

f:Zy —— Y, a kG—chain map of degree zero with mapping cone Xy ,

I def r « def £, *
V() = Vg(Xs) . The collection V& (X ) = {VE(X ):E€ &} is called the rank

*
variety family of X .

2.9. Remark. Similarly, for paracompact G—spaces we define the rank variety using their
Cech or singular cochain complexes, e.g. For a G-map f: Z —— Y between paracompact
G—spaces, VPIJ(f) is defined using the reduced cochain complex of the mapping cone of f.
For a based G—space X with x; € X&, VE(X,xg) = VE(C«(X)/Cs({x,})) . In Assadi
[6], the notation Vg(X) was used instead of Vg(X,x,) above. Since in [5] all G—spa-
ces are based, with this slight change of notation all other definitions agree and yield the
same results.

In Sections Three and Four we study further properties of varieties.
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Section Three. Localization and Complexity.

Despite its simplicity, the Localization Theorem 1.9.1 plays an important role in
cohomology theory of transformation groups of finite dimensional (or compact) spaces. As
pointed out in the Introduction, this theorem fails for infinite dimensional G—spaces. The
purpose of this section is to introduce localization for G—spaces and G—chain complexes of
arbitrary dimension in a similar spirit. The notion of complexity allows one to find suitable
multiplicatively closed subsets with respect to which localization will take place. The main
idea is to enlarge the notion of "subgroups of G " to "shifted subgroups of G ". It turns
out that this larger supply of subgroups in conjunction with the family of rank varieties
Ve (X*) (see 2.8 and 2.9 above) suggests a useful localization of hypercohomology.

Recall that the identification V}E(k) = Vg = Vp(k) of 1.5 establishes a correspon-
dence between shifted cylic subgroups of KE (corresponding to vectorsin L ) and ele-
ments of Max Hp, = V(k) (see 1.6). We will not consider the zero vector in V(k) or
Vi (k) which corresponds to the degenerate case of the trivial subgroup {1} C kE . Let
{a(l),...,a(m)} be a set of linearly independent vectors in Vé(k) , EE€ &, and let
§=8§; x..x5  bethe corresponding shifted subgroup of kE . Asgin 1.5, let
t, € HE(S;k) be the polynomial generators of Hg corresponding to a(i) , where e =1 or
2 accordingto p=2 or p>2.Let L m’ respectively Tm , be the k—linear span of
{a(l),...,a(m)} in Vé(k) , respectively in H(S;k) . For any non—empty subset
XC T,- {0} , we denote the localization with respect to the multiplicity closed subset
generated by ¥ via (.....) [E_l] .

3.1 Proposition. Let X bea kG—complex, E € &, and S, %, L_ etc. s in the above.
* * *
Assume that L _ N VEI:(X )=0.Then H ($;X )[E_l] =0.

Proof: Unwinding the definitions, the above statement follows from the equality
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VE(X) = VE(X*) . Let 5(* be freely equivalent to X* , satisfying the conditions of Pro-
position 2.7. Then LN VEI}(H*(i*)) = 0, which implies that H*(i*) is kS—free using
Carlson’s version of Dade’s Lemma (cf. 1.7 above). Therefore H*(S;ﬁ*(i*)) [2_1] =0.
But IH*(S;X*) [E_l] oY m*(s;k*) [E—l] by Proposition 2.4. (or rather its proof) and

* ~ % * * ¥
B (S;X )2 H (S5H (X)) by the hypercohomology spectral sequence (cf. 1.3). g

* *

3.2. Corollary. Keep the notation of Proposition 3.1. Assume that f:Z ——Y isa
* * * *

kG—chain map such that L_ N V()= 0. Then W ($2)[¥ ] — M (S;Y )[Z]

is an isomorphism. g

The above corollary generalizes the localization for the equivariant cohomology of a
pair of paracompact finite dimensional G—spaces (Z,Y) in which Y is a closed subspace
of Z containing the fixed point set ZF .

To find such shifted subgroups S C kG , we consider the growth rate of the equiva-
riant Betti numbers of a g—space or G—complex as follows. For a finitely generated
kG—module M, J. Alperin introduced the notion of "complexity", denoted by ch(M) ,

cf. Alperin—Evens [3]. Consider a minimal projective kG—resolution:

..... - P — ... P, ¢P0 - M -0 .
def dim P
Then cxn(M) = min{s| lim =— = 0 . This is the same as the growth rate of
nN——ow I

dim, B(G;M) as j—— o. In terms of the family &,
cxg(M) = max{cx(M|kE):E€ & }, see [3]. J. Carlson proved [24]
cxp = dim V(M) = dim V(M) = dim V]IS(M) . These motivate the following:

* ¥
3.3. Definition. Let X be a kG—complex. Then the complexity of X is defined as the
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n—o n

*
growth rate min { 8| lim dimy m—n-(g-él(—)- = 0} and it is denoted by ch(X*) . Simi-

larly, for a G—pair of spaces (Z,Y) or a kG—cochain homomorphism f: X —— Y* we
define their kG—complexity via the growth rate of the corresponding equivariant cohomo-
logy Hé(Z,Y;k) or hypercohomology of the mapping cone. Similar definitions are made
for chain complexes, using the dual cochain complex.

For future reference, we list some of the consequences of the above definitions follo-

wing from the known properties of complexities of G—modules.

3.4. Proposition. (a) If X* is a kG—chain complex concentrated in one dimension only,

say d, then the Alperin complexity of x4 and ch(X*) agree.

(b) ¥ X and Y are freely equivalent, then ch(X )= ch(Y ).

(c) Let X be an arbitary kG—chain complex and X be freely equivalent to X with
H' (X ) =0 unless i =d. Then c::G(X )= ch(X ) = Alperin complexity of
md(x").

(d) ch(X*) = max{ch(X*) :E € &}, and similarly for all other complexities.

