Max-Planck-Institut für Mathematik Bonn

Division by 2 on odd degree hyperelliptic curves and their jacobians

by

Yuri G. Zarhin

Division by 2 on odd degree hyperelliptic curves and their jacobians

Yuri G. Zarhin

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Pennsylvania State University
Department of Mathematics
University Park, PA 16802
USA

DIVISION BY 2 ON ODD DEGREE HYPERELLIPTIC CURVES AND THEIR JACOBIANS

YURI G. ZARHIN

Abstract

Let K be an algebraically closed field of characteristic different from $2, g$ a positive integer, $f(x)$ a degree $(2 g+1)$ polynomial with coefficients in K and without multiple roots, $\mathcal{C}: y^{2}=f(x)$ the corresponding genus g hyperelliptic curve over K and J the jacobian of \mathcal{C}. We identify \mathcal{C} with the image of its canonical embedding into J (the infinite point of \mathcal{C} goes to the identity element of J). It is well known that for each $\mathfrak{b} \in J(K)$ there are exactly $2^{2 g}$ elements $\mathfrak{a} \in J(K)$ such that $2 \mathfrak{a}=\mathfrak{b}$. M. Stoll constructed an algorithm that provides Mumford representations of all such \mathfrak{a} in terms of the Mumford representation of \mathfrak{b}. The aim of this paper is to give explicit formulas for Mumford representations of all such \mathfrak{a} when $\mathfrak{b} \in J(K)$ is given by $P=(a, b) \in \mathcal{C}(K) \subset J(K)$ in terms of coordinates a, b. We also prove that if $g>1$ then $\mathcal{C}(K)$ does not contain torsion points with order between 3 and $2 g$.

1. Introduction

Let K be an algebraically closed field of characteristic different from 2. If n and i are positive integers and $\mathbf{r}=\left\{r_{1}, \ldots, r_{n}\right\}$ is a sequence of n elements $r_{i} \in K$ then we write

$$
\mathbf{s}_{i}(\mathbf{r})=\mathbf{s}_{i}\left(r_{1}, \ldots, r_{n}\right) \in K
$$

for the i th basic symmetric function in r_{1}, \ldots, r_{n}. If we put $r_{n+1}=0$ then $\mathbf{s}_{i}\left(r_{1}, \ldots, r_{n}\right)=\mathbf{s}_{i}\left(r_{1}, \ldots, r_{n}, r_{n+1}\right)$.

Let $g \geq 1$ be an integer. Let \mathcal{C} be the smooth projective model of the smooth affine plane K-curve

$$
y^{2}=f(x)=\prod_{i=1}^{2 g+1}\left(x-\alpha_{i}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{2 g+1}$ are distinct elements of K. It is well known that \mathcal{C} is a genus g hyperelliptic curve over K with precisely one infinite point, which we denote by ∞. In other words,

$$
\mathcal{C}(K)=\left\{(a, b) \in K^{2} \mid b^{2}=\prod_{i=1}^{2 g+1}\left(a-\alpha_{i}\right)\right\} \bigsqcup\{\infty\}
$$

Clearly, x and y are nonconstant rational functions on \mathcal{C}, whose only pole is ∞. More precisely, the polar divisor of x is $2(\infty)$ and the polar divisor of y is $(2 g+1)(\infty)$.

[^0]The zero divisor of y is $\sum_{i=1}^{2 g+1}\left(\mathfrak{W}_{i}\right)$ where

$$
\mathfrak{W}_{i}=\left(\alpha_{i}, 0\right) \in \mathcal{C}(K) \text { for all } i=1, \ldots, 2 g, 2 g+1 .
$$

We write ι for the hyperelliptic involution

$$
\iota: \mathcal{C} \rightarrow \mathcal{C},(x, y) \mapsto(x,-y), \infty \mapsto \infty
$$

The set of fixed points of ι consists of ∞ and all \mathfrak{W}_{i}. It is well known that for each $P \in \mathcal{C}(K)$ the divisor $(P)+\iota(P)-2(\infty)$ is principal. More precisely, if $P=(a, b) \in \mathcal{C}(K)$ then $(P)+\iota(P)-2(\infty)$ is the divisor of the rational function $x-a$ on C. If D is a divisor on \mathcal{C} then we write $\operatorname{supp}(D)$ for its support, which is a finite subset of $\mathcal{C}(K)$.

We write J for the jacobian of \mathcal{C}, which is a g-dimensional abelian variety over K. If D is a degree zero divisor on \mathcal{C} then we write $\operatorname{cl}(D)$ for its linear equivalence class, which is viewed as an element of $J(K)$. Elements of $J(K)$ may be described in terms of so called Mumford representations (see [5, Sect. 3.12], [13, Sect. 13.2 , pp. 411-415, especially, Prop. 13.4, Th. 13.5 and Th. 13.7] and Section 2 below.)

We will identify \mathcal{C} with its image in J with respect to the canonical regular $\operatorname{map} \mathcal{C} \hookrightarrow J$ under which ∞ goes to the identity element of J. In other words, a point $P \in \mathcal{C}(K)$ is identified with $\operatorname{cl}((P)-(\infty)) \in J(K)$. Then the action of ι on $\mathcal{C}(K) \subset J(K)$ coincides with multiplication by -1 on $J(K)$. In particular, the list of points of order 2 on \mathcal{C} consists of all \mathfrak{W}_{i}.

Since K is algebraically closed, the commutative group $J(K)$ is divisible. It is well known that for each $\mathfrak{b} \in J(K)$ there are exactly $2^{2 g}$ elements $\mathfrak{a}=\frac{1}{2} \mathfrak{b} \in J(K)$ such that $2 \mathfrak{a}=\mathfrak{b}$. M. Stoll [8, Sect. 5] constructed an algorithm that provides Mumford representations of all such \mathfrak{a} in terms of the Mumford representation of \mathfrak{b}. The aim of this paper is to give explicit formulas (Theorem 3.2) for Mumford representations of all $\frac{1}{2} \mathfrak{b}$ when $\mathfrak{b} \in J(K)$ is given by

$$
P=(a, b) \in \mathcal{C}(K) \subset J(K)
$$

on \mathcal{C} in terms of its coordinates $a, b \in K$. (Here $b^{2}=f(a)$.)
The paper is organized as follows. In Section 2 we recall basic facts about Mumford representations and obtain auxiliary results about divisors on hyperelliptic curves. In particular, we prove (Theorem 2.5) that if $g>1$ then the only point of $\mathcal{C}(K)$ that is divisible by two in the theta divisor Θ of J (rather than in $J(K)$) is ∞. We also prove that $\mathcal{C}(K)$ does not contain points of order n if $3 \leq n \leq 2 g$. In addition, we discuss torsion points on certain natural subvarieties of Θ when J has "large monodromy". In Section 3 we describe explicitly for a given $P=(a, b) \in \mathcal{C}(K)$ the Mumford representation of $2^{2 g}$ divisor classes $\operatorname{cl}(D-g(\infty))$ such that D is an effective degree g reduced divisor on \mathcal{C} and

$$
2 \operatorname{cl}(D-g(\infty))=P \in \mathcal{C}(K) \subset J(K)
$$

The description is given in terms of collections of square roots $r_{i}=\sqrt{a-\alpha_{i}}(1 \leq$ $i \leq 2 g+1$), whose product $\prod_{i=1}^{2 g+1} r_{i}$ is $-b$. (There are exactly $2^{2 g}$ choices of such collections of square roots.)

This paper is a follow up of [1] where the (more elementary) case of elliptic curves is discussed. (See also [11, 14].)

Acknowledgements. I am grateful to Bjorn Poonen and Michael Stoll for useful comments.

2. DIVISORS ON HYPERELLIPTIC CURVES

Recall [13, Sect. 13.2, p. 411] that if D is an effective divisor of (nonnegative) degree m, whose support does not contain ∞, then the degree zero divisor $D-m(\infty)$ is called semi-reduced if it enjoys the following properties.

