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Beweis: Das folgt offensichtlich aus den Definitionen und der vorher­
gehenden Proposition. q.e.d.

Lemma 1 Sei l'v! E DT('\). Es gibt eine Multimenge P(jv.l) C h· so
daß für alle! E h· n SpecT der g-Modul M C9T C ~ eine Filtrierung
mit Subquotienten 1\;J(J.l + e), J.l E P( M) hat.

Beweis: Für M E g ® T-mcxf und v E h· definiere ich den h·
Gewichtsraum MLI = {v E M)..-Yv = (.X + v(..-Y))v'lt..-Y E h}, wo die
erste Multiplikation mit X Ehe g aufzufassen ist, die zweite jedoch
mit (X +v(X)) E S. Jedes M E 'DT('\) zenallt in Gewichtsräume, die
über T lokal frei sind von endlichem Rang. Den Rest des Beweises
überlasse ich 'dem Leser. q.e.d.

Sei speziell R = 5(0) die Lokalisierung von S an der Stelle 0 E
h· C SpecT. Es gibt genau einen einfachen R·Modul cI:o = cI:.

Proposition 4 Seien M, N E DR(;\). Liefert ci> : 1\1. -+ N einen
Isomorphismus auf der Nullfa3er l'J ®R ~ --. N ®R ~, so ist rP schon
selbst ein Isomorphismus.

Beweis: Man kann jedes Objekt von 'DR(..\) in h-Gewichtsräume zer­
legen. Diese sind freie R-Moduln von endlichem Rang. Das Lenuna
von Nakayama beendet den Beweis. q.e.d.

Proposition 5 Zu jedem M E 'DR(..\) gibt es eine Lokalisierung T
von 5 nach einem Element und 1W E 'DT(..\), so dap T C Rund
1\1 0T R :: lvI.

Beweis: Die Projektoren einer Zerlegung von E ® 1VlR(..\) in eine di­
rekte Sunune "leben" nach Proposition 2 auf einer offenen affinen
Umgebung U = SpecT von 0 E h-. q.e.d.

Wir können in diesem Zusammenhang auch Verschiebungsfunkto­
ren einluhren. Zunächst bemerken wir. daß E ® j\1T(..\) =E ® (U 0b
( d:,\ @ T)) = U ®b (E ® tI: >. 0 T) eine Kompositionsreihe mit Fak­
toren 1vlT(). + 11) hat, wo 11 die Gewichte von E mit Multiplizitäten
durchläuft.

Weiter betrachten wir den Träger 5upp{ lv!R (J.l )) von Iv!R (J.l) in
Spec(Z®R). Man erkennt, daß SUpp(MR(J.l))nSupp(MR (17)) f= 0.:;·
W .J.l = W·1]. Für alle 1M E 'DR ( ..\) induziert die Zerlegung von SuppJvf
in Zusammenhangskomponenten'eine Zerlegung von j\1 in eine direkte
Summe.
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algebras, there has been a parallel theory developed by Friedlander-Parshall [31] and

Janzen [36] [37].

We briefly mention the role of this theory in what follows. Let G be a finite group

and p be a prime divisor of IGI, k an algebraica.lly closed field of characteristie p, and

M a finitely generated kG-module. For E ~ (7Lp)n .c. G I Dade [29] introduced certain

well-behaved cyelie subgroups of the group algebra kE (called "shifted cyclic subgroups")

whieh detect kE-projectivity of M . To measure the deviation from kE-projectivity of

M , Jon Carlson [23] aSBociated a homogeneous affine k-variety V~(M) which "parame­

trizes" those shifted cyclic subgroups of kE which do not act freely on M. There is also a

cohomologieal support variety VE(M) aB80ciated to M. This was inspired by Quillen's

work [40] [41] in transformation groups and group eohomology and is defined to be the

*support of the module H (E;M) in the maximal spectrum Max HE I where

HE = m H2i(E;k). For the trivial module k, there is a natural identification
i~O

VE(k) = V~(k) . Carlson [23] showed that V~(M).c.VE(M) with

dim VE(M) = dim V~(M) , and conjeetured their equality. This eonjecture was proved by

Avrunin-Scott [17]. They used it in conjunction with Green's theory of vertices and

sources [28] [32] to prove that for a general finite group G, and a kG-module M I a

suitably defined eohomologjeal support variety VG(M) possesses a Quillen stratification

[17] . That is, VG(M) is obtained from gIuing together the eollection VE(M) , where E

ranges over ~lementary abelian subgroups of G . A similar stratification is demonstrated

by S. Jackowski [35] for the equivarlant cohomology with loeal eoefficients, reproving

Avrunin-Scott's stratification theorem along Quillen's original topologieal approach. See

Section One for definitions and precise statements.

In Dur context, the above theory is interpreted and applied as follows. The "shifted

subgroups of kG tl enIarge the nation af "subgroups of G ". A suitably defined rank varie­

ty V~(X) (or V~(X*) for a kG-complex X.) parametrizes the shifted cyclic subgroups



-3-

of kG which (algebraically) behave like elements of E with non-empty fixed point sets.

*The cohomological sUPlXlrt variety VE(X) using equivariant cohomology HG(Xjk) (or

* *its algebraic version H (GjX ) ) is related to the rank variety in much the same way aB for

kG-modules: V~(X) ~ VE(X) . See Section Two. The theory is extended to arbitrary finite

groups G via the above mentioned stratification theory. The interplay between the coho­

mological variety and the rank variety allows us to formulate and prove a suitable alge­

braic analogue for The Localization Theorem in equivariant cohomology of finite dimen­

sional G-spaces. The topological form of tbis theorem is due to Borel [20], Quillen [40],

and W.Y. Hsiang [34] in cohomology, and to Atiyah-Segal [15] in equivariant K-theory.

See Section Three below for precise statements and a discussion. The most basic invariant

of a variety is its (Krull) dimension, and tbis leads to the notion of complexity. In Section

Three, Alperin's complexity theory [3] is adapted to tbis tontext, and it is used in Section

Seven to apply the above-mentioned algebraic localization to topological circumstances.

The organization and contents of the paper are as follows. In Section One, we have

collected some concepts and background material from the theory of varieties in modular

representation theory, stratification theory, and more specialized aBpects of transformation

groups. Also, much of the notations and conventions are introduced. The heading of each

subsection is intended to help the reader to choose only the needed definition or discussion.

The baBic nation of varieties are introduced in Section Two, and studied in Section Three

via localization, complexity and the role of shifted subgroups. We found it useful (also for

the sake of future reference) to include a comparison of the above varieties with their finite

dimensional predecessors, name1y the Quillen variety [40] and the support variety defined

and studied by Jackowski [35]. The analogy between IIthe rank variety family" and the

"family of p-elementary abelian isotropy subgroups" of a finite dimensional G-space (allu­

ded to in the above) is made explicit in Section Five. The material of these sections are

applied in Section Six to same problems regarding finite dimensionality and finite domi­

nation of SpateS with finite fundamental group. Further applications in tbis direction
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appear in [7] [9] and [11]. Section Seven contains applications to a very old and

c1assi-eal area of topological transformation groups. It contains an extension of the

Borsuk-Ulam Theorem to infinite dimensional G-spaces and chain complexes, as well as a

new and simple proof of a generalized form (for p-elementary abelian groups) in finite

dimensions. Recall that the classical Borsuk-Ulam Theorem states that there are no

cohomologically essential maps from the real porjective space IRpn for m > n .

Considering Sm and Sn equipped with 112-a.ctions, another fonnulation of the

Borsuk-illam theorem ia that if there exists an equivariant map f: Sm --+ Sn with

71
m > n , then the fixed point set (Sn) 2 t ; .We have the following generalization to

infinite dimensions. The statement V~(Y) = V~(k) is the algebraic analogue of

11 yE 4= t/J" when dim Y < m .

Theorem. Let G be a finite group, and let X and Y be G-spaces (possibly infinite

dimensional) with finitely generated homology, and let f: X --+ Y be an equivariant

map. Suppose for some pli GI, Hi(X,1Fp) = 0 for i ~ n ,and Hi(Y,lFp) = 0 for i > n .

Then V~(Y) = V~(k) for all E E ~ .

The finite dimensional version has a more familiar statement:

Corollary. In the above theorem, assume that G ~ (llp)ID and dim(Y) < m in addition

to the hypotheses on homologies of X and Y. Then there exists an equivariant map

f : X --+ Y if and only if yG t ; .

Also, one may relate in this way the growth rate of the equivariant Betti numbers of

Y to the existence of equivariant maps f: X --+ Y aB in the corollary below:
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Gorollary. Suppose that X and Y are G-spaces (possibly infinite dimensional) aB in the

*above theorem. If the growth rate of dim HG(YjlFp) isless than the maximal rank of the

elementary abelian subgroups of G , then there are no equivariant maps f: X ---+ Y .

As a final application in tbis paper, we have considered an algebraic generalization of

a conjecture of Gonner and Floyd [26] [27] regarding the non-existence of periodie

diffeomorphsms of odd prime power order of oriented closed connected n-manifolds with

one single fixed point. This conjecture was proved first by Atiyah and Bott [13] (and

hence known as the Atiyah-Bott theorem in literature) UBing their Lefschetz-type fixed

point fonnula for elliptic complexea, and by Gonner and Floyd [27] via equivarlant

cobordism theory methods. The generation of this conjecture to abelian p-group actions on

sIDooth manifolds is due to W. Browder [21]. See Section 8 for further remarks and precise

statements.

Further References and Acknowledgement. Since the completion of an earlier version of

tbis work in 1985-86, there has been further developments wbich are related to tbis paper.

A. Adem has extended independently the notion of complexity and also applied shifted

cyclic subgroups to study group actions [1] [2], see also 3.7 (b) below. M. Özaydin has

also obtained same generalizations of the Borsuk-Ulam. Theorem for finite dimensional

G---tipaces (Section Seven) which will appear in bis forthcoming paper. D. Puppe and V.

Puppe have infonned the author that they give different proofs of Corollary 7.4. There are

also related works of A. Dold [47], Fadell-Husseini-Rabinowitz [48], Fadell-Husseini

[49], and C.T. Yang [50] on generalizations of the Borsuk-lliam Theorem among the

extensive literature in tbis direction. Frank Quinn has also observed that the results of the

author [5] lead to a finite domination criterion similar to Corollary 6.4.

The author would like to thank the above mathematicians for communicating their

results to bim. He is grateful to W. Browder, E. Fadell, S. Husseini, S. Jackowski, and
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M. Özaydin for inspiring and informative conversations. Special thanks to the referee for

helpful comments and corrections which has 100 to an improvOO exposition.
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Section One: Preliminaries

1.1. Notation and Conventions. G denotes a finite group of order IGI, and p is a prime

number dividing the order of G . IFp is the field with p-elements and k = f p is an alge­

braic closure. The cyclic group with p-elements is denoted by IIp' and a p-elementary

belian group of rank n E ~ (llp)n with generators {xl'... ,xn} is also denoted by

def def
E = <x1,... ,xn> . Then rk(E) = rank(E) = n , rkp(G) = max{n: (llp)n C. G} , and

rk(G) = max{rkp(G) : p divides IGI} . The collection of p-elementary abelian subgroups

of G is denoted by 6, or if emphasis on p is needed, by , p or , p(G) . We may

consider a category whose set of objects is K and whose morphisms are inclusions of

subgroups and inner automorphisms of G . By a slight abuse of notation, this category is

also denoted by , (or ~p(G) appropriately). Let ~ be a category and let

.:Y: K--t ~ be a functor. Then the inductive (or direct) limit of .:Y is denoted by

lim i nd sr(E) . For a G-6pace X, XG is the fixed point set of G , and H~(X) is the
E E ~

*Borel--equivariant cohomology, cf. [34]. H C is a cochain complex with G-action,

* * *H (G;C ) denotes the cohomolog of G with coefficients in C (cf. Brown [22] or Car-

tan-Eilenberg [25] who call it hypercohomology).

