TESTING THE COHEN-MACAULAY PROPERTY UNDER BLOWING UP

 by

 by
 S. Ikeda, M. Herrmann, U. Orbanz

Max-Planck-Institut
für Mathematik

Gottfried-Claren-Str. 26
D-5300 Bonn 3

Department of Mathematics
Nagoya University

TESTING THE COHEN-MACAULAY PROPERTY
 UNDER BLOWING UP

by
S. Ikeda, M. Herrmann, U. Orbanz

INTRODUCTION. Let X be an algebraic variety and let $X^{\prime} \rightarrow X$ be a blowing up of X with arbitrary center Y. In general, the Cohen-Macaulay properties of X and X^{\prime} are totally unrelated: If X is Cohen-Macaulay and Y is permissible, X^{\prime} need not be Cohen-Macaulay [15]; and if X is not Cohen-Macaulay, X^{\prime} can be made Cohen-Macaulay by a suitable choice of Y [1], [2]. Replacing X by a local ring R and Y by an ideal I of R, we try to relate the Cohen-Macaulay property of R to the Cohen-Macaulay property of the Rees ring $\operatorname{Re}^{+}(I, R)=\underset{n \geq 0}{\oplus} I^{n} \simeq R[I t]$, and of $X^{\prime}=\operatorname{Proj}\left(\operatorname{Re}^{+}(I, R)\right)$.

One line of thought is this: Given some ideal I of R, which may be thought of as a "testideal"; what can we say about blowing ups defined by other ideals J containing I ? We restrict our investigations to a certain class of ideals I which we call equimultiple, and which are a common generalization of the two most important classical cases: 1) I is permissible (in the sense of Hironaka, e.g. the maximal ideal), 2) I is an ideal of the principal class. From the algebraic point of view, this class of
ideals is characterized by the fact that $g r_{I}(R)$ has a homogeneous system of parameters, at least in the equidimensional case (see [11]). These properties of equimultiple ideals are essential in the proof of theorem 3.1.

In section 2 we describe the influence of the multiplicity $e(R / I)$ of R / I on the behaviour of $R \stackrel{+}{e}(M, R)$. In section 3 we compare the Rees rings of I and $I+x R$, where x is a part of a system of parameters mod I . For this situation we prove a transitivity property for the Cohen-Macaulayness of the Rees rings (and the graded rings $\oplus I^{n} / I^{n+1}$), assuming that R itself is Cohen-Macaulay. This last assumption is necessary, as we show in theorem 3.8. This theorem and proposition 2.1 indicate that it will be somewhat complicated to construct examples of non-Cohen-Macaulay rings R with Cohen-Macaulay Rees rings $\operatorname{Re}^{+}(I, R)$, at least if dim $R \geqq 3$. We give several examples for R Cohen-macaulay as well as for R non-Cohen-Macaulay, in which the CohenMacaulay property of $\mathrm{Re}^{+}(\mathrm{I}, \mathrm{R})$ is tested for various ideals I . In the last section 4 we asked the same question as before in theorem 3.8 for the geometric blowing ups Proj $\operatorname{Re}^{+}(I, R)$ and Proj $\operatorname{Re}^{+}(J, R)$.

1. NOTATIONS. A) For any system $x=\left\{x_{1}, \ldots, x_{r}\right\}$ of parameters with respect to $I \subset R$ one has a numerical function $H^{(0)}(n)=e\left(x, I^{n} / I^{n+1}\right)$, where $e($,$) denotes the$ multiplicity symbol of Wright and Northcott. We know by [7] that $H^{(1)}(n)=\sum_{i=0}^{n} H^{(0)}(i)=\sum_{p \in A s s h(R / I)} e(\underline{x} ; R / P) \cdot H^{(1)}\left[I R_{p}\right](n)$,
where $\operatorname{Assh}(R / I)=\{P \in \operatorname{Ass}(R / I) / \operatorname{dim} R / p=\operatorname{dim} R / I\}$ and $H^{(1)}\left[I R_{P}\right]$ is the usual Hilbert-Samuel function of the $P R_{p}$-primary ideal $I R_{P}$. For large $n, H^{(1)}(n)$ is a polynomial in n with rational coefficients. If d is the degree and a_{d} the highest coefficient of this polynomial, the number $e(\underline{x}, I, R):=d!a_{d}$ is called the multiplicity of I with respect to \underline{x}. If $h t(I)=\operatorname{dim} R-\operatorname{dim} R / I$, then

$$
e(\underline{x}, I, R)=\sum_{p \in A s s h(R / I)} e(\underline{x} ; R / P) e\left(I R_{p}\right)
$$

where $e\left(I R_{p}\right)$ is the Samuel multiplicity of $I R_{p}$.
B) Let I be a proper ideal in the local ring R. Then we define here the reduction exponent $r(I)$ of I as

$$
\begin{aligned}
r(I)= & \inf \{n / \text { there exists a minimal reduction } J \text { of } \\
& \left.I \text { such that } I^{n}=J I^{n-1}\right\} .
\end{aligned}
$$

C) I is said to be equimultiple, if $h t(I)=\ell(I) \cdot R$ is said to be normally Cohen-Macaulay aiong I if $\operatorname{depth}\left(I^{n} / I^{n+1}\right)=\operatorname{dim}(R / I)$ for all $n \geqq 0$. If $\operatorname{dim} R=d i m R / I+h t(I)$ then this condition implies equimultiplicity $\mathrm{ht}(\mathrm{I})=\ell(\mathrm{I}), \mathrm{s} .[9]$.
D) An ideal I is said to be a complete intersection if it is generated by ht(I) elements. I is said to be a generic complete intersection if IR_{p} is a complete intersection for all minimal primes p of I.

2. TESTIDEALS OF SMALL MULTTPLICITY

In general if $\operatorname{Re}^{+}(I, R)$ is Cohen-Macaulay for some I then R need not be Cohen-Macaulay. For the case $I=M$ we know by [12] that depth $R \geqq 2$ if $\operatorname{Re}^{+}(M, R)$ is Cohen-Macaulay and $\operatorname{dim} R \geq 2$. So for $\operatorname{dim} R=2, R$ must be Cohen-Macaulay. This is no longer true for $\operatorname{dim} \mathrm{R} \geq 3$ (see example 2.3). One result of this section (s. proposition 2.9) shows that by restricting the multiplicity of certain testideals the Cohen-Macaulay property of R follows from the same property of $\mathrm{Re}_{\mathrm{e}}^{(I, R)}$. First we need a preliminary result.