- If \mathfrak{W}_{i} lies in $\operatorname{supp}(D)$ then it appears in D with multiplicity 1 .
- If a point Q of $\mathcal{C}(K)$ lies in $\operatorname{supp}(D)$ and does not coincide with any of \mathfrak{W}_{i} then $\iota(Q)$ does not lie in $\operatorname{supp}(D)$.
If, in addition, $m \leq g$ then $D-m(\infty)$ is called reduced.
It is known ([5, Ch. 3a], [13, Sect. 13.2, Prop. 3.6 on p. 413]) that for each $\mathfrak{a} \in J(K)$ there exist exactly one nonnegative m and (effective) degree m divisor D such that the degree zero divisor $D-m(\infty)$ is reduced and $\operatorname{cl}(D-m(\infty))=\mathfrak{a}$. (E.g., the zero divisor with $m=0$ corresponds to $\mathfrak{a}=0$.) If

$$
m \geq 1, D=\sum_{j=1}^{m}\left(Q_{j}\right) \text { where } Q_{j}=\left(a_{j}, b_{j}\right) \in \mathcal{C}(K) \text { for all } j=1, \ldots, m
$$

(here Q_{j} do not have to be distinct) then the corresponding

$$
\mathfrak{a}=\operatorname{cl}(D-m(\infty))=\sum_{j=1}^{m} Q_{j} \in J(K)
$$

The Mumford representation ([5, Sect. 3.12], [13, Sect. 13.2, pp. 411-415, especially, Prop. 13.4, Th. 13.5 and Th. 13.7] of $\mathfrak{a} \in J(K)$ is the pair $(U(x), V(x))$ of polynomials $U(x), V(x) \in K[x]$ such that

$$
U(x)=\prod_{j=1}^{m}\left(x-a_{j}\right)
$$

is a degree m monic polynomial while $V(x)$ has degree $<m=\operatorname{deg}(U)$, the polynomial $V(x)^{2}-f(x)$ is divisible by $U(x)$, and each Q_{j} is a zero of $y-V(x)$, i.e.,

$$
b_{j}=V\left(a_{j}\right), Q_{j}=\left(a_{j}, V\left(a_{j}\right)\right) \in \mathcal{C}(K) \text { for all } j=1, \ldots m
$$

Such a pair always exists, is unique, and (as we have just seen) uniquely determines not only \mathfrak{a} but also divisors D and $D-m(\infty)$.

Examples 2.1. The case $\mathfrak{a}=0$ corresponds to $m=0, D=0$ and the pair $(U(x)=$ $1, V(x)=0)$.

The case

$$
\mathfrak{a}=P=(a, b) \in \mathcal{C}(K) \subset J(K)
$$

corresponds to $m=1, D=(P)$ and the pair $(U(x)=x-a, V(x)=b)$.
Conversely, if $U(x)$ is a monic polynomial of degree $m \leq g$ and $V(x)$ a polynomial such that $\operatorname{deg}(V)<\operatorname{deg}(U)$ and $V(x)^{2}-f(x)$ is divisible by $U(x)$ then there exists exactly one $\mathfrak{a}=\operatorname{cl}(D-m(\infty))$ where $D-m(\infty)$ is a reduced divisor such that $(U(x), V(x))$ is the Mumford representation of $\operatorname{cl}(D-m(\infty))$.

Let $P=(a, b) \in \mathcal{C}(K)$, i.e.,

$$
a, b \in K, b^{2}=f(a)=\prod_{i=1}^{n}\left(a-\alpha_{i}\right)
$$

Recall that our goal is to divide explicitly P by 2 in $J(K)$, i.e., to give explicit formulas for the Mumford representation of all $2^{2 g}$ divisor classes $\operatorname{cl}(D-g(\infty))$ such that $2 D+\iota(P)$ is linearly equivalent to $(2 g+1) \infty$.

The following assertion is a simple but useful exercise in Riemann-Roch spaces (see Example 4.13 in [7]).

Lemma 2.2. Let D be an effective divisor on \mathcal{C} of degree $m>0$ such that $m \leq 2 g+1$ and $\operatorname{supp}(D)$ does not contain ∞. Assume that the divisor $D-m(\infty)$ is principal.
(1) Suppose that m is odd. Then:
(i) $m=2 g+1$ and there exists exactly one polynomial $v(x) \in K[x]$ such that the divisor of $y-v(x)$ coincides with $D-(2 g+1)(\infty)$. In addition, $\operatorname{deg}(v) \leq g$.
(ii) If \mathfrak{W}_{i} lies in $\operatorname{supp}(D)$ then it appears in D with multiplicity 1.
(iii) If b is a nonzero element of K and $P=(a, b) \in \mathcal{C}(K)$ lies in $\operatorname{supp}(D)$ then $\iota(P)=(a,-b)$ does not lie in $\operatorname{supp}(D)$.
(2) Suppose that $m=2 d$ is even. Then there exists exactly one monic degree d polynomial $u(x) \in K[x]$ such that the divisor of $u(x)$ coincides with $D-$ $m(\infty)$. In particular, every point $Q \in \mathcal{C}(K)$ appears in $D-m(\infty)$ with the same multiplicity as $\iota(Q)$.

Proof. Let h be a rational function on \mathcal{C}, whose divisor coincides with $D-m(\infty)$. Since ∞ is the only pole of h, the function h is a polynomial in x, y and therefore may be presented as $h=s(x) y-v(x)$ with $s, v \in K[x]$. If $s=0$ then h has at ∞ the pole of even order $2 \operatorname{deg}(v)$ and therefore $m=2 \operatorname{deg}(v)$.

Suppose that $s \neq 0$. Clearly, $s(x) y$ has at ∞ the pole of odd order $2 \operatorname{deg}(s)+$ $(2 g+1) \geq(2 g+1)$. So, the orders of the pole for $s(x) y$ and $v(x)$ are distinct, because they have different parity and therefore the order m of the pole of $h=s(x) y-v(x)$ coincides with $\max (2 \operatorname{deg}(s)+(2 g+1), 2 \operatorname{deg}(v)) \geq 2 g+1$. This implies that $m=$ $2 g+1$; in particular, m is odd. It follows that m is even if and only if $s(x)=0$, i.e., $h=-v(x)$; in addition, $\operatorname{deg}(v) \leq(2 g+1) / 2$, i.e., $\operatorname{deg}(v) \leq g$. In order to finish the proof of (2), it suffices to divide $-v(x)$ by its leading coefficient and denote the ratio by $u(x)$. (The uniqueness of monic $u(x)$ is obvious.)

Let us prove (1). Since m is odd,

$$
m=2 \operatorname{deg}(s)+(2 g+1)>2 \operatorname{deg}(v) .
$$

Since $m \leq 2 g+1$, we obtain that $\operatorname{deg}(s)=0$, i.e., s is a nonzero element of K and $2 \operatorname{deg}(v)<2 g+1$. The latter inequality means that $\operatorname{deg}(v) \leq g$. Dividing h by the constant s, we may and will assume that $s=1$ and therefore $h=y-v(x)$ with

$$
v(x) \in K[x], \operatorname{deg}(v) \leq g
$$

This proves (i). (The uniqueness of v is obvious.) The assertion (ii) is contained in Proposition 13.2(b) on pp. 409-10 of [13]. In order to prove (iii), we just follow arguments on p. 410 of [13] (where it is actually proven). Notice that our $P=(a, b)$ is a zero of $y-v(x)$, i.e. $b-v(a)=0$. Since, $b \neq 0, v(a)=b \neq 0$ and $y-v(x)$ takes on at $\iota(P)=(a,-b)$ the value $-b-v(a)=-2 b \neq 0$. This implies that $\iota(P)$ is not a zero of $y-v(x)$, i.e., $\iota(P)$ does not lie in $\operatorname{supp}(D)$.

Remark 2.3. Lemma 2.2(1)(ii,iii) asserts that if m is odd the divisor $D-m(\infty)$ is semi-reduced. See [13, the penultimate paragraph on p. 411].

Corollary 2.4. Let $P=(a, b)$ be a K-point on \mathcal{C} and D an effective divisor on \mathcal{C} such that $m=\operatorname{deg}(D) \leq g$ and $\operatorname{supp}(D)$ does not contain ∞. Suppose that the degree zero divisor $2 D+\iota(P)-(2 m+1)(\infty)$ is principal. Then:
(i) $m=g$ and there exists a polynomial $v_{D}(x) \in K[x]$ such that $\operatorname{deg}\left(v_{D}\right) \leq g$ and the divisor of $y-v_{D}(x)$ coincides with $2 D+\iota(P)-(2 g+1)(\infty)$. In particular, $-b=v_{D}(a)$.
(ii) If a point Q lies in $\operatorname{supp}(D)$ then $\iota(Q)$ does not lie in $\operatorname{supp}(D)$. In particular,
(1) none of \mathfrak{W}_{i} lies in $\operatorname{supp}(D)$;
(2) $D-g(\infty)$ is reduced.
(iii) The point P does not lie in $\operatorname{supp}(D)$.

Proof. One has only to apply Lemma 2.2 to the divisor $2 D+\iota(P)$ of odd degree $2 m+1 \leq 2 g+1$ and notice that $\iota(P)=(a,-b)$ is a zero of $y-v(x)$ while $\iota\left(\mathfrak{W}_{i}\right)=\mathfrak{W}_{i}$ for all $i=1, \ldots, 2 g+1$.

