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Abstract

We show that from the spectra of the Uq(sl(2)) symmetric XXZ spin-1/2 finite quantum
chain at ∆ = −1/2 (q = eπi/3) one can obtain the spectra of certain XXZ quantum chains
with diagonal and non-diagonal boundary conditions. Similar observations are made for
∆ = 0 (q = eπi/2). In the finite-size scaling limit the relations among the various spectra are
the result of identities satisfied by known character functions. For the finite chains the origin
of the remarkable spectral identities can be found in the representation theory of one and two
boundaries Temperley-Lieb algebras at exceptional points. Inspired by these observations we
have discovered other spectral identities between chains with different boundary conditions.

1 Introduction

Finding the spectrum of the spin one-half XXZ quantum chain with non-diagonal boundaries is
still an open problem. We think that this problem is of special interest because it brings together
in a new way the Bethe Ansatz and the representation theory of some associative algebras.

The XXZ chain with very special diagonal boundary terms has an Uq(sl(2)) quantum group
symmetry [1]. This chain is, from an algebraic point of view, simple as it can be written in terms
of the generators of the Temperley-Lieb (TL) algebra.

The addition of a single boundary term to the Uq(sl(2)) chain can be described using the
one-boundary Temperley-Lieb (1BTL) algebra [2–5]. In contrast to the TL algebra the 1BTL now
depends on two parameters. At certain exceptional points (called “critical values” in [11]) this al-
gebra becomes non-semisimple and possesses indecomposable representations. A third parameter,
which is absent in the algebra, enters as a coefficient in the integrable Hamiltonian.

As shown in [6] this general one-boundary Hamiltonian has exactly the same spectrum as the
XXZ Hamiltonian with purely diagonal boundary conditions [7]. It also has the same spectrum
as a loop Hamiltonian defined on a 2L dimensional space of link patterns [8].

All of these Hamiltonians can be written in terms of the 1BTL algebra using three different
representations. These representations are equivalent except at the exceptional points of the 1BTL

∗The art of producing illusions or tricks that fool or deceive an audience [Webster’s Dictionary
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algebra. At these exceptional points, although the spectra remain the same, degeneracies appear
and the three Hamiltonians have different Jordan cell structure and therefore describe different
physical problems [6].

Before proceeding we comment briefly on relations between various algebras we are considering
here. The TL algebra is a quotient of the type A Hecke algebra. The 1BTL algebra contains a
TL sub-algebra. In turn, it is a quotient algebra of type B Hecke algebra, which is a quotient of
affine Hecke algebra (see [9, 10] and references therein).

The situation of non-diagonal boundary conditions at both ends of the chain is more compli-
cated. In addition to the anisotropy parameter, one has five boundary parameters. As noticed
in [16] the Hamiltonian can be written in terms of the generators of the two-boundary Temperley-
Lieb algebra [8, 18]. This algebra depends on ∆ and three boundary parameters only. The struc-
ture and representation theory of the two-boundary Temperley-Lieb (2BTL) algebra is essentially
unknown.

In [12–16] the Bethe Ansatz equations for the case of non-diagonal boundaries was written
only when the boundary parameters satisfy a particular constraint. The surprising fact is that
this constraint involves only the parameters which enter the 2BTL algebra and not the coefficients
in the Hamiltonian.

In this paper we shall make a conjecture for the location of the exceptional points of the 2BTL
algebra and explain how this was obtained. At the exceptional points the algebra becomes non-
semisimple and one finds representations which are indecomposable. These exceptional points are
exactly the points at which Bethe Ansatz equations were written [12–16]. An explanation of this
remarkable observation is still missing.

The main aim of this paper is to show some intriguing relations between the spectra of several
Hamiltonians describing the XXZ quantum chain for a finite number of sites with various boundary
terms for ∆ = −1/2 and ∆ = 0. Some insight into these relations can be gained from the TL,
1BTL and 2BTL algebras. We hope that the existence of relations of this kind may bring some
new light into the unsolved problem of writing the Bethe Ansatz equations for arbitrary boundary
terms.

We would like to mention that in the case of ∆ = −1/2, the Hamiltonians considered here
have the same spectra (but necessarily not the same Jordan cell structures) as the Hamiltonians
describing Raise and Peel stochastic models of fluctuating interfaces with different sources at the
boundaries [20]. In these models the boundary parameters have a simple physical interpretation.

The paper is organized as follows. In Section 2 we define the TL, 1BTL and 2BTL algebras
and give their representations in terms of XXZ quantum chains. We also give the relations which
define the exceptional points. In sections 3 and 4 we give conjectures relating different spectra at
some fixed values of the boundary parameters. The magic mentioned in the title of this paper is
described here. These conjectures are based on exact diagonalizations at a low number of sites
given in Appendix A and Appendix B. In section 5 we give proofs and generalizations of several
of these conjectures using the Bethe Ansatz. In sections 6 and 7 we discuss the finite-size scaling
limit. In this limit the conjectures for finite chains become identities between characters of the
c = 0 and c = −2 conformal field theories. In section 8 we comment on the appearance of extra
symmetries in finite chains for ∆ = −1/2. Conclusions and open questions are in section 9.