Throughout this paper, all G-6paces and G-chain complexes are required to have

finitely generated total homology with appropriate coefficients. Chain and cochain

complexes are often assumed to be connected, i.e. positive!y graded and their zero-degree

homology is equaI to the coefficient ring. Whenever needed, such complexes will be aug­

mented and chain maps will be augmentation preserving of degree zero. Further notation

and terminology will be introduced in the following paragraphs.

1.2. Eguivariant Cohornology. Let EG --t BG be the universal principal G-bundle,
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and let X be a G-ßpace. The Borel conatruction EG )(G X --!........... BG ia the aBaociated

fibre bundle with fibre X . The notation XG == EG )(G X is orten used. For a commuta­

tive ring R with identity, the Borel equivariant cohomology with coefficients in R ia

* def * * * *
HG(X;R) = H (EG )(G XjR) . Uaing ~ : ~ (GjR) ------t H (EG )(G XjR) , we may

* * * *regard HG(XjR) aB a graded H (GjR)-module, where H (GjR) == H (BGjR) . It ia well-

* *-known th.at H (GjR) is a finitely generated R-algebra and HG(XjR) is a finitely gene-

* m .
rated graded H (G;R)-module whenever e H1(X;R) ia finitely generated. Similar re-

i=O

marks apply to a pair oI G-5paces (X,Y).

1.3. EguiYarlant CQhomology for Chain Complexes (Hypercohomology). Now assume that

* *C ia an RG-cochain complex and Q is an injective resolution of R over RG . In ana-

* •logy with G-ßpaces, we form the double complex Q ~G C and define the cohomology of

• * * def *. *
G with coefficients in C : H (GiG) = H (Q 8 G G ) :: cohomology of the associated

* *total complex. In the terminology of Carlan-Eilenberg [25], H (GjG ) ia called "the

•hypercohomologyll of G with coefficients in C . See also Brown [22] for further details.

We may take a projective resolution p. of R over RG I and form. the hypercohomology

def
of an RG~hain complex C* sin:rllarly: H.(G;C.) == H.(P. ~ C.) . These notions are

the suitable algebraic analogues of equivariant homology and cohomology, and as such,

• •they enjoy similar properties. Just aB in the case of G-ßpaces, H (G;C ) is a module over
• .. . . *

H (GjR) . In fact, the usual spectral sequence E~,J = H1(G;HJ(C )). converging to

• •H (G;C ) is the analogue oI the Serre spectral sequence for the fibration
. *

EG )(G X ------t BG with a siInilar construction. In our situation, ~ H1(C ) is finitely
1• • •generated over R. Hence H (GjC ) is a finitely generated H (GjR)-module using the

above spectral sequence. It is useful to remark that if M is a finitely generated RG-mo­

*dule, and we regard M as an RG-cochain camplex .At concentrated in one dimen-
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* * * *sion only, then H ( ~ ) = M and H (Gj ~ ) ~ H (GjM) (= cohomology of G with

* *coefficients in M) with a suitable shift in dimension. Thus, H (GjC ) is also a

*generalization of the usual group cohomology H (GjM) with twisted coefficients. Part of

our task will be to study ibis twa-fold generalization of G-fiPa.ces and G-modules to

G--chain eomplexes trom both geometrie and algebraie view-points.

1.4. Supports. Let A be a commutative ring with identity and let M be a finitely gene­

rated A-module. The set of maximal ideals of A , denoted by Max A , together with the

Zariski topology is the subspace of closed points of Spec A . The support of M in

Spec(A) is defined aB usua!: supp(M) = { .ti E Spec(A) IM~f O} , and

def
Max supp(M) = Max(A) n Supp(M) ,where M.ti is the localization of M at the ideal

~ . Let annA(M) CA be the annihilating ideal of M . Then supp(M) and

Max supp(M) are equivalently defined aB "the varieties" determined by the ideal

anTIA(M) in Spec(A) and respectively Max(A). See Kunz [39] and Atiyah.,....Mac Don­

ald [14]. Max supp(M) is orten abbreviated to supp(M) as weIl.

def
Recall that "reduction by the radica.l" A --+-t Ared = A/Radieal induces a ho-

N

meomorphism of topological spaces Spec(Ared) = l Spec(A) and
N

Max(Ared)~ Max(A) . This homomorphism respects the supports of modules as wel1,

def
Le. considering Mred = M ~A Ared as an Ared-module, we have

supp(Mred) ~ supp(M) and Max supp(Mred) ~ Max supp(M) . These comments apply to

*our situation aB folIows. The ring H (G;R) is graded commutative, and we will consider

the strictly commutative ring : H2i(G;R) when char(R):f: 2 . Define HG to be
i=O
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~ .
m H (Gik) when p = char(k) = odd and HG =mH1(G;k) if p = 2 . Reduction mo-
i~O

dulo radical does not affect the supports, hence we may use the unreduced ring HG in-

stead of (HG)red = HG/Ra.dical which ia commonly used in the literature (e.g. Quillen

def 2'
[40] or Benson [18]). In fact, even for p = 2 we may use HG

ev = m H l(G;k) in-
i~O

stead of EB Hi(G;k) and obtian the same answers. However, we will not insist on this
i~O

technicality and follow the established notation Avrunin-Scott [17], Jackowski [35],

Quillen [40], Carlson [23] [24].

1.5. Thc Cohoffiologieal Variety of Elementary Abelian p-Groups. Let

n *E ~ (1lp) = <x1,... ,xn> , and recall that H (E;lFp) ~ A(u1, ... ,un) 8 (fP [tl' ... ,tn] for

*p = odd I and H (E;lF2) ~ IF2 [tl' ... ,tn] otherwise (using the Künneth formula and the

*explicit computation of H (llpilFp) ). Here, A(ul""'un) is the exterior algebra associated

to the vector space H1(E;lFp) whose basis {u1,... ,un} is determined by the choice of

generators {x1,... ,x } ( E . Namely, u· is dual to x· when we consider E as an [f -vec-
nIl p

tor space of dimension n with basis {xl'""xn} and identify H1(EilFp) :; Hom
llp

(E,llp) ,

Moreover, the Backstein ß: H1(E;1F ) ----+ H2(E;1F ) is an isomorphism and ß(u.) = t ..P plI

It follows that the radical of H*(E;IFp) is generated by H1(E;1Fp) for p = odd , and it is

zero for p = 2 . Thus changing rings from lFp to k yields H~v/Radical ~ k [tl' ... ,tn]

and the radical of H~v is complementary to the subalgebra k [tl' ... ,tn] . Moreover,

Max HE = Max(HE)red is isomorphie to the n-dimensional affine space kn over k, and

we may regard k [tl' ... ,tn] as its coordinate ring.

Following Avrunin-Scott [17], we denote Max HE by VE ' and proceed to de­

scribe VE in terms of the group algebra kE. Let 0 ----+ J ----+ kE~ k ----+ 0 be

s
the augmentation sequence, and 0 ----+ J2 ----+ J t- - - • L--t 0 be a splitting of

J2 (J as k-vector spaces where we will identify L and s(L) so that J = J2 mL . It will
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be convenient to choose L == k-vector spare generated by {x1-l,... ,xn-l} for

E = <x1,... ,xn> . Since H1(E,k) ~ Homk(J/J2,k) ~ HOIDk(L,k) and

ß~ 1k : H1(E,k)~ H2(E,k) is a natural isomorphism, we obtain a natural identifi­

cation of affine k-spaces: L ~ Max(HE)red ~ Max HE = VE for p = odd and similarly

for p = 2 where (HE)red = HE .

1.6. Shifted Subgroups. Next, we diseuss "shifted cyclic subgroups of kE ", introduced by

E. Dade [29] and subsequently used by J. Carlson [23] [24] in bis theory of rank varie­

ties. We will continue to follow Avrunin-Scott [17] in our exposition below, and refer the

reader to [18] [23] and [24] for further developments and details. Corresponding to each

n

vector a = (ol, ... ,a ) E kn = J/Jn , we consider the element u = 1 + ~ a.(x.-1) E kEn aLl 1

i=l

which is seen to be a unit of order p, so that <ua> ~ IIp . The subgroup <ua> is called

a "shifted cyclic sUbgroup", and although it is not in general a subgroup of E , it behaves

very much like one. For example, kE ia a free k<ua>-a.lgebra, and induction and restric­

tion of representations, as weIl as MackeY'8 formula hold aB in the case of genuine 8Ulr

groups of E . Choosing m linearly independent vectors a(l), ... ,a(m) Ekn , ihere ia a

corresponding subgroup <ua(l)' ... 'ua(m» whieh is isomorphie to (71p)m, and it is

called a "shifted subgroup of rank m 11. Juat as in the above kE ia a free

k<u (l)""'u (m» - module. The choice of a vector a EL leads to the inclusions
a a

Pa: k<ua> -------t kE, P~ : k{ a} -----+ L and projections

* I" * 1'"
RE k) aiR «ua> k) and RE a I R<u

a
> . Let

Ta: Max H<a> -------t Max HE be induced by 'K~. Then the naturality ofthe above­

-mentioned isomorphisID8 and identificatioDB yields the following commutative diagram:
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kE I L ~ Max(HE)r ed) ~ Max HE = VE

Pa1 P~1 1T a (*)

k<u a > +-- k{a} ~ Max(H<ua»red ~ Max H<u
a

> = V<u
a

>

In analogy with our previoUB notation, we will use the notation (H<u »red = k [t 0'] to
a

indicate tbis correspondence on the level of cohomology.

1.7. Varieties for Modules Now suppose M is a finitely generated kE-module. Let S CkE

be a shifted subgroup of rank m corresponding to the m-dimensionallinear subspace

k{a(l), ... ,a(m)} = La (L as in the above paragraph. "The eohomological support of M 11

def *
is defined via VE(M) = Max sUPPH (H (E;M)) and similarly

E
def *

VS(M) = Max sUPPH (H (S;M IS)) . Then the induced homomorphism HE ---; HSS

induces the morphism T S E : VS ---; VE such that T S E(VS(M)) = VE(M) . On the, ,
level of group algebra, J. Carlson [23] [24] has defined an algebraie analogue of support

for M, which he calls "the rank variety of MIland denotes by V~(M). The definition of

the rank variety appears at first to depend on the choiee of L . Namely, 11 Carlson's rank

variety of M with respect to L 11 is the set {a E LI MI <ua> is not a free

k<ua>-module} U {O} C. L together with the induced Zariski topology of L . However,

aeeording to Carlson ([23] Lemma 6.4), if a,b EJ (kE such taht a-b E J2 , then

MI k<l+a> is k<l+a>-free if and only if MI k<l+b> is k<l+b>-free. Therefore, the

def 2
above subvariety of L is isomorphie to V.~(M) = {a Ek

n
= J / J IM I<u > is not

a

free or a = O} , whieh is well-defined and does not depend on the choiee of L . V~(M) is

a homogeneous affine subvariety of J/J2 (or of L under our ehoice of identification), see

Carlson [23]. Since <ua> ~ IIp ' MI <ua> ia k<u
a
>-free if and only if
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H
i
( <u >; MI< » = 0 for al1 i > 0 . It follows that V< >(M) ~ V< > if anda Uo Uo ua

only jf V~u >(M I<u » is the one-dimensional subspace k{uo} ( L . Aeeordingly,
o a

the eommutative diagram (*) and the above discussion show that under the identification

L ~ VE ' the subset V~(M) C. L corresponds to a subset of VE(M) C. VE . The indusion

V~(M) C. VE(M) (due to Carlson [23]) was proved by Avrunin-Scott [17] to be an

equality, thus eonfirming Carlson's conjecture. Note that V[(k) = L and VE(k) = VE

for the trivial E-module k. We rephrase slightly Carlson's conjecture for future referenee.