Let $d \leq g$ be a positive integer and $\Theta_{d} \subset J$ be the image of the regular map

$$
\mathcal{C}^{d} \rightarrow J,\left(Q_{1}, \ldots, Q_{d}\right) \mapsto \sum_{i=1}^{d} Q_{i} \subset J
$$

It is well known that Θ_{d} is an irreducible closed d-dimensional subvariety of J that coincides with \mathcal{C} for $d=1$ and with J if $d=g$; in addition, $\Theta_{d} \subset \Theta_{d+1}$ for all $d<g$. Clearly, each Θ_{d} is stable under multiplication by -1 in J. We write Θ for the $(g-1)$-dimensional theta divisor Θ_{g-1}.

Theorem 2.5. Suppose that $g>1$ and let

$$
\mathcal{C}_{1 / 2}:=2^{-1} \mathcal{C} \subset J
$$

be the preimage of \mathcal{C} with respect to multiplication by 2 in J. Then the intersection of $\mathcal{C}_{1 / 2}(K)$ and Θ consists of points of order dividing 2 on J. In particular, the intersection of \mathcal{C} and $C_{1 / 2}$ consists of ∞ and all \mathfrak{W}_{i} 's.

Remark 2.6. The case $g=2$ of Theorem 2.5 was done in [2, Prop. 1.5]
Proof of Theorem 2.5. Suppose that $m \leq g-1$ is a positive integer and we have m (not necessarily distinct) points $Q_{1}, \ldots Q_{m}$ of $\mathcal{C}(K)$ and a point $P \in \mathcal{C}(K)$ such that in $J(K)$

$$
2 \sum_{j=1}^{m} Q_{j}=P .
$$

We need to prove that $P=\infty$, i.e., it is the zero of group law in J and therefore $\sum_{j=1}^{m} Q_{j}$ is an element of order 2 (or 1) in $J(K)$. Suppose that this is not true. Decreasing m if necessary, we may and will assume that none of Q_{j} is ∞ (but m is still positive and does not exceed $g-1$). Let us consider the effective degree m divisor $D=\sum_{j=1}^{m}\left(Q_{j}\right)$ on \mathcal{C}. The equality in J means that the divisors $2[D-$ $m(\infty)]$ and $(P)-(\infty)$ on \mathcal{C} are linearly equivalent. This means that the divisor $2 D+(\iota(P))-(2 m+1)(\infty)$ is principal. Now Corollary 2.4 tells us that $m=g$, which is not the case. The obtained contradiction proves that the intersection of $\mathcal{C}_{1 / 2}$ and Θ consists of points of order 2 and 1.

Since $g>1, \mathcal{C} \subset \Theta$ and therefore the intersection of \mathcal{C} and $\mathcal{C}_{1 / 2}$ also consists of points of order 2 or 1 , i.e., lies in the union of ∞ and all \mathfrak{W}_{i} 's. Conversely, since
each \mathfrak{W}_{i} has order 2 in $J(K)$ and ∞ has order 1, they all lie in $\mathcal{C}_{1 / 2}$ (and, of course, in \mathcal{C}).
Remark 2.7. It is known [12, Ch. VI, last paragraph of Sect. 11, p. 122] that the curve $\mathcal{C}_{1 / 2}$ is irreducible. (Its projectiveness and smoothness follow readily from the projectiveness and smoothness of \mathcal{C} and the étaleness of multiplication by 2 in J.$) See [4] for an explicit description of equations that cut out \mathcal{C}_{1 / 2}$ in a projective space.
Corollary 2.8. Suppose that $g>1$. Let m be an integer such that $3 \leq m \leq 2 g$. Then $\mathcal{C}(K)$ does not contain a point of order m in $J(K)$. In particular, $\mathcal{C}(K)$ does not contain points of order 3 or 4 .

Remark 2.9. The case $g=2$ of Corollary 2.8 was done in [2, Prop. 2.1]
Proof of Corollay 2.8. Suppose that such a point say, P does exists. Clearly, P is neither ∞ nor one of \mathfrak{W}_{i}, i.e., $P \neq \iota(P)$. Let us consider the effective degree m divisor $D=m(P)$. Then the divisor $D-m(\infty)$ is principal and its support contains P but does not contain $\iota(P)$.

If m is odd then the desired result follows from Lemma 2.2(1). Assume that m is even. By Lemma 2.2(2), the support of $D-m(\infty)$ must contain $\iota(P)$, since it contains P. This gives us a contradiction that ends the proof.

Example 2.10. Let us assume that $\operatorname{char}(K)$ does not divide $(2 g+1)$. Then for every nonzero $b \in K$ the monic degree $(2 g+1)$ polynomial $x^{2 g+1}+b^{2}$ has no multiple roots and the point $P=(0, b)$ of the genus g hyperelliptic curve

$$
\mathcal{C}: y^{2}=x^{2 g+1}+b^{2}
$$

has order $(2 g+1)$ on the jacobian J of \mathcal{C}. Indeed, the polar divisor of rational function $y-b$ is $(2 g+1)(\infty)$ while P is its only zero. Since the degree of $\operatorname{div}(y-b)$ is 0 ,

$$
\operatorname{div}(y-b)=(2 g+1)(P)-(2 g+1)(\infty)=(2 g+1)((P)-(\infty))
$$

This means that the K-point

$$
P \in \mathcal{C}(K) \subset J(K)
$$

has finite order m that divides $2 g+1$. Clearly, m is neither 1 nor 2 (since $P \neq \infty$ and $y(P)=b \neq 0)$, i.e., $m \geq 3$. If $m<(2 g+1)$ then $m \leq 2 g$ and we get a contradiction to Corollary 2.8. This proves that the order of P is $(2 g+1)$.

Notice that odd degree genus 2 hyperelliptic curves with points of order $5=$ $2 \times 2+1$ are classified in [3].
Remark 2.11. If $\operatorname{char}(K)=0$ and $g>1$ then the famous theorem of M. Raynaud (conjectured by Yu.I. Manin and D. Mumford) asserts that an arbitrary genus g smooth projective curve over K embedded into its jacobian contains only finitely many torsion points [9].

The aim of the rest of this section is to obtain an information about torsion points on certain subvarieties Θ_{d} when \mathcal{C} has "large monodromy". Let us start with the following assertion.

Theorem 2.12. Suppose that $g>1$ and let N and k be positive integers such that

$$
1<N, N+k \leq 2 g
$$

Let us put

$$
d_{(N+k)}=\left[\frac{2 g}{N+k}\right]
$$

Let K_{0} be a subfield of K such that $f(x) \in K_{0}[x]$. Let $\mathfrak{a} \in J(K)$ lies on $\Theta_{d_{(N+k)}}$. Suppose that there exists a collection of k (not necessarily distinct) field automorphisms

$$
\left\{\sigma_{1}, \ldots, \sigma_{k}\right\} \subset \operatorname{Aut}\left(K / K_{0}\right)
$$

such that $\sum_{l=1}^{k} \sigma_{l}(\mathfrak{a})=N \mathfrak{a}$ or $-N \mathfrak{a}$. Then \mathfrak{a} has order 1 or 2 in $J(K)$.
Proof. Clearly,

$$
d_{(N+k)} \leq \frac{2 g}{N+k} \leq \frac{2 g}{2+1}<g ; \quad(N+k) \cdot d_{(N+k)} \leq 2 g<2 g+1
$$

Let us assume that $2 \mathfrak{a} \neq 0$ in $J(K)$. We need to arrive to a contradiction. There is a positive integer $r \leq d_{(N+k)}$ and a sequence of points P_{1}, \ldots, P_{r} of $\mathcal{C}(K) \backslash\{\infty\}$ such that $\tilde{D}:=\sum_{j=1}^{r}\left(P_{j}\right)-r(\infty)$ is the Mumford representation of \mathfrak{a} while (say) P_{1} does not coincides with any of W_{i} (here we use the assumption that $2 \mathfrak{a} \neq 0$); we may also assume that P_{1} has the largest multiplicity in \tilde{D} say, M among $\left\{P_{1}, \ldots, P_{r}\right\}$. (In particular, none of P_{j} 's coincides with ιP_{1}.) Then $\sigma_{l}(\tilde{D})=\sum_{j=1}^{r}\left(\sigma_{l} P_{j}\right)-r(\infty)$ is the Mumford representation of $\sigma_{l} \mathfrak{a}$ for all $l \in\{1, \ldots, k\}$. In particular, the multiplicity of each $\sigma_{l} P_{j}$ in $\sigma_{l}(\tilde{D})$ does not exceed M; similarly, the multiplicity of each $\iota \sigma_{l} P_{j}$ in $\iota \sigma_{l}(\tilde{D})$ also does not exceed M for every l. This implies that if P is any point of $C(K) \backslash\{\infty\}$ that does not lie in the support of \tilde{D} then its multiplicity in $N \tilde{D}+\iota\left(\sum_{l=1}^{k} \sigma_{l}(\tilde{D})\right)$ is a nonnegative integer that does not exceed $k M$; in addition, the multiplicity of P in $N \tilde{D}+\sum_{l=1}^{k} \sigma_{l}(\tilde{D})$ is also a nonnegative integer that also does not exceed $k M$. Notice also that P_{1} lies in the supports of both $N \tilde{D}+\iota\left(\sum_{l=1}^{k} \sigma_{l}(\tilde{D})\right)$ and $N \tilde{D}+\iota\left(\sum_{l=1}^{k} \sigma_{l}(\tilde{D})\right)$ and its multiplicities (in both cases) are, at least, $N M$.