PROPOSITION 2.1: Let (R, M) be a local ring such that $\mathrm{Re}^{+}(\mathrm{M}, \mathrm{R})$ is Cohen-Macaulay. If $\mathrm{e}(\mathrm{R})<\operatorname{dim} \mathrm{R}$, then R is Cohen-Macaulay.

PROOF: Since $\operatorname{Re}^{+}(M, R)$ is Cohen-Macaulay, R must be a Buchsbaum ring by [12], theorem 0.1. Therefore we know by [5] the following inequality

$$
\text { (*) } \quad e(R) \geqq 1+\sum_{i=1}^{d-1}\binom{d-1}{i-1} h^{i}(R)
$$

where $h^{i}(R)$ is the dimension of the cohomology module $H_{M}^{i}(R)$. Since depth $R \geqq 2$ we get $h^{0}(R)=h^{1}(R)=0$. Then the assumption $e(R)<\operatorname{dim} R$ implies also $h^{i}(R)=0$ for $2 \leq i \leq d-1$.

COROLLARY 2.2: Let (R, M) be a local ring with $e(R) \nRightarrow \operatorname{dim} R$. Then the following conditions are equivalent:
(i) $\operatorname{Re}^{+}(M, R)$ is Cohen-Macaulay.
(ii) (R and) $\mathrm{gr}_{\mathrm{M}}^{\mathrm{R}}$ is Cohen-Macaulay.

PROOF: For $\operatorname{dim} R=2$ the implication $(i) \Rightarrow$ (ii) is true without any assumption on $e(R)$.

If $\operatorname{dim} R \geqq 3$, then (i) \Rightarrow (ii) follows from proposition 2.1
and [11], theorem 4.8.
The implication (ii) \Rightarrow (i) is true for $e(R) \leqq \operatorname{dim} R$ by Corollary 5.4 in [11].

The following example 2.3 shows that for $e(R)=\operatorname{dim} R$ the equivalence of (i) and (ii) is not true in general.

EXAMPLE 2.3: $R=k\left[\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}\right]\right] /\left(X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3},\left(Y_{1}, Y_{2}, Y_{3}\right)^{2}\right)$, where k is a field, and X_{i}, Y_{j} are indeterminates. This ring is a non-Cohen-Macaulay Buchsbaum ring with $e(R)=\operatorname{dim} R=3$, and $R^{+}(M, R)$ is Cohen-Macaulay, see [20].

REMARK 2.4: a) If $e(R)=\operatorname{dim} R$ and $\operatorname{Re}^{+}(M, R)$ is CohenMacaulay, then R is not too far from being Cohen-Macaulay. For if R is not Cohen-Macaulay, at most two cases are possible for $h^{i}=h^{i}(R)$:
case 1: $\quad h^{2}=1 ; h^{0}=h^{1}=h^{3}=\ldots=h^{d-1}=0$
case 2: $\quad h^{d-1}=1 ; h^{0}=h^{1}=\ldots=h^{d-2}=0$.
b) Assume that $\operatorname{Re}^{+}(M, R)$ is Cohen-Macaulay again. Then we have:
a) If R is not Cohen-Macaulay then $e(R) \geqslant \operatorname{dim} R$ by proposition 2.1.
b) If R is a hypersurface (i.e. R is unmixed and emdim $R \leq \operatorname{dim} R+1$, then $e(R) \leq \operatorname{dim} R$ by [11], Cor. 5.5.
c) For any Cohen-Macaulay ring R the Cohen-Macaulayness of $\operatorname{Re}^{+}(M, R)$ doesn't imply a special inequality between $e(R)$ and dim R, as the following two examples show.

EXAMPLE 2.5: $\quad R=k\left[\left[X^{2}, X Y, Y^{2}, X Z, Y Z, Z\right]\right], k$ a field, X, Y, Z indeterminates. R is a Cohen-Macaulay ring, see [11]. Since $\left(X^{2}, Y^{2}, z\right) M=M^{2}$ we know [17], that $g r_{M} R$ is Cohen-Macaulay, hence $\operatorname{Re}^{+}(M, R)$ is Cohen-Macaulay by [11], thm. 4.8.

Furthermore we see that $e(R)=$ emdim $R-\operatorname{dim} R+1=4$, i.e. $e(R)>\operatorname{dim} R$.

EXAMPLE 2.6: $R=k[[X]] / I_{2}(X)$, where $X=\left(X_{i j}\right)$ is the 2×3 matrix of indeterminates $X_{i j}$ over a field k and $I_{2}(X)$ is the ideal generated by the 2×2 minors of X. Then R is Cohen-Macaulay, $e(R)=3<\operatorname{dim} R=4$, and emdim $R=6$. Therefore we have $e(R)=\operatorname{mdim} R-\operatorname{dim} R+1$, i.e. $M^{2}=(\underline{a}) M$ [17], where $\underset{a}{a}$ is a minimal reduction of M. The same argument as in example 2.5 shows that $\operatorname{Re}^{+}(M, R)$ is Cohen-Macaulay.

To make use of testideals the following auxiliary result is needed.

LEMMA 2.7: Let (R, M) be a local ring. If I is an equimultiple ideal in R which is a generic complete intersection then $e(R / I) \geq e(R)$.

PROOF: The condition $h t(I)=\ell(I)$ implies by [8], [9] the equality $e(\underline{x}, I, R)=e(I+\underline{x} R)$ for any system \underline{x} of parameters of I. By assumption, $I R_{p}$ is a parameter ideal for all minimal primes P of I. Therefore we have

$$
e(\underline{x}, I, R)=\sum_{P \in \operatorname{Min}(I)} e(\underline{x}, R / P) \cdot e\left(I R_{p}\right) \leq \sum_{P \in \operatorname{Min}(I)} e(\underline{x}, R / P) \cdot \ell\left(R_{p} / I R_{p}\right)
$$

where Min(I) denotes the set of minimal primes of I. Hence we get: $e(\underline{x}, I, R) \leq e(\underline{x}, R / I)$.

