TESTING THE COHEN-MACAULAY PROPERTY

UNDER BLOWING UP

by

S. Ikeda, M. Herrmann, U. Orbanz

Max-Planck-Institut	Mathematisches Institut
für Mathematik	der Universität zu Köln
Gottfried-Claren-Str. 26	D-5000 Köln 41
D-5300 Bonn 3	
Department of Mathematics	
Nagoya University	
Chikusa-ku, Nagoya 464	MPI/SFB 85-20

TESTING THE COHEN-MACAULAY PROPERTY

UNDER BLOWING UP

by

S. Ikeda, M. Herrmann, U. Orbanz

<u>INTRODUCTION</u>. Let X be an algebraic variety and let X' —> X be a blowing up of X with arbitrary center Y. In general, the Cohen-Macaulay properties of X and X' are totally unrelated: If X is Cohen-Macaulay and Y is permissible, X' need not be Cohen-Macaulay [15]; and if X is not Cohen-Macaulay, X' can be made Cohen-Macaulay by a suitable choice of Y [1], [2]. Replacing X by a local ring R and Y by an ideal I of R, we try to relate the Cohen-Macaulay property of R to the Cohen-Macaulay property of the Rees ring $Re^{+}(I,R) = \oplus I^{n} \simeq R[It]$, and of $R^{+}(I,R)$.

One line of thought is this: Given some ideal I of R, which may be thought of as a "testideal"; what can we say about blowing ups defined by other ideals J containing I? We restrict our investigations to a certain class of ideals I which we call equimultiple, and which are a common generalization of the two most important classical cases: 1) I is permissible (in the sense of Hironaka, e.g. the maximal ideal), 2) I is an ideal of the principal class. From the algebraic point of view, this class of ideals is characterized by the fact that $gr_{T}(R)$ has a homogeneous system of parameters, at least in the equidimensional case (see [11]). These properties of equimultiple ideals are essential in the proof of theorem 3.1. In section 2 we describe the influence of the multiplicity e(R/I) of R/I on the behaviour of $Re^{+}(M,R)$. In section 3 we compare the Rees rings of I and I + xR, where x is a part of a system of parameters mod I . For this situation we prove a transitivity property for the Cohen-Macaulayness of the Rees rings (and the graded rings $\bullet I^n / I^{n+1}$), assuming that R itself is Cohen-Macaulay. This last assumption is necessary, as we show in theorem 3.8. This theorem and proposition 2.1 indicate that it will be somewhat complicated to construct examples of non-Cohen-Macaulay rings R with Cohen-Macaulay Rees rings Re(I,R) , at least if dim $R \ge 3$. We give several examples for R Cohen-Macaulay as well as for R non-Cohen-Macaulay, in which the Cohen-Macaulay property of $R^{+}(I,R)$ is tested for various ideals I. In the last section 4 we asked the same question as before in theorem 3.8 for the geometric blowing ups Proj Re(I,R) and Proj Re(J,R) .

<u>1. NOTATIONS</u>. A) For any system $\underline{x} = \{x_1, \dots, x_r\}$ of parameters with respect to ICR one has a numerical function $H^{(0)}(n) = e(\underline{x}, I^n/I^{n+1})$, where e(,) denotes the multiplicity symbol of Wright and Northcott. We know by [7] that $H^{(1)}(n) = \sum_{i=0}^{n} H^{(0)}(i) = \sum_{P \in Assh(R/I)} e(\underline{x}; R/P) \cdot H^{(1)}[IR_p](n)$, where $Assh(R/I) = \{P \in Ass(R/I) / \dim R/p = \dim R/I\}$ and $H^{(1)}[IR_p]$ is the usual Hilbert-Samuel function of the PR_p -primary ideal IR_p . For large n, $H^{(1)}(n)$ is a polynomial in n with rational coefficients. If d is the degree and a_d the highest coefficient of this polynomial, the number $e(\underline{x}, I, R) := d!a_d$ is called the multiplicity of I with respect to \underline{x} . If $ht(I) = \dim R - \dim R/I$, then

$$e(\underline{x}, \mathbf{I}, \mathbf{R}) = \sum_{P \in Assh(R/I)} e(\underline{x}; \mathbf{R}/P) e(IR_{P})$$

,

where $e(IR_p)$ is the Samuel multiplicity of IR_p .

B) Let I be a proper ideal in the local ring R . Then we define here the reduction exponent r(I) of I as

$$r(I) = \inf\{n/\text{ there exists a minimal reduction } J \text{ of}$$

I such that $I^n = JI^{n-1}\}$.

C) I is said to be equimultiple, if ht(I) = l(I). R is said to be normally Cohen-Macaulay along I if $depth(I^{n}/I^{n+1}) = dim(R/I)$ for all $n \ge 0$. If dim R = dim R/I + ht(I) then this condition implies equimultiplicity ht(I) = l(I), s. [9].

D) An ideal I is said to be a complete intersection if it is generated by ht(I) elements. I is said to be a generic complete intersection if IR_p is a complete intersection for all minimal primes P of I.

2. TESTIDEALS OF SMALL MULTIPLICITY

In general if $R^{+}(I,R)$ is Cohen-Macaulay for some I then R need not be Cohen-Macaulay. For the case I = M we know by [12] that depth R \geq 2 if $R^{+}(M,R)$ is Cohen-Macaulay and dim R \geq 2. So for dim R = 2, R must be Cohen-Macaulay. This is no longer true for dim R \geq 3 (see example 2.3). One result of this section (s. proposition 2.9) shows that by restricting the multiplicity of certain testideals the Cohen-Macaulay property of R follows from the same property of $R^{+}(I,R)$. First we need a preliminary result.

<u>PROPOSITION 2.1</u>: Let (R,M) be a local ring such that $Re^{+}(M,R)$ is Cohen-Macaulay. If $e(R) < \dim R$, then R is Cohen-Macaulay.