() exg(X)=dimVg(X') = max{dim VE(X )|E€ &}

Proof: (a) A finite shift in dimensions of the cohomology (i.e. iterated suspension or desus-
pension) does not affect growth rate, and IH*(G;X*) n H*(G;Xd) possibly with a dimen-
sion shift.
(b) It suffices to consider a freely equivalent pair of kG—complexes X* C Y* . A compari-
son of the hypercohomology spectral sequences (see 1.3) shows that
H(GX ) ¥ H(G;Y") for sufficiently large i .
(c) With a possible shift in dimension, [H*(G;X*) n H*(G;Hd(i*)) - Moreover, dim; pt
and dim, Hn(P*) have the same growth rate a8 n —— o for any projective reso-

~ %
lution P, of Hd(X ) of finite type, and in particular the minimal resolution. To-
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gether with (a) and (b), the conclusion follows.
(d) Follows from (c) and Alperin—Evens theorem [3] mentioned above.
(e) Follows from (d) and Proposition 2.7. above.

*
3.5. Remark. Note that cxo(X ) < rkp(G) and cxq(k) = rkp(G) .

* *
3.6. Corollary. Let X bea kG—complex such that cx(X ) =8 . There exists a shifted
elementary abelian subgroup S C kG of rank m such that m+s = rkp(G) and
* *
H (§;X )[E_l] =0, where X C Hg is as in Proposition 3.1 above.

*
Proof: By 3.4 (e), dim VR(X )< forall E€ &, and there exists Ej € & with
rk(EO) = g+m . We may assume m > 0, and choose a linear subspace

*
LCVg (k)2 K@+ guch that dimL=m and LN Vg (X') = {0} by a general posi-
0 0

tion argument. The shifted subgroup S corresponding to L and the multiplicative subset

¥ chosen in Proposition 3.1 above yield the desired conclusion. g

3.7. Remarks. (a) The above corollary should be compared to the theorem of O. Kroll
[38] who proves by delicate algebraic arguments that if the complexity of a kE—module
M is s, then for a shifted subgroup S C kE of rank rk(E)—s, the restricted module
M|kS is kS—free.

(b) The notion of complexity for finite G—CW complexes and a related "isotropy varie-
ty" has been defined and studied independently by A. Adem [1] [2] in a different
context, thus generalizing Alperin’s notion of complexity of kG—modules. Adem has
applied these, as well as O. Kroll’s theorem to fixed point theory of G-CW com-
plexes and other problems.

(c) The growth rate of equivariant Betti numbers of finite dimensional paracompact
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G-spaces has been studied by Quillen [40] where he proves the analogues of Propo-
sition 3.5 (d) and (e) in terms of his varieties (i.e. the spectrum of HG(X) )- See the

following section for further relationship to Quillen’s results.
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Section Four. Comparison of Varieties.

In this section, we compare Quillen’s varieties [40] and the varieties under con-
sideration in this paper. In particular, we point out how varieties attached to infinite
dimensional G-spaces provide an abstraction of the geometric properti.es of the finite
dimensional case in this context. This leads to a basic conjecture whose understanding is
intimately related to a deeper study of the cohomological aspects of infinite dimensional
G-spaces . We provide some evidence for the truth of the conjecture.

Recall from 1.11 that to a finite dimensional G-space X , Quillen [40] has
attached the variety of the geometric points of the equivariant cohomology ring

HG(X) , which is denoted by Hq(X)(k) for the variety of k-valued points. Let

def *
Ho(Xk) = Hn(X;k)/Radical be the associated affine k—algebra , and identify

HG(X)(k) with the maximal spectrum Max HG(X;k) . The projection

1 : Xg — BG induces a k—algebra homomorphism (Hs) 4 — Hg(Xk) , and
consequently a morphism a‘1rG : HG(X)(k) — Ma.x(HG)Ied of varieties. (See the com-
ments in 1.4). The following describes the relationship between Quillen’s variety and the
support variety. The connectivity hypothesis below is technical only, in order to avoid a
lengthy discussion of the details of Quillen’s stratification theory, (see 1.11 above). The
formulation and similar proof of the general case is left to the interested reader. See
Atiyah—Mac Donald [14] or Kunz [39] for details and definitions from commutative
algebra.

4.1. Proposition: Let X be a paracompact G—space with dim X < o . Then:

(a) Foreach Ee & such that xE # ¢ , the projection 7g : Xg — B induces a
morphism *xp, : Hy(X)(k) — V(X) which is surjective and finite.
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(b) Suppose that for each maximal Ee & , XE is connected (or empty). Then there
is a morphism H(X)(k) — VG(X) induced by {rp|Ee &} which is sur-
jective and finite.

(c) dim Hy(X)(k) = dim V4(X).

* _x * *
Proof: Suppose xP # ¢ . Then 7 H (E;k) — HE(X;k) is injective. Since H (X;k)
*
is a finite dimensional k—vector space, Hp (X;k) is a finitely generated k-algebra ,

*

and a finitely generated H (E;k)—module . It follows that the k—homomorphism

TR (HE)r ed — HE(X;k) yields an integral extension of Noetherian k-—algebras so
that the induced morphism aﬂ'E : Hg(X)(k) — Max(Hp) .4 is surjective and finite
(cf. Kunz [39] pp. 44—48). Since Vp(X) = Max(Hy) ., in this case, (a) follows. To see
(b), observe that for a finite dimensional G-space X , Quillen [40] and Jackowski
[35] describe the stratifications of Hq(X)(k) and the support variety V;(X) in
terms of the corresponding locally closed subsets HE(X)(k) and Vy(X) . Recall from

L1l 8(X)={Eec £:X"#¢} and Vg(X)= lim 81(()1 Vg(X) (Jackowski [35]).
€

Quillen’s index category, denoted by .$(G,X) in [40], depends on the path com-
ponents of XE and is somewhat more elaborate. The connectivity hypothesis in (b)
above implies that £(G,X) = &(X) in this case. Thus

Hn(X)(k) = éé n; i ;d Hp(X)(k) .By naturality of the morphism =g in (a) above, we

have 113'15 n; E )12()1 g : Hg(X)(k) — V5(X) which is surjective and finite since each

7 i8 surjective and finite. (c) follows from (b). o

It is clear from the definitions that we may still consider HG(X)(k) even if
dim X = w . According to our standing hypothesis djmkH*(X;k) < o , and this suffices
to have a finitely generated k-algebra H,(X;k) which is also a finitely generated
(Hg)oq—module . However, the stratification theorem of Quillen [40] for Hq(X)(k)
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and Jackowski [35] for V4(X) uses the localization theorem and other finite dimen-
sional features of a G—space X . As far as VG(X) is concerned, we may proceed as
follows. Replace X by a suitable kG—cochain complex X* and choose a kG-—cochain
complex 'd freely equivalent to X" for which H*(i*) = Hd(i*) as in Proposition
2.7. Thus V5(X) = VG(X*) = VG(i*) and foreach Ee &,