Suppose that $\sum_{l=1}^{k} \sigma_{l}(\mathfrak{a})=N \mathfrak{a}$. Then the divisor

$$
N \tilde{D}+\iota\left(\sum_{l=1}^{k} \sigma_{l}(\tilde{D})\right)=N\left(\sum_{j=1}^{r}\left(P_{j}\right)\right)+\sum_{l=1}^{k}\left(\sum_{j=1}^{r}\left(\iota \sigma_{l} P_{j}\right)\right)-r(N+k)(\infty)
$$

is a principal divisor on \mathcal{C}. Since

$$
m:=r(N+k) \leq(N+k) \cdot d_{(N+k)} \leq 2 g<2 g+1,
$$

we are in position to apply Lemma 2.2, which tells us right away that m is even and there is a monic polynomial $u(x)$ of degree $m / 2$, whose divisor coincides with $N \tilde{D}+\iota \sum_{l=1}^{k} \sigma_{l}(\tilde{D})$. This implies that any point $Q \in \mathcal{C}(K) \backslash\{\infty\}$ appears in $N \tilde{D}+\iota\left(\sum_{l=1}^{k} \sigma_{l}(\tilde{D})\right)$ with the same (nonnegative) multiplicity as ιQ. It follows that $Q=\iota P_{1}$ appears in $N \tilde{D}+\iota\left(\sum_{l=1}^{k} \sigma_{l}(\tilde{D})\right)$ with the same multiplicity as P_{1}. On the other hand, since ιP_{1} does not appear in $N \tilde{D}$, its multiplicity in $\tilde{D}+\iota \sum_{l=1}^{k} \sigma_{l}(\tilde{D})$ does not exceed $k M$. Since the multiplicity of P_{1} in $N \tilde{D}+\iota\left(\sum_{l=1}^{k} \sigma_{l}(\tilde{D})\right)$ is, at least, $N M$, we conclude that $N M \leq k M$, which is not the case, since $k<N$. This gives us the desired contradiction.

If $\sum_{l=1}^{k} \sigma_{l}(\mathfrak{a})=-N \mathfrak{a}$ then literally the same arguments applied to the principal divisor

$$
N \tilde{D}+\sum_{l=1}^{k} \sigma_{l}(\tilde{D})=N\left(\sum_{j=1}^{r}\left(P_{j}\right)\right)+\sum_{l=1}^{k}\left(\sum_{j=1}^{r}\left(\sigma_{l} P_{j}\right)\right)-r(N+k)(\infty)
$$

also lead to the contradiction.
2.13. Let K_{0} be a subfield of K such that $f(x) \in K_{0}[x]$ and \bar{K}_{0} the algebraic closure of K_{0} in K. We write $\operatorname{Gal}\left(K_{0}\right)$ for the absolute Galois group

$$
\operatorname{Gal}\left(K_{0}\right)=\operatorname{Aut}\left(\bar{K}_{0} / K\right)
$$

of K_{0}. It is well known that all torsion points of $J(K)$ actually lie in $J\left(\bar{K}_{0}\right)$.
Let us consider the following Galois properties of torsion points of $J(K)$.
(M3) If $\mathfrak{a} \in J\left(\bar{K}_{0}\right)$ has finite order that is a power of 2 then there exists $\sigma \in$ $\operatorname{Gal}\left(K_{0}\right)$ such that $\sigma(a)=3 \mathfrak{a}$.
(M2) If $\mathfrak{b} \in J\left(\bar{K}_{0}\right)$ has finite order that is odd then there exists $\tau \in \operatorname{Gal}\left(K_{0}\right)$ such that $\tau(\mathfrak{b})=2 \mathfrak{b}$.
(M) Let $\mathfrak{a}, \mathfrak{b} \in J\left(\bar{K}_{0}\right)$ be points of finite order such that the order of \mathfrak{a} is a power of 2 and the order of \mathfrak{b} is odd. Then there exist $\sigma_{1}, \sigma_{2} \in \operatorname{Gal}\left(K_{0}\right)$ such that

$$
\sigma_{1}(\mathfrak{a})=-\mathfrak{a}, \sigma_{1}(\mathfrak{b})=2 \mathfrak{b} ; \quad \sigma_{2}(\mathfrak{a})=5 \mathfrak{a}, \quad \sigma_{2}(\mathfrak{b})=2 \mathfrak{b}
$$

Theorem 2.14. (i) Suppose that $g \geq 2$ and J enjoys the property (M3). Let us put

$$
d_{(4)}=[2 g / 4]=[g / 2] .
$$

Let $\mathfrak{a} \in J(K)$ be a torsion point that lies on $\Theta_{d(4)}$. If the order of \mathfrak{a} is a power of 2 then it is either 1 or 2 .
(ii) Suppose that $g \geq 2$ and J enjoys the property (M2). Let us put

$$
d_{(3)}=[2 g / 3] .
$$

Let $\mathfrak{b} \in J(K)$ be a torsion point of odd order that lies on $\Theta_{d(3)}$. Then \mathfrak{b} is the identity element of J.
(iii) Suppose that $g \geq 3$ and J enjoys the property (M). Let us put

$$
d_{(6)}=[2 g / 6]=[g / 3] .
$$

Let $\mathfrak{c} \in J(K)$ be a torsion point that lies on $\Theta_{d(6)}$. Then the order of \mathfrak{c} is either 1 or 2.
Remark 2.15. In the case of $g=2$ an analogue of Theorem 2.14(i,ii) was earlier proven in [2, Cor. 1.6].
Proof of Theorem 2.14. Since all torsion points of $J(K)$ lie in $J\left(\bar{K}_{0}\right)$, we may assume that $K=\bar{K}_{0}$ and therefore $\operatorname{Gal}\left(K_{0}\right)=\operatorname{Aut}\left(K / K_{0}\right)$. In the first two cases the assertion follows readily from Theorem 2.12 with $N=3, k=1$ in the case (i) and with $N=2, k=1$ in the case (ii). Let us do the case (iii). We have $\mathfrak{c}=\mathfrak{a}+\mathfrak{b}$ where the order of \mathfrak{b} is odd and the order of \mathfrak{b} is a power of 2 . There exist $\sigma_{1}, \sigma_{2} \in \operatorname{Gal}\left(K_{0}\right)=\operatorname{Aut}\left(K / K_{0}\right)$ such that

$$
\sigma_{1}(\mathfrak{a})=-\mathfrak{a}, \quad \sigma_{1}(\mathfrak{b})=2 \mathfrak{b} ; \sigma_{2}(\mathfrak{a})=5 \mathfrak{a}, \quad \sigma_{2}(\mathfrak{b})=2 \mathfrak{b}
$$

This implies that
$\sigma_{1}(\mathfrak{c})+\sigma_{2}(\mathfrak{c})=\sigma_{1}(\mathfrak{a})+\sigma_{1}(\mathfrak{b})+\sigma_{2}(\mathfrak{a})+\sigma_{2}(\mathfrak{b})=-\mathfrak{a}+2 \mathfrak{b}+5 \mathfrak{a}+2 \mathfrak{b}=4(\mathfrak{a}+\mathfrak{b})=4 \mathfrak{c}$,
i.e., $\sigma_{1}(\mathfrak{c})+\sigma_{2}(\mathfrak{c})=4 \mathfrak{c}$. Now the desired result follows from Theorem 2.12 with $N=4, k=2$.