See Avrunin-Scott [17], and Carlson [24] for a different proof.

1.7.1. Theorem (U1J Theorem 1.1) Let M be a finitely generated kE-module where

E = (llp)n . Under the identifieation V~(k) ~ VE(k) , we have V~(M) ~ VE(M) . (Fur­

ther, these identifications are natural with respect to the indusion of shifted subgroups of

kE in the above sense.) The following result of Avrunin-Seott [17] will be also useful in

the sequel.

1.7.2. Proposition (U1J COlollary 1.3). Let S be a shifted subgroup of kE , and let

T SE: VS ----+ VE be the induced morphisID as in the above. For any finitely generated,
kE-module M, TS1

E(VE(M)) = VS(M).,
See Jackowski ([35] Lemma 2.3) also for a related result.

1.8. w-=Stability. Two kG-modules MI and M2 are ealled projectively stably isomorphie

if there are kG-projeetive modules PI and P 2 such that PI EB MI ~ P 2 fD M2 (kG-iso­

morphism). Projective stable isomorphisID is an equivalence relation and the equivalence

dass of M is denoted by <M>. We define an operator w on the set of projective stable

equivalence dasses as follows. Let M represent <M>, and choose a kG-projective mo­

dule P and a short exact sequence of kG-modules 0 -----+ N ----+ P -----+ M -----+ 0 .
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Then the projective stahle equivalence dass of N is well-defined by Schanuel's Lemma

[18] , and we set <N> = w(<M» . For each n E 7l. , we define wn inductively via

",1 = w and wn+1 = wo wn
t where <M> = ",-1<N> !rom the above sequence. To

avoid excessive notation, we write "P(M) instead of ~«M» . Hy a slight abuse of

notation, we call two kG-modules M1 and M2 w-stably equivalent, if for some integers

n,m E 7l., J1(M1) = JD(M2) . This ia also an equivalence relation for kG-modules. If we

consider finitely generated kG-modules, then we require that all the projective kG-mo­

dules in the above definitions be finitely generated.

1.8.1. Lemma. Suppose MI and M2 are w-stably eqivalent. Then V~(Ml) = V~(M2)

and VE(M1) = VE(M2) for all E E 6 .

1.9. Localization in Eguivariant Cohomology. Let X be a finite dimensional paracompact

G-spa.ce and consider E E 8 a8 in 1.5 above. The simplest form of the localization theo­

rem, originally due to Borel [20] states that H;(X;IFp) is isomorphie to H;(XEjlFp)

*modulo H (E;IFp)-torsion.

*1.9.1 The Localization Theorem. Let tE E H (E;IFp) be the product 01 all non-nilpotent

elements of Hi
(E;1F ) where i = 1 if p = 2 and i = 2 if p > 2 , and letp

SE = {tm: m E 7l.} . Then for any pair of G-spaces (X,Y) with dim(X-Y) < CD and

E -1 * -1 * . .X C. Y , we have SE HE(X;R) ~ SE HE(Y;R) where R = 0=P 01 k. In partIcular, If

dim X < CD then XE = ; if and only if SE1H;(X;R) = 0 .

See [20] [40], and for a generalized version [34]. This simple statement has far­

reaching consequences, but it falls to be true jf dim X = CD • See Section Three below for

further discUBsion.

1.10. The Steenrod Algebra. We need abrief discussion of the role of the Steenrod algebra
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in thia context. Let .A denote the Steenrod algebra of reduced power operations mod p

[44]. It ia convenient to ignore the Bockstein when p > 2 I so that .A is generated by

. * *,91, i ~ 1 , subject to the Adem relations. Let .9: H (XjlFp) --+ H (XjlFp) [tl be the

total operation ,9 (x) = x + ,91(x)t + 00. + ~(x)ti + 00 •• Then .9 ia a ring homo­

morphism by the Cartan formula. If k is any field of characteristic p, the operation of

. *.r and .9 are defined on H (X;k) by extending the scalars. The action of .9 on

*HE eH (BE;k) is quite simple to describe. Let HE =k [xl'oo.,xml . Then

.9(xi) = Xi +x1tP . The following theorem of Serre characterizes A - invariant ideals of

HG'

1.10.1. Theorem (Serre [43]). Let 1 ( K [xl'.oo,xm] be a homogeneous ideal, where

k = rF . Suppose the ideal I is invariant under the transformation x. --+ X. + x~ .
P 1 1 1

Then I is generated by products of (fp-rational (Le. with IFp--eoefficients) linear polyno-

mials.

In [40], Quillen applied 1.10.1 to identify the prime ideals in HG(X)(k) which are

.A - invariant. See 1.11 below.

1.11. Stratification. For a paracompact connected ~pace X with dim X < (D , Quillen

def *
considered the commutative ring Ha(X) = Ha(Xj[fp)/Radical and defined the cohomo-

logical variety of X I denoted by HG(X)(k) to be the set of ring homomorphisms

Ha(X) --+ k endowed with the Zariski topology. One cf the main results cf [40] is a

precise description of HG(X)(k) as a stratified set obtained by "gluing" the strata

HE(X)(k) in a precise manner. We describe briefly the combinatorially simpler case where

XE are connected for all E E ~ . Define 8 (X) = {E E 8 IXE f;} and consider it as

a full subcategory of ,. The stratification theorem of Quillen is conveniently incapsu­

lated as the inductive limit in the category of affine varieties:
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Ha(X)(k) = lim ind HE(X)(k). An analogue of Quillen's theorem is extended hy
E E ~ (X)

S. Jackowski [35] to the case of equivariant cohomology with Ioeal coefficients.

Following Avrumn-Scott [17], the cohomological variety VG(M) is defined for a

•finitely generated kG-module M as the union of the supports of H (GjM GD L) in

Max HG where L ranges over the (finite) set of isomorphism clas&es of simple kG-modu­

les. Thus, VG(k) = Max HG and VG(M) is a suhvariety of VG(k) . In particular, for

E E l , VE(M) ia the subvariety of Max HE ~ krk(E) defined by the annihilating ideal

•annH (H (E;M)) . Avrunin-Scott [17] proved that VG(M) has a stratification similar
E

to Quillen's stratification of HG(X)(k) . Accordingly, VG(M) ~ 1im ind VE(M) . See
E E l

Jackowski [35] also for a Ittopological" proof of this theorem. J. Carlson [24] haB a tech-

• •nically different definition using the ExtE(k,k)-module ExtE(M,M) , hut the identifica-

• •tion ExtE(k,k) ~ H (Ejk) leads to the same answer. See also G. Avrunin [16] for an

ideal-theoretic treatment .

•For a kG--complex X ,one defines the cohomological support variety in a manner

similar to the case of modules.

*1.11.1. Definition. VG(X ) is the union cf the supports cf the HG-module

• •[H (G;X ~k L) ,where L ranges cver all simple kG-modules, in Max HG . For a

def
kG--complex X. , VG(X.) = Va(Hom(X.,k)). If f: Z. ---+ Y. is a kG--chain

homomorphism of degree zero, and X. ia the mapping cone cf f J then

def •
VG(f) = VG(X.) . There is a stratification for VG(X ) juBt as for the case of modules

[17] and finite dimensional G-spaces [35].

• • ••
1.11.2. Proposition. Let X be a kG-complex. Then VG(X ) ~ li m ind VE(X ) . Simi-

E E ~
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lady, if f: Z* --+ Y*is a degree zero chain map of kG-complexes, then

VG(f) = li m ind VE(f) . See Sections Two and Four.
E E ,
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Seetion Two. Varieties.

In tbis seetion, we define rank. varieties for G-spaces and kG-ehain eomplexes, and

we study their basie properties which will be used in the fol1owing sections and the sequel

to tbis paper.

The geometrie motivation for the introduction of varieties as a basic object in study­

ing finite transformation groupe ie as follows. If a torus (Sl)n acts, say smoothly, on a

compact manifold X, then the collection of the isotropy subgroups of this action ia in

one-to-one correspondenee with certain Grrationallinear subspaces of the Lie algebra

TI(SI)n ~ IRn . Such subspaces may be determined Lie theoretically from the Lie algebras

of vector fields, and such a linearization procedure reduces the questions about isotropy

subgroups of (SI)n to the appropriate statements regarding linear subgroups of TI(SI)n .

For the group E = (71p)n , the rank variety V~(k) ~ kn playa the role of the Lie algebra

of (SI)n . Indeed, the speetrum of the local ring kE has a unique point which corresponds

to the augmentation ideal J in 0 --t J --t kE --t k --t 0 . The Zariski cotan­

gent space to Spec(kE) at the point J is the k-vector space J / J2 , and the Zariski tan­

gent space is Homk(J/J2,k) ~ H1(E;k) . Furthermore, the k-linear subspaces of J/J2

give rise to shifted subgroups of kE , in close analogy with the case of the tOTUS. For in­

stance, just as Q-rationallinear subspaces of the Lie lagebra of T correspond to closed

subgroups of T , so do IFp-linear subspaces of J/J2 to subgroups of E itself. However,

there are far more shifted subgroups of kE than subgroups of E . Therefore, in purely

algebraic situations, we need to enlarge the notion of Itsubgrouptl to include "shifted sub­

groups". It turns out that shifted subgroups play an important role in the geometrie situa­

tions as well. Through a systematic exploitation of the concept of ra.nk and support varie­

ties which keep track of tldistinguished subspa.ces ll cf J / J2 for the problem at hand, we

can play the same game with shifted subgroups as for ordinary isotropy subgroups in the
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familiar case of finite dimensional G-tipaces.

Since the definition and properties of "rank" and "cohomological varieties" for

G-spa.ces and G-chain complexes are quite &imilar, we use the notation X, Y , etc. for

* *G-spaces and X*, Y* or X ,Y etc. for chain and cochain complexes with G-a.etion.

Subject to the aBsumptions of Section One, G-spaces could be fairly general. In fact, we

apply the results about RG--chain comlexes to G-spaces by choosing suitable RG-ehain

complexes associated to the G-spaces in question. For topological applications, the singular

chains, or when appropriate, simplicial or cellulax chains are often sufficient. For more

generalspaces, Cech cochain complex etc. may be used equally effectively. In particular, for

algebro-geometric applications when the varieties (or more generally schemes) axe

considered equipped with Zariski, etale, or any of the other numeroUB non-HausdorH

topologies, the Cech complex (suitably defined) ia used. This point of view is illustrated in

Assadi [12] and will be investigated systematically elsewhere.

In Assadi [4], we introduced the nation of "free equivalence ll for G-tipaces and per­

mutation G-complexes aB a useful technical device. This equivalence relation is particu­

larly suited for defining varieties and related applications as it is illustrated in Assadi [5]

[6] [7] [8].

2.1. Definition. Two (connected) RG-ehain complexes X* and Y* are called Itfreely

equivalent" if there exists a (connected) RG-chain complex Z* and injective chain homo­

morphisma X.~ Z* aud Y.~ Z. such that Z./X* and Z./Y* are RG-free

chain complexes with finitely generated total complexes over RG. Similarly, free equiva­

lence of (connected) G--ßpaces X and Y ia defined by requiring the existence of a

(connected) G-ßpa.ce Z and equivariant embeddings X ----+ Z and Y ----+ Z such

that Z-X and Y-X are free G-spaces and Z/X and Z/Y are compact.

2.2. Remark. The hypotheses of finite generation and compactness in the above definition
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are for eonvenienceJ since in the applications below tbis will suffice. More generally, we

may require only the finite generation of the total cohomology together with finite dimen­

sionality of Z*/X*, Z/X, ete. and modify the following arguments aeeordingly. The folio­

wing lemma is elementary.