Vé(Hd()A(*)) = VE(X*) . At this point, we may apply Avrunin—Scott’s stratification
theorem [17] (see 1.11 above) to obtain a generalization of Jackowski’s theorem [35]
below:

4.2. Propoggition. Let X be an arbitrary paracompact G—space . Then

Va(X) =1lim ind V4(X). o
G Ee & B

As for HG(X)(k) , we may well expect a generalization of Proposition 4.1 above to
hold. Indeed, let us formulate the following:

4.3. Conjecture:

(1) Let X bea paracompact G—space of arbitrary dimension. Then

HG(X)(k) = lim ind Hp(X)(k) where Hp(X)(k) are locally closed subspaces.
Ee?&

Further, each Hp(X)(k) is a finite disjoint union of irreducible pieces of the form
VE/ Q , where VE is the complement of a union of suitable [Fp—ra.tiona.l linear
subspaces of Vp on which an appropriate subgroup QC NG(E)/ CG(E) acts
freely. Here N(E) = normalizer and C(E) = centralizer of E in G.

(2) There is a finite surjective morphism HG(X)(k) — VG(X) which is induced by
g : Hp(X)(k) — Vg(X) in the following Proposition 4.4.



—-32—

4.4. Proposition. Let X be an arbitrary paracompact G-space . Then for each
Ee &, the induced morphism awE : Hp(X)(k) — VR(X) is surjective and finite.
Furthermore, if G is an abelian p—group , then the above Conjecture 4.3 (2) holds.

Proof: Suppose G is an abelian p—group and E C G is its (unique) maximal p—ele-
mentary abelian subgroup. Then the restriction PR E — G induces an isomorphism
p + H (Gik) — H (k) . Moreover, NG(E’) = G = C4(E’) for each E’ ¢ &,
and the category of elementary abelian subgroups of E and G coincide. Therefore,
Vg =Vg,and VE(X) = VG(X) by Proposition 4.2 above. From the commutative

diagram:

it follows that Conjecture 4.3 above for G reduces to the case G = p—elementary abe-

lian which we will consider next.

Hy(X;k) is a finitely generated (Hp) req—module , hence also finitely generated as a

Let Ig C (Hg) q be the annihilating ideal of Hp(X;k) as an (H

module over (HE)re d/IE . Therefore, HE(X;k) is an integral extension of

(HE)red/IE' s0 that arE : Spec HE(X;]{)——vSpec(lE[E)re 4/ 18 a finite and sur-
jective morphism. Since Max(Hp) ../Ip = Vi(X) , the restriction of awE to the sub-
space of closed points yields a finite surjective morphism aarE : Hp(X)(k) — VR(X)

as desired. 0O
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4.5. Remark. As observed by Quillen ([40] Section 12) I is invariant under the
Steenrod algebra See 1.10 above. Thus, the variety Vp(X) defined by I i8 a union of
[Fp—ra.tiona.l linear subspaces corresponding to suitable subgroups E’ CE , by a
theorem of Serre (cf. Theorem 1.10.1 above and compare with [40] 12.2). Using this
identification, Vg(X)=U Vg/(X) , abusing the notation slightly, where the union is
over subgroups E’ CE for which Vp,(X) = Vg, . This shows that Vp(X) is strati-
fied by pieces which are described in Conjecture 4.3 (1). It is reasonable to expect that
the localization theorem of Section Three and the above results could be used to prove
the above conjecture. The proof of the above conjecture is closely connected to the pro-
blem of determining when a given free infinite dimensional G-space is of the form

Eq x K for a finitely dominated G—space K, cf. Assadi [5] [9] [10].
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Section Five. Varieties and Isotropy Subgroups.

In this section we continue the comparison of finite dimensional and infinite dimen-

sional G—spaces through the more familiar notion of isotropy subgroups. The rank

variety family V' #(X) of 2.8 is a reasonable substitute for the family of isotropy sub-

groups of a finite dimensional G-space X . The following two propositions make this

point explicit. Fix a prime p| |G| , and consider #(X)={Ee:XP#¢}. #(X) is

a good homological invariant for finite dimensional G—spaces, and it includes the family

of isotropy subgroups of X if G e &.

The following elementary proposition formulates some properties of &(X) which

generalize to similar ones for its algebraic abstraction V' &(X) .

5.1. Proposition: Let X and Y be finite dimensional connected G-spaces. Then the

following hold:

(i)
(i)

(i)

(iv)

If {: X—Y isequivariant, then #(X)C #(Y).

I f in (i) above induces an isomorphism fy : H,.,(X;IFp) —»H,.,(Y;I]:p) ,
then &(X)= &(Y) . In particular, if fxid: X xE; — Y xEq is a
G—homotopy equivalence, then &(X) = &(Y).

A e &(X) if and only if in the Borel construction E, x, X X JBA,
x Hy —H, (X;IFE) is injective.

If X is a Moore space and |A| = p, then in Tate cohomology

~ % _

H (A;Hy(X) =0) implies that A e ¥(X) (and similarly for mod p
Moore spaces).

Ee #(X) if and only if SEIH;;(X;IFP) $.
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The proofs (ii}—v) follow from the Localization Theorem 1.9.1.

Similarly, for a kG—chain complex Xy let V' &(Xy) = {VE(Xs)|E ¢ &} . The

following Proposition makes the analogy between V' #(X,) and #(X) quite explicit:

5.2 Proposition: Let X, and Y, be connected augmented kG—complexes . Then the

following hold:
(i) If f: Xy — Y, isa kG—map of augmented complexes, then
Via(Xy) C Vi a(Yy).
(ii) I { in (i) above induces a homology isomorphism, then
ViE(X,) = VI &(Y,).
(iii ) Vg(k) € VF 8(X,) if and only if X (Hp)req — H*(E;x*) is injective.
(iv) Suppose X4 has only one non—trivial reduced homology group, and
A CkE is a shifted cyclic subgroup for some E € & . Then
H'(AH (X)) = 0 implies that p, (VE(K)) C VE(Xy) .
) VL() e VI #(X,) if and only if SgB (EX)#$0.
(vi) If X isa G-space, V]E(X) is a union of [F p—rationa.l linear subspaces of

Vé(k) . In particular, if dim X < o, there is a one—to—one correspondence

between &(X) and {Ee &|Vg(X)=Vg(k)}.