Example 2.16. Suppose that $g>1$ and K is the field \mathbb{C} of complex numbers, $\left\{\alpha_{1}, \ldots, \alpha_{2 g+1}\right\}$ is a $(2 g+1)$-element set of algebraically independent transendental complex numbers and $K_{0}=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{2 g+1}\right)$ where \mathbb{Q} is the field of rational numbers.. It follows from results of B. Poonen and M. Stoll [6, Th. 7.1 and its proof] and J. Yelton [14, Th. 1.1 and Prop. 2.2] that the jacobian J of the generic hyperelliptic curve

$$
\mathcal{C}: y^{2}=\prod_{i=1}^{2 g+1}\left(x-\alpha_{i}\right)
$$

enjoys the following properties.
Let us choose odd integers $\left(2 n_{1}+1\right)$ and $\left(2 n_{2}+1\right)$ and nonnegative integers m_{1} and m_{2}. Suppose that $\mathfrak{a}, \mathfrak{b} \in J\left(\bar{K}_{0}\right)$ be points of finite order such that the order of \mathfrak{a} is a power of 2 and the order of \mathfrak{b} is odd. Then there exist $\sigma_{1}, \sigma_{2} \in \operatorname{Gal}\left(K_{0}\right)$ such that

$$
\sigma_{1}(\mathfrak{a})=\left(2 n_{1}+1\right) \mathfrak{a}, \sigma_{1}(\mathfrak{b})=2^{m_{1}} \mathfrak{b} ; \sigma_{2}(\mathfrak{a})=\left(2 n_{2}+1\right) \mathfrak{a}, \sigma_{2}(\mathfrak{b})=2^{m_{2}} \mathfrak{b}
$$

This implies that J enjoys the properties (M3), (M2) and (M). It follows from Theorem 2.14 that torsion points of $J(\mathbb{C})$ enjoy the following properties.
(i) Any torsion point $\mathfrak{a} \in J(\mathbb{C})$ that lies on $\Theta_{g / 2}$ and has order that is a power of 2 actually has order 1 or 2 .
(ii) Any torsion point $\mathfrak{b} \in J(\mathbb{C})$ of odd order that lies on $\Theta_{2 g / 3}$ coincides with the identity of J.
(iii) Let $g \geq 3$. Then any torsion point $\mathfrak{c} \in J(\mathbb{C})$ that lies on $\Theta_{g / 3}$ has order 1 or 2 .
Notice that B. Poonen and M. Stoll [6, Th. 7.1] proved that the only complex points of finite order in $J(\mathbb{C})$ that lie on $\mathcal{C}=\Theta_{1}$ are points of order 1 or 2 . On the other hand, it is well known that J is a simple complex abelian variety. Now a theorem of Raynaud [10] implies that the set of torsion points on the theta divisor $\Theta=\Theta_{g-1}$ (actually, on every proper closed subvariety) of J is finite.

3. Division by 2

Suppose we are given a point

$$
P=(a, b) \in \mathcal{C}(K) \subset J(K)
$$

Since $\operatorname{dim}(J)=g$, there are exactly $2^{2 g}$ points $\mathfrak{a} \in J(K)$ such that

$$
P=2 \mathfrak{a} \in J(K)
$$

Let us choose such an \mathfrak{a}. Then there is exactly one effective divisor

$$
\begin{equation*}
D=D(\mathfrak{a}) \tag{1}
\end{equation*}
$$

of positive degree m on \mathcal{C} such that $\operatorname{supp}(D)$ does not contain ∞, the divisor $D-m(\infty)$ is reduced, and

$$
m \leq g, \operatorname{cl}(D-m(\infty))=\mathfrak{a}
$$

It follows that the divisor $2 D+(\iota(P))-(2 m+1)(\infty)$ is principal and, thanks to Corollary 2.4, $m=g$ and $\operatorname{supp}(D)$ does not contains any of \mathfrak{W}_{i}. (In addition, $D-g(\infty)$ is reduced.) Then the degree g effective divisor

$$
\begin{equation*}
D=D(\mathfrak{a})=\sum_{j=1}^{g}\left(Q_{j}\right) \tag{2}
\end{equation*}
$$

with $Q_{i}=\left(c_{j}, d_{j}\right) \in \mathcal{C}(K)$. Since none of Q_{j} coincides with any of \mathfrak{W}_{i},

$$
c_{j} \neq \alpha_{i} \forall i, j .
$$

By Corollary 2.4, there is a polynomial $v_{D}(x)$ of degree $\leq g$ such that the degree zero divisor

$$
2 D+(\iota(P))-(2 g+1)(\infty)
$$

is the divisor of $y-v_{D}(x)$. Since the points $\iota(P)=(a,-b)$ and all Q_{j} 's are zeros of $y-v_{D}(x)$,

$$
b=-v_{D}(a), d_{j}=v_{D}\left(c_{j}\right) \text { for all } j=1, \ldots, g
$$

It follows from Proposition 13.2 on pp. 409-410 of [13] that

$$
\begin{equation*}
\prod_{i=1}^{2 g+1}\left(x-\alpha_{i}\right)-v_{D}(x)^{2}=f(x)-v_{D}(x)^{2}=(x-a) \prod_{j=1}^{g}\left(x-c_{j}\right)^{2} \tag{3}
\end{equation*}
$$

In particular, $f(x)-v_{D}(x)^{2}$ is divisible by

$$
\begin{equation*}
u_{D}(x):=\prod_{j=1}^{g}\left(x-c_{j}\right) \tag{4}
\end{equation*}
$$

Remark 3.1. Summing up:

$$
D=D(\mathfrak{a})=\sum_{j=1}^{g}\left(Q_{j}\right), Q_{j}=\left(c_{j}, v_{D}\left(c_{j}\right)\right) \text { for all } j=1, \ldots, g
$$

and the degree g monic polynomial $u_{D}(x)=\prod_{j=1}^{g}\left(x-c_{j}\right)$ divides $f(x)-v_{D}(x)^{2}$. Then (see see the beginning of Section 2) the pair $\left(u_{D}, v_{D}\right)$ is the Mumford representation of \mathfrak{a} if

$$
\operatorname{deg}\left(v_{D}\right)<g=\operatorname{deg}\left(u_{D}\right)
$$

This is not always the case: it may happen that $\operatorname{deg}\left(v_{D}\right)=g=\operatorname{deg}\left(u_{D}\right)$ (see below). However, if we replace $v_{D}(x)$ by its remainder with respect to the division by $u_{D}(x)$ then we get the Mumford representation of \mathfrak{a} (see below).

If in (3) we put $x=\alpha_{i}$ then we get

$$
-v_{D}\left(\alpha_{i}\right)^{2}=\left(\alpha_{i}-a\right)\left(\prod_{j=1}^{g}\left(\alpha_{i}-c_{j}\right)\right)^{2}
$$

i.e.,

$$
v_{D}\left(\alpha_{i}\right)^{2}=\left(a-\alpha_{i}\right)\left(\prod_{j=1}^{g}\left(c_{j}-\alpha_{i}\right)\right)^{2} \text { for all } i=1, \ldots, 2 g, 2 g+1
$$

Since none of $c_{j}-\alpha_{i}$ vanishes, we may define

$$
\begin{equation*}
r_{i}=r_{i, D}:=\frac{v_{D}\left(\alpha_{i}\right)}{\prod_{j=1}^{g}\left(c_{j}-\alpha_{i}\right)}=(-1)^{g} \frac{v_{D}\left(\alpha_{i}\right)}{u_{D}\left(\alpha_{i}\right)} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
r_{i}^{2}=a-\alpha_{i} \text { for all } i=1, \ldots, 2 g+1 \tag{6}
\end{equation*}
$$

and

$$
\alpha_{i}=a-r_{i}^{2}, c_{j}-\alpha_{i}=r_{i}^{2}-a+c_{j} \text { for all } i=1, \ldots, 2 g, 2 g+1 ; j=1, \ldots, g
$$

Clearly, all r_{i} 's are distinct elements of K, because their squares are obviously distinct. (By the same token, $r_{j_{1}} \neq \pm r_{j_{2}}$ if $j_{1} \neq j_{2}$.) Notice that

$$
\begin{equation*}
\prod_{i=1}^{2 g+1} r_{i}= \pm b \tag{7}
\end{equation*}
$$

because

$$
\begin{equation*}
\left.b^{2}=\prod_{i=1}^{2 g+1}\left(a-\alpha_{i}\right)=\prod_{i=1}^{2 g+1} r_{i}^{2} .\right) \tag{8}
\end{equation*}
$$

Now we get

$$
r_{i}=\frac{v_{D}\left(a-r_{i}^{2}\right)}{\prod_{j=1}^{g}\left(r_{i}^{2}-a+c_{j}\right)},
$$

i.e.,

$$
r_{i} \prod_{j=1}^{g}\left(r_{i}^{2}-a+c_{j}\right)-v_{D}\left(a-r_{i}^{2}\right)=0 \text { for all } i=1, \ldots 2 g, 2 g+1
$$