2.3. Lemma. (a) Free equivalence ia an equivalence relation. (b) In the eategory of G-eW

complexes, if two G-CW complexes are freely equivalent, then their cellular RG-ehain

complexes are freely equivalent as RG--eomplexes. •

* *2.4. Proposition. Suppose X and Y are kG-eomplexes which are freely equivalent.

For each E E 6, let SE (HE be a non-empty multiplicatively cloaed subset. Then

-1 * * -1 * *there exist isomorphisms <t'E: SE IH (E;X ) --+ S IH (EjY ) . If the collection

{SE: E E K} ia chosen compatible with the morphiama of ~,(Le. E I I SE ia a

contravariant functor of 6), then f{J == {<t'E lEE K} describes a natural transformation

-1 * * -1 * *between the funetors E I I SE IH (E;X ) and E I I SE (H (EiY ) .

Proof: Without loss of generality, we may &Saume that SE has no nilpotent elements.

Further, the assertion of the proposition reduces to the ease where we have a aurjeetive

* *kG--ehain map f: X --+ Y such that Ker(f) ia a fini tely generated bounded free

* f *kG-eomplex. The short exaet sequence 0 --+ Ker( f) --+ X I Y --+ 0 yields

a long exact sequence in hypercohomology

*. . * fE . *
..... --+ [Jf(E;Ker(f)) --+ [Jf(E;X ) liW(E;Y ) --+ .....

as in the ease of group cohomology (see Cartan-Eilenberg [25] or Brown [22]). Since

localization ia an exaet funetor, the first assertion of the proposition followB from the claim
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1 * def 1 *
that SE D-I (E;Ker(f)) = 0 . Setting 'PE = SE fE ' the second assertion is easily verified

due to functoriality of the above argument. Thus the following lemma finishes the proof of

the proposition. _

*2.5. Lemma. Suppose that C is a bounded free kG-complex, and E E K and SE are

-1 * *as in the above proposition. Then SE D-I (EiC ) = 0 .

* * def n *
Proof: First assume that H -length (C) = {n: H (C ) 1 O} = 1 . Consider the spec-

* * * * * ** **tral sequence H (E;H (C )) =t '1 r(D-I (E;C )) in which the E2 ,and hence all the Ei

* *are HE-modules. This spectral sequence degenerates when H -length (C ) = 1 , so that

* * * * *D-I (EiC ) ~ H (EiH (C )) with a suitable shirt in the dimension. Moreover, it is easy to

* * *see that in this case H (C ) is also a Iree kE-module since C is bounded and kG-free

*(e.g. by splitting C into short exact sequences). Hence

1* * 1* * * * *SE IH (E;C ) ~ SE H (E;H (C )) = 0 . Next, assume that H -length (C ) = m+1 . Then

*we can "kill the first non-vanishing cohomology" of C and obtain a short exact sequence

* * * * *of kG--eomplexes 0 ------+ C ------+ B ------+ A ------+ 0 in which H -length (B ) = n

* *and H -length (A ) = 1 . The long exact aequence of hypercohomology, localization, and

* *induction on H -length (C ) completea the proof of the lemma. _

* *2.6. Corollary. Suppose X and Y are freely equivalent k~omplexes. Then:

* *(a) for each E E K , the support varietiea VE(X ) = VE(Y ) .

* *(b) VG(X ) = VG(Y ) .

* * *Proof: By definition, VE(X ) ia the support of the HE-module IH (EiX ) . (a) follows

from Proposition 2.4 and elementary considerations about supports, (see Section One 1.4).

(b) follows from (a), the functoriality assertion in Proposition 2.4, and the stratification
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theorem:

See 1.11. •

Just aB in the case of modules, the next step ia to describe cohomological support

varieties in terms of G itself (or rather kG).

* ~*2.7. Proposition. Let X be a kG~mplex. There exista a kG-ehain complex X !reely

* * ~ *
equivalent to X such that H (X ) ia concentrated in one degree, 8ay d. ~urther, the

d ~* *
rank varieties V~(H (X )) are well-defined for all E E 8 and they depend only on X

~* d ~* *
and not on the choice of X . In fact, V~(H (X )) = VE(X ) under the identification

V~(k) = VE of Section One 1.5.

~*
Proof: The existence of X follows !rom the familiar procedure of "killing homology"

inductivelyas in the case of G-ßPaces. (See Assadi [5]). Namely, let n be the smallest

* *integer such that Hn(X ) *0 . Consider a free kG-module F, and let F be the cochain

complex with pi = 0 for i *n and rD. = F . We choose F and an injective kG-homo-

n * * *morphism f: H (X ) ---+ F . As UBual, there is a cochain map C{J: X ---+ F of de-

* n * n *gree zero such that the induced homomorphisID cp : H (X ) ---+ H (F ) = F is the

* *above f. The mapping cone of C{J, Bay Y ,is a kG-romplex such that Hi(Y ) = 0 for
~*

i ~ n . The repetition of this procedure yields a kG--eomplex X aB desired above. To see

d ~ * ~ *
that V~(H (X )) does not depend on the choice of X ,we may proceed direct1y as in

d "* d' ~ *
Assadi [5] and show that H (X ) and H (X') are w-stably equivalent for two choi-

~ * ... *
ces of X and X' satisfying the assertion of the proposition (cf. 1.8). Since the rank
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variety of a module does not change under the operation w (see 1.8.1), the result follows.

* "'*AlternativelYl we may proceed as folIows. According to Corollary 2.6, VE(X ) = VE(X ) .

* "'* * d "'*
Hut (H (EjX ) ~ H (EjH (X )) since the hypercohomology spectral sequence

* d "'* * "'* "'* d "'*
H (E;H (X » ~ IH (EjX ) degenerates. Thus VE(X ) = VE(H (X » . By Avrunin-

-Scott's affirmative answer to the Carlson Conjectnre [17], VE(Hdei*» = V~(Hdrx.*»
d "'* * d "'*(see 1.7.1.). Therefore, V~(H (X )) = VE(X ) and V~(H (X )) does not depend on the

"'*
choice of X. •

* "'*2.8. Definition. Let X be a k~omplex, and let X be a kG-eomplex freely equivalent

* *to X as in Proposition 2.7. For each E E 6 , the E-rank variety of X is defined via

r * def r d '" * r r *
VE(X) = VE(H (X » . For achain complex X*, VE(X.) == VE(X ) . For

f: Z* --+ Y* a kG-ehain map of degree zero with mapping cone X* ,

def * def r *
V~(f) = V~(X*) . The collection V 6 (X) = {VE(X ) : E E 6} is called the rank

*variety family of X .

2.9. Rernark. Similarly, for paracompact G-spaces we define the rank variety using their

Cech or singular cochain complexes, e.g. For a G-map f: Z --+ Y between paracompact

G-spaces, V~(C) is defined using the reduced cochain complex of the mapping cone of f.

For a based G-space X with XoEX
G

, V~(X,Xo) = V~(C*(X)/C*({xO})) . In Assadi

[5], the notation V~(X) was used instead of V~(X,xO) above. Since in [5] all G-;;pa­

ces are based, with tbis slight change of notation all other definitions agree and yield the

same results.

In Sections Three and FoUl we study further propenies of varieties.



-24-

Section Three. Localization and Complexity.

Despite its simplicity, the Localization Theorem 1.9.1 plays an important role in

cohomology theory of transformation groups of finite dimensional (or compact) spaces. As

pointed out in the Introduction, this theorem falls for infinite dimensional ~pacea. The

purpose of this section ia to introduce localization for G-apaces and G-chain complexes of

arbitrary dimension in a similar spirit. The notion of complexity allows one to find suitable

multiplicatively closed subsets with respect to which localization will take place. The main

idea is to enlarge the notion of IIsubgroups oI G It to "shifted subgroups of G ". 1t turns

out that thislarger supply oI subgroups in conjunction with the family of rank varieties

*V 8 (X ) (see 2.8 and 2.9 above) suggests a usefullocalization of hypercohomology.

Recall that the identification V~(k) = VE =VE(k) of 1.5 establishes a correspon­

dence between shifted cylic subgroups of KE (corresponding to vectors in L) and ele­

ments oI Max HE = VE(k) (see 1.6). We will not consider the zero vector in V~(k) or

VE(k) which corresponds to the degenerate case of the trivial subgroup {1} ( kE . Let

{a(l), ... ,a(m)} be a set oflinearly independent veetors in V~(k), E E 8, and let

S = 51 )( ... )( Sm be the corresponding shifted subgroup of kE . As in 1.5, let

t i E Hf(S;k) be the polynomial generators of HS corresponding to a(i), where f = 1 or

2 according to p = 2 or p > 2 . Let Lm , respectively Tm' be the k-linea.r span of

{a(l), ... ,a(m)} in V~(k) ,respectively in Hf(S;k) . For any non-empty subset

~ ( Tm - {o} , we denote the localization with respect to the multiplicity closed subset

generated by ~ via ( ..... ) ~1] .

*3.1. Proposition. Let X be a kG-eomplex, E E 8 ,and S, E, Lm etc. a8 in the above.

r * * * 1
Assume that Lm n VE(X ) = 0 . Then IH (S;X )~ ] = 0 .

Proof: Unwinding the definitions, the above statement folloW8 from the equality
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* ... * •
V~(X) = VE(X ) . Let X be freely equivalent to X ,satisfying the conditions of Pro-

* ... * .....
position 2.7. Then L nV~(H (X » = 0 , which implies that H (X ) is kS-free using

* ... * ... * 1
Carlson's version of Dade's Lemma (cf. 1.7 above). Therefore H (SjH (X »[L ] = 0 .

* • 1 * ... * 1Hut lH (S;X ) W ] ~ lH (S;X ) [~] by Proposition 2.4. (or father its proof) and
* ... * * .....

IH (S;X ) ~ H (SjH (X » by the hypercohomology spectral sequence (cf. 1.3). _

• *3.2. Corol1m. Keep the notation of Proposition 3.1. Assume that f: Z --+ Y is a

r * * 1 * * 1kG-ehain map such that Lm nVE(!) = 0 . Then IH (SjZ ) W ] --+ IH (S;Y ) W ]
is an isomorphism. _

The above corollary generalizes the localization for the equivariant cohomology of a

pair of paracompact finite dimensional G-spa.ces (Z,Y) in which Y is a closed subspace

of Z containing the fixed point set ZE.

To find such shifted subgroups S ( kG , we cansider the growth rate of the equiva­

riant Betti numbers of a g-space or G--eomplex as follows. For a finitely generated

kG-module M, J. Alperin introduced the notion of "complexity", denoted by CXG(M) ,

cf. Alperin-Evens [3]. Consider a minimal projective kG-resolution:

..... --+Pn --+·····--+P1--+ PO---+ M ---+ O .

def { dim P n }
Then cxa(M) = min s I !im 8 = 0 . This is the same as the growth rate of

n--+CD n

dimk Hj(G;M) as j --+ CD . In terms of the family 6,

cxG(M) = max{cxE(M IkE) : E E K } , see [3]. J. Carlson proved [24]

cxE = dim VE(M) = dim VE(M) = dim V~(M) . These motivate the following:

* *3.3. Definition. Let X be a kG-complex. Then the complexity oI X is defined as the
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growth rate min { 5 i Um Nm ± G{ = o} and it is denoted by cxG(X*) . Simi-
n~m n

* *lady, for aG-pair of Spates (Z,Y) or a kG--cochain homomorphism f: X ----+ Y we

define their kG--eomplexity via the growth rate of the corresponding equivariant cohomo­

*logy HG(Z,Yjk) or hypercohomology of the mapping cone. Similar definitions are made

for chain complexes, using the dual cochain complex.