Proof: Suppose A e VEI}(X) for some Ee &, and let SCLE CkG be the correspon-

ding shifted cyclic subgroup, and t e H¥(S;k) , t #0 be the corresponding element,

where e=1 if p=2 and £=2 otherwise. See 1.5 and 1.6. We have the following

commutative diagram.



—36—

* % it £ _*
H(S;Y) —— H (5X)

"N /e

H (S;k)

Localization with respect to t yields a corresponding commutative diagram:

]

| —

H”(S;Y")[%] _f H(SX)[
7 a
H*(s;k)[ %]

Since A € VR(X), g (v (X)) & Vg(k) = Vg(k) .

A

g

Hence a is an injection which implies that B i8 an injection. Thus
Vg(Y) =k = Vg(Y) and consequently Vg(X4) € VE(Ys) . (ii){v) follow from similar
considerations, using Proposition 2.7 VE(X*) = VII::(X*) and the localization in 3.1.
(vi) follows from Remark 4.5. o
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Section Six. Applications to Finite Dimensionality and Finite Domination Problems.

In this section we apply the theory developed in the previous sections to provide
local-to—global criteria for finite dimensionality (up to homotopy) and finite domination
of CW complexes. Such finiteness problems arise naturally and often in geometric topo-
logy involving non—simply connected spaces. The above results allow one to reduce the
problem involving an arbitrary finite group to a similar one involving cyclic group of
prime order for which algebraic and homological computations are considerably simpler.
See Assadi [7] [8] [9] [11] for further applications of these ideas.

Let X be a CW complex. Then X is called finitely dominated if there exists a
finite CW complex K and a map f: K—— X which has a right homotopy inverse
r: X— K . A finitely dominated complex is homotopy equivalent to a finite dimen-
sional complex with finitely generated homology. This concept has an analogue in the
category chain complexes over an arbitrary ring A with a similar definition. Wall has

provided in [45] [46] algebraic conditions for finite dimensionality and finite domina-

def
tion of a CW complex X . Let A=17=x(X) and Cy = Cy(XZ m(X)) = cellular

chain complex of the universal covering space of X regarded as a A — complex . Clearly
Cy is a free connected A — complex . According to Wall, X is homotopy equivalent to
a finite dimensional CW complex if and only if C, is chain homotopy equivalent to a
projective finite dimensional A —chain complex . This reduces the problem of finite
dimensionality for spaces to a similar one for chain complexes. If X is of finite type, i.e.
every finite dimensional skeleton of X is a finite complex, then "finite dimensional" in
the above may be replaced by "finitely dominated". Quite generally, a projective
positive chain complex (P4,ds) is chain homotopy equivalent to an n—dimensional
complex if and only if Hi(P4)=0 for i>n and Image(d: P P ) isa
projective module, (see Wall [46] Theorem 6). If P, is of finite type, then the
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analoguous statement holds for finitely dominated projective complexes.

6.1. Proposition. Let X, be a connected projective ZG-chain complex with finitely

generated total homology. Then X, is chain homotopy equivalent to a finite dimen-
sional ZG-free chain complex if and only if X, ®F p is IFp [E] — chain homotopy

equivalent to a finite dimensional le [E] — chain complex forall Ee & p(G) and all
PIIG| .

Proof: Let M =XKer(d :X — X _,) for a sufficiently large n . From Wall’s crite-
rion, one sees that it suffices to prove that M is ZG-projective. According to
Chouinard’s theorem (cf. [18]}), M is ZG-projective if and only if M|ZE is
IE—projecitve for all E e Jp(G) and all p||G] . It is easy to see that the Z—free
IE-module M is ZE—projective if and only if MOIFp is [Fp [E]—free . The change

of fields from [Fp to EFp and vice versa, sends free IFp [E] —modules to [Fp [E]—mo-
dules . The passage from ZG-projective chain complexes to ZG-free complexes in the
finite dimensional case is a standard application of the Eilenberg trick. (Note that for

the finitely dominated case, this step is measured by the finiteness obstruction in

~

K (IG)). o

Having reduced the problem of finite domination involving a finite group G to a
similar question for a p—elementary abelian group E , we proceed further to give a cri-
terion in terms of cyclic groups of order p . First we mention a useful observation.

It is easy to see that finite domination is preserved under free equivalence. We re-

cord the following generalization for future reference.
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6.2. Proposition. Let R=17, IFp , or k , and consider a short exact sequence of pro-
jective RG—complexes Xy LY* —+ Z4 . The finite domination of any two com-
plexes implies that the third is finitely dominated.

Proof: Using Proposition 6.1 above, it suffices to consider the case R =k and restrict
to Ee & p(G) . Assume that X, and Z, are finitely dominated. Choose n large

enough so that H;(X4), H,(Ys), and H(Z,) vanish for all i >n . Denote the trunca-

'

; N n_,
ted chain complex 0— X X4

—...— 0 by X¢[n] and the com-

~
plementary complex by X4 such that the sequence
~
0 — X4 [n] — X4 — X4 — 0 i8 exact. Use a similar notation for Y, and Z,.

Observe that H (E;X ) H (E;H (X)) and H (X )~ ker 8 by our choiceof n. In

the ladder of E-hypercohomology long exact sequences:

o B(EXT) — B(EX") — B(EX [0]) — ...
§* 1 o' | oM’
e B(EY ) — B(EY) — B(EY [1]) — ...

_1 ¥ — *

the localized homomorphisms SElqa and SEltp[n] are isomorphisms, where SE is
the multiplicatively closed subset of HE as in Proposition 2.4. This follows from the
hypothesis that Z, is a finitely dominated kG-—projective complex, Lemma 2.5, and
the invariance of hypercohomology under chain homotopy equivalence. By the

—] ¥ *
Five—Lemma, SEltp is an isomorphism. Let &’ be the boundary operator of Y

1% , 1 ¥,k —1 ¥, x —1 ¥ )

then Sp"H (E;Ker 8") 2 Sp'H (E;Y )2 Sp'H (EX ) ¥ Sp"H (E;Ker §) =0 since
X4 1is finitely dominated by hypothesis. SE and E are arbitrary, this implies that
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Ker 8’ is cohomologically trivial (in the sense of Tate cohomology, cf. [22] [25]).