<u>PROOF</u>: Since $R^{+}(M,R)$ is Cohen-Macaulay, R must be a Buchsbaum ring by [12], theorem 0.1. Therefore we know by [5] the following inequality

(*)
$$e(R) \ge 1 + \sum_{i=1}^{d-1} {d-1 \choose i-1} h^{i}(R)$$

where $h^{i}(R)$ is the dimension of the cohomology module $H_{M}^{i}(R)$. Since depth $R \ge 2$ we get $h^{0}(R) = h^{1}(R) = 0$. Then the assumption $e(R) < \dim R$ implies also $h^{i}(R) = 0$ for $2 \le i \le d-1$.

<u>COROLLARY 2.2</u>: Let (R,M) be a local ring with $e(R) \leq \dim R$. Then the following conditions are equivalent:

- (i) $\operatorname{Re}^{\dagger}(M,R)$ is Cohen-Macaulay.
- (ii) (R and) gr_MR is Cohen-Macaulay.

<u>PROOF</u>: For dim R = 2 the implication (i) \Rightarrow (ii) is true without any assumption on e(R). If dim R \geq 3, then (i) \Rightarrow (ii) follows from proposition 2.1 and [11], theorem 4.8. The implication (ii) \Rightarrow (i) is true for e(R) \leq dim R by Corollary 5.4 in [11].

The following example 2.3 shows that for $e(R) = \dim R$ the equivalence of (i) and (ii) is not true in general.

EXAMPLE 2.3: $R = k[[X_1, X_2, X_3, Y_1, Y_2, Y_3]]/(X_1Y_1 + X_2Y_2 + X_3Y_3, (Y_1, Y_2, Y_3)^2)$, where k is a field, and X_1, Y_1 are indeterminates. This ring is a non-Cohen-Macaulay Buchsbaum ring with $e(R) = \dim R = 3$, and $Re^{+}(M, R)$ is Cohen-Macaulay, see [20].

<u>REMARK 2.4</u>: a) If $e(R) = \dim R$ and $Re^{\dagger}(M,R)$ is Cohen-Macaulay, then R is not too far from being Cohen-Macaulay. For if R is not Cohen-Macaulay, at most two cases are possible for $h^{\dagger} = h^{\dagger}(R)$:

case 1: $h^2 = 1$; $h^0 = h^1 = h^3 = ... = h^{d-1} = 0$ case 2: $h^{d-1} = 1$; $h^0 = h^1 = ... = h^{d-2} = 0$. b) Assume that $Re^{+}(M,R)$ is Cohen-Macaulay again. Then we have:

- a) If R is not Cohen-Macaulay then e(R) ≥ dim R by proposition 2.1.
- b) If R is a hypersurface (i.e. R is unmixed and emdim $R \le \dim R + 1$), then $e(R) \le \dim R$ by [11], Cor. 5.5.
- c) For any Cohen-Macaulay ring R the Cohen-Macaulayness of $Re^{+}(M,R)$ doesn't imply a special inequality between e(R) and dim R, as the following two examples show.

EXAMPLE 2.5: $R = k[[X^2, XY, Y^2, XZ, YZ, Z]]$, k a field, X,Y,Z indeterminates. R is a Cohen-Macaulay ring, see [11]. Since $(X^2, Y^2, Z)M = M^2$ we know [17], that $gr_M R$ is Cohen-Macaulay, hence $R^{\frac{1}{2}}(M,R)$ is Cohen-Macaulay by [11], thm. 4.8. Furthermore we see that e(R) = emdim R - dim R + 1 = 4, i.e. e(R) > dim R.

EXAMPLE 2.6: $R = k[[X]]/I_2(X)$, where $X = (X_{ij})$ is the 2 × 3 matrix of indeterminates X_{ij} over a field k and $I_2(X)$ is the ideal generated by the 2 × 2 minors of X. Then R is Cohen-Macaulay, $e(R) = 3 < \dim R = 4$, and emdim R = 6. Therefore we have $e(R) = \text{emdim } R - \dim R + 1$, i.e. $M^2 = (\underline{a})M$ [17], where \underline{a} is a minimal reduction of M. The same argument as in example 2.5 shows that $Re^{\frac{1}{2}}(M,R)$ is Cohen-Macaulay.

To make use of testideals the following auxiliary result is needed.

- 6 -

<u>LEMMA 2.7</u>: Let (R,M) be a local ring. If I is an equimultiple ideal in R which is a generic complete intersection then $e(R/I) \ge e(R)$.

<u>PROOF</u>: The condition ht(I) = l(I) implies by [8], [9] the equality $e(\underline{x}, I, R) = e(I + \underline{x}R)$ for any system \underline{x} of parameters of I. By assumption, IR_p is a parameter ideal for all minimal primes P of I. Therefore we have

$$e(\underline{x}, \mathbf{I}, \mathbf{R}) = \sum_{P \in Min(\mathbf{I})} e(\underline{x}, \mathbf{R}/P) \cdot e(\mathbf{IR}_{p}) \leq \sum_{P \in Min(\mathbf{I})} e(\underline{x}, \mathbf{R}/P) \cdot l(\mathbf{R}_{p}/\mathbf{IR}_{p}) ,$$

where Min(I) denotes the set of minimal primes of I. Hence we get: $e(\underline{x}, I, R) \leq e(\underline{x}, R/I)$. Choosing a special system \underline{x} of parameters for I which satisfies $e(\underline{x}, R/I) = e(R/I)$ we have finally:

$$e(R) \le e(I + xR) = e(x, I, R) \le e(R/I)$$
.