For future reference, we list some of the consequences of the above definitions follo­

wing from the known properties of complexities of G-modules.

*3.4. ProDosition. (a) If X is a kG--cl.ain complex concentrated in one dimension only,

say d, then the Alperin complexity of Xd and CXG(X*) agree.

* * * *(b) If X and Y are freely equivalent, then CXG(X ) = cxG(Y ) .

* ~* *(c) Let X be an arbitary kG--ehain complex and X be freely equivalent to X with
. ~* * ~*

H1(X ) = 0 unless i = d . Then cxG(X ) = cxa(X ) = Alperin complexity of

Hd(X*) .

* *(d) cxG(X) = max{cxE(X ) : E E 8 } I and similady for all other complexities.

* * r *
(e) cxG(X) = dim VG(X ) = max{dim VE(X ) lEE ~ }

Proof: (a) A finite shift in dimensions of the cohomology (Le. iterated suspension or desus-

* * * dpension) does not affect growth rate, and IH (G;X ) ~ H (G;X ) possibly with a dimen-

sion shirt.

* *(b) It suffices to consider a freely equivalent pair of k~omplexe8 X .c Y . A compari-

san of the hypercohomology spectral sequences (see 1.3) shows that
. * . *

1Jf(G;X ) ~ 1Jf(GiY ) for sufficiently large i .

* * * d ~* n
With a possible shirt in dimension, IH (G;X ) ~ H (G;H (X )) . Moreover, dimk P

*and dimk Hn(P ) have the same growth rate as n ----+ m for any projective reso-

lution P* of Hd(X*) of finite type, and in particular the minimal resolution. To-
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gether with (a) and (b), the conclusion folIows.

(d) Follows !rom (c) and Alperin-Evens theorem [3] mentioned above.

(e) Follows !rom (d) and Proposition 2.7. above. _

* *3.6. Corollary. Let X be a kG-eomplex such that cxG(X ) = s . There exists a shifted

elementary abelian subgroup S (kG of rank m such that m+s = rkp(G) and

a-t (SjX*) [LI] = 0 ,where E ( HS is aB in Proposition 3.1 above.

*Proaf: By 3.4 (e), dim V~(X ) ~ s for all E E ~ , and there exists EOE 6 with

rk(EO) = s+m . We may assume m > 0 , and choose a linear subspace

L (V~ (k) ~ km+l such that dim L = m and L nV~ (X*) = {O} by a general posi-
o 0

tion argument. The shifted subgroup S corresponding to L and the multiplicative subset

E chosen in Proposition 3.1 above yield the desired conclusion. _

3.7. Remarks. (a) The above corollary should be compared to the theorem of O. Kroll

[38] who proves by delicate algebraic arguments that if the complexity of a kE-module

M ia 8, then for a shifted subgroup S (kE of rank rk(E}-6, the restricted module

MI kS ia kS-!ree.

(b) The notion of complexity for finite G-eW complexes and a related "isotropy varie­

tyll has been defined and studied independently by A. Adem [1] [2] in a different

context, thus generalizing Alperin's notion of complexity of kG-modules. Adem has

applied these, as weil as O. Kroll's theorem to fixed point theory of G-eW com­

plexes and other problems.

(c) The growth rate of equivariant Betti numbers of finite dimensional para.compact
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G-5paces has been studied by Quillen [40] where he proves the analogues of Propo­

sition 3.5 (d) and (e) in terms of bis varieties (Le. the spectrum of Ha(X) ). See the

following section for further relationship to Quillen's results.
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Section FoUI. Comparison of Varieties.

In this section, we compare Quillen's varieties [40] and the varieties under eon­

sideration in tbis paper. In partieular, we point out how varieties attached to infinite

dimensional G-5paces provide an abstraction of the geometrie propenies of the finite

dimensional case in tbis context. Tbis leads to abasie conjecture whose understanding is

intimately related to a deeper study of the cohomologica1 aspects of infinite dimensional

G-spaees . We provide some evidenee for the truth of the eonjeeture.

Recall !rom 1.11 that to a finite dimensional G-apace X, Quillen [40] has

attaehed the variety of the geometrie points of the equivariant cohomology ring

HG(X) , whieh is denoted by HG(X)(k) for the variety of k-valued points. Let

def *
HG(X;k) = HG(Xjk)/Ra.dical be the associated affine k-algebra, and identify

HG(X)(k) with the maximal speetrum Max HG(Xjk) . The projeetion

7I"G : XG ----t BG induees a k-algebra homomorphism (HG)red ----t HG(X;k) , and

consequently a morphism a1rG : HG(X)(k) ----t Max(HG)red of varieties. (See the com­

menta in 1.4). The following deseribes the relationship between Quillen's variety and the

support variety. The connectivity hypothesis below is technica1 only, in order to avoid a

lengthy discussion of the details of Quillen's stratification theory, (see 1.11 above). The

formulation and similar proof of the general case is left to the interested reader. See

Atiyah-Mae Donald [14] or Kunz [39] for details and definitions frOID commutative

algebra.

4.1. Proposition: Let X be a paracompact ~pace with dim X < m . Then:

(a) For each E E. l such that XE # t/J , the projection 1rE : XE ---+ BE induces a

morphisID a1rE : HE(X)(k) ---+ VE(X) which is surjective and finite.
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(b) Suppose that for each maximal E E 8 , XE ia connected (or empty). Then there

is a morphism HG(X)(k) -----t VG(X) induced by {'irE lEE K} which is sur­

jective and finite.

(c) dim HG(X)(k) = dim VG(X) .

E * * * *Proof: Suppose X f l/J . Then 1fE : H (Ejk) -----t HE(Xjk) is injective. Since H (Xjk)

*is a finite dimensional k-vector space) HE (X;k) is a finitely generated k-algebra)

*and a finitely generated H (E;k)-module . It follows that the k-homomorphism

1fE : (HE)red -----t HE(X;k) yields an integral extension of Noetherian k-algebras so

that the induced morphism a1rE : HE(X)(k) -----t Max(HE)red ia surjective and finite

(cf. Kunz [39J pp. 44--48). Since VE(X) == Max(HE)red in this case, (a) follows. To see

(b), observe that for a finite dimensional G-fipace X, Quillen [40] and Jackowski

[35] describe the stratifications of HG(X)(k) and the support variety VG(X) in

terms of the corresponding locally closed subsets HE(X)(k) and VE(X) . Recall !rom

1.11 8(X) = {E E K : XE f l/J} and VG(X) = 1 im ind VE(X) (Jackowski [35]).
EE 8(X)

Quillen's index category, denoted by A(G,X) in [40] t depends on the path com-

ponents of XE and is somewhat more elaborate. The connectivity hypothesis in (b)

above implies that ..Jt(G,X) = ~(X) in this case. Thus

HG(X)(k) = 1 im i nd HE(X)(k) .Hy naturality of the morphiaID 'KE in (a) above, we
EE K(X)

have 1 i ID i nd 1rE : HE(X)(k) -----t VG(X) which ia surjective and finite since each
EE 8(X)

'KE is surjective and finite. (c) follows from (b). 0

It is clear from the definitions that we may still consider HG(X)(k) even if

*
dim X = III . According to our standing hypothesis dimkH (X;k) < III , and this suffices

to have a finitely generated k-algebra HG(Xjk) which ia also a finitely generated

(HG)red-module . However, the stratification theorem of Quillen [40] for HG(X)(k)
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and Jackowski [35] for VG(X) uses the localization theorem and other finite dimen­

sional features of a G-space X. As far as VG(X) is concernedJ we may proceed aB

*foilows. Replace X by a auitable kG-cochain cOlll;plex X and choose a kG-cochain
A* * * A* d A*

complex X freely equivalent to X for which H (X ) = H (X ) as in Proposition
* A*

2.7. Thus VG(X) = VG(X ) = VG(X ) and for each E E 6 ,

V~(Hd(:x*)) = VE(X*). At this point, we may apply Avrunin-Scott'a atratification

theorem [17] (see 1.11 above) to obtain a generalization of Jackowski's theorem [35]

below:

4.2. Proposition. Let X be an arbitrary paracompact G-space. Then

As for HG(X)(k) J we may weil expect a generalization of Proposition 4.1 above to

hold. Indeed, let us formulate the foilowing:

4.3. Conjecture:

(1) Let X be a paracompact G---ßpace of arbitrary dimension. Then

Ha(X)(k) = lim i nd HE(X)(k) where HE(X)(k) are locally closed subspaces.
EE tJ

Further, each HE(X)(k) is a finite disjoint union of irreducible pieces of the form

V~/Q ,where Vi is the complement of a union of suitable (fp-rational linear

subspaces of VE on which an appropriate subgroup Q ~ Na(E)/Ca(E) acta

freely. Here NG(E) = normalizer and CG(E) = centralizer of E in a .
(2) There is a finite surjective morphism HG(X)(k) --+ VG(X) which ia induced by

a1rE : HE(X)(k) --+ VE(X) in the foilowing Proposition 4.4.
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4.4. Proposition. Let X be an arbitrary paracompact G-ßpace. Then for ea.ch

E E. 6 , the induced morphism a7l'"E: HE(X)(k) ---t VE(X) is surjective and finite.

Furthermore, if G is an abelian p-group, then the above Conjecture 4.3 (2) holds.

Proof: Suppose G is an abelian p-group and E ~ G is its (unique) maximal p-ele­

mentary abelian subgroup. Then the restriction !JE: E ---+ Ginduces an isomorphism

* * *!JE : H (G;k) ---+ H (Ejk) . Moreover, NG(E / ) = G = Ca(E') for each E' E. ~ ,

and the category of elementary abelian subgroups of E and G coincide. Therefore,

VG = VE ,and VE(X) = Va(X) by Proposition 4.2 above. From the commutative

diagram:

---tl HE(X;k)

11r;

it follows that Conjecture 4.3 above for G reduces to the case G = p-elementary abe­

lian which we will consider next.

Let IE ~ (HE)red be the annihilating ideal of HE(X;k) as an (HE)red-module.

HE(X;k) is a finitely generated (HE)red-module, hence also finitely generated as a

module over (HE)red/IE' ThereIore, HE(X;k) is an integral extension oI

(HE)red/IE' so that &1rE : Spec HE(X;k) ---+ Spec(HE)red/IE is a finite and sur­

jective morphism. Since Max(HE)red/IE = VE(X) , the restriction of a'KE to the sub­

space of closed points yields a finite surjective morphism &lI"E: HE(X)(k) ---+ VE(X)

as desired. Cl
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4.5. Remark. As observed by Quillen ([40] Seetion 12) IE is invariant under the

Steenrod algebra See 1.10 above. Thus, the variety VE(X) defined by IE is a union of

IFp-rational linear subspaces corresponding to suitable subgroups E I ~ E I by a

theorem of Serre (d. Theorem 1.10.1 above and compare with [40] 12.2). Using this

identification, VE(X) = UVE I (X) I abusing the notation slightly I where the union is

over subgroups E I ~ E for which VE I (X) = VE" This shows that VE(X) is strati­

fied by pieces which are described in Conjecture 4.3 (1). It is reasonable to expect that

the localization theorem of Section Three and the above results could be used to prove

the above conjecture. The proof of the above conjecture is closely connected to the pro­

blem of determining when a given free infinite dimensional G-;;pace is of the form

EG )( K for a finitely dominated G-6pace K, cf. Assadi [5] [9] [10].
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Section Five. Varieties and Isotrooy Subgroups.