For the ring kE , cohomologically trivial modules are projective ([22]), so that Ker 8’
*

is kE—projective and Wall’s criterion implies that Y is finitely dominated. The other

cases are similar. 0O

6.3. Corollary. Let X, bea connected kG—chain complex with finitely generated total
homology. Then X, is finitely dominated by a kG—projective complex if and only if
Vp(Xs) =0 forall Ee &, or equivalently, Vg(Xs) = 0. Thus, X, is kG—finitely
dominated if and only if X,|kS is kS—finitely dominated for each shifted cyclic sub-
groupof G.

Proof. As before, we may restrict attention to an arbitrary E € & . Since free equi-
valence preserves finite domination, we may replace Xy by 5\(* as in Proposition 2.7
with homology concentrated in one dimension, say d, only. Forany n>d,

Ker(§:X — X _,) is sstably equivalent to Hd(i*) , cf. 1.8. Thus

VE(Xy) = VE(H,(X,)) = VE(Ker 6) vanishes if and only if Ker & is kE-free (by
Carlson’s version of Dade’s Lemma, cf. [23]). Now Wall [46] applies to yield the

desired claim. 0

6.4. Corollary. Suppose Cy is the cellular chain complex of the universal covering space
of the CW complex X with x(X)=G . Then X is finitely dominated if and only if
for each prime p||G| and each CCG with |C| =p, C,.,@IFp is finitely domi-

nated as an [Fp [C]—complex .

Proof: By the above Corollary, we must show that finite domination of C4 @ p over

the ring [Fp [C] asindicated in the above statement implies that VE(X*) =0 forall
. . . . . . T

Ee & . The reverse implication is trivial. But Vp(Xy) = Vp(Xs) = V(X) , and



Vg(X) is 3 union of [Fp—rationa.l linear subspaces of Vi by Serre’s theorem [43], cf.
1.10 and Remark 4.5 above. By the discussion in 1.5 and 1.6, cyclic subgroups of E
correspond to non—zero [Fp—rational vectors of Vp, (and the corresponding group alge-
bras to IFp—-rationa.I lines of Vp) . Since VC(X*) =0 and

VX&) NV =Vo(Xs) =0 (see 1.7.2), Vp(X4) contains no non—zero IFp—rational
point. Hence VE(X) = V(X) =0 asclaimed. o

To illustrate an application to geometric topology, consider the problem of con-
structing free G—actions on a closed highly—connected manifold W2 As explained in
Assadi [5] [7] methods of homotopy theory (under suitable hypotheses) lead one to the

situation where we have an infinite dimensional CW complex X with ,(X) =G, and

~N
the universal covering space of X , say X, is homotopy equivalent to W211 . In order

to replace X with a closed manifold homotopy equivalent to X , we need to decide that
X is finitely dominated. The following criterion reduces this decision procedure to a
familiar question in algebra. Notice that the structure of finitely generated Z—free
H[Hp] —modules is completely understood and it is easy to describe. But the same
question for all but a very small number of finite groups is considered a hopeless pro-

blem, cf. Curtis—Reiner [28] and Benson [18]. For related applications, cf. Assadi [7]
(8]

6.5. Theorem. Let W22 be an (n — 1)—connected finite Poincré complex n > 2. Sup-

pose that X is a CW complex whose universal covering space X is homotopy equi-
valent to W and 7;(X) =G . The necessary and sufficient conditions for X to be
finitely dominated are as follows. For all primes p| |G| and all subgroups C C G with

|C| = P, the following statements are satisfied:
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(1) the spectral sequence of the Borel construction Es x~ X — BC does not
collapse.
(11) dimy B5(C;H™(X)) > 2, where e =1 if n isevenand € =2 if n is odd.
P

6.6. Remark: Condition (IT) above may be replaced by the following more explicit con-

dition: (II') H_(X)|ZC is projectively stably isomorphic to Z® I (with trivial action)

for n=o0dd and I®I for n = even, where I is the augmentation ideal of Z[C] .

Proof: The proof is similar to the proof of Assadi [8] Theorem 6.1, where the case of
n =2 was treated, with some modifications of details. Therefore, we will only indicate
the outline of the proof incorporating such changes. The necessity of condition (I) and
(IT) or (II') is just as in [8] Theorem 6.1, and one may appeal to Assadi [12] (Theorem
3.1 and Example 3.5) for details in the case n =o0dd or n > 2. By Corollary 6.4 above,

it suffices to prove that (I) and (II) above imply that X/C is finitely dominated for
each CCG, |C| =p.

Next, we choose Y freely equivalent to )N( by adding free orbits of cells of dimen-
sion i< 2n such that Y is (2n — 1)—connected . Since free equivalence preserves finite
domination, it suffices to prove that Y is finitely dominated. Just as in {8] Lemma
6.3, one proves that the latter is satisfied if and ony if Hé(Y) =0 for i>2n+1.
Furthermore, H(i:(Y) =0 for i>2n+ 1 if and only if H(i:(x) =0 for i>2n+1.
One verifies these conditions explicitly using the Cartan—Leray—Serre spectral sequence

of X=Egq %o X — BC . The details of these calculations are carried out in [8] Lem-
mas 6.4, 6.5, and 6.6 for n = 2 . However, the general case follows by similar arguments,

since Hi(C;Zl)gHi'H(C;I) for i>0 and these H~modules are periodic. O
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Now we can apply Wall’s obstruction theory [45] [46] to decide when a finitely
dominated X as in Theorem 6.5 above (provided (I) and (II) are verified) is homotopy

equivalent to a finite Poincaré complex. For example:

6.7. Corollary. Suppose X is as in Theorem 6.5 and conditions (I) and (II) of 6.5 are

satisfied. Then there exists a well-defined obstruction §(X) e K (ZG) such that X is

homotopy equivalent to a finite Poincaré complex if and only if #(X)=10.