<u>REMARK</u>: If in the lemma (R,M) is a Cohen-Macaulay ring with infinite residue field R/M, then I is a complete intersection already. This can be seen as follows:

Let a_1, \ldots, a_t be a minimal reduction of I with t = ht(I). For $J := (a_1, \ldots, a_t) \subset I$ we have JR_p is a minimal reduction of IR_p for all $P \in Min(I) = Min(J)$. By assumption IR_p is a complete intersection in R_p . Therefore, it has no proper minimal reduction by [14] § 4, thm. 4, hence $JR_p = IR_p$. Since J is an ideal of the principal class in a Cohen-Macaulay local ring, it is height-unmixed. So we have the following primary decompositions for I and J

$$I = Q_1 \cap \dots \cap Q_n \cap Q_k$$
$$J = Q_1 \cap \dots \cap Q_n$$

where the Q_1, \ldots, Q_n are primary ideals associated to the $P_1, \ldots, P_n \in Min(I)$ and Q_k contains all embedded components of I. Hence we get I = J.

<u>PROPOSITION 2.8</u>: Let (R,M) be a local ring with a Cohen-Macaulay Rees ring $\operatorname{Re}^+(M,R)$. Let I be an equimultiple ideal which is a generic complete intersection. If $e(R/I) < \dim R$, then R and $\operatorname{gr}_M R$ are Cohen-Macaulay.

PROOF: Use lemma 2.7 and corollary 2.2.

A result similar to proposition 2.8 is the following one.

<u>PROPOSITION 2.9</u>: Let R be a local ring and let I be a complete intersection in R such that $\operatorname{Re}^{+}(I,R)$ is Cohen-Macaulay and e(R/I) = e(R). Then R is Cohen-Macaulay.

<u>PROOF</u>: 1) If dim R/I = 0, we have e(R) = e(R/I) = l(R/I), hence R is Cohen-Macaulay. [Here we don't use $Re^+(I,R)$ is Cohen-Macaulay.]

2) In the general case we may assume that R has an infinite residue field. Let $I = (y_1, \dots, y_s)$ and let x_1, \dots, x_r be a system of parameters mod I such that $\overline{x}_1, \dots, \overline{x}_r \in \mathbb{R}/\mathbb{I}$ form a minimal reduction of M/I in R/I. We put $\overline{\mathbb{R}} = \mathbb{R}/\underline{x}\mathbb{R}$, $\underline{x} = x_1, \dots, x_r$. $\mathbb{R}^{\frac{1}{2}}(\mathbf{I}, \mathbb{R})$ Cohen-Macaulay implies that R is normally Cohen-Macaulay along I. Therefore \underline{x} is a regular sequence on $\mathbb{I}^n/\mathbb{I}^{n+1}$ for $n \ge 0$, hence on R too. Note that $e(\mathbb{R}/\mathbb{I}) = e((\overline{x}_1, \dots, \overline{x}_r))$ since $(\overline{x}_1, \dots, \overline{x}_r)$ is a minimal reduction of M/I. Furthermore $e((\overline{x}_1, \dots, \overline{x}_r)) = \ell(\mathbb{R}/\mathbb{I} + \underline{x}\mathbb{R}) = e(\mathbb{R}/\mathbb{I} + \underline{x}\mathbb{R}) \ge e(\mathbb{R})$ since \mathbb{R}/\mathbb{I} is Cohen-Macaulay. Therefore $e(\overline{\mathbb{R}}) = e(\overline{\mathbb{R}}/\mathbb{I}\overline{\mathbb{R}})$, i.e. $\overline{\mathbb{R}}$ is Cohen-Macaulay by step 1, hence R is Cohen-Macaulay.

3. TRANSITIVITY OF COHEN-MACAULAYNESS FOR REES RINGS

Now we assume that the given ring R is Cohen-Macaulay. Then we consider equimultiple ideals $J \subset I$ such that $I = J + \underline{x}R$, where \underline{x} is part of a system of parameters mod J. For simplicity we are always working with an infinite residue field.

<u>THEOREM 3.1</u>: (Transitivity of Cohen-Macaulay property.) Let (R,M) be a local Cohen-Macaulay ring with infinite residue field. Let J be an equimultiple ideal of R, let $\underline{x} = (x_1, \dots, x_s)$ be a part of a system of parameters mod J and let $I = J + \underline{x}R$.

- a) The following conditions are equivalent:
 - (i) gr_T(R) is Cohen-Macaulay.
 - (ii) $gr_{I}(R)$ is Cohen-Macaulay, and $gr_{JR_{p}}(R_{p})$ is Cohen-Macaulay for all $P \in Min(I)$.

- (i) $R^{T}(J,R)$ is Cohen-Macaulay.
- (ii) $R^{+}(I,R)$ is Cohen-Macaulay, and $R^{+}(JR_{p},R_{p})$ is Cohen-Macaulay for all $P \in Min(I)$.

PROOF: a) Let y be a system of parameters mod I. Then $\underline{x} \cup \underline{y}$ is a system of parameters mod J. (i) \Rightarrow (ii) Clearly $gr_{JR_p}(R_p) \simeq gr_J(R) \otimes R_p$ is Cohen-Macaulay. By [11], Prop. 4.5, gr (R) is Cohen-Macaulay if and only $gr_{J+xR+yR}$ (R) is Cohen-Macaulay and R is normally if Cohen-Macaulay along J. This implies that R is normally Cohen-Macaulay along I ([7], Satz 4.2, p. 132). Using $gr_{J+xR+yR}(R) = gr_{I+yR}(R)$ we see that $gr_{I}(R)$ is Cohen-Macaulay (by [11], Prop. 4.5 again). (ii) \Rightarrow (i) By [7], Satz 4.2, p. 132 R is normally Cohen-Macaulay along J, and $gr_{J+xR+yR}(R) = gr_{I+yR}(R)$ is Cohen-Macaulay, so gr_T(R) is Cohen-Macaulay. By [11], thm.4.8, we know that $Re^{+}(J,R)$ is Cohenb) Macaulay if and only if $gr_{\tau}(R)$ is Cohen-Macaulay and $r(J) \leq ht(J)$. (i) \Rightarrow (ii) Obviously we have $r(I) \leq r(J) \leq ht(J) \leq ht(I)$, and also $r(JR_p) \leq r(J) \leq ht(J) = ht(JR_p)$. Therefore the assertion follows from a), $(i) \Rightarrow (ii)$. (ii) \Rightarrow (i) By a) and [11], thm.4.8, we have to show that $r(J) \leq ht(J)$. Equivalently, taking any minimal reduction J' of J and putting t = ht(J), we have to show that $J^{t} \subset J'$ (compare [11], thm. 4.8). Note that R/J' is