In this section we continue the comparison of finite di~ensional and infinite dimen­

sional G---fipaces through the more familiar notion of isotropy subgroups. The rank

variety family Vr 6(X) of 2.8 is a reasonable substitute for the family of isotropy sub­

groups of a finite dimensional G-space X. The following two propositions make this

point explicit. Fix a prime pli G I J and consider '(X) = {E E. : XE :f= t/J}. ~(X) is

a good homological invariant for finite dimensional G-spaces, and it includes the family

of isotropy subgroups of X if GE.'.

The following elementary proposition formulates some propenies of 6(X) which

generalize to siInilar ones for its algebraic abstraction Vr ,(X) .

5.1. Proposition: Let X and Y be finite dimensional connected G-spaces. Then the

following hold:

(i) If f: X --+ Y is equivariant, then ,(X) ~ '(Y) .

(ii) If f in (i) above induces an isomorphism f*: H*{X;O=p) --+ H*(YjO=p) ,

then 6(X) = ~(Y) . In panicular, if f x id : X x E
G

--t Y x E
G

ia a

G-homotopy equivalence, then 6(X) = 8{Y).

(iii) A E. ~(X) if and only if in the Borel construction EA )( A X~ BA ,

*1(" : HA --+ HA (X;IF ) ia injective.
~

(iv) If X is a Moore space and IA I = P , then in Tate cohomology

.. *
H (A;H*(X) = 0) implies that A E. 6(X) (and similarly for mod P

Moore spaces).

(v) E ~ ~(X) jf and only if SEIH;(XjlFp) :f: tP .
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The ploofs (ii)-{v) follow from the Localization Theolem 1.9.1.

Similarly, fOI a kG-ehain complex X* let V
r

6(X*) = {VE(X*) 1E €. 6} . The

following Ploposition makes the analogy between VI ~(X*) and 6(X) quite explicit:

5.2 Proposition: Let X* and Y* be connected augmented k~mplexes. Then the

following hold:

(i) If f: X*~ Y* ia a kG-map of augmented complexes, then

VI I(X*) ~ VI ~(Y*) .

(ii)

(üi)

(iv)

If f in (i) above induces a homology isomorphism, then

VI 6(X*) = VI I(Y*) .

I r * * *VE(k) €. V 6(X*) if and only if ?r : (HE)red~ H (EjX ) is injective.

Suppose X* has only one non-trivial reduced homology group, and

A ( kE is a shifted cyclic subgroup fOI some E E. 6 . Then

"'* -* * I rH (A;H (X )) = 0 implies that PA(VA(k)) (VE(X*) .

I ( ) I ( ). . -1 *( *) .J..(v) VE k €. V 6 X* If and only If SE H E;X T 0 .

(vi) If X is a G-space, V~(X) ia a union of IFp-rational linear subspaces of

V~(k) . In particular, if dim X < m , there is a one-to-one cOlrespondence

between 8(X) and {E €. 61 V~(X) = V~(k)} .

Ploof: Suppose ;\ €. V~(X) fOI some E E. " and let S ( kE ~ kG be the correspon­

ding shifted cyclic subgroup, and t E. HC(S;k) , t *0 be the collesponding element,

where C= 1 if p = 2 and E: = 2 otherwise. See 1.5 and 1.6. We have the following

commutative diagram.
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•
• • f • *H (S;Y ) ---tl H (SjX )

*H (Sjk)

Localization with respect to t yields a corresponding commutative diagram:

* * [1]H (SjY) t

ß '\ 1 Q

H\S;k) [ }]

Hence ä is an injection which implies that ß is an injection. Thus

Vg(Y) = k = VS(Y) and consequently VEC~*) ~ VE(Y*) . (iiHv) follow from similar

* *considerationB, using Proposition 2.7 VE(X) = V~(X) and the localization in 3.1.

(vi) follows hom Remark 4.5. 0
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Seetion Six. Applieations to Finite Dimensionality and Finite Domination Problems.

In this aection we apply the theory developed in the previous sections to provide

loeal-to-global criteria for finite dimensionality (np to homotopy) and finite domination

of CW complexes. Such finiteness problems arise naturally and often in geometrie topa­

logy involving non-;;imply eonneeted spaces. The above results aliow one to reduce the

problem involving an arbitrary finite group to a similar one involving cyclic group of

prime order for which algebraie and homological computations are considerably simpler.

See Aasadi [7J [8J [9] [11J for further applicationa of these ideas.

Let X be a CW complex. Then X ia called finitely dominated if there exista a

finite CW complex K and a map f: K ---+ X which haB a right homotopy inverse

r : X ---+ K . A finitely dominated complex ia homotopy equivalent to a finite dimen­

sional complex with finitely generated homology. Thia eoncept haB an analogue in the

category chain complexes over an arbitrary ring A with a aimilar definition. Wall has

provided in [45] [46] algebraic conditiona for finite dimensionality and finite domina-

def
tion of a CW complex X. Let A = 11 ?r1(X) and C* = C*(Xj11 'K1(X)) == eellular

chain complex of the universal eovering space of X regarded aB a A- complex . Clearly

C* is a free connected A- complex . According to Wall, X is homotopy equivalent to

a finite dimensional CW complex if and only if C. ia chain homotopy equivalent to a

projective finite dimensional A- chain complex. This reduces the problem of finite

dimenaionality for spaces to a similar one for chain complexes. H X is of finite type, i.e.

every finite dimensional skeleton of X ia a finite complex, then "finite dimensional" in

the above may be replaced by "finitely dominated". Quite generally, a projective

positive chain complex (P.,d.) ia chain homotopy equivalent to an n-dimenaional

complex if and only if Hj(P.) = 0 for i > n and Image (d : Pn+l ---+ Pn) ia a

projective module, (see Wall [46] Theorem 6). If p. ia of finite type, then the
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analoguous statement holds for finitely dominated projective complexes.

6.1. Proposition. Let X* be a connected projective llG-ehain complex with finitely

generated total homology. Then X* is chain homotopy equivalent to a finite dimen-

siona! llG-free chain complex if and only if X. elfp ia IFp [EJ - chain homotopy

equivalent to a finite dimensional lF [E] - chain complex for all E e. 8 (G) and all
p P

pilGI·

Proof: Let M = Ker(dn : Xn --+ Xn- 1) for a aufficiently large n. From Wall's crite­

rion, one sees that it suffices to prove that M is llG-projective. According to

Chouinard's theorem (cf. [18]), M is llG-projective if and only if MIllE is

llE-projecitve for all E e. 8 p(G) and all pli GI. It ia easy to see that the ll-free

llE-module M ia llE-projective if and only if Me IFp ia IFp [E] -free . The change

of fjelds from lFp to IFp and vice versa, sends Iree 0=p [E] -modules to lFp [E] -mo­

dules . The passage from llG-projective chain complexes to llG-free complexes in the

finite dimensional case is a standard application of the Eilenberg trick. (Note that for

the finitely dominated case, this atep ia measured by the finitencss obstruction in

Having reduced the problem of finite domination involving a finite group G to a

similar question for a p-elementary abelian group E, we proceed further to give a cri­

terion in terms of cyclic groups of order p. First we mention a useful observation.

It is easy to see thai finite domination ia preserved under free equivalence. We re­

cord the following generalization for future reference.



-39-

6.2. Proposition. Let R = 11., 0=p I or k, and consider a ahort" exact aequence of pro­

jective R~omplexes X• ....!i!-... Y. --+ Z•. Thefinite domination of any two com­

plexes implies that the third ia finitely dominated.

Proof: Using Proposition 6.1 above, it suffices to consider the ca.se R = k and restriet

to E E. 6p(G) . Assume that X. and Z. are fini tely dominated. Choose n large

enough so that Hi(X.), Hi(Y.), and Hj(Z.) vanish for all i ~ n . Denote the trunca-

On
ted chain complex 0 --+ Xn I Xn- 1 --+ ... ---10 by X. [n] and the com-

plementary complex by X. such that the sequence

o---I X. [n] ---I X. ---I X. ----+ 0 ia exact. Use a aimilar notation for Y. and Z•.

. N. • •N. •N.
Observe that H (EjX ) ~ H (EjH (X )) and H (X ) ~ ker On by our choice of n . In

the ladder of E-hypercohomology long exact sequences:

. N. .• . *
... ----+ If(E;X ) ----+ Hl(E;X ) ----+ If(E;X [n]) ----+ ...

TN· T • 1 •f{) cP cP [n]. N. .• . •
... ----+ If(E;Y ) ----+ Hl(E;Y ) ----+ If(E;Y [n]) ----+ ...

the localized homomorphisms SE1cp· and SElcp [n]· are i80morphisms, where SE is

the multiplicatively closed subset of HE as in Proposition 2.4. This follows !rom the

hypothesis that Z. ia a finitely dominated kG-projective complex, Lemma 2.5, and

the invariance of hypercohomology under chain homotopy equivalence. Hy the

-1 • •Five-Lemma, SE f{) is an isomorphism. Let /J' be the boundary operator of Y

-1 • ,-1. N. -1. N. -1. .
then SE H (E;Ker °)~ SE H (E;Y ) ~ SE H (E;X ) ~ SE H (E;Ker 0) = 0 slnce

X. ia finitely dominated by hypothesis. SE and E are arbitrary, this implies that
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Ker 8' ia cohomologically trivial (in the sense of Tate cohomology, cf. [22] [25]).

For the ring kE, cohomologically trivial modules are projective ([22J), 80 that Ker 8'

•is kE-projective and Wall's criterion implies that Y is finitely dominated. The other

cases are similar. Cl

6.3. Corollary. Let X. be a connected kG-ehain complex with finitely generated total

homology. Then X. ia finitely dominated by a kG-projective complex if and only if

V~(X.) =0 for all E t ~ , cr equivalently, VG(X.) = 0 . Thus, X. is kG-finitely

dominated if and only if X. IkS iB kS-finitely dominated for each shifted cyclic sub­

group of G .

Proof. AB before, we may restriet attention to an arbitrary E E. , • Since free equi-
A

valence preserves finite domination, we may replace X. by X. as in Proposition 2.7

with homology concentrated in one dimension, say d J only. For any n > d J

A

Ker( 8: Xn --+ Xn- 1) ia -.stably equivalent to Hd(X.), cf. 1.8. Thus
A

V~(X.) = V~(Hd(X.)) = V~(Ker (}) vanishes if and only if Ker {) is kE-free (by

Carlson'8 version of Dade's Lemma, d. [23]). Now Wall [46] applies to yield the

desired claim. D

6.4. Corollary. Suppose C. ia the cellular chain complex of the universal covering space

of the CW complex X with 1I'"1(X) =G . Then X ia finitely dominated if and only if

for each prime pli GI and each C ~ G with 1C 1 = P, C. 8 IFp is finitely domi­

nated as an 0=p [C] -eomplex .

Proof: By the above Corollary, we must show that finite domination of C. GD IFp over

the ring IFp [C] as indicated in the above statement implies that V~(X.) = 0 for all

E t ~ . The reverse implication ia trivial. Hut V~(X.) = VE(X.) = VE(X) , and
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VE(X) is a union of !Fp-rational linear subspaces of VE by Serre's theorem [43J, cf.

1.10 and Remark 4.5 above. By the discussion in 1.5 and 1.6, eyclie subgroups of E

correspond to non-zero !Fp-rational vectors of VE (and the eorresponding group alge­

bras to !Fp-rational lines of VE) . Since VC(X*) = 0 and

VE(X*) nVc = VC(X*) = 0 (see 1.7.2), VE(X*) contains no non-zero 0=p-rational

point. Hence V~(X) = VE(X) = 0 as claimed. 0

To illustrate an application to geometrie topology, eonsider the problem of con­

strueting free G-aetions on a closed highly--eonneeted manifold W2n . As explained in

Assadi [5] [7] methods of homotopy theory (undel suitahle hypotheses) lead one to the

situation where we have an infinite dimensional CW complex X with 11"1 (X) = G , and
N

the universal covering spaee of X I say X, is homotopy equivalent to W2n . In order

to replace X with a closed manifold homotopy equivalent to X, we need to decide that

X ia finitely dominated. The following eriterion reduees this deciaion procedure to a

familiar question in algebra. Notiee that the strueture of finitely generated 7l-free

71 [71p] -modules is eompletely understood and it ia easy to deseribe. But the same

question for all hut a very small number of finite groups is considered a hopeless pro­

blem, cf. Curtis-Reiner [28] and Benson [18J. For related applications, cf. Assadi [7]

[8] .