2 Temperley Lieb algebras and XXZ chains with boundary

terms

Following [6, 8, 16], we summarize the relations between the Temperley-Lieb algebra and its ex-
tensions and XXZ quantum chains with boundaries. As is going to be shown in detail in Section
3, these relations can help to explain part of the magic observed in the spectra of the quantum
chains seen in Appendices A and B.

We start be defining the algebras. The Temperley-Lieb (TL) algebra is generated by the unity
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and the set of L − 1 elements ei, i = 1, . . . , L− 1, subject to the relations:

eiei±1ei = ei

eiej = ejei |i − j| > 1 (2.1)

e2
i = (q + q−1) ei

with q = exp(iγ). The one-boundary TL algebra (1BTL) (also called blob algebra [4]) is defined
by the generators ei and a new generator e0. It has the following additional relations:

e1e0e1 = e1

e2
0 =

sin ω−

sin(ω− + γ)
e0 (2.2)

e0ei = eie0 i > 1

Notice that the new parameter ω− is defined up to a multiple of π. It was shown by Martin and
Saleur [4] that when for a given value of the bulk parameter γ, the boundary parameter ω− takes
one of the values:

ω− = kγ + πZ (2.3)

with k integer |k| < L, the algebra becomes non-semisimple and hence possesses indecomposable
representations. We shall call the values of ω− which satisfy (2.3), exceptional (in [11] they are
called ‘critical’, a term which in physics might bring other associations). One should note that
1BTL can have exceptional points even when q is generic. However when we are in the exceptional
cases (2.3) and q is a root of unity the indecomposable structure is much richer (called ‘doubly
critical’ in [11]). The focus of this paper will be on such points.

The two-boundary TL algebra (2BTL) is defined by the generators e0, ei (i = 1, . . . , L − 1),
and a new generator eL subject to the supplementary relations

eL−1eLeL−1 = eL−1

e2
L =

sin ω+

sin(ω+ + γ)
eL (2.4)

eLei = eieL i < L − 1

and
ILJLIL = bIL (2.5)

where

I2n =

n−1∏

x=0

e2x+1 J2n =

n∏

x=0

e2x

I2n+1 =

n∏

x=0

e2x J2n+1 =

n∏

x=0

e2x+1.

(2.6)

Notice that the boundary generators e0 and eL enter differently in the expressions of IL and JL

for L even and odd. The 2BTL algebra has one bulk parameter γ and three boundary parameters
ω± and b. It is convenient to use instead of the parameter b another parameter θ defined by the
relations:

b =






−
cos θ + cos(γ + ω− + ω+)

2 sin(γ + ω−) sin(γ + ω+)
for even L

cos θ + cos(ω− − ω+)

2 sin(γ + ω−) sin(γ + ω+)
for odd L.

(2.7)
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Based on explicit analysis for small values of L, we conjecture that for a given value of the bulk
parameter γ, the 2BTL algebra has exceptional points where the 2BTL is non-semisimple if the
boundary parameters ω± and θ satisfy the relations:

{
±θ = (2k + 1)γ + ω− + ε ω+ + π + 2πZ for even L,
±θ = 2kγ + ω− + ε ω+ + π + 2πZ for odd L,

(2.8)

where ε = ±1 and k is an integer |k| < L/2. Our conjecture is based on the following facts.
For small values of L we have found zeros of the determinant of the Gram matrix also called the

discriminant (see [17], p.112) in two representations of the 2BTL algebra. Namely, we checked the
cases L = 2, 3, 4 in the loop representation of [16] and L = 2, 3 in the regular representation. The
latter check, although more laborious, is a criterium of non-semisimplicity (see for example exercise
6, p.115 of [17]). The non-semisimplicity of the algebra implies the existence of indecomposable
representations.

The algebras TL, 1BTL and 2BTL have a 2L × 2L representation which can be given in terms
of Pauli matrices:

ei =
1

2

{
σx

i σx
i+1 + σy

i σy
i+1 − cos γσz

i σz
i+1 + cos γ + i sin γ

(
σz

i − σz
i+1

)}
(2.9)

for i = 1, . . . , L − 1, and

e0 = −
1

2

1

sin(ω− + γ)
(i cosω− σz

1 + σx
1 − sinω−) , (2.10)

eL = −
1

2

1

sin(ω+ + γ)
(−i cosω+ σz

L + cos θ σx
L + sin θ σy

L − sin ω+) , (2.11)

As explained in [6] in the case of the 1BTL, at the exceptional points, besides the representation
given by (2.9)–(2.10) there are other nonequivalent, 2L × 2L representations of the same algebra.
The same is true for the 2BTL at the exceptional points given in (2.8).