Cohen-Macaulay, and therefore $\operatorname{Ass}(\mathbb{R}/J') = \operatorname{Min}(J)$. So we are reduced to prove that $J^{\mathsf{t}}\mathbb{R}_{Q} \subset J'\mathbb{R}_{Q}$ for all $Q \in \operatorname{Min}(J)$. Now if $Q \in \operatorname{Min}(J)$, we claim that $Q \subset \mathbb{P}$ for some $\mathbb{P} \in \operatorname{Min}(I)$. Otherwise we would have $Q \notin \operatorname{P} \in \operatorname{Min}(I)^{\mathbb{P}}$, and therefore Qwould contain an element y which is a non-zerodivisor mod I. Since \mathbb{R}/J is Cohen-Macaulay, any non-zerodivisor mod I is also a non-zerodivisor mod J, which gives a contradiction to $Q \in \operatorname{Min}(J)$. Now given $\mathbb{P} \in \operatorname{Min}(I)$ such that $Q \subset \mathbb{P}$, we know from assumption (ii) that $J^{\mathsf{t}}\mathbb{R}_{\mathsf{P}} \subset J'\mathbb{R}_{\mathsf{P}}$, and a forteriori $J^{\mathsf{t}}\mathbb{R}_Q \subset J'\mathbb{R}_Q$, which completes the proof. A class of examples is given by the following corollary.

<u>COROLLARY 3.2</u>: Let (R,M) be a Cohen-Macaulay ring and let P be an ideal in R such that R/P is regular and $e(R) = e(R_p)$ i.e. ht(P) = l(P) by [8]. If $Re^{\dagger}(P,R)$ is Cohen-Macaulay then $Re^{\dagger}(QR_Q, R_Q)$ is Cohen-Macaulay for all prime ideals $Q \supset P$; in particular $Re^{\dagger}(M,R)$ is Cohen-Macaulay.

Assume that $R^{\ddagger}(P,R)$ is Cohen-Macaulay for some equimultiple ideal P such that R/P is regular. In order to apply Corollary 3.2 to conclude that $R^{\ddagger}(M,R)$ is Cohen-Macaulay, we need to show that R is Cohen-Macaulay. Some results in this direction are given in the next two propositions.

<u>PROPOSITION 3.3</u>: Let P be an equimultiple ideal in (R,M) such that $R^{\pm}(P,R)$ is Cohen-Macaulay. If R/P is regular and ht(P) ≤ 2 then R and $R^{\pm}(M,R)$ are Cohen-Macaulay. <u>PROOF</u>: <u>1.case</u>: ht(P) = 1. Then P is generated by one element f, s. [10], proposition 1.5. This implies R is regular, since M = fR + $(x_1, \ldots, x_{d-1})R$, where x_1, \ldots, x_{d-1} form a regular system of parameters mod P. <u>2.case</u>: ht(P) = 2. By assumption we have M = P + <u>x</u>R, where <u>x</u> = (x_1, \ldots, x_r) is a system of parameters mod P. Since $R^{\pm}(P,R)$ is Cohen-Macaulay and ht(P) = $\ell(P)$, R must be normally Cohen-Macaulay along P, s. [10]. Therefore <u>x</u> is a regular sequence on P^n/P^{n+1} for $n \ge 0$, hence on R too. Moreover putting $\overline{R} = R/\underline{x}R$ and $\overline{M} = M/\underline{x}R$, we know that $R^{\pm}(\overline{M},\overline{R}) \cong R^{\pm}(P,R)/\underline{x}R^{\pm}(P,R)$ is Cohen-Macaulay, i.e. depth $\overline{R} \ge 2$ = dim \overline{R} , so \overline{R} and R must be Cohen-Macaulay. Then $R^{\pm}(M,R)$ is Cohen-Macaulay by theorem 3.1.

<u>PROPOSITION 3.4</u>: Let $P \neq M$ be an equimultiple ideal in (R,M) with $ht(P) \ge 2$. Assume that

(i) $R^{+}(P,R)$ is Cohen-Macaulay (ii) R/P is regular (iii) e(R) = 2.

Then R and $Re^{\dagger}(M,R)$ are Cohen-Macaulay.

<u>PROOF</u>: We may assume by [8] that $M = P + \underline{x}R$, where $\underline{x} = (x_1, \dots, x_r)$ is a sequence of superficial elements with $e(R/\underline{x}R) = e(R) = 2$, $r = \dim R/P$. Putting $\overline{R} = R/\underline{x}R$ and $\overline{M} = M/\underline{x}R$ as in the proof of proposition 3.3., we see again that $R^{\frac{1}{2}}(\overline{M},\overline{R})$ is Cohen-Macaulay. Hence \overline{R} is a Buchsbaum ring of multiplicity 2, which satisfies the Serre condition S_2 . Using the inequality (*) in section 2, we get $h^{\frac{1}{2}}(\overline{R}) = 0$ for $i \neq \dim \overline{R}$. Therefore \overline{R} and R are Cohen-Macaulay rings, proving that $R^{\frac{1}{2}}(M,R)$ is Cohen-Macaulay by theorem 3.1.