6.5. Theorem. Let W2n be an (n - 1)--eonneeted finite Poinere complex n ~ 2 . Sup-

pose that X is a CW complex whose universal eovering space X is homotopy equi­

valent to W and 11"1(X) = G . The necessary and sufficient eonditions for X to he

finitely dominated are as follows. For all primes pli G I and all subgroups C ~ G with

IC I = P , the following statements are satisfied:
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(I) the spectral sequence of the Borel conatruction EC)C C x ---+ BC does not

collapse.
N

(11) diJDo: HE(C;Hn(X)) ~ 2 ,where E = 1 if n ia even and E = 2 if n ia odd.
p

6.6. Remark: Condition (TI) above may be replaced by the following more explicit con-

dition: (11') Hn(X) I7lC ia projectively stably isomorphie to 7l e 7l (with trivial action)

for n = odd and lei for n = even ,where 1 is the augmentation ideal of 7l [C] .

Proof: The proof is similar to the proof of Assadi [8] Theorem 6.1, where the case of

n = 2 was treated, with some modifications of details. Therefore, we will only indicate

the outline of the proof incorporating such changes. The necessity of condition (I) and

(II) or (11') ia just as in [8] Theorem 6.1, and one may appeal to Assadi [12] (Theorem

3.1 and Example 3.5) for details in the case n = odd or n > 2 . By Corollary 6.4 above,

it suffices to prove that (I) and (TI) above imply that X/C ia finitely dominated for

each C~G, lei =p.
N

Next, we choose Y freely equivalent to X by adding free orbits of cells of dimen­

sion i ~ 2n such that Y is (2n - l)~nnected . Since free equivalence preserves finite

domination, it suffices to prove that Y ia finitely dominated. Just aB in [8] Lemma

6.3, one proves that the latter is satisfied if and ony if H6(Y) = 0 for i ~ 2n + 1 .

Furthermore, H6(Y) = 0 for i ~ 2n + 1 if and only if H6(X) = 0 for i ~ 2n + 1 .

One verifies these conditions explicitly using the Canan-Leray-Serre spectral sequence
N

of X = EC )Cc X ---+ BC . The details of these calculationa are carried out in [8] Lem­

mas 6.4,6.5, and 6.6 for n = 2 . However, the general case follows by similar arguments,

since Hi (C;ll) ~ Hi+1(C;I) for i > 0 and these HC-modules are periodie. 0
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Now we can apply Wall's obstruction theory [45] [46] to decide when a finitely

dominated X as in Theorem 6.5 above (provided (I) and (11) are verified) is homotopy

equivalent to a finite Poincare complex. For example:

6.7. Corollary. Suppose X is aB in Theorem 6.5 and conditions (I) and (11) of 6.5 are

satisfied. Then there exists a well-defined obstruction O(X) E. KO(ll.G) such that X is

homotopy equivalent to a finite Poincare complex if and only if O(X) = 0 .

Proof: This is a consequence of the above discussion and the following remark about

Poincare duality. If X is finitely dominated and X satisfies Poincare duality, then X

satisfies Poincare duality. See Quinn [42] and Gottlieb [33] for details. 0

It ia possible to be more specific about the obstruction B(X). For example:

6.8. Corollary. Suppose X is as in Theorem 6.5, and it satisfies the conditiona (I) and

(II') of 6.5 and 6.6. Assume that G is cyclic and using (11') write Hn(X) ~ LEi LEi P

where L is 71. or I and P is llG-projective. Then X ia homotopy equivalent to a

finite Poincare complex if and only if P is 7lG-free. 0

6.9. Remarks.

(a) Notice that IG I need not be a prime, and (TI') ia still satisfied for tbis case. See

[12] (Example 3.5 (2) and Theorem 3.1).

(b) For n = odd , according to [12] Corollary 3.2, and since H2n(Gjll) = 0 , we have
N

a llG-isomorphism Hn(X) ~ wn+1(1l) fD w-n- 1(1l) (cf. 1.8). Therefore,
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*Hn(X) ~ "D.. E9 "D.. E9 P where P ia llG-projective due to periodicity of H (G;ll) .

The finitenesa obstruction for X ja precisely :!: [H2n(Y)] ,where Y is the

G-space construeted in the proof of Theorem 6.5 above.

Section Seyen. Equiyariant Maps Md Algebraie Analogues of the Borsuk-Ulam

Theorem.

As pointed out in Seetion Five, for a (posaibly infinite dimensional) G-ßpace X

or a kG-ehain complex X* and each E E. ~ , the statement V~(X) = V~(k) and

V~(X*) = V~(k) are the algebraie analogues of the geometrie statement XE f t/J for

the case dim X < m . Furthermore, the existence of equivariant maps between

G-ßpaces X and Y is related to fixed point theory of infinite dimensional G-ßpaces

as follows. Let Map(X,Y) be the mapping space together with the uaual action: for

g E. G, fE. Map(X,Y), (g,f)~ f g with f g(x) = g • f(g-lx) . Then the fixed point

set Map(X,y)G consiats of G-equivariant maps denoted by MaPG(X,Y), For

dim Y < 1Il and X = EG • MaPG(EG,Y) # f/l if and anly if yG # f/l far G ~ (71p)n

by the Localization Theorem 1.9.1 (see also W.Y. Hsiang [34J). The theorems of this

seetion may be interpreted as generalizations of these results, and at the same time, alge­

braic versions of the classical Borank-Ulam Theorem. See also the Introduction.

7.1. Theorem: Suppose f: X --t Y is a G-map between eonnected (possibly infinite

dimensional) G-spaces such that X ia n-eonnected and Hj(Y) = 0 for j > n . Then

for any p I IGI) k = IFp , and the corresponding kG-varieties, one has

VG(Y) = VG(k) and V~(Y) = V~(k) for all E E. ~ .. Similarly, if X. and Y. are

eonnected augmented kG-ehain complexes satisfying the above connectivity
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assumptionB, and f : X* -+ Y* is an augmentation preserving kG-ehain homo­

morphism, then V~(Y*) = V~(k) for all E E 6 and VG(Y*) = VG(k) .

Prcof: It suffices to fix a prime p I IG I and prove the theorem on the level of

kG-eomplexes. Consider the kE-cochain complexes and the corresponding

* * * r * rkG-homomorphism f : Y -+ X . Suppose VE(Y) +VE(k) so that for some

*A E V~(k), A ~ V~(Y ) . Let S (kE be a shifted cyclic subgroup corresponding to

A , 80 that A belongs to the image of Ps : VS(k) -+ VE(k) . We need the following:

* . *7.2. Lemma: Suppose that X ia a connected kG-complex such that HJ(X) is

*finitely generated for all j and vanishes for j > n . Suppose A ~ V~(X ) and A cor-
. . *

responds to a shifted cyclic 5ubgroup S ( kE . Then HJ(Sjk)~ HJ(S;X ) is trivial for

j> n.

*Proof: By taking aresolution of X using kE-free chain complexes having a single

* A* *non-zero group, we may embed X in a cochain complex X frOOy equivalent to X
o * . A*

such that H (X ) ~ k and H1(X ) = 0 for i +n,O . (Cf. Proposition 2.7). Then in the

S-hypercohomology spectral sequence we have only two rows and the only relevant dif-
.. A* +'+1 A*

ferentiaIs to consider are d~: HJ(S;Hn(x ))~ Hn J (Sjk) ~ k . Since X is freely

* A* * 0 A*equivalent to X , VE(X ) = VE(X ) . Thus ,,\ t VE(X ) . This shows that

d~ : HO(SjHn(X*))~ Hn+1(S;k) ~ k is 8urjective. Otherwise, d! =0 for all j ~ 0

(using the multiplicative properties of the spectral sequence and the fact that all

*E2-terms are modules aver H (S;k) which has periodie cohomology). This, in turn,

* * ""'* A*implies that H (Sjk)~ H (SjX) is injective, and consequently VS(X ) ~ VS(k) .
o A*

The latter implies that ,,\ E VE(X ) , which contra.dicts our aBsumption. (Compare with

5.2.) The surjectivity of d! yields the following calculation:
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Hj(S;k) for j <n

Hn(S; k) e Ker d~

Ker d! for j > n

. . ...... *
It follows that HJ(S;k) -----+ IP(S;X ) is trivial for

.......* . *
HJ(S;X ) ~ HJ(S;X ) for j > n , the desired conclusion folIows. CJ

j > n . Since

By the above Lemma, Hn+1(S;k)~ Hn+1(S;Y*) is the zero homomorphism.

Let rP: Hn+1(S;Y*) -----+ Hn+1(SjX*) be the homomorphism in hypercohomology in­

*duced by f . Then we have a commutative diagram:

*which shows that ß=. 0 . On the other hand, since X is n--(:onnected, ß is injective,

and therefare ß*0 . This contradictian establishes the theorem. Cl

Let X and Y be G--5Paces as in the above Theorem.

7.3. Corollary: Suppose that cxG(Y) < min{cxG(X),rkp(G)} . Then there are no equi­

variant maps f: X -+ Y .
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Praaf. Since cxG(X) 5 rkp(G) , we have cxG(X) < rkp(G) . According to the proof of

Corollary 3.6, there exists a Ae. Vb(k) such that A ~ Vb(Y) . The Corollary now fol­

lews aB in the proof ef 7.2. 0

The following special CaBe may be regarded aB a generalization ef the Bersnk-Ulam

theorem.

7.4. Theorem: Suppose X and Y are c;,;paces such that dim Y < m and

Hj(Y;O=p) = 0 fer j > n and Hj(X;O=p) = 0 fer j 5 n . Assume that G is p-ele­

mentary abelian. Then there esists an equivariant map f: X ----+ Y if and enly if

yG =1= t/J .

Proof: If yG =1= t/J t then such an f clearly exists. If y G = t/J ,then Va(Y) =1= Va(k)

since G ie p-elementary abelian. Now apply Theorem 7.1. 0
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Section Eight. An Algebraic Analogue of a Conjecture of Gouner and Floyd.

In this section, we illustrate another application of the above invariants to formu­

late and prove a generalization of a conjecture of Gonner and Floyd. To motivate the

statement, assume first that X is a finite dimensional G--eW eomplex and Y is a

G-invariant subcomplex. Let C.(-) denote the eellular ehains, so that C.(X) ete.

may be considered as permutation complexes. Then, the statement (X_y)G f rP for

G = (1Zp)m , is the same as Va(C.(X)/C.(Y)) = Va(k) by the results of Section Five.

Therefore, if X. ia a kG-ehain complex, and Y. is a kG-subcomplex, then the

statement Va(X*/Y*) = Va(k) is an algebraic substitute for the geometrie statement

(X_y)G f rP . Moreover, the eondition Va(X*/Y*) = Va(k) depends only on the free

equivalenee dass of X./Y* , and it is meaningful even if X* and Y. are infinite di­

mensional. Further, since Va(X./Y*) = Va(X./Y.) , we may assume that X* and

Y. are Iree kG--eomplexes without lass of generality. In tbis way, we may formulate

algebraie analogues of the well-known fixed-point theorems as in Section Seven and in

the following.