This means that the degree $(2 g+1)$ monic polynomial (recall that $\operatorname{deg}\left(v_{D}\right) \leq g$)

$$
h_{\mathbf{r}}(t):=t \prod_{j=1}^{g}\left(t^{2}-a+c_{j}\right)-v_{D}\left(a-t^{2}\right)
$$

has $(2 g+1)$ distinct roots $r_{1}, \ldots, r_{2 g+1}$. This means that

$$
h_{\mathbf{r}}(t)=\prod_{i=1}^{2 g+1}\left(t-r_{i}\right)
$$

Clearly, $t \prod_{j=1}^{g}\left(t^{2}-a+c_{j}\right)$ coincides with the odd part of $h_{\mathbf{r}}(t)$ while $-v_{D}\left(a-t^{2}\right)$ coincides with the even part of $h_{\mathbf{r}}(t)$. In particular, if we put $t=0$ then we get

$$
(-1)^{2 g+1} \prod_{i=1}^{2 g+1} r_{i}=-v_{D}(a)=b
$$

i.e.,

$$
\begin{equation*}
\prod_{i=1}^{2 g+1} r_{i}=-b \tag{9}
\end{equation*}
$$

Hereafter

$$
\mathbf{r}=\mathbf{r}_{D}:=\left(r_{1}, \ldots, r_{2 g+1}\right) \in K^{2 g+1}
$$

Since

$$
\mathbf{s}_{i}(\mathbf{r})=\mathbf{s}_{i}\left(r_{1}, \ldots, r_{2 g+1}\right)
$$

is the i th basic symmetric function in $r_{1}, \ldots, r_{2 g+1}$,

$$
h_{\mathbf{r}}(t)=t^{2 g+1}+\sum_{i=1}^{2 g+1}(-1)^{i} \mathbf{s}_{i}(\mathbf{r}) t^{2 g+1-i}=\left[t^{2 g+1}+\sum_{i=1}^{2 g}(-1)^{i} \mathbf{s}_{i}(\mathbf{r}) t^{2 g+1-i}\right]+b
$$

(Since

$$
\mathbf{s}_{2 g+1}(\mathbf{r})=\prod_{i=1}^{2 g+1} r_{i}=-b
$$

the constant term of $h_{\mathbf{r}}(t)$ equals b.) Then

$$
\begin{aligned}
& t \prod_{j=1}^{g}\left(t^{2}-a+c_{j}\right)=t^{2 g+1}+\sum_{j=1}^{g} \mathbf{s}_{2 j}(\mathbf{r}) t^{2 g+1-2 j} \\
& -v_{D}\left(a-t^{2}\right)=\left[-\sum_{j=1}^{g} \mathbf{s}_{2 j-1}(\mathbf{r}) t^{2 g-2 j+2}\right]+b
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \prod_{j=1}^{g}\left(t-a+c_{j}\right)=t^{g}+\sum_{j=1}^{g} \mathbf{s}_{2 j}(\mathbf{r}) t^{g-j} \\
& v_{D}(a-t)=\sum_{j=1}^{g} \mathbf{s}_{2 j-1}(\mathbf{r}) t^{g-j+1}-b
\end{aligned}
$$

This implies that

$$
\begin{equation*}
v_{D}(t)=\left[\sum_{j=1}^{g} \mathbf{s}_{2 j-1}(\mathbf{r})(a-t)^{g-j+1}\right]-b \tag{10}
\end{equation*}
$$

It is also clear that if we consider the degree g monic polynomial

$$
U_{\mathbf{r}}(t):=u_{D}(t)=\prod_{j=1}^{g}\left(t-c_{j}\right)
$$

then

$$
\begin{equation*}
U_{\mathbf{r}}(t)=(-1)^{g}\left[(a-t)^{g}+\sum_{j=1}^{g} \mathbf{s}_{2 j}(\mathbf{r})(a-t)^{g-j}\right] \tag{11}
\end{equation*}
$$

Recall that $\operatorname{deg}\left(v_{D}\right) \leq g$ and notice that the coefficient of $v(x)$ at x^{g} is $(-1)^{g} \mathbf{s}_{1}(\mathbf{r})$. This implies that the polynomial

$$
\begin{gather*}
V_{\mathbf{r}}(t):=v_{D}(t)-(-1)^{g} \mathbf{s}_{1}(\mathbf{r}) U_{\mathbf{r}}(t)= \\
{\left[\sum_{j=1}^{g} \mathbf{s}_{2 j-1}(\mathbf{r})(a-t)^{g-j+1}\right]-b-\mathbf{s}_{1}(\mathbf{r})\left[(a-t)^{g}+\sum_{j=1}^{g} \mathbf{s}_{2 j}(\mathbf{r})(a-t)^{g-j}\right]=} \\
\sum_{j=1}^{g}\left(\mathbf{s}_{2 j+1}(\mathbf{r})-\mathbf{s}_{1}(\mathbf{r}) \mathbf{s}_{2 j}(\mathbf{r})\right)(a-t)^{g-j} \tag{12}
\end{gather*}
$$

has degree $<g$, i.e.,

$$
\operatorname{deg}\left(V_{\mathbf{r}}\right)<\operatorname{deg}\left(U_{\mathbf{r}}\right)=g
$$

Clearly, $f(x)-V_{\mathbf{r}}(x)^{2}$ is still divisible by $U_{\mathbf{r}}(x)$, because $u_{D}(x)=U_{\mathbf{r}}(x)$ divides both $f(x)-v_{D}(x)^{2}$ and $v_{D}(x)-V_{\mathbf{r}}(x)$. On the other hand,

$$
d_{j}=v_{D}\left(c_{j}\right)=V_{\mathbf{r}}\left(c_{j}\right) \text { for all } j=1, \ldots g
$$

because $U_{\mathbf{r}}(x)$ divides $v_{D}(x)-V_{\mathbf{r}}(x)$ and vanishes at all c_{j}. Actually, $\left\{c_{1}, \ldots, c_{g}\right\}$ is the list of all roots (with multiplicities) of $U_{\mathbf{r}}(x)$. So,

$$
D=D(\mathfrak{a})=\sum_{j=1}^{g}\left(Q_{j}\right), Q_{j}=\left(c_{j}, v_{D}\left(c_{j}\right)\right)=\left(c_{j}, V_{\mathbf{r}}\left(c_{j}\right)\right) \forall j=1, \ldots, g
$$

This implies (again via the beginning of Section 2) that the pair $\left(U_{\mathbf{r}}(x), V_{\mathbf{r}}(x)\right)$ is the Mumford representation of $\operatorname{cl}(D-g(\infty))=\mathfrak{a}$. So, the formulas (11) and (12) give us an explicit construction of $\left(D(\mathfrak{a})\right.$ and) \mathfrak{a} in terms of $\mathbf{r}=\left(r_{1}, \ldots, r_{2 g+1}\right)$ for each of $2^{2 g}$ choices of \mathfrak{a} with $2 \mathfrak{a}=P \in J(K)$. On the other hand, in light of (6)-(8), there is exactly the same number $2^{2 g}$ of choices of collections of square roots $\sqrt{a-\alpha_{i}}(1 \leq i \leq 2 g)$ with product $-b$. Combining it with (9), we obtain that for each choice of square roots $\sqrt{a-\alpha_{i}}$'s with $\prod_{i=1}^{2 g+1} \sqrt{a-\alpha_{i}}=-b$ there is precisely one $\mathfrak{a} \in J(K)$ with $2 \mathfrak{a}=P$ such that the corresponding r_{i} defined by (5) coincides with chosen $\sqrt{a-\alpha_{i}}$ for all $i=1, \ldots, 2 g+1$, and the Mumford representation $\left(U_{\mathbf{r}}(x), V_{\mathbf{r}}(x)\right)$ for this \mathfrak{a} is given by formulas (11)-(12). This gives us the following assertion.