We define three different Hamiltonians which if we use the representation (2.9)–(2.11) have the
same bulk terms with an anisotropy parameter ∆ = − cos γ but different boundaries:

HT =

L−1∑

i=1

(1 − ei), (2.12)

H1T = a−(1 − e0) + HT, (2.13)

H2T = a+(1 − eL) + H1T. (2.14)

It is convenient to parameterize the coefficients a+ and a− as follows:

a± =
2 sin γ sin(ω± + γ)

cosω± + cos δ±
. (2.15)

We have introduced in the definitions (2.12)–(2.14) of the Hamiltonians constant terms such that
for γ = π/3, ω± = −2π/3 and b = 1, the three Hamiltonians describe stochastic processes and
therefore their ground-state energies are equal to zero for any system size [20, 28].

The Hamiltonian HT has special diagonal boundary conditions and is known to be Uq(sl(2))
symmetric [1]. The Hamiltonian H1T has the most general boundary condition at one side of the
chain but a fixed diagonal boundary condition at the other end of the chain:

H1T =
sin γ

cosω− + cos δ−
(i cosω−σz

1 + σx
1 − sinω−) +

2 sin γ sin(ω− + γ)

cosω− + cos δ−

−
1

2

{
L−1∑

i=1

(
σx

i σx
i+1 + σy

i σy
i+1 − cos γσz

i σz
i+1 + cos γ

)
+ i sin γ (σz

1 − σz
L)

}
(2.16)
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In [6] it was shown that, remarkably, the Hamiltonian (2.13) has the same spectrum as the Hamil-
tonian:

Hd = −
1

2

{
L−1∑

i=1

(
σx

i σx
i+1 + σy

i σy
i+1 − cos γσz

i σz
i+1 + cos γ

)

+ sin γ

[
tan

(
ω− + δ−

2

)
σz

1 + tan

(
ω− − δ−

2

)
σz

L + 2
sinω− − 2 sin(ω− + γ)

cosω− + cos δ−

]}
. (2.17)

Hd has diagonal boundary terms only and its spectrum was studied since a long time using the
Bethe Ansatz [7]. The Hamiltonian Hd commutes with

Sz =
1

2

L∑

i=1

σz
i . (2.18)

and therefore for generic values of parameters one would not expect any degeneracies to occur.
However at exceptional points (2.3) the 1BTL algebra gives rise to degeneracies in H 1T . As the
spectrum of H1T and Hd is identical this implies degeneracies in Hd at these points [6].

If one examines the coefficients of σz
1 and σz

L in (2.17) there is no obvious difference between
the parameters ω− and δ−. We know however that this is not the case in the Hamiltonian H1T:
ω− enters the algebra whereas δ− does not. Some observations related to the properties of the
spectrum of Hd can be explained [6] like the absence of δ− in the finite-size scaling limit [26]
and the fact that for finite chains, at the exceptional points, one observes degeneracies and some
energy levels are δ− independent and some are not [26].

Using (2.9)–(2.11), (2.14), and (2.15), H2T has the following expression:

H2T = −
1

2

{
L−1∑

i=1

(
σx

i σx
i+1 + σy

i σy
i+1 − cos γσz

i σz
i+1 − 2 + cos γ

)

−
2 sin γ

cosω+ + cos δ+
(−i(cosω+ − cos δ+) σz

L + cos θ σx
L + sin θ σy

L − sin ω+ + 2 sin(ω+ + γ))

−
2 sin γ

cosω− + cos δ−
(i(cos ω− − cos δ−) σz

1 + σx
1 − sinω− + 2 sin(ω− + γ))

}
. (2.19)

One should keep track of the role of the parameters in (2.19). Only the parameters γ, ω± and θ
enter the 2BTL algebra not the δ± parameters. If we take into account all the parameters, H2T

gives the most general XXZ model with boundaries.
Not much is known yet about the spectrum of H2T. One reason for this lack of understanding

is the absence of Bethe Ansatz equations for generic values of the parameters. However, such
equations were derived at a subset of the exceptional points, those with ε = 1 [12–14,16] and those
with ε = −1 in the case of L odd [16]. It was further noticed that one needs two sets of Bethe
Ansatz equations to describe the complete spectrum [15,16].

In the next section, we are going to show that for γ = π/3 and γ = π/2, for certain boundary
parameters the spectra of the Hamiltonian HT for even and odd number of sites give all the energy
levels observed in the Hamiltonians H1T and H2T. In section 5 we shall prove generalizations of
some of these conjectures.

3 Spectra with magic. The case q = eiπ/3

3.1 The open and one-boundary chains.

In this section we are going to take

e2
j = ej , (j = 0, 1, . . . , L). (3.