Choosing a special system \underline{x} of parameters for I which satisfies $e(\underline{x}, R / I)=e(R / I)$ we have finally:

$$
e(R) \leq e(I+\underline{x} R)=e(\underline{x}, I, R) \leq e(R / I)
$$

REMARK: If in the lemma (R, M) is a Cohen-Macaulay ring with infinite residue field R / M, then I is a complete intersection already. This can be seen as follows:

Let a_{1}, \ldots, a_{t} be a minimal reduction of I with $t=h t(I)$. For $J:=\left(a_{1}, \ldots, a_{t}\right) \subset I$, we have $J R_{p}$ is a minimal reduction of IR_{p} for all $\mathrm{P} \in \operatorname{Min}(I)=\operatorname{Min}(J)$. By assumption $I R_{p}$ is a complete intersection in R_{p}. Therefore, it has no proper minimal reduction by [14] § 4, thm. 4, hence $J R_{p}=I R_{P}$. Since J is an ideal of the principal class
in a Cohen-Macaulay local ring, it is height-unmixed. So we have the following primary decompositions for I and J

$$
\begin{aligned}
& I=Q_{1} \cap \ldots \cap Q_{n} \cap Q_{\ell} \\
& J=Q_{1} \cap \ldots \cap Q_{n}
\end{aligned}
$$

where the Q_{1}, \ldots, Q_{n} are primary ideals associated to the $P_{1}, \ldots, P_{n} \in \operatorname{Min}(I)$ and Q_{ℓ} contains all embedded components of I. Hence we get $I=J$.

PROPOSITION 2.8: Let (R, M) be a local ring with a CohenMacaulay Rees ring $\operatorname{Re}^{+}(M, R)$. Let I be an equimultiple ideal which is a generic complete intersection. If $e(R / I)<d i m R$, then R and $g r_{M} R$ are Cohen-Macaulay.

PROOF: Use lemma 2.7 and corollary 2.2.
A result similar to proposition 2.8 is the following one.

PROPOSITION 2.9: Let R be a local ring and let I be a complete intersection in R such that $\operatorname{Re}^{+}(I, R)$ is CohenMacaulay and $e(R / I)=e(R)$. Then R is Cohen-Macaulay.

PROOF: 1) If dim $R / I=0$, we have $e(R)=e(R / I)=\ell(R / I)$, hence R is Cohen-Macaulay. [Here we don't use $\operatorname{Re}^{+}(I, R)$ is Cohen-Macaulay.]
2) In the general case we may assume that R has an infinite residue field. Let $I=\left(y_{1}, \ldots, y_{S}\right)$ and let x_{1}, \ldots, x_{r} be a system of parameters mod I such that
$\bar{x}_{1}, \ldots, \bar{x}_{r} \in R / I$ form a minimal reduction of M / I in R / I. We put $\bar{R}=R / \underline{x} R, \underline{x}=x_{1}, \ldots, x_{r}$. Ré (I, R) Cohen-Macaulay implies that R is normally Cohen-Macaulay along I . Therefore x is a regular sequence on I^{n} / I^{n+1} for $n \geq 0$, hence on R too. Note that $e(R / I)=e\left(\left(\bar{x}_{1}, \ldots, \bar{x}_{r}\right)\right)$ since $\left(\bar{x}_{1}, \ldots, \bar{x}_{r}\right)$ is a minimal reduction of M / I. Furthermore $\left.e\left(\bar{x}_{1}, \ldots \bar{x}_{r}\right)\right)=\ell(R / I+\underline{x} R)=e(R / I+\underline{x} R) \geqslant e(R / \underline{x} R) \geqslant e(R)$ since R / I is Cohen-Macaulay. Therefore $e(\bar{R})=e(\bar{R} / I \bar{R})$, i.e. $\overline{\mathrm{R}}$ is Cohen-Macaulay by step 1 , hence R is Cohen-Macaulay.

3. TRANSITIVITY OF COHEN-MACAULAYNESS FOR REES RINGS

Now we assume that the given ring R is Cohen-Macaulay. Then we consider equimultiple ideals $J \subset I$ such that $I=J+x R$, where x is part of a system of parameters mod J. For simplicity we are always working with an infinite residue field.

THEOREM 3.1: (Transitivity of Cohen-Macaulay property.) Let (R, M) be a local Cohen-Macaulay ring with infinite residue field. Let J be an equimultiple ideal of R, let $\underline{x}=\left(x_{1}, \ldots, x_{s}\right)$ be a part of a system of parameters mod J and let $I=J+x R$.
a) The following conditions are equivalent:
(i) $\quad g r_{J}(R)$ is Cohen-Macaulay.
(ii) $\quad g r_{I}(R)$ is Cohen-Macaulay, and $g r_{J R_{P}}\left(R_{P}\right)$ is Cohen-Macaulay for all $p \in \operatorname{Min}(I)$.
b) If $h t(J)>0$, the following conditions are equivalent:

Rè (J, R) is Cohen-Macaulay.
$\operatorname{Re}^{+}(I, R)$ is Cohen-Macaulay, and $\operatorname{Re}^{+}\left(J R_{p}, R_{p}\right)$ is Cohen-Macaulay for all $P \in \operatorname{Min}(I)$.

PROOF: a) Let y be a system of parameters mod I . Then $x \cup y$ is a system of parameters mod J.
(i) \Rightarrow (ii) Clearly $g r_{J R_{P}}\left(R_{P}\right) \simeq g r_{J}(R) \otimes R_{P}$ is Cohen-Macaulay. By [11], Prop. 4.5, $g r_{J}(R)$ is Cohen-Macaulay if and only if $g r_{J+\underline{x} R+Y_{R}}(R)$ is Cohen-Macaulay and R is normally Cohen-Macaulay along J. This implies that R is normally Cohen-Macaulay along I ([7], Satz 4.2, p. 132). Using $g r_{J+X R+Y R}(R)=g r_{I+Y R}(R)$ we see that $g r_{I}(R)$ is CohenMacaulay (by [11], Prop. 4.5 again).
$(i i)=(i)$ By [7], Satz 4.2, p. 132 R is normally CohenMacaulay along J, and $g r_{J+\underline{X} R+Y R}(R)=g r_{I+Y R}(R)$ is Cohen-Macaulay, so $g r_{J}(R)$ is Cohen-Macaulay.
b) By [11], thm. 4.8, we know that $\operatorname{Re}^{+}(J, R)$ is CohenMacaulay if and only if $g r_{J}(R)$ is Cohen-Macaulay and $r(J) \leq h t(J) \quad$.
(i) \Rightarrow (ii) Obviously we have $r(I) \leq r(J) \leq h t(J) \leq h t(I)$, and also $r\left(J R_{P}\right) \leq r(J) \leq h t(J)=h t\left(J R_{P}\right)$. Therefore the assertion follows from a), (i) \Rightarrow (ii) .
$(i 1) \Rightarrow(i)$ By a) and [11], thm.4.8, we have to show that $r(J) \leqq h t(J)$. Equivalently, taking any minimal reduction J ' of J and putting $t=h t(J)$, we have to show that $J^{t} \subset J^{\prime}$ (compare [11], thm. 4.8). Note that R / J^{\prime} is