<u>PROPOSITION 3.5</u>: Let (R,M) be a Buchsbaum ring of dimension $d \ge 3$ with an algebraically closed residue field k. Let $P \ne M$ be an equimultiple prime ideal in R such that

(i) $R^{\dagger}(P,R)$ is Cohen Macaulay (ii) $P^{*} = gr_{M}(P,R)^{1}$ is prime.

If e(R) = 3 then R and $Re^{\dagger}(M,R)$ are Cohen-Macaulay rings.

<u>PROOF</u>: Condition (i) tells us that depth $R \ge \dim R/P + 1$ by [10], proposition 1.5. Therefore R satisfies Serre's condition S_2 . The high point of proof is to show that R is Cohen-Macaulay. For that we use the sharp relation (see [5])

(**)
$$e(R) = 1 + l(M/J) + \sum_{i=1}^{d-1} {d-1 \choose i-1} h^{i}(R) ,$$

where $J = \sum_{i=1}^{d} (x_1, \dots, x_i, \dots, x_d) : x_i$ and (x_1, \dots, x_d) a minimal reduction of M.

If we assume that R is not-Cohen-Macaulay then the equality (**) tells us that

(1) d = 3 and (2) $\ell(M/J) = 0$,

since e(R) = 3 and $h^{0}(R) = h^{1}(R) = 0$, $h^{2}(R) = 1$. From (2) we conclude by [4] that r(M) = 2 and that $gr_{M}R$ is Buchsbaum. Moreover by Ikeda [20] we know - up to isomorphisms - exactly this graded ring, namely

$$gr_{M}^{R} = k[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}]/(x_{1}y_{1} + x_{2}y_{2} + x_{3}y_{3}, (y_{1}, y_{2}, y_{3})^{2})$$

From (1) we get $ht(P) \le 2$. Clearly $ht(P) \ne 1$ if R is not-Cohen-Macaulay, s. [11], proposition 4.11, i.e. $ht(P) = \ell(P) = 2$. Since $G = gr_M^R$ is Buchsbaum, we have $ht(P^*) = \dim(G) - \dim(G/P^*) = 2$.

Now, putting $y_i = \overline{Y}_i \in G$, i = 1, 2, 3, we get:

$$Q := P^*/\underline{y}G \subset G/\underline{y}G = k[X_1, X_2, X_3]$$

Since P* is prime and ht(P*) = 2, Q corresponds to a closed point in Proj k[X₁,X₂,X₃]. We may assume that $X_3 \notin Q$. Since k is algebraically closed, we must have $Q = (X_1 - \alpha X_3, X_2 - \beta X_3)$ for some $\alpha, \beta \in k$. Hence $G/P^* \approx k[Z]$, where Z is an indeterminate over k , i.e. R/P is regular. But this property cannot occur together with $Re^{+}(P,R)$ is Cohen-Macaulay and ht(P) = l(P) = 2 for a non-Cohen-Macaulay ring R , by proposition 3.3. Therefore R must be Cohen-Macaulay under the assumptions of proposition 3.5. But then we know by [17] that gr_MR is Cohen-Macaulay, since e(R) = 3. Moreover we get that $Re^{+}(M,R)$ is Cohen-Macaulay by [11], Corollary 5.4. This completes the proof.

REMARK 3.6: R/P regular implies P* prime.

<u>QUESTION 3.7</u>: Is the statement of proposition 3.5 true without the restriction on the multiplicity e(R) ?

<u>THEOREM 3.8</u>: Let (R,M) be a local ring, J an equimultiple ideal of R, $\underline{x} = \{x_1, \dots, x_s\}$ part of a system of parameters mod J and I = J + $\underline{x}R$. Assume that s > 0and that $R^{\ddagger}(J,R)$ and $R^{\ddagger}(I,R)$ are Cohen-Macaulay. Then R is Cohen-Macaulay.

<u>PROOF</u>: Since ht(J) = l(J) and $R^{\ddagger}(J,R)$ is Cohen-Macaulay we know that R normally Cohen-Macaulay along J. Therefore $\underline{x}R \cap J^{i} = (\underline{x}) \cdot J^{i}$ for $i \ge 1$, implying $\underline{x}R \cap I^{i} = (\underline{x}) \cdot I^{i-1}$. We write: $G_{I} = gr_{I}R$, $G_{J} = gr_{J}R$; $G_{I}^{(0)} = G_{I}$; $G_{I}^{(j)} = G_{I}/(x_{1}^{*}, \dots, x_{j}^{*})$, $1 \le j \le s$,

where x_j^* is the initial form of x_j with respect to I, and $G_T(-1)$ is the shifting of G_T by -1. Then we consider the exact sequence

(1) 0
$$\longrightarrow$$
 $G_{I}^{(j)}(-1) \xrightarrow{\cdot x^{*}_{j+1}} G_{I}^{(j)} \longrightarrow G_{I}^{(j+1)} \longrightarrow 0$.

Now set $G_1 = G_1^{(s)}$ and $G_2 = G_J / \underline{x} G_J$. Denote by M_J and M_I the unique maximal homogeneous ideals of $Re^+(J,R)$ and $Re^+(I,R)$ respectively. Then we get from (1) the long exact sequence for the local cohomology:

(2)
$$\dots \longrightarrow \operatorname{H}_{M_{\mathrm{I}}}^{1-1}(G_{\mathrm{I}}) \longrightarrow \operatorname{H}_{M_{\mathrm{I}}}^{1}(G_{\mathrm{I}}^{(\mathrm{s}-1)}) (-1) \xrightarrow{\delta} \operatorname{H}_{M_{\mathrm{I}}}^{1}(G_{\mathrm{I}}^{(\mathrm{s}-1)}) \longrightarrow \dots ,$$

where δ is defined by multiplying with x_s^* . Now $G_1 \simeq G_2$ over $S : R^{\frac{1}{2}}(J,R) / \underline{x}R^{\frac{1}{2}}(J,R) \simeq R^{\frac{1}{2}}(I,R) / (\underline{x},\underline{x}t) \simeq$ $\simeq R[It] / \oplus (\underline{x}R \cap I^n)t^n$. Since $\underline{x}R^{\frac{1}{2}}(J,R)$ is a regular sequence on $R^{\frac{1}{2}}(J,R)$, S is Cohen-Macaulay, hence by [10], proposition 1.5:

(3)
$$H_{M_{I}}^{i-1}(G_{1})_{n} \simeq H_{M_{J}}^{i-1}(G_{2})_{n} = 0$$
 for $n \ge 0$, $i \le d - s$.