Theorem 3.2. Let $P=(a, b) \in \mathcal{C}(K)$. Then the $2^{2 g}$-element set

$$
M_{1 / 2, P}:=\{\mathfrak{a} \in J(K) \mid 2 \mathfrak{a}=P \in \mathcal{C}(K) \subset J(K)\}
$$

can be described as follows. Let $\mathfrak{R}_{1 / 2, P}$ be the set of all $(2 g+1)$-tuples $\mathfrak{r}=$ $\left(\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{2 g+1}\right)$ of elements of K such that

$$
\mathfrak{r}_{i}^{2}=a-\alpha_{i} \text { for all } i=1, \ldots, 2 g, 2 g+1 ; \prod_{i=1}^{2 g+1} \mathfrak{r}_{i}=-b
$$

Let $\mathbf{s}_{i}(\mathfrak{r})$ be the ith basic symmetric function in $\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{2 g+1}$. Let us put

$$
\begin{aligned}
U_{\mathfrak{r}}(x) & =(-1)^{g}\left[(a-x)^{g}+\sum_{j=1}^{g} \mathbf{s}_{2 j}(\mathfrak{r})(a-x)^{g-j}\right], \\
V_{\mathfrak{r}}(x) & =\sum_{j=1}^{g}\left(\mathbf{s}_{2 j+1}(\mathfrak{r})-\mathbf{s}_{1}(\mathfrak{r}) \mathbf{s}_{2 j}(\mathfrak{r})\right)(a-x)^{g-j} .
\end{aligned}
$$

Then there is a natural bijection between $\mathfrak{R}_{1 / 2, P}$ and $M_{1 / 2, P}$ such that $\mathfrak{r} \in \mathfrak{R}_{1 / 2, P}$ corresponds to $\mathfrak{a}_{\mathfrak{r}} \in M_{1 / 2, P}$ with Mumford representation $\left(U_{\mathfrak{r}}, V_{\mathfrak{r}}\right)$. More explicitly, if $\left\{c_{1}, \ldots, c_{g}\right\}$ is the list of all g roots (with multiplicities) of $U_{\mathfrak{r}}(x)$ then \mathfrak{r} corresponds to

$$
\mathfrak{a}_{\mathfrak{r}}=\operatorname{cl}(D-g(\infty)) \in J(K), 2 \mathfrak{a}_{\mathfrak{r}}=P
$$

where the divisor

$$
D=D\left(\mathfrak{a}_{\mathfrak{r}}\right)=\sum_{j=1}^{g}\left(Q_{j}\right), Q_{j}=\left(c_{j}, V_{\mathfrak{r}}\left(c_{j}\right)\right) \in \mathcal{C}(K) \text { for all } j=1, \ldots, g
$$

In addition, none of α_{i} is a root of $U_{\mathfrak{r}}(x)$ (i.e., the polynomials $U_{\mathfrak{r}}(x)$ and $f(x)$ are relatively prime) and

$$
\mathfrak{r}_{i}=\mathbf{s}_{1}(\mathfrak{r})+(-1)^{g} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)} \text { for all } i=1, \ldots, 2 g, 2 g+1
$$

Proof. Actually we have already proven all the assertions of Theorem 3.2 except the last formula for \mathfrak{r}_{i}. It follows from (4) and (5) that

$$
\mathfrak{r}_{i}=(-1)^{g} \frac{v_{D\left(\mathfrak{a}_{\mathfrak{r}}\right)}\left(\alpha_{i}\right)}{u_{D\left(\mathfrak{a}_{\mathfrak{r}}\right)}\left(\alpha_{i}\right)}=(-1)^{g} \frac{v_{D\left(\mathfrak{a}_{\mathfrak{r}}\right)}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}
$$

It follows from (12) that

$$
v_{D\left(\mathfrak{a}_{\mathfrak{r}}\right)}(x)=(-1)^{g} \mathbf{s}_{1}(\mathfrak{r}) U_{\mathfrak{r}}(x)+V_{\mathfrak{r}}(x) .
$$

This implies that

$$
\mathfrak{r}_{i}=(-1)^{g} \frac{(-1)^{g} \mathbf{s}_{1}(\mathfrak{r}) U_{\mathfrak{r}}\left(\alpha_{i}\right)+V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}=\mathbf{s}_{1}(\mathfrak{r})+(-1)^{g} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)} .
$$

Corollary 3.3. We keep the notation and assumptions of Theorem 3.2. Then

$$
2 g \cdot \mathbf{s}_{1}(\mathfrak{r})=(-1)^{g+1} \sum_{i=1}^{2 g+1} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}
$$

In particular, if char (K) does not divide g then

$$
\mathbf{s}_{1}(\mathfrak{r})=\frac{(-1)^{g+1}}{2 g} \cdot \sum_{i=1}^{2 g+1} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}
$$

On the other hand, if $\operatorname{char}(K)$ divides g then

$$
\sum_{i=1}^{2 g+1} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}=0
$$

Proof. It follows from the last assertion of Theorem 3.2 that

$$
\begin{aligned}
\mathbf{s}_{1}(\mathfrak{r})= & \sum_{i=1}^{2 g+1} \mathfrak{r}_{i}=\sum_{i=1}^{2 g+1}\left(\mathbf{s}_{1}(\mathfrak{r})+(-1)^{g} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}\right)= \\
& (2 g+1) \mathbf{s}_{1}(\mathfrak{r})+(-1)^{g} \sum_{i=1}^{2 g+1} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}
\end{aligned}
$$

This implies that

$$
0=2 g \cdot \mathbf{s}_{1}(\mathfrak{r})+(-1)^{g} \sum_{i=1}^{2 g+1} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)},
$$

i.e.,

$$
2 g \cdot \mathbf{s}_{1}(\mathfrak{r})=(-1)^{g+1} \sum_{i=1}^{2 g+1} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)} .
$$

Corollary 3.4. We keep the notation and assumptions of Theorem 3.2. Let i,l be two distinct integers such that

$$
1 \leq i, l \leq 2 g+1
$$

DIVISION BY 2 ON ODD DEGREE HYPERELLIPTIC CURVES AND THEIR JACOBIANS 15

Then

$$
\mathbf{s}_{1}(\mathfrak{r})=\frac{(-1)^{g}}{2} \times \frac{\left(\alpha_{l}+\left(\frac{V_{\mathrm{r}}\left(\alpha_{l}\right)}{U_{\mathrm{r}}\left(\alpha_{l}\right)}\right)^{2}\right)-\left(\alpha_{i}+\left(\frac{V_{\mathrm{r}}\left(\alpha_{i}\right)}{U_{\mathrm{r}}\left(\alpha_{i}\right)}\right)^{2}\right)}{\left(\frac{V_{\mathrm{r}}\left(\alpha_{i}\right)}{U_{\mathrm{r}}\left(\alpha_{i}\right)}-\frac{V_{\mathrm{r}}\left(\alpha_{l}\right)}{U_{\mathrm{r}}\left(\alpha_{l}\right)}\right)} .
$$

Proof. We have

$$
\mathfrak{r}_{i}=\mathbf{s}_{1}(\mathfrak{r})+(-1)^{g} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}, \mathfrak{r}_{l}=\mathbf{s}_{1}(\mathfrak{r})+(-1)^{g} \frac{V_{\mathfrak{r}}\left(\alpha_{l}\right)}{U_{\mathbf{r}}\left(\alpha_{l}\right)} .
$$

Recall that

$$
\mathfrak{r}_{i}^{2}=a-\alpha_{i} \neq a-\alpha_{l}=\mathfrak{r}_{l}^{2} .
$$

In particular,

$$
\mathfrak{r}_{i} \neq \mathfrak{r}_{l} \quad \text { and therefore } \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)} \neq \frac{V_{\mathfrak{r}}\left(\alpha_{l}\right)}{U_{\mathfrak{r}}\left(\alpha_{l}\right)} .
$$

We have

$$
\begin{gathered}
\alpha_{l}-\alpha_{i}=\left(a-\alpha_{i}\right)-\left(a-\alpha_{l}\right)=\mathfrak{r}_{i}^{2}-\mathfrak{r}_{l}^{2}= \\
\left(\mathbf{s}_{1}(\mathfrak{r})+(-1)^{g} \frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}\right)^{2}-\left(\mathbf{s}_{1}(\mathfrak{r})+(-1)^{g} \frac{V_{\mathfrak{r}}\left(\alpha_{l}\right)}{U_{\mathfrak{r}}\left(\alpha_{l}\right)}\right)^{2}= \\
(-1)^{g} \cdot 2 \cdot \mathbf{s}_{1}(\mathfrak{r}) \cdot\left(\frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}-\frac{V_{\mathfrak{r}}\left(\alpha_{l}\right)}{U_{\mathfrak{r}}\left(\alpha_{l}\right)}\right)+\left(\frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}\right)^{2}-\left(\frac{V_{\mathfrak{r}}\left(\alpha_{l}\right)}{U_{\mathfrak{r}}\left(\alpha_{l}\right)}\right)^{2} .
\end{gathered}
$$