Cohen-Macaulay, and therefore $\operatorname{Ass}\left(R / J^{\prime}\right)=\operatorname{Min}(J)$. So we are reduced to prove that $J^{t} R_{Q} \subset J^{\prime} R_{Q}$ for all $Q \in \operatorname{Min}(J)$. Now if $Q \in M i n(J)$, we claim that $Q \subset P$ for some $P \in M i n(I)$. Otherwise we would have $Q \not \not_{P \in M i n(I)} P$, and therefore Q would contain an element y which is a non-zerodivisor mod I . Since R / J is Cohen-Macaulay, any non-zerodivisor mod I is also a non-zerodivisor mod J, which gives a contradiction to $Q \in \operatorname{Min}(J)$. Now given $P \in \operatorname{Min}(I)$ such
 and a forteriori $J^{t} R_{Q} \subset J^{\prime} R_{Q}$, which completes the proof. A class of examples is given by the following corollary.

COROLLARY 3.2: Let (R, M) be a Cohen-Macaulay ring and let P be an ideal in R such that R / P is regular and $e(R)=e\left(R_{P}\right)$ i.e. ht $(P)=\ell(P)$ by [8]. If $\operatorname{Re}^{+}(P, R)$ is Cohen-Macaulay then $\operatorname{Re}^{+}\left(Q R_{Q}, R_{Q}\right)$ is Cohen-Macaulay for all prime ideals $Q \supset P$; in particular $R^{+}(M, R)$ is CohenMacaulay.

Assume that $\operatorname{Re}^{+}(P, R)$ is Cohen-Macaulay for some equimultiple ideal P such that R / P is regular. In order to apply Corollary 3.2 to conclude that $R^{+}(M, R)$ is Cohen-Macaulay, we need to show that R is Cohen-Macaulay. Some results in this direction are given in the next two propositions.

PROPOSITION 3.3: Let P be an equimultiple ideal in (R,M) such that $R^{+}(P, R)$ is Cohen-Macaulay. If R / P is regular and $h t(P) \leq 2$ then R and $\operatorname{Re}^{+}(M, R)$ are Cohen-Macaulay.

PROOF: 1.case: ht $(P)=1$. Then P is generated by one element f, s. [10], proposition 1.5. This implies R is regular, since $M=f R+\left(x_{1}, \ldots, x_{d-1}\right) R$, where x_{1}, \ldots, x_{d-1} form a regular system of parameters mod p.
2. case: $h t(P)=2$. By assumption we have $M=P+x R$, where $\underline{x}=\left(x_{1}, \ldots, x_{r}\right)$ is a system of parameters mod P. Since $\operatorname{Re}(P, R)$ is Cohen-Macaulay and $h t(P)=\ell(P) ; R$ must be normally Cohen-Macaulay along p, s. [10]. Therefore \underline{x} is a regular sequence on P^{n} / P^{n+1} for $n \geqslant 0$, hence on R too. Moreover putting $\bar{R}=R / \underline{R}$ and $\bar{M}=M / \underline{x} R$, we know that $\operatorname{Re}^{+}(\bar{M}, \bar{R}) \cong \operatorname{Re}^{+}(P, R) \underline{x} \operatorname{Re}^{+}(P, R)$ is CohenMacaulay, i.e. depth $\bar{R} \geq 2=\operatorname{dim} \bar{R}$, so \bar{R} and R must be Cohen-Macaulay. Then $\operatorname{Re}^{+}(M, R)$ is Cohen-Macaulay by theorem 3.1.

PROPOSITION 3.4: Let $P \neq M$ be an equimultiple ideal in (R, M) with ht $(P) \geq 2$. Assume that
(i) $\operatorname{Re}^{+}(\mathrm{P}, \mathrm{R})$ is Cohen-Macaulay
(ii) R / P is regular
(iii) $e(R)=2$.

Then R and $\operatorname{Re}^{+}(M, R)$ are Cohen-Macaulay.

PROOF: We may assume by [8] that $M=P+x R$, where $\underline{x}=\left(x_{1}, \ldots, x_{r}\right)$ is a sequence of superficial elements with $e(R / \underline{x} R)=e(R)=2, r=\operatorname{dim} R / p$.

Putting $\bar{R}=R / \underline{x} R$ and $\bar{M}=M / \underline{X} R$ as in the proof of proposition 3.3., we see again that $\operatorname{Re}^{+}(\bar{M}, \bar{R})$ is CohenMacaulay. Hence \bar{R} is a Buchsbaum ring of multiplicity 2, which satisfies the Serve condition S_{2}. Using the inequality (*) in section 2 , we get $h^{i}(\bar{R})=0$ for $i \neq \operatorname{dim} \bar{R}$. Therefore \bar{R} and R are Cohen-Macaulay rings, proving that $\operatorname{Re}^{+}(M, R)$ is Cohen-Macaulay by theorem 3.1.

PROPOSITION 3.5: Let (R, M) be a Buchsbaum ring of dimension $d \geq 3$ with an algebraically closed residue field k. Let $P \neq M$ be an equimultiple prime ideal in R such that
(i) $\operatorname{Re}^{+}(P, R)$ is Cohen Macaulay
(ii) $P^{*}=g r_{M}(P, R)$ 1) is prime.

If $e(R)=3$ then R and $\operatorname{Re}^{+}(M, R)$ are Cohen-Macaulay rings.

PROOF: Condition (i) tells us that depth $R \geqq \operatorname{dim} R / P+1$ by [10], proposition 1.5. Therefore R satisfies Serve's condition S_{2}. The high point of proof is to show that R is Cohen-Macaulay. For that we use the sharp relation (see [5])
(**)

$$
e(R)=1+\ell(M / J)+\sum_{i=1}^{d-1}\binom{d-1}{i-1} h^{i}(R)
$$

where $J=\sum_{i=1}^{d}\left(x_{1}, \ldots, x_{i}, \ldots, x_{d}\right): x_{i}$ and $\left(x_{1}, \ldots, x_{d}\right)$ a minimal reduction of M.