Proof: This is a consequence of the above discussion and the following remark about

Poincaré duality. If X is finitely dominated and X satisfies Poincaré duality, then X
satisfies Poincaré duality. See Quinn [42] and Gottlieb [33] for details. o

It is possible to be more specific about the obstruction 6(X) . For example:

6.8. Corollary. Suppose X is as in Theorem 6.5, and it satisfies the conditions (I) and

(II') of 6.5 and 6.6. Assume that G is cyclic and using (II') write H (X)~*L@L®P
where L is Z or I and P is ZG-projective . Then X is homotopy equivalent to a
finite Poincaré complex if and only if P is IG-free. D

6.9. Remarks.

(a) Notice that |G| need not be a prime, and (II’) is still satisfied for this case. See
[12] (Example 3.5 (2) and Theorem 3.1).
(b) For n=odd, according to [12] Corollary 3.2, and since H, (G;Z) =0, we have

a IG—isomorphism H_(X) ¢ " T1(Z) ® ™ }(Z) (cf. 1.8). Therefore,
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N *
Hn(X) vI®T®P where P is IG-projective due to periodicity of H (G;Z) .
The finiteness obstruction for X is precisely *[H, (Y)] , where Y is the

G—space constructed in the proof of Theorem 6.5 above.

Section Seven. Equivariant Maps and Algebraic Analogues of the Borsuk—Ulam
Theorem.

As pointed out in Section Five, for a (possibly infinite dimensional) G-space X
or a kG—chain complex Xy and each E e & , the statement VE(X) = Vé(k) and
VE(X*) = V;)(k) are the algebraic analogues of the geometric statement xE $+¢ for
the case dim X < o . Furthermore, the existence of equivariant maps between
G—spaces X and Y is related to fixed point theory of infinite dimensional G-—spaces
as follows. Let Map(X,Y) be the mapping space together with the usual action: for
ge G, feMap(X,Y), (gf)— 18 with f8(x)=¢g - f(g_lx) . Then the fixed point
set Map(X,Y)G consists of G—equivariant maps denoted by MapG(X,Y) . For
dmY <o and X=Eg, MapG(EG,Y) # ¢ if and only if Y© $¢ for Gy (le)11
by the Localization Theorem 1.9.1 (see also W.Y. Hsiang [34]). The theorems of this
section may be interpreted as generalizations of these results, and at the same time, alge-

braic versions of the classical Borsuk—Ulam Theorem. See also the Introduction.

7.1. Theorem: Suppose f: X — Y is a G—map between connected (possibly infinite
dimensional) G-spaces such that X is n—connected and H,(Y)=0 for i >n. Then

forany p| |G|, k= IFp , and the corresponding kG—varieties , one has
Va(Y) = Vg(k) and Vg(Y) =Vg(k) forall Ee & . Similarly, if X4 and Y, are

connected augmented kG—chain complexes satisfying the above connectivity
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assumptions, and f: Xy —— Y, is an augmentation preserving kG-chain homo-

morphism, then VE(Y*) = VIrB(k) forall Ee & and V(Yy) =Vq(K).

Proof: It suffices to fix a pﬁme p| |G| and prove the theorem on the level of
kG—complexes. Consider the  kE—cochain  complexes and the corresponding
kG-homomorphism .y —x . Suppose V]g(Y*) # Vé(k) so that for some
Ae V;:(k) , AE VE(Y*) . Let SCKE be a shifted cyclic subgroup corresponding to
A, 80 that A belongs to the image of pg : Vg(k) — Vg (k) . We need the following:

* L%
7.2. Lemma: Suppose that X is a connecied kG—complex such that HYX') is
*
finitely generated for all j and vanishes for j>n . Suppose A £ VE(X') and A cor-
. .
responds to a shifted cyclic subgroup S C kE . Then HY(S;k) — B¥(S;X ) is trivial for

j>n.

Proof: By taking a resolution of X* using kE—free chain complexes having a single
non—zero group, we may embed X* in a cochain complex i* freely equivalent to X*
such that HO(X*) ~k and Hi()’i*) =0 for i#n,0.(Cf Proposition 2.7). Then in the
S—-hypercohomology spectral sequence we have only two rows and the only relevant dif-
ferentials to consider are dl-l : Hj(S;Hn(i*)) — Hn+j+1(S;k) ~ k . Since X" is freely
equivalent to X , Vp(X)=Vg(X) . Thus AgV9X') . This shows that
dg : HO(S;Hn(;{*)) — Hn+l(S;k) ~ k is surjective. Otherwise, d]-i =0 forall j>0
(using the multiplicative properties of the spectral sequence and the fact that all
E,—terms are modules over H*(S;k) which has periodic cohomology). This, in turn,
implies that H*(S;k) — H*(S;i\[*) is injective, and consequently Vs(i*) v Vg(k) .
The latter implies that A e Vg(ﬁ*) , which contradicts our assumption. (Compare with

5.2.) The surjectivity of dJ yields the following calculation:
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H)(S;k) for j <n
B($;X ) = { HP(S;k)®Ker d°

Ker le; for j >n

. . Ak
It follows that HIYS;k)— E(S;X ) is trivial for j>n . Since
. A% s *
BY(S;X )~ HYS;X ) for j> n, the desired conclusion follows. o

*
By the above Lemma, Hn+1(S;k) 2 E[n+1(S;Y ) is the gero homomorphism.
* *
Let ¢: Hn+1(S;Y ) — H'H'l(S;X ) be the homomorphism in hypercohomology in-

duced by f* . Then we have a commutative diagram:
Hn'H(S;Y*)
kv B2 (s;K) é
™~
B Hn+1(S;X*)

%*
which shows that =0 . On the other hand, since X is n—connected, f is injective,

and therefore §# 0. This contradiction establishes the theorem. n
Let X and Y be G—spaces asin the above Theorem.

7.3. Corollary: Suppose that cxq(Y) < min{ch(X),rkp(G)} . Then there are no equi-

variant maps f: X — Y.
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Proof. Since cxn(X) < rkp(G) , we have x(X) < rkp(G) . According to the proof of
Corollary 3.6, there exists a A € V(k) such that A ¢ V(Y) . The Corollary now fol-

lows as in the proof of 7.2. o

The following special case may be regarded as a generalization of the Borsuk—Ulam

theorem.