This implies that

$$H_{M_{I}}^{i}(G_{I}^{(s-1)})_{n-1} \xrightarrow{\delta} H_{M_{I}}^{i}(G_{I}^{(s-1)})_{n}$$

is injective. Therefore we get $\underset{n\geq-1}{\bullet} H_{M_{I}}^{i}(G_{I}^{s-1})_{n} = 0$. By induction on j we see that

$$H_{M_{I}}^{i}(G_{I}^{(s-j)})_{n} = 0 \quad \text{for} \quad n \ge -j , i \le d - r + j , 0 \le j \le r .$$

For j = s and $i \leq d - 1$ this implies in particular:

$$0 = H_{M_{T}}^{i}(G_{I})_{-1} = H_{M}^{i}(R) ,$$

since ht(I) = l(I) and $Re^{\dagger}(I,R)$ is Cohen-Macaulay, see [10], proposition 1.5. This completes the proof.

<u>REMARK 3.9</u>: If J = (0) in the above theorem, we have a similar conclusion as above, replacing the assumption on $R^{+}(J,R)$ by the assumption that I is generated by a regular sequence. For we know from $R^{+}(I,R)$ Cohen-Macaulay that R/I is Cohen-Macaulay, hence the same is true for R.

EXAMPLE 3.10: (Compare [3]): $R = k [[s^2, s^3, st, t]]$, s,t indeterminates, is a non-Cohen-Macaulay Buchsbaum ring. We consider $J = (s^2)R$ and $I = (s^2, t)R$. Since s^2, t form a system of parameters in a Buchsbaum domain of dimension 2 we know by [19] that $Re^{+}(I,R)$ is Cohen-Macaulay. Hence $Re^{+}(J,R)$ cannot be Cohen-Macaulay by theorem 3.8. [Compare also [11], proposition 4.11].

At the end of this section we consider again the ring of example 2.3. We want to test the structure of $Re^{+}(I,R)$ for various ideals I :

$$R = k [[x_1, x_2, x_3, y_1, y_2, y_3]] / (x_1 y_1 + x_2 y_2 + x_3 y_3, (y_1, y_2, y_3)^2)$$

$$\approx k [[x_1, x_2, x_3, y_1, y_2, y_3]] .$$

We consider these ideals:

$$M = (x_1, x_2, x_3, y_1, y_2, y_3) \supset P_1 = (x_2, x_3, y_1, y_2, y_3) \supset P_2 = (x_3, y_1, y_2, y_3)$$

$$P_3 = (y_1, y_2, y_3) ,$$

$$Q_3 = (x_1, x_2, x_3) \supset Q_2 = (x_1, x_2) \supset Q_1 = (x_1)$$

The following can be said about the Rees rings:

- a) Since R is not-Cohen-Macaulay $\operatorname{Re}^{+}(P_1, R)$ and $\operatorname{Re}^{+}(P_2, R)$ are not-Cohen-Macaulay by theorem 3.8.
- b) $R_{e}^{\dagger}(P_{3},R) \simeq R \oplus P_{3}t$ is finitely generated. Since R is not-Cohen-Macaulay, $R_{e}^{\dagger}(P_{3},R)$ cannot be Cohen-Macaulay.
- c) $Re^{+}(Q_2, R)$ is not-Cohen-Macaulay. Otherwise R would be normally Cohen-Macaulay along Q_2 by [10], i.e. in particular R/Q_2 would be Cohen-Macaulay.
- d) $Re^{i}(Q_{3},R)$ is not-Cohen-Macaulay. Otherwise we must have $H_{M}^{i}(R) = 0$ for $i \neq 1,d$ by [18], theorem 3.1, since Q_{3} is a parameter ideal in R. Hence we would have $H_{M}^{2}(R) = 0$, but this is a contradiction in our case.
- e) Re⁺(Q₁, R) is not Cohen-Macaulay. Otherwise R would be Cohen-Macaulay by [11], 4.11.

<u>REMARK 3.11</u>: Ikeda [20] has recently shown that the ideal $I = (x_1, x_2, y_3) \subset R$ has a Cohen-Macaulay-Rees ring. Hence the Rees ring of $J_1 = (x_1, x_2, x_3, y_3)$ or $J_2 = (x_1, y_3)$, i=1 or 2 cannot be Cohen-Macaulay by theorem 3.8. <u>QUESTION 3.12</u>: Relate S_n of $R^+(J,R)$ and $R^+(I,R)$, where $I = J + \underline{x}R$ as in the theorem 3.8, to S_{n-1} of R.

4. THE GEOMETRIC BLOWING UP

If we replace the Rees rings $R^{\ddagger}(I,R)$ and $R^{\ddagger}(J,R)$ in theorem 3.8 by the Proj's of these rings then the corresponding question becomes more difficile. The exact question is as follows:

"Let (R,M) be a local ring of depth $R \ge 0$. Let J be an equimultiple ideal and let $I = J + \underline{x}R$, where \underline{x} is part of a system of parameters mod J. Assume that

- (i) Proj(o Iⁿ) is Cohen-Macaulay and
- (ii) $Proj(\phi J^n)$ is Cohen-Macaulay.

Is R a Cohen-Macaulay ring?"