If we assume that R is not-Cohen-Macaulay then the equality (**) tells us that
(1) $d=3$ and

$$
\begin{equation*}
\ell(M / J)=0 \tag{2}
\end{equation*}
$$

since $e(R)=3$ and $h^{0}(R)=h^{1}(R)=0, h^{2}(R)=1$. From (2) we conclude by [4] that $r(M)=2$ and that $g r_{M}{ }^{R}$ is Buchsbaum. Moreover by Ikeda [20] we know - up to isomorphisms - exactly this graded ring, namely

$$
g r_{M}^{R}=k\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}\right] /\left(X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3},\left(Y_{1}, Y_{2}, Y_{3}\right)^{2}\right)
$$

From (1) we get ht $(P) \leq 2$. Clearly ht $(P) \neq 1$ if R is not-Cohen-Macaulay, s. [11], proposition 4.11, i.e. ht $(P)=\ell(P)=2$. Since $G=g r_{M} R$ is Buchsbaum, we have $h t\left(P^{*}\right)=\operatorname{dim}(G)-\operatorname{dim}\left(G / P^{*}\right)=2$.

Now, putting $y_{i}=\bar{Y}_{i} \in G, i=1,2,3$, we get:

$$
Q:=P^{*} / Y G \subset G / Y G=k\left[X_{1}, X_{2}, X_{3}\right]
$$

Since P^{*} is prime and $h t\left(P^{*}\right)=2, Q$ corresponds to a closed point in Proj $k\left[X_{1}, x_{2}, x_{3}\right]$. We may assume that $X_{3} \notin Q$. Since k is algebraically closed, we must have $Q=\left(X_{1}-\alpha X_{3}, X_{2}-\beta X_{3}\right)$ for some $\alpha, \beta \in k$. Hence $G / P * \approx k[z]$,
where Z is an indeterminate over k, i.e. R / P is regular. But this property cannot occur together with $\operatorname{Re}^{+}(P, R)$ is Cohen-Macaulay and $h t(P)=\ell(P)=2$ for a non-Cohen-Macaulay ring R, by proposition 3.3. Therefore R must be Cohen-Macaulay under the assumptions of proposition 3.5. But then we know by [17] that $g r_{M^{R}}$ is Cohen-Macaulay, since $e(R)=3$. Moreover we get that Re (M, R) is Cohen-Macaulay by [11], Corollary 5.4. This completes the proof.

REMARK 3.6: R / P regular implies p^{*} prime.

QUESTION 3.7: Is the statement of proposition 3.5 true without the restriction on the multiplicity $e(R)$?

THEOREM 3.8: Let (R, M) be a local ring, J an equimultiple ideal of $R, \underline{x}=\left\{x_{1}, \ldots, x_{s}\right\}$ part of a system of parameters mod J and $I=J+x R$. Assume that $s>0$ and that $\operatorname{Re}^{+}(J, R)$ and $\operatorname{Re}^{+}(I, R)$ are Cohen-Macaulay. Then R is Cohen-Macaulay.

PROOF: Since ht $(J)=\ell(J)$ and $\operatorname{Re}^{+}(J, R)$ is Cohen-Macaulay we know that R normally Cohen-Macaulay along J. Therefore $\underline{x} R \cap J^{i}=(\underline{x}) \cdot J^{i}$ for $i \geq 1$, implying $\underline{x} R \cap I^{i}=(\underline{x}) \cdot I^{i-1}$. We write: $G_{I}=g r_{I} R, G_{J}=g r_{J} R$;

$$
G_{I}^{(0)}=G_{I} ; G_{I}^{(j)}=G_{I} /\left(x_{1}^{*}, \ldots, x_{j}^{*}\right), 1 \leq j \leq s
$$

where x_{j}^{*} is the initialform of x_{j} with respect to I, and $G_{I}(-1)$ is the shifting of G_{I} by -1 .

Then we consider the exact sequence
(1) $0 \longrightarrow G_{I}^{(j)}(-1) \xrightarrow{\cdot x^{*} j+1} G_{I}^{(j)} \longrightarrow G_{I}^{(j+1)} \longrightarrow 0$.

Now set $G_{1}=G_{I}^{(s)}$ and $G_{2}=G_{J} / X_{J}$. Denote by M_{J} and M_{I} the unique maximal homogeneous ideals of $\operatorname{Re}^{+}(J, R)$ and $\operatorname{Re}^{+}(I, R)$ respectively. Then we get from (1) the long exact sequence for the local cohomology:
(2) $\ldots \rightarrow H_{M_{I}}^{i-1}\left(G_{1}\right) \rightarrow H_{M_{I}}^{i}\left(G_{I}^{(s-1)}\right)(-1) \xrightarrow{\delta} H_{M_{I}}^{i}\left(G_{I}^{(s-1)}\right) \longrightarrow \ldots$, where δ is defined by multiplying with $\mathrm{x}_{\mathrm{s}}^{*}$. Now $\quad G_{1} \simeq G_{2}$ over $S: \operatorname{Re}^{+}(J, R) / \underline{x} \operatorname{Re}^{+}(J, R) \simeq \operatorname{Re}^{+}(I, R) /(\underline{x}, \underline{x} t) \simeq$ $\propto R[I t] / \oplus\left(x R \cap I^{n}\right) t^{n}$. Since $\underline{x}^{+}{ }^{+}(J, R)$ is a regular sequence on $\operatorname{Re}^{+}(J, R), S$ is Cohen-Macaulay, hence by [10], proposition 1.5:
(3)

$$
H_{M_{I}}^{i-1}\left(G_{1}\right)_{n} \propto H_{M_{J}}^{i-1}\left(G_{2}\right)_{n}=0 \text { for } n \geqq 0, i \leq d-s
$$

This implies that

$$
H_{M_{I}}^{i}\left(G_{I}^{(s-1)}\right)_{n-1} \xrightarrow{\delta} H_{M_{I}}^{i}\left(G_{I}^{(s-1)}\right)_{n}
$$

is infective. Therefore we get ${ }_{n Z-1}^{\oplus} H_{M_{I}}^{i}\left(G_{I}^{s-1}\right)_{n}=0$.
By induction on j we see that

$$
H_{M_{I}}^{1}\left(G_{I}^{(s-j)}\right)_{n}=0 \text { for } n \geq-j, i<d-r+j, 0 \leq j \leq r
$$

For $j=s$ and $i \leq d-1$ this implies in particular:

$$
0=H_{M_{I}}^{\mathrm{i}}\left(G_{I}\right)_{-1}=H_{M}^{\mathrm{i}}(\mathrm{R})
$$

since $h t(I)=\ell(I)$ and $\operatorname{Re}^{+}(I, R)$ is Cohen-Macaulay, see [10], proposition 1.5. This completes the proof.