7.4. Theorem: Suppose X and Y are G-spaces such that dim Y <o and
Hj(Y;le) =0 for j>n and Hj(X;[Fp) =0 for j<n. Assume that G is p—ele
mentary abelian. Then there esists an equivariant map f: X — Y if and only if

YO 14

Proof: If YO #¢, then such an f clearly exists. If YO = ¢, then V(Y) # V(k)
since G is p—elementary abelian. Now apply Theorem 7.1. o
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Section Eight. An Algebraic Analogue of 3 Conjecture of Conner and Floyd.

In this section, we illustrate another application of the above invariants to formu-
late and prove a generalization of a conjecture of Conner and Floyd. To motivate the
statement, assume first that X is a finite dimensional G—CW complex and Y is a
G—invariant subcomplex. Let C,(—) denote the cellular chains, so that Cy(X) etc.
may be considered as permutation complexes. Then, the statement (X—Y)G #¢ for
G= (E’z'p)m , is the same as Vé(C*(X)/C*(Y)) = Vé(k) by the results of Section Five.
Therefore, if X; is a kG—chain complex, and Y, is a kG—subcomplex, then the
statement Vé(x*/Y*) = Vé(k) is an algebraic substitute for the geometric statement
(X—Y)G # ¢ . Moreover, the condition Vé(X,.,/Y*) = Vé(k) (iependa only on the free
equivalence class of X4/Ys , and it is meaningful even if X, and Y, are infinite di-
mensional. Further, since Vé(X,./Yt) = Vq(Xe/Ys) , we mﬁy assume that X, and
Y, are free kG—complexes without loss of generality. In this way, we may formulate
algebraic analogues of the ;vell—known fixed—point theorems as in Section Seven and in
the following.

Using their cobordism theoretic methods, Conner and Floyd proved in [26] that if
G= (112)m acts smoothly on a connected positive dimensional closed smooth manifold
X , then XG cannot consist of one point only. They conjectured that a similar result

should holdif G=17 _, p isodd, and X is orientable. In their classical paper [13],
P

Atiyah and Bott applied their version of Lefschetz fixed point formula for elliptic com-
plexes to prove the Conner—Floyd conjecture: If f: X — X 1is a periodic diffeo-
morphism of the compact oriented Riemannian positive dimensional manifold of period
p', where p is an odd prime, then the fixed—point set of f cannot consist of one point
only. Conner and Floyd also proved their conjecture using cobordism arguments [27].
When G is an abelian p—group, p = odd prime, Browder in [21] proved by different
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techniques that the conclusion of the Conner-Floyd conjecture holds in this case for
smooth G-action on orientable closed manifolds. According to Ewing—Stong [30] the
smoothness of the G—action and the validity of the Conner—Floyd conjecture for

G=1I r implies a similar result for all abelian p—groups . On the other hand, if G is
p

not an abelian p—group (p = odd prime) , smooth actions with one fixed point exist as
demonstrated in Browder [21] and Ewing—Stong [30]. In the following, we assume
that G = (Ep)m and formulate an analogue of the Conner—Floyd conjecture which uses
a weak version of Poincaré duality on the level of chain complexes. The connectivity
assumption in Theorem 8.1 is not necessary, but the proof will be more involved.

Let Cx be a connected kG—chain complex such that Ci =0 for i<0 and
HO(C*) ~ k . We say that C, satisfies Poincaré duality in formal dimension d , if there
exists kG—homomorphisms hi :C d—i— Cl which induce a chain homotopy equiva-
lence between C* and C, (with the indicated dimension shift). For example, the cellu-
lar chain complex of a Poincaré duality complex of formal dimension d , or the singular
chain complex of a closed oriented topological manifold (with coefficients in k) are chain
complexes with Poincaré duality. If d=2n and H,(Cy)=0 for 0<i<n, then
Hj(C,) =0 for n < j< 2n and the isomorphism
by : H (C4) — Hn(C*) ~ Hom(H_(Cy) k) allows us to define the pairing
p:ENCHOENC) — E™(C) ek via e®fm— (abil(8) Y[C']  where
[C*] € Hzn(C*) ~k is a fixed fundamental class (i.e. a generator) and (, ) is the
evaluation (Kronecker pairing). As usual, 7 is a non—degenerate (& 1)-symmetric
pairing, and it is this structure of H*(C*) which we will use to prove the following ver-

sion of the Conner—Floyd conjecture.

8.1. Theorem. Assume that p is an odd prime, and G = (Z p)In . Suppose X, is an

(n —1)—connected kG—chain complex (possibly infinite dimensional) with Poincaré
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duality in formal dimension 2n > 0 . Let Y, C X« be an acyclic subcomplex, i.e.
Hy(Ys) 2 k. Then V5(X,Ys) = V(K).

Proof: To prove the assertion of the theorem, it suffices to show that for each
Ae Vé(k) and each shifted cyclic subgroup S Hp of kG the corresponding
kS—chain complexes X, and Yy satisfy Vg(Xy,Ys)#0,ie A e V5(Xy,Yy) . Thus,

we need to prove 8.1 for the special case G = Hp , a8 in the following lemma:

8.2. Lemma. Assume that G = Ep , and (X,,Y,) satisfy the hypotheses of 8.1 above.
Then V(Xs,Ys) #0.

Proof of 8.2.: We show that the assumption V(r;(X,..,Y*) = 0 leads to a contradiction.

def
*
Let C = Homk(x* /Y4,k) be the dual cochain complex. By Proposition 2.7

* *
Vg(€)=VE(C) =0 so that H*(G;C*)[%-] =0, ie the polynomial generator
te H2(G;k) acts nilpotently on H*(G;C*) . We need to prove a few lemmas:

¥ * * * * *
8.3. Lemma. H (G;X )~H (G;C )®H (G;Y ).

* *
Proof of 8.3.: Let j: Yy —— X, be the inclusion, and j# :X —Y Dbe the corres-
ponding surjection on the associated cochain complexes, and
* *
jé : E*(G;X*) — H (G;Y ) the induced homomorphism on hypercohomologies. Con-

sider the following commutative diagram:
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H (G;k)

where a and [ are edge—homomorphisms in the hypercohomology spectral sequence.
_ *
Define T=aou Lo 6_1 . Then jg o 7= identity, and 7 gives a splitting in the long

exact sequence of hypercohomology associated to the short exact sequence

*

x *
0 3 C X Ay » 0 of kG—cochain complexes. This proves the

lemma. o

¥
8.4. Lemma. Let J C H (G;k) be the ideal of nilpotent elements, and

*
R=H (G;k)/J @ k[t] the reduced commutative k—algebra with the quotient field

* « def
K ~ k(t) . For any graded H (G;k)-module M et M 4 = M /JM be the asso-

*
ciated (reduced) R—module . Then dimy H (G;X hed BpK=1.