Using their cobordism theoretic methodB, Gonner and Floyd proved in [26J that if

G = (1Z2)ID acts smoothly on a connected positive dimensional closed smooth manifold

X ,then XG cannot consist of one point only. They conjectured that a similar result

should hold if G = 1Z r' p ia odd, and X is orientable. In their classical paper [13],
P

Atiyah and Bott applied their version of Lefschetz fixed point formula for elliptic com-

plexes to prove the Conner-Floyd conjecture: Hf: X --+ X ia aperiodie diffeo­

morphism of the compact oriented Riemannian positive dimensional manifold of period

pr , where p ia an odd prime, then the fixed-point set of f cannot conaiat of one point

only. Conner and Floyd also proved their conjecture using cobordism arguments [27].

When G ia an abelian p-group, p = odd prime, Browder in [21] proved by different
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techniques that the conc1usion of the Conner-Floyd conjecture holds in this case for

smooth G-action on orientable closed manifolds. According to Ewing-8tong [30] the

smoothness of the G-action and the validity of the Conner-Floyd conjecture for

G = 11pr implies a similar result for all abelian p-groups. On the other hand, if G is

not an abelian p-group (p = odd prime) , smooth actions with one :6xed point exist as

demonstrated in Browder [21] and Ewing-8tong [30]. In the following, we assume

that G = (71. )m and formulate an analogue of the Conner-Floyd conjecture which usesp

a weak version of Poincare duality on the level of chain complexes. The connectivity

assumption in Theorem 8.1 is not necessary, but the proo! will be more involved.

Let C* be a connected kG-<:hain complex such that Ci = 0 for i < 0 and

HO(C*) ~ k . We say thai C* satisfies Poincare duality in formal dimension d, if there

exists kG-homomorphisms h.: Cd . --+ ci which induce achain homotopy equiva-
1 -l

*lence between C and C* (with the indicated dimension shirt). For example, the cellu-

lar chain complex of a Poincare duality complex of formal dimension d, or the singular

chain complex of a closed oriented topological manifold (with coefficients in k) are chain

complexes with Poincare duality. If d = 2n and Hi(C*) = 0 for 0 < i < n , then

H.(C*) = 0 for n <.: j < 2n and the isomorphism
J *

h* : Hn(C*) --+ Hn(C ) ~ Hom(Hn(C*),k) allows UB to de:6ne the pairing

1]: Hn(C*) ~ Hn(C*) --+ H2n(C*) ~ k via a 8ß~ ( a,h;l(ß) } [C*] where

[C*] E. H2n(C*) ~ k is a fixed fundamental class (i.e. a generator) and (,) is the

evaluation (Kronecker pairing). As usual, 1] is a non-degenerate (:!: 1)-symmetric

* *pairing, and it is tbis structure of H (C ) which we will use to prove the following ver-

sion of the Conner-Floyd conjecture.

8.1. Theorem. Assu.me that p is an odd prime, and G = (71.p)m . Suppose X* is an

(n - l)-<:onnected k~hain complex (possibly infinite dimensional) with Poincare
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duality in formal dimension 2n > 0 . Let Y. ( X. be an acyclic 8ubcomplex, Le.

H.(Y.) ~ k. Then Va(X.,Y.) = Va(k).

Proof: To prove the assertion of the theorem, it suffices to show that for each

A €. Va(k) and each shifted cyclic 8ubgroup S~ IIp of kG the corresponding

kS--ehain complexes X. and Y. satisfy Vg(X.,Y.) f 0 , Le. A €. Va(X.,Y.) . ThusJ

we need to prove 8.1 for the special case G = IIp , as in the following lemma:

8.2. Lemma. Assume that G = IIp , and (X.,Y.) satisfy the hypotheses of 8.1 above.

Then Va(X.,Y.) f 0 .

Proof of 8.2.: We show that the assumption Va(x.,Y.) = 0 leads to a contradiction.

• def
Let C = Homk(X*/Y*,k) be the dual cochain complex. By Proposition 2.7

* r * • * [1]Va(C ) = Va(C ) = 0 so that H (G;C) r = 0 , Le. the polynomial generator

2 * *t €. H (G;k) acts nilpotently on H (GiC ) . We need to prove a few lemmas:

• • • • • •8.3. Lemma. H (G;X ) ~ H (G;G ) fB H (G;Y ) .

# * •
Proof of 8.3.: Let j: Y. ---+ X* be the inc1usion, and j : X ---+ Y be the corres-

ponding surjection on the associated cochain complexes, and

* * * * *ja : H (G;X ) ---+ H (G;Y) the induced homomorphism on hypercohomologies. Con-

sider the following commutative diagram:
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~~*
H (G j k)

* *H (GjX )

a 1
* 0 *H (GjH (X )

*
j G * *

.,.-1--_-_----'==----+1 H (G j Y )

T ~ 1ß

-_---'~"---+ H*(G , HO(Y*))

~

where a and ß are edge-homomorphisms in the hypercohomology spectral sequence.

Define T = a 0 u-1 0 {j1 .Then j; 0 T = identity, and T gives a splitting in the long

exact sequence of hypercohomology aBsociated to the short exact sequence

* *.# *o--l C --l X ~ Y --l 0 of kG-cochain complexes. This proves the

lemma. 0

*8.4. Lemma. Let J C H (Gjk) be the ideal of nilpotent elements, and

*R == H (Gjk)/J ~ k [t] the reduced commutative k-algebra with the quotient field

* * * def * *
K ~ k(t) . For any graded H (Gjk)-module M ,let Mred == M /JM be the aBSQ-

* *ciated (reduced) R-module. Then dimKH (GjX )red 0 R K = 1 .

Proof: Since lt(G jC*) [ }] = 0 by the above discussion, the localized homomorphism

j; [}] induces an isomorphism H*(GjX*) [ } ] ~ H\GjY*) [ } ] ~ H\Gjk) [ } ]

*(by acyclicity of Y ) . Reduction module J and localization commute, so that

* * [1] * * [11* [1] 1(H (GjX )red) r ~ (H (GjY )red) r ~ (H (Gjk)red) r ~ k [t,e] . There-

* * * * 1] .
fore, H (GjX )red 0 R K ~ (H (GjX )red) r 0

k
[t,e1] K ~ K aB deBlIed. 0

. * * *
8.5. Lemma. If H1(X ) is kG-projective for all 0 < i < 2n ,then VG(X ,Y ) t 0 .
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.. . . * * *
Proof: In the hypercohomology spectral sequence E~,J = H1(G;HJ(C »=} H (GiC ) ,

*n * n * *the only non-vanishing terms are E2' = H (GiH (X )) ~ H (Gik) . Hence
* * *-n * * *H (G;C ) ~ H (G;k) as H (G;k)-modules, and the annihilating ideal of H (GiC )

consists of nilpotent elements. 0

8.6. Lemma. Consider the homomorphism

"'(: 1Il Hi(GiHn(C*)) @ Hj(GiHn(C*))~ Hi+j(Gik) which is induced by the duality
i ,j

n * n *pairing p.: H (C ) @ H (C )~ k and cup product in group cohomology. Then "'( is

surjective.

n *Proof: By the previous lemma, we mayassume that H (C ) is not kG-projective.

Let MI be a non-projective indecomposable direct summand. The duality isomorphism

D : Hn(C*) ~ ) Hom(Hn(C\k) gives rise to an indecomposable direct summand

*M2 ~ Hn(C ) such that D(MI) = Hom(M2,k) using the Krull-8chmidt-Azumaya

theorem. If MI '" M2 ' then choose M = MI 1Il M2 . Otherwise, let M = MI . Then

*M ~ Hn(C ) and the restriction p.1 M @ M yields the duality isomorphism
rv

D IM: M --=--+ Hom(M,k) . This allows us to identify p.1 M @ M : M @ M~ k with

the trace homomorphism r: Endk(M)~ k where for any

fE. Endk(M) ~ M @ Homk(M,k) ~ M @ M, r(f) = trace(f) as a k-linear homomor-

*phism. Since G acts on Hn(C) by isometrics, r is a kG-isomorphism. On the

other hand, dim MI == 0 mod p ,since MI is indecomp08able and non-projective and

G = Np . Since p is odd, dim M = 2dim MI == 0 mod p as well. Therefore, 0 adrnits

a right inverse over kG, p: k~ Endk(M) given by P(I) = (I/dim M)(id) , where

id : M~ M is the identity and G acts triviallyon k. This shows that

M @ M ~ k 1Il ker(r) , and the induce homomorphism Hi(G;M @ M)~ Hi(G;k) is

split surjective. On the other hand, using the periodicity of group cohomology for
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,,* ,,* "0 I
in the form H (G;M) ~ H (G;k) 8 [H (G;M) EIl H (GjM)) and the sur-

EIl fii(G;M) 8 fij(GjM) --+ fii+j(G;M 8 M) of the cup product in cohomology

for small values 0 5 i + j 5 2 by direct inspection, we conclude that the cup product

1]: EIl Hi(G;M) 8 Hj(G;M) --+ Hi+j(G;M 8 M) is also surjective onto the factor
i ,j

Hi+j(G;k) in the decomposition M 8 M = kEil Ker T • Therefore the composition

"( = T* 0 1] on EIl Hi(G;M) 8 Hj(G;M) is surjective as claimed. 0

i ,j

Completion of the proof of 8.2. In the hyper-eohomology spectral sequence
.. . . * * * *

E~,J = H1(G;HJ(C )) =t H (GjC ) all terms are modules over H (Gjk) , and the diffe-

*rentials are H (Gjk)-tinear (cf. 1.3 and its references). Here, there are only two

non-trivial rows corresponding to Hj(C*) for j = n and 2n. E;,2n ~ H*(G;k) and

* * *E2,n :/: 0 by Lemma 8.5 and our assumption Vb(X ,Y ) = 0 in the beginning of the

*proof of 8.2 above. The Poincare duality of X allows us to define the pairing

E~,n 8 E~,n --+ E~+j,2n . Since for G-modules MI and M2 , in the pairing

d(G;MI ) 8 Cj(GjM2) --+ d+j(G;MI 8 M2) the diagonal approximation of

* * *C (G) = C (BG) is used, we have a "Leibniz rule" in C (G;-) of the form

d(a 8 (f) = da 8 ß+ (_I)deg
00 8 ß , see Brown [22] and [25]. In the hypercohomo-

logy spectral sequence set-up, we have a pairing between (a priori different) three

spectral sequences and the corresponding differentials satisfy a sirnilar Leibniz rule for
I 11 I 11

the same reason: Er(M*) 8 Er(M* ) --+ Er(M* 8 M* ) and

dr(b' 8 b") = dr(b') 8 b" :l: b 8 dr(b') , (cf. [25]). We use this structure to show

that the first possibly non-trivial differential dn+1 : E:+~n --+ E:t~,n also vanishes

on the polynornial generators tr E H2r(GjH2n(C*)) = E~~i2n. Consider

"(: Hi(G;Hn(C*)) 8 Hj(G;Hn(C*)) --+ Hi+j(Gjk) ~ E~tf,2n whic1I is surjective by

Lemma 8.6, and let "((b' 8 b") = t. Then

dn+1(t) = dn+1("((b' 8 b")) = "([dn+1(b') 8 b" :l: b' 8 dn+1(b")] = 0 since



-54-

dn+l(b') = 0 = dn+l(b") for degree reasons. Similarly, dn+l(tr) = 0 for all r ~ 1

aB c1aimed. This in turn implies that (E:,2n)red f 0 , and consequently

* *H (G;C )red ~ k [t] . Together with Lemma 8.3, we conclude

* *dimKH (G;X )red &R K ~ 2 . Hut this contradicts Lemma 8.4, and this contradiction

shows that Lemma 8.2 is true. This completes the proof of the Theorem. 0
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