REMARK 3.9: If $J=(0)$ in the above theorem, we have a similar conclusion as above, replacing the assumption on $\operatorname{Re}^{+}(J, R)$ by the assumption that I is generated by a regular sequence. For we know from $\operatorname{Re}^{+}(I, R)$ Cohen-Macaulay that R / I is Cohen-Macaulay, hence the same is true for R.

EXAMPLE 3.10: (Compare [3]): $R=k\left[\left[s^{2}, s^{3}, s t, t\right]\right]$, s,t indeterminates, is a non-Cohen-Macaulay Buchsbaum ring. We consider $J=\left(s^{2}\right) R$ and $I=\left(s^{2}, t\right) R$. Since s^{2}, t form a system of parameters in a Buchsbaum domain of dimension 2 we know by [19] that $\operatorname{Re}^{+}(I, R)$ is Cohen-Macaulay. Hence $\operatorname{Re}^{+}(J, R)$ cannot be Cohen-Macaulay by theorem 3.8. [Compare also [11], proposition 4.11].

At the end of this section we consider again the ring of example 2.3. We want to test the structure of $\mathrm{Re}^{+}(I, R)$ for various ideals I :

$$
\begin{aligned}
R & =k\left[\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}\right]\right] /\left(X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3},\left(Y_{1}, Y_{2}, Y_{3}\right)^{2}\right) \\
& \propto k\left[\left[x_{1}, x_{2}, x_{3}, Y_{1}, Y_{2}, Y_{3}\right]\right]
\end{aligned}
$$

We consider these ideals:
$M=\left(x_{1}, x_{2}, x_{3}, Y_{1}, y_{2}, y_{3}\right) \supset P_{1}=\left(x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right) \supset P_{2}=\left(x_{3}, y_{1}, y_{2}, y_{3}\right)$, $P_{3}=\left(y_{1}, y_{2}, y_{3}\right)$,
$Q_{3}=\left(x_{1}, x_{2}, x_{3}\right) \supset Q_{2}=\left(x_{1}, x_{2}\right) \supset Q_{1}=\left(x_{1}\right)$

The following can be said about the Rees rings:
a) Since R is not-Cohen-Macaulay $\operatorname{Re}^{+}\left(P_{1}, R\right)$ and $\operatorname{Re}^{+}\left(P_{2}, R\right)$ are not-Cohen-Macaulay by theorem 3.8.
b) $\quad \operatorname{Re}^{+}\left(P_{3}, R\right) \approx R \in P_{3} t$ is finitely generated. Since R is not-Cohen-Macaulay, $\operatorname{Re}^{+}\left(P_{3}, R\right)$ cannot be CohenMacaulay.
c) $\quad \operatorname{Re}^{+}\left(Q_{2}, R\right)$ is not-Cohen-Macaulay. Otherwise R would be normally Cohen-Macaulay along Q_{2} by [10], i.e. in particular R / Q_{2} would be Cohen-Macaulay.
d) $\quad \operatorname{Re}^{+}\left(Q_{3}, R\right)$ is not-Cohen-Macaulay. Otherwise we must have $H_{M}^{i}(R)=0$ for $i \neq 1$, d by [18], theorem 3.1, since Q_{3} is a parameter ideal in R. Hence we would have $H_{M}^{2}(R)=0$, but this is a contradiction in our case.
e) $\quad \operatorname{Re}^{+}\left(Q_{1}, R\right)$ is not Cohen-Macaulay. Otherwise R would be Cohen-Macaulay by [11], 4.11.

REMARK 3.11: Ikeda [20] has recently shown that the ideal $I=\left(x_{1}, x_{2}, Y_{3}\right) \subset R$ has a Cohen-Macaulay-Rees ring. Hence the Rees ring of $J_{1}=\left(x_{1}, x_{2}, x_{3}, Y_{3}\right)$ or $J_{2}=\left(x_{i}, y_{3}\right), 1=1$ or 2 cannot be Cohen-Macaulay by theorem 3.8.

QUESTION 3.12: Relate S_{n} of $\operatorname{Re}^{+}(J, R)$ and $\operatorname{Re}^{+}(I, R)$, where $I=J+\underline{x}$ as in the theorem 3.8 , to S_{n-1} of R.
4. THE GEOMETRIC BLOWING UP

If we replace the Rees rings $\operatorname{Re}^{+}(I, R)$ and $\operatorname{Re}^{+}(J, R)$ in theorem 3.8 by the Proj's of these rings then the corresponding question becomes more difficile. The exact question is as follows:

LLet (R, M) be a local ring of depth $\mathrm{R} \neq 0$. Let J be an equimultiple ideal and let $I=J+x R$, where x is part of a system of parameters mod J. Assume that
(i) Proj(I^{n}) is Cohen-Macaulay and
(ii) $\operatorname{Proj}\left(\oplus J^{n}\right)$ is Cohen-Macaulay.

Is R a Cohen-Macaulay ring?"
In theorem 4.5 we will give a partial answer to this question. Before formulating this result we want to remark that the assumptions depth $R \underset{\neq 0}{ }$ and J is equimultiple are necessary:

EXAMPLE 4.1: Let (S, N) be a regular local ring with residue field k. Consider the ring

$$
R=S[X] /\left(X^{2}, N X\right) \propto S \oplus k
$$

where X is an indeterminate. Then $H_{M}^{0}(R) \simeq k$, hence $R / H_{M}^{0}(R)$ is Cohen-Macaulay.