In theorem 4.5 we will give a partial answer to this question. Before formulating this result we want to remark that the assumptions depth $R \ge 0$ and J is equimultiple are necessary:

EXAMPLE 4.1: Let (S,N) be a regular local ring with residue field k. Consider the ring

 $R = S[X]/(X^2, NX) \simeq S \oplus k$,

where X is an indeterminate. Then $H_M^0(R) \simeq k$, hence $R/H_M^0(R)$ is Cohen-Macaulay. Now take I = (a_1, \ldots, a_d) and J = (a_1, \ldots, a_i) , $2 \le i < d$, where a_1, \ldots, a_d is a system of parameters in R. Since $H_M^0(R) \subset \ker(R \longrightarrow R\left[\frac{K}{a_j}\right] \subset R_{a_j})$ for K = I and K = J, we have $\operatorname{Proj}(\Phi \ I^n) \simeq \operatorname{Proj}(\Phi \ \overline{I}^n)$ and $\operatorname{Proj}(\Phi \ J^n) \simeq \operatorname{Proj}(\Phi \ \overline{J}^n)$, where \overline{I} and \overline{J} are the images of I and J in $R/H_M^0(R)$. But $\operatorname{Proj}(\Phi \ \overline{I}^n)$ and $\operatorname{Proj}(\Phi \ \overline{J}^n)$ are Cohen-Macaulay, since \overline{I} and \overline{J} are formed by a regular sequence in $R/H_M^0(R)$.

EXAMPLE 4.2: $R = k [[s^2, s^3, st, t]]$. We take $J = (s^2, s^3, st)$ and $I = (s^2, s^3, st, t)$. Now J is not an equimultiple ideal in R, since (s^2, st) is a minimal reduction of J, i.e. ht(J) = 1 and l(J) = 2.

Since $\operatorname{Proj}(\bullet J^n) = \operatorname{Spec} R_1 \cup \operatorname{Spec} R_2$, where $R_1 = R[s, \frac{t}{s}]$ and $R_2 = R[t, \frac{s}{t}]$, we see that $\operatorname{Proj}(\bullet J^n)$ is isomorphic to the blowing up of the plane at the origin, hence Cohen-Macaulay. Furthermore $\operatorname{Proj}(\bullet I^n)$ is Cohen-Macaulay since R is a (non-Cohen-Macaulay) Buchsbaum ring of multiplicity 2 [3].

[Note that $Re^{+}(I,R) = \oplus I^{n}$ is not-Cohen-Macaulay, otherwise $n \ge 0$ depth R would be 2, hence R would be Cohen-Macaulay.] Now we are going to specialize I to a complete intersection. We denote the blowing up $Proj(\oplus I^{n})$ of R with center I by $Bl_{T}(R)$. First we need an auxiliary result. LEMMA 4.3: Let I be a complete intersection in the local ring (R,M), and let R_1 be a local ring obtained by blowing up R with center I. If R_1 corresponds to a closed point of $B\ell_T(R)$, then dim $R_1 = \dim R$.

<u>PROOF</u>: We note that in general we have dim $R_1 \leq \dim R$ without any assumption on I. (This can be shown by using [13], 14.c for the irreducible components of Spec R.) <u>Case ht(I) = dim R</u>, i.e. I is generated by a system of parameters a_1, \ldots, a_d of R. We may assume $R_1 = \left[\frac{a_2}{a_1}, \ldots, \frac{a_d}{a_1}\right]_N$ for some maximal ideal N of $R' = R\left[\frac{a_2}{a_1}, \ldots, \frac{a_d}{a_1}\right]$. Now, by the analytic independence of systems of parameters, we have $R'/MR' \simeq R/M[T_2, \ldots, T_d]$, showing that every maximal ideal in R'/MR' has height d = 1. Since R_1/a_1R_1 is, up to nilpotent elements, a localization of R'/MR' at a maximal ideal, we conclude that dim $R_1/a_1R_1 = d-1$, and therefore dim $R_1 = d$.

<u>GENERAL CASE</u>: If $I = (a_1, \dots, a_s)$, $s = ht(I) \le \dim R$, we extend a_1, \dots, a_s to a system of parameters a_1, \dots, a_d of R and we put $I' = (a_1, \dots, a_d)R$. We may assume that $IR_1 = a_1R_1$. Let $R'' = R\left[\frac{a_2}{a_1}, \dots, \frac{a_d}{a_1}\right] = R\left[\frac{a_2}{a_1}, \dots, \frac{a_s}{a_1}\right] \left[\frac{a_{s+1}}{a_1}, \dots, \frac{a_d}{a_1}\right]$ and assume that $R_1 = R\left[\frac{a_2}{a_1}, \dots, \frac{a_s}{a_1}\right]_N$. Put $N'' = NR'' + \left(\frac{a_{s+1}}{a_1}, \dots, \frac{a_d}{a_1}\right)R''$ and $R_2 = R''_N''$. Then R_2 corresponds to a closed point of $B\ell_{I'}(R)$ and therefore dim R_2 = dim R by the special case above. On the other hand R_2 is obtained by blowing up $(a_1, a_{s+1}, \ldots, a_d)$ in R_1 , and therefore dim $R_2 \leq \dim R_1 \leq \dim R$, which concludes the proof.

<u>REMARK 4.4</u>: Using Ratliff's well developed theory of quasi-unmixed rings one can show that the statement of the lemma is true for any equimultiple ideal in a quasi-unmixed local ring.

<u>THEOREM 4.5</u>: Let (R,M) be a Buchsbaum local ring with depth R > 0. If $Bl_I(R)$ is Cohen-Macaulay for a complete intersection I of R such that $2 \le ht(I) < d = \dim R$, then R is Cohen-Macaulay.