*
Proof: Since H (G;C*) [%—] = 0 by the above discussion, the localized homomorphism
jé |:-t1-:| induces an isomorphism H*(G;X*)['il'] gﬂ*(G;Y*)[-tl-] gﬂ*(G;k)[%]
(by acyclicity of Y*) . Reduction modulo J and localization commute, so that
* * 1 * * 1 -1
€6y | §] 2@ (07 ) [ 2@ (GHp [ 1] 2x0a™ - There
fore, B (GiX') 4@ K2 (H (GX) ) | 1]® et K~ K asdesited. O

: * * *
8.5. Lemma. If H'(X') is kG-projectiveforall 0 <i < 2n,then V(X ,Y )#0.
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W % * *
Proof: In the hypercohomology spectral sequence E;’J = H'(G;HY(C ))=3 H (G;C ),
the only non—vanishing terms are E;’n = H*(G;HH(X*)) o H*(G;k) . Hence
H(GC)xH ™Gk) as H (G;k)-modules, and the annihilating ideal of H (G;C )

consists of nilpotent elements. o

8.6. Lemma. Consider the homomorphism

y: @ H(G;HYC")) ® B (GHP(CT)) — BH(G;k) which is induced by the duality
1]
pairing u: Hn(C*) ® Hn(C*) — k and cup product in group cohomology. Then « is

surjective.

Proof: By the previous lemma, we may assume that Hn(C*) is not kG-—projective .
Let M, be a non—projective indecomposable direct summand. The duality isomorphism
D: Hn(C*) ~-£, Hom(Hn(C*),k) gives rise to an indecomposable direct summand
M, C Hn(C*) such that D(M,;) = Hom(M,,k) using the Krull-Schmidt—Azumaya

theorem. If M, # M, , then choose M =M, @M, . Otherwise, let M =M, . Then

1
MC Hn(C*) and the restriction u|M ® M yields the duality isomorphism
D|M: M —=— Hom(M,k) . This allows us to identify 4|M®M: M®M — k with
the trace homomorphism 7 : End) (M) —~ k where for any

fe End, (M) 2 M ®Hom (Mk)2M®M , r{f) =trace(f) as a k-linear homomor-
phism. Since G acts on Hn(C*) by isometrics, 7 i8 a kG-isomorphism . On the
other hand, dim M1 = 0 mod p , since M1 is indecomposable and non—projective and
G= Hp . Since p is odd, dim M = 2dim M, =0 mod p as well. Therefore, a admits
a right inverse over kG, p:k — End, (M) given by p(1) = (1/dim M)(id) , where
id:M—— M is the identity and G acts trivially on k . This shows that
M®M & k ® ker(r) , and the induce homomorphism H'(G;M ® M) — H(Gk) is

split surjective. On the other hand, using the periodicity of group cohomology for
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A% A% ~
G=1, in the form H (G;M)2H (GK)® [(B%G;M) @ HY(G;M)] and the sur-
jectivity @ Hi(G;M) ® Hj(G;M) — Hi+j(G;M @ M) of the cup product in cohomology
for small values 0<i+ j<2 by direct inspection, we conclude that the cup product

n: .G_Hi(G;M) ® Hj(G;M) — Hi+j(G;M ® M) is also surjective onto the factor
1]
HH'J(G;]::) in the decomposition M @®M =k ® Ker 7 . Therefore the composition

y=Ts0n on ®H(G;M)®HYG;M) is surjective as claimed. o
i,]

Completion of the proof of 82. In the hyper—cohomology spectral sequence
EbI = BY(GEHCT)) 3 B (G;C") all terms are modules over H (Gik) , and the diffe-
rentials are H*(G;k)—linear (cf. 1.3 and its references). Here, there are only two
non—trivial rows corresponding to Hj(C*) for j=n and 2n. E;’zngH*(G;k) and
E;’n # 0 by Lemma 8.5 and our assumption Vé(X*,Y*) =0 in the beginning of the
proof of 8.2 above. The Poincaré duality of X* allows us to define the pairing
Ey" @ E)® — ES*W  Since for G-modules M; and M, , in the pairing
c(G;M,) @ CYGM,) — C'T¥(GM, @M,)  the diagonal approximation of
C'(G)= C (BG) is used, we have a "Leibniz rule" in C (Gi-) of the form
da®pf)=da®p+ (- l)deg %o ® 3, see Brown [22] and [25]. In the hypercohomo-
logy spectral sequence set-up, we have a pairing between (a priori different) three
spectral sequences and the corresponding differentials satisfy a similar Leibniz rule for
the same reason: Er(M:') @ Er(M:‘ ’) — Er(M:‘ ® M:,’) and

d(b"®b’")=d(b’)®b"" £b®d (b"), (cf. [25]). We use this structure to show
that the first possibly non—trivial differential dIl 41 E* 20 __, E*"'n’Il also vanishes

- n+1 n+1
on the polynomial generators t' e H2I(G;H2D(C )) = Eiiizn . Consider

» * . . - . .
7: B(GEYC)) @ HYGEY(C) — BH(Gik) » ELHI2®  which s surjective by
Lemma 8.6, and let (b’ ® b’ /) =t . Then

dps1(®) =dy 1(2(b @b’ 7)) = 7[d, (b/)®b’/ £b’ ® d  (b'')] =0 since

n+1(
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dn+1(b’) =0=d b’’) for degree reasons. Similarly, dn+1(tr) =0 forall r>1

n+1( .
as claimed. This in turn implies that (Em’2n)red #0 , and consequently
* *
H (G;C ). oq 2 k[t] . Together with Lemma 8.3, we conclude
* *
dimp H (G;X )re 4®r K22 . But this contradicts Lemma 8.4, and this contradiction

shows that Lemma 8.2 is true. This completes the proof of the Theorem. o
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