Now take $I=\left(a_{1}, \ldots, a_{d}\right)$ and $J=\left(a_{1}, \ldots, a_{i}\right), 2 \leq i<d$, where a_{1}, \ldots, a_{d} is a system of parameters in R. Since $H_{M}^{0}(R) \subset \operatorname{ker}\left(R \rightarrow R\left[\frac{K}{a_{j}}\right] \subset R_{a_{j}}\right) \quad$ for $\quad K=I \quad$ and $\quad K=J$, we have $\operatorname{Proj}\left(\oplus I^{n}\right) \simeq \operatorname{Proj}\left(\oplus \overline{\mathrm{I}}^{\mathrm{n}}\right)$ and $\operatorname{Proj}\left(\oplus \mathrm{J}^{\mathrm{n}}\right) \simeq \operatorname{Proj}\left(\oplus \bar{J}^{n}\right)$, where \bar{I} and \bar{J} are the images of I and J in $R / H_{M}^{0} R$. But $\operatorname{Proj}\left(\Phi \overline{\mathrm{I}}^{\mathrm{n}}\right)$ and $\operatorname{Proj}\left(\oplus \bar{J}^{\mathrm{n}}\right)$ are Cohen-Macaulay, since \bar{I} and \bar{J} are formed by a regular sequence in $R / H_{M}^{0}(R)$.

EXAMPLE 4.2: $R=k\left[\left[s^{2}, s^{3}, s t, t\right]\right]$. We take $J=\left(s^{2}, s^{3}, s t\right)$ and $I=\left(s^{2}, s^{3}, s t, t\right)$. Now J is not an equimultiple ideal in R, since $\left(s^{2}, s t\right)$ is a minimal reduction of J, i.e. $h t(J)=1$ and $\ell(J)=2$.

Since $\operatorname{Proj}\left(\oplus J^{n}\right)=\operatorname{Spec} R_{1} U S$ Spec R_{2}, where $R_{1}=R\left[s, \frac{t}{s}\right]$ and $R_{2}=R\left[t, \frac{s}{t}\right]$, we see that $\operatorname{Proj}\left(\oplus J^{n}\right)$ is isomorphic to the blowing up of the plane at the origin, hence CohenMacaulay. Furthermore $\operatorname{Proj}\left(\oplus I^{n}\right)$ is Cohen-Macaulay since R is a (non-Cohen-Macaulay) Buchsbaum ring of multiplicity 2 [3].
[Note that $\mathrm{Re}^{+}(I, R)=\oplus I^{n}$ is not-Cohen-Macaulay, otherwise depth R would be 2 , hence R would be Cohen-Macaulay.]

Now we are going to specialize I to a complete intersection. We denote the blowing up $\operatorname{Proj}\left(\oplus I^{n}\right)$ of R with center I by $B_{I}(R)$. First we need an auxiliary result.

LEMMA 4.3: Let I be a complete intersection in the local ring (R, M), and let R_{1} be a local ring obtained by blowing up R with center I. If R_{1} corresponds to a closed point of $B \ell_{I}(R)$, then $\operatorname{dim} R_{1}=\operatorname{dim} R$.

PROOF: We note that in general we have dim $R_{1} \leqq \operatorname{dim} R$ without any assumption on I . (This can be shown by using [13], 14.c for the irreducible components of Spec R.) Case $h t(I)=\operatorname{dim} R$, i.e. I is generated by a system of parameters a_{1}, \ldots, a_{d} of R. We may assume $R_{1}=\left[\frac{a_{2}}{a_{1}}, \ldots, \frac{a_{d}}{a_{1}}\right]_{N}$ for some maximal ideal N of $R^{\prime}=R\left[\frac{a_{2}}{a_{1}}, \ldots, \frac{a_{a}}{a_{1}}\right]$. Now, by the analytic independence of systems of parameters, we have $R^{\prime} / M R^{\prime} \simeq R / M\left[T_{2}, \ldots, T_{d}\right]$, showing that every maximal ideal in $R^{\prime} / M R^{\prime}$ has height $d-1$. Since $R_{1} / a_{1} R_{1}$ is, up to nilpotent elements, a localization of $R^{\prime} / \mathrm{MR}^{\prime}$ at a maximal ideal, we conclude that $\operatorname{dim} R_{1} / a_{1} R_{1}=d-1$, and therefore $\operatorname{dim} R_{1}=d$.

GENERAL CASE: If $I=\left(a_{1}, \ldots, a_{s}\right), s=h t(I) \leqq \operatorname{dim} R$, we extend a_{1}, \ldots, a_{s} to a system of parameters a_{1}, \ldots, a_{d} of R and we put $I^{\prime}=\left(a_{1}, \ldots, a_{d}\right) R$. We may assume that $I R_{1}=a_{1} R_{1}$. Let $R^{\prime \prime}=R\left[\frac{a_{2}}{a_{1}}, \ldots, \frac{a_{d}}{a_{1}}\right]=R\left[\frac{a_{2}}{a_{1}}, \ldots, \frac{a_{s}}{a_{1}}\right]\left[\frac{a_{s+1}}{a_{1}}, \ldots, \frac{a_{d}}{a_{1}}\right]$ and assume that $R_{1}=R\left[\frac{a_{2}}{a_{1}}, \ldots, \frac{a_{s}}{a_{1}}\right]_{N}$. Put $N^{\prime \prime}=N R^{\prime \prime}+\left(\frac{a_{s+1}}{a_{1}}, \ldots, \frac{a_{d}}{a_{1}}\right)^{\prime \prime}{ }^{\prime \prime}$ and $R_{2}=R_{N}^{\prime \prime}$. Then R_{2} corresponds to a closed point of $B \ell_{I},(R)$ and therefore $\operatorname{dim} R_{2}=\operatorname{dim} R$ by the special case above. On the other hand R_{2} is obtained by blowing up
$\left(a_{1}, a_{s+1}, \ldots, a_{d}\right)$ in R_{1}, and therefore $\operatorname{dim} R_{2} \leq \operatorname{dim} R_{1} \leq \operatorname{dim} R$, which concludes the proof.

REMARK 4.4: Using Ratliff's well developed theory of quasi-unmixed rings one can show that the statement of the lemma is true for any equimultiple ideal in a quasi-unmixed local ring.

THEOREM 4.5: Let (R,M) be a Buchsbaum local ring with depth $R>0$. If $B_{I}(R)$ is Cohen-Macaulay for a complete intersection I of R such that $2 \leq h t(I)<d=\operatorname{dim} R$, then R is Cohen-Macaulay.