<u>PROOF</u>: Let s = ht(I) and let a_1, \dots, a_d be a system of parameters of R such that $I = (a_1, \dots, a_s)R$. We put

$$R' = R\left[\frac{a_2}{a_1}, \dots, \frac{a_s}{a_1}\right] ,$$

$$N = MR' + \left(\frac{a_2}{a_1}, \dots, \frac{a_s}{a_1}\right)R' ,$$

$$R_1 = R'_N .$$

Since dim $R_1 = d$ by the lemma, we see that $a_1, \frac{a_2}{a_1}, \dots, \frac{a_s}{a_1}, a_{s+1}, \dots, a_d$ is a system of parameters of R_1 . Using the Buchsbaum property of R it is not difficult to see that

$$\mathbb{R}' \left/ \left(a_1, \frac{a_2}{a_1}, \dots, \frac{a_s}{a_1} \right) \mathbb{R}' \simeq \mathbb{R}/\mathbb{K} \right.$$

where $K = a_1 R + ((a_2, \dots, a_s) : a_1)_R$, [6], and therefore also

$$\mathbb{R}_{1} / \left(a_{1}, \frac{a_{2}}{a_{1}}, \dots, \frac{a_{s}}{a_{1}} \right) \mathbb{R}_{1} \simeq \mathbb{R}/\mathbb{K}$$

Since R_1 was assumed to be Cohen-Macaulay and $a_1, \frac{a_2}{a_1}, \dots, \frac{a_s}{a_1}$ is part of a system of parameters of R_1 , we see that R/Kis Cohen-Macaulay. We consider the following exact sequence

(1)
$$0 \rightarrow K/I \rightarrow R/I \rightarrow R/K \rightarrow 0$$

Using again the Buchsbaum property of R one obtains

(2)
$$K/I \simeq \frac{(a_2, \dots, a_s):M}{(a_2, \dots, a_s)} \simeq H_M^0(R/(a_2, \dots, a_s))$$

i.e. K/I is a vector space over R/M . From the sequence (1) and from the fact that R/K is Cohen-Macaulay we get:

(3)
$$h^{j}(R/I) = h^{j}(K/I)$$
 for $0 \le j < d-s$,

and since $\dim K/I = 0$

(4)
$$h^{j}(R/I) = 0$$
 for $0 < j < d-s$

From $h^{j}(R/xR) = h^{j}(R)+h^{j+1}(R)$ (see [5], p. 494) we conclude by induction

(5)
$$h^{j}(R/I) = \sum_{r=0}^{s-1} {s \choose r} h^{j+r}(R)$$
 for $0 \le j < d-s$

and similarly, together with (2), we have

(6)
$$h^{0}(K/I) = \sum_{r=0}^{s-1} {\binom{s-1}{r}} h^{r}(R)$$

Putting j = 0 in (3) and (5) and comparing with (6) we obtain

On the other hand, comparing (4) and (5) we also have

$$h^{j}(R) = 0$$
 for $s < j < d$.

Finally $h^0(R) = 0$ since depth R > 0, and this completes the proof of the theorem.

<u>REMARK 4.6</u>: Since depth R > 0 and R is Buchsbaum in the theorem 4.5, the ring $R/H_M^0(R) \simeq R$ is Buchsbaum. Hence $B\ell_H(R) = Proj(\bullet H^n)$ is Cohen-Macaulay for $H = (a_1, \ldots, a_d)$ by [6]; i.e. theorem 4.5 is indeed a special case of our question at the beginning of this section (for the pair of ideals $I \subset H$).

REFERENCES

- M.Brodmann, A Macaulayfication of unmixed domains,
 J. Algebra 44 (1977), 221-234.
- [2] G. Faltings, Über Macaulayfizierung, Math. Ann. 238 (1978), 175-192.
- [3] S. Goto, Buchsbaum rings with multiplicity 2, J.Algebra 74 (1982), 494-508.
- [4] S. Goto, Buchsbaum rings of maximal embedding dimension, J. Algebra 76 (1982), 383-399.
- [5] S. Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra 85 (1983), 490-534.
- [6] S. Goto, Blowing up of Buchsbaum rings, London Math. Soc. Lecture Note Ser. 72 (Comm. Algebra: Durham 1981), 140-162, Camb. Univ. Press 1983.
- [7] M. Herrmann R. Schmidt W. Vogel, Theorie der normalen Flachheit, Teubner Texte zur Mathematik, Leipzig 1977.
- [8] M. Herrmann U. Orbanz, Faserdimension von Aufblasungen lokaler Ringe und Äquimultiplizität, J. Math. Kyoto Univ. 20 (1980), 651-659.
- [9] M. Herrmann U. Orbanz, On equimultiplicity, Math. Proc. Camb. Phil. Soc. 91 (1982), 207-213.
- [10] M. Herrmann S. Ikeda, Remarks on lifting of Cohen-Macaulay property, Nagoya Math. J. 92, (1983), 121-132.

- [12] S. Ikeda, The Cohen-Macaulayness of the Rees algebras of lokal rings, Nagoya Math. J. 89 (1983), 47-63.
- [13] H. Matsumura, Commutative Algebra, W.A. Benjamin, New York 1970.
- [14] D.C. Northcott D. Rees, Reductions of ideals in local rings, Math. Proc. Camb. Phil. Soc. 50 (1954), 145-158.
- [15] L. Robbiano, On normal flatness and some related topics, in Commutative Algebra, Proc. of the Trento Conference, Lecture Notes in pure and applied mathematics 84, Marcel Dekker, New York - Basel 1983, 235-251.
- [16] L. Robbiano G. Valla, On normal flatness and normal torsion-freeness, J. Algebra 43 (1976), 552-560.
- [17] J. Sally, Numbers of generators of ideals in lokal rings, Marcel Dekker, New York 1978.
- [18] P. Schenzel, Regular sequences in Rees rings and symmetric algebras I, Manuscr. math. 35 (1981), 173-193.
- [19] Y. Shimoda, A note on Rees algebras of two dimensional local domains, to appear in J. Math. Kyoto Univ.
- [20] S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Thesis Nagoya Univ. 1985.