This implies that
$(-1)^{g} \cdot 2 \cdot \mathbf{s}_{1}(\mathfrak{r}) \cdot\left(\frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathfrak{r}}\left(\alpha_{i}\right)}-\frac{V_{\mathfrak{r}}\left(\alpha_{l}\right)}{U_{\mathfrak{r}}\left(\alpha_{l}\right)}\right)=\left(\alpha_{l}+\left(\frac{V_{\mathfrak{r}}\left(\alpha_{l}\right)}{U_{\mathfrak{r}}\left(\alpha_{l}\right)}\right)^{2}\right)-\left(\alpha_{i}+\left(\frac{V_{\mathfrak{r}}\left(\alpha_{i}\right)}{U_{\mathbf{r}}\left(\alpha_{i}\right)}\right)^{2}\right)$.
This means that

$$
\mathbf{s}_{1}(\mathfrak{r})=\frac{(-1)^{g}}{2} \times \frac{\left(\alpha_{l}+\left(\frac{V_{\mathbf{r}}\left(\alpha_{l}\right)}{U_{\mathrm{r}}\left(\alpha_{l}\right)}\right)^{2}\right)-\left(\alpha_{i}+\left(\frac{V_{\mathrm{r}}\left(\alpha_{i}\right)}{U_{\mathrm{r}}\left(\alpha_{i}\right)}\right)^{2}\right)}{\left(\frac{V_{\mathrm{r}}\left(\alpha_{i}\right)}{U_{\mathrm{r}}\left(\alpha_{i}\right)}-\frac{V_{\mathrm{r}}\left(\alpha_{l}\right)}{U_{\mathrm{r}}\left(\alpha_{l}\right)}\right)} .
$$

Remark 3.5. Let $\mathfrak{r}=\left(\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{2 g+1}\right) \in \mathfrak{R}_{1 / 2, P}$ with $P=(a, b)$. Then for all $i=1, \ldots, 2 g, 2 g+1$

$$
\left(-\mathfrak{r}_{i}\right)^{2}=\mathfrak{r}_{i}^{2}=a-\alpha_{i}
$$

and

$$
\prod_{i=1}^{2 g+1}\left(-\mathfrak{r}_{i}\right)=(-1)^{2 g+1} \prod_{i=1}^{2 g+1} \mathfrak{r}_{i}=-(-b)=b
$$

This means that

$$
-\mathfrak{r}=\left(-\mathfrak{r}_{1}, \ldots,-\mathfrak{r}_{2 g+1}\right) \in \mathfrak{R}_{1 / 2, \iota(P)}
$$

(recall that $\iota(P)=(a,-b)$). It follows from Theorem 3.2 that

$$
U_{-\mathfrak{r}}(x)=U_{\mathfrak{r}}(x), V_{-\mathfrak{r}}(x)=-V_{\mathfrak{r}}(x)
$$

and therefore $\mathfrak{a}_{-\mathfrak{r}}=-\mathfrak{a}_{\mathfrak{r}}$.
Remark 3.6. The last assertion of Theorem 3.2 combined with Corollary 3.4 allow us to reconstruct explicitly $\mathfrak{r}=\left(\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{2 g+1}\right)$ and $P=(a, b)$ if we are given the polynomials $U_{\mathfrak{r}}(x), V_{\mathfrak{r}}(x)$ (and, of course, $\left\{\alpha_{1}, \ldots, \alpha_{2 g+1}\right\}$).

Example 3.7. Let us take as $P=(a, b)$ the point $\mathfrak{W}_{2 g+1}=\left(\alpha_{2 g+1}, 0\right)$. Then $b=0$ and $\mathfrak{r}_{2 g+1}=0$. We have $2 g$ arbitrary independent choices of (nonzero) square roots $\mathfrak{r}_{i}=\sqrt{\alpha_{2 g+1}-\alpha_{i}}$ with $1 \leq i \leq 2 g$ (and always get an element of $\mathfrak{R}_{1 / 2, P}$). Now Theorem 3.2 gives us (if we put $a=\alpha_{2 g+1}, b=0$) all $2^{2 g}$ points $\mathfrak{a}_{\mathfrak{r}}$ of order 4 in $J(K)$ with $2 \mathfrak{a}_{\mathrm{r}}=\mathfrak{W}_{2 g+1}$. Namely, let s_{i} be the i th basic symmetric function in $\left(\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{2 g}\right)$. Then the Mumford representation $\left(U_{\mathfrak{r}}, V_{\mathfrak{r}}\right)$ of $\mathfrak{a}_{\mathfrak{r}}$ is given by

$$
\begin{gathered}
U_{\mathfrak{r}}(x)=(-1)^{g}\left[\left(\alpha_{2 g+1}-x\right)^{g}+\sum_{j=1}^{g} s_{2 j} \cdot\left(\alpha_{2 g+1}-x\right)^{g-j}\right] \\
V_{\mathfrak{r}}(x)=\sum_{j=1}^{g}\left(s_{2 j+1}-s_{1} s_{2 j}\right)\left(\alpha_{2 g+1}-x\right)^{g-j}
\end{gathered}
$$

In particular, if $\alpha_{2 g+1}=0$ then

$$
\begin{gathered}
\mathfrak{r}_{i}=\sqrt{-\alpha_{i}} \text { for all } i=1, \ldots, 2 g \\
U_{\mathfrak{r}}(x)=x^{g}+\sum_{j=1}^{g}(-1)^{j} s_{2 j} x^{g-j} \\
V_{\mathfrak{r}}(x)=\sum_{j=1}^{g}\left(s_{2 j+1}-s_{1} s_{2 j}\right)(-x)^{g-j}
\end{gathered}
$$

References

[1] B.M. Bekker, Yu.G. Zarhin, The divisibility by 2 of rational points on elliptic curves. Algebra i Analiz 29:4 (2017), 196-239; St. Petersburg Math. J., to appear; arXiv:1702.02255 [math.NT].
[2] J. Boxall and D. Grant, Examples of torsion points on genus two curves. Tran. Amer. Math. Soc. 352 (2000), no. 10, 4533-4555.
[3] J. Boxall, D. Grant and F. Leprévost, 5-torsion points on curves of genus 2. J. London Math. Soc. (2) 64 (2001), 29-43.
[4] N. Bruin and E.V. Flynn, Towers of 2-covers of hyperelliptic curves. Trans. Amer. Math. Soc. 357 (2005), no. 11, 4329-4347.
[5] D. Mumford, Tata Lectures on Theta. II. Progress in Math. 43, Birkhäuser, Boston Basel Stutgart, 1984.
[6] B. Poonen and M. Stoll, Most odd degree hyperelliptic curves have only one rational point. Annals of Math. 180 (2014), Issue 3, 1137-1166.
[7] M. Stoll, Arithmetic of Hyperelliptic Curves. Available at Summer Semester 2014, University of Bayreuth. http://www.mathe2.uni-bayreuth.de/stoll/teaching/ArithHypKurven-SS2014/Skript-ArithHypCurves-pub-screen.pdf .
[8] M. Stoll, Chabauty without the Mordell-Weil group. In: Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory (G. Böckle, W. Decker, G. Malle, eds.), Springer-Verlag (2018), to appear; arXiv:1506.04286 [math.NT].
[9] M. Raynaud, Courbes sur une variété abélienne et points de torsion. Invent. Math. 71 (1983), no. 1, 207-233.
[10] M. Raynaud, Sous-variétés sur une variété abélienne et points de torsion. In: Arithmetic and Geometry (Shafarevich Festschrift) I, pp. 327-352. Progress in Math. 35 Birkhäuser, Boston Basel Stutgart, 1983.
[11] E. Schaefer, 2-descent on the Jacobians of hyperelliptic curves. J. Number Theory 51 (1995), no. 2, 219-232.
[12] J.-P. Serre, Algebraic groups and class fields. Graduate Texts in Math. 117, Springer-Verlag, New York, 1988.
[13] L.C. Washington, Elliptic Curves: Number Theory and Cryptography. Second edition. Chapman \& Hall/CRC Press, Boca Raton London New York, 2008.

DIVISION BY 2 ON ODD DEGREE HYPERELLIPTIC CURVES AND THEIR JACOBIANS 17
[14] J. Yelton, Images of 2-adic representations associated to hyperelliptic jacobians. J. Number Theory 151 (2015), 7-17.

Pennsylvania State University, Department of Mathematics, University Park, PA 16802, USA

E-mail address: zarhin@math.psu.edu

[^0]: 2010 Mathematics Subject Classification. 14H40, 14G27, 11G10.
 Key words and phrases. Hyperelliptic curves, jacobians, Mumford representations.
 Partially supported by Simons Foundation Collaboration grant \# 585711.
 I've started to write this paper during my stay in May-June 2016 at the Max-Planck-Institut für Mathematik (Bonn, Germany) and finished it during my next visit to the Institute in May-July 2018. The MPIM hospitality and support are gratefully acknowledged.