PROOF: Let $s=h t(I)$ and let a_{1}, \ldots, a_{d} be a system of parameters of R such that $I=\left(a_{1}, \ldots, a_{s}\right) R$. We put

$$
\begin{aligned}
& R^{\prime}=R\left[\frac{a_{2}}{a_{1}}, \ldots, \frac{a_{s}}{a_{1}}\right] \\
& N=M R^{\prime}+\left(\frac{a_{2}}{a_{1}}, \ldots, \frac{a_{s}}{a_{1}}\right) R^{\prime}, \\
& R_{1}=R_{N}^{\prime}
\end{aligned}
$$

Since $d i m R_{1}=d$ by the lemma, we see that $a_{1}, \frac{a_{2}}{a_{1}}, \ldots, \frac{a_{s}}{a_{1}}, a_{s+1}, \ldots, a_{d}$ is a system of parameters of R_{1}. Using the Buchsbaum property of R it is not difficult to see that

$$
R^{\prime} /\left(a_{1} \cdot \frac{a_{2}}{a_{1}}, \ldots \cdot \frac{a_{s}}{a_{1}}\right) R^{\prime} \propto R / K
$$

where $K=a_{1} R+\left(\left(a_{2}, \ldots, a_{s}\right): a_{1}\right)_{R},[6]$, and therefore also

$$
R_{1} /\left(a_{1}, \frac{a_{2}}{a_{1}}, \ldots, \frac{a_{s}}{a_{1}}\right) R_{1} \simeq R / K
$$

Since R_{1} was assumed to be Cohen-Macaulay and $a_{1}, \frac{a_{2}}{a_{1}}, \ldots, \frac{a_{s}}{a_{1}}$ is part of a system of parameters of R_{1}, we see that R / K is Cohen-Macaulay. We consider the following exact sequence

$$
\begin{equation*}
0 \rightarrow K / I \rightarrow R / I \rightarrow R / K \rightarrow 0 . \tag{1}
\end{equation*}
$$

Using again the Buchsbaum property of R one obtains

$$
\begin{equation*}
K / I \simeq \frac{\left(a_{2}, \ldots, a_{s}\right): M}{\left(a_{2}, \ldots, a_{s}\right)} \simeq H_{M}^{0}\left(R /\left(a_{2}, \ldots, a_{s}\right)\right), \tag{2}
\end{equation*}
$$

i.e. K / I is a vector space over R / M. From the sequence (1) and from the fact that R / K is Cohen-Macaulay we get:

$$
\begin{equation*}
h^{j}(R / I)=h^{j}(K / I) \quad \text { for } \quad 0 \leqq j<d-s \tag{3}
\end{equation*}
$$

and since $\operatorname{dim} \mathrm{K} / \mathrm{I}=0$

$$
\begin{equation*}
h^{j}(R / I)=0 \quad \text { for } 0<j<d-s \tag{4}
\end{equation*}
$$

From $h^{j}(R / X R)=h^{j}(R)+h^{j+1}(R) \quad$ (see [5], p. 494) we conclude by induction

$$
\begin{equation*}
h^{j}(R / I)=\sum_{r=0}^{s-1}\left({ }_{r}^{s}\right) h^{j+r}(R) \quad \text { for } \quad 0 \leqq j<d-s \tag{5}
\end{equation*}
$$

and similarly, together with (2), we have

$$
\begin{equation*}
h^{0}(K / I)=\sum_{r=0}^{s-1}\left(\frac{s-1}{r}\right) h^{r}(R) \tag{6}
\end{equation*}
$$

Putting $j=0$ in (3) and (5) and comparing with (6) we obtain

$$
h^{j}(R)=0 \quad \text { for } \quad 0<j \leq s \quad .
$$

On the other hand, comparing (4) and (5) we also have

$$
h^{j}(R)=0 \quad \text { for } \quad s<j<d .
$$

Finally $h^{0}(R)=0$ since depth $R>0$, and this completes the proof of the theorem.

REMARK 4.6: Since depth $R>0$ and R is Buchsbaum in the theorem 4.5, the ring $R / H_{M}^{0}(R) \propto R$ is Buchsbaum. Hence $B \ell_{H}(R)=\operatorname{Proj}\left(\oplus H^{n}\right)$ is Cohen-Macaulay for $H=\left(a_{1}, \ldots, a_{d}\right)$ by [6]; i.e. theorem 4.5 is indeed a special case of our question at the beginning of this section (for the pair of ideals $I \subset H$).

REFERENCES

[1] M.Brodmann, A Macaulayfication of unmixed domains, J. Algebra 44 (1977), 221-234.
[2] G. Faltings, Uber Macaulayfizierung, Math. Ann. 238 (1978), 175-192.
[3] S. Goto, Buchsbaum rings with multiplicity 2, J. Algebra 74 (1982), 494-508.
[4] S. Goto, Buchsbaum rings of maximal embedding dimension, J. Algebra 76 (1982), 383-399.
[5] S. Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra 85 (1983), 490-534.
[6] S. Goto, Blowing up of Buchsbaum rings, London Math. Soc. Lecture Note Ser. 72 (Comm. Algebra: Durham 1981), 140-162, Camb. Univ. Press 1983.
[7] M. Herrmann - R. Schmidt - W. Vogel, Theorie der normalen Flachheit, Teubner Texte zur Mathematik, Leipzig 1977.
[8] M. Herrmann - U. Orbanz, Faserdimension von Aufblasungen lokaler Ringe und Aquimultiplizität, J. Math. Kyoto Univ. 20 (1980), 651-659.
[9] M. Herrmann - U. Orbanz, On equimultiplicity, Math. Proc. Camb. Phil. Soc. 91 (1982), 207-213.
[10] M. Herrmann - S. Ikeda, Remarks on lifting of CohenMacaulay property, Nagoya Math. J. 92, (1983), 121-132.
[11]
H. Matsumura, Commutative Algebra, W.A. Benjamin, New York 1970.
D.C. Northcott - D. Rees, Reductions of ideals in local rings, Math. Proc. Camb. Phil. Soc. 50 (1954), 145-158.
[15] L. Robblano, On normal flatness and some related topics, in Commutative Algebra, Proc. of the Trento Conference, Lecture Notes in pure and applied mathematics 84, Marcel Dekker, New York - Basel 1983, 235-251.
[16] L. Robbiano - G. Valla, On normal flatness and normal torsion-freeness, J. Algebra 43 (1976), 552-560.
[17] J. Sally, Numbers of generators of ideals in lokal rings, Marcel Dekker, New York 1978.
[18] P. Schenzel, Regular sequences in Rees rings and symmetric algebras I, Manuscr. math. 35 (1981), 173-193.
[19] Y. Shimoda, A note on Rees algebras of two dimensional local domains, to appear in J. Math. Kyoto Univ. S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Thesis Nagoya Univ. 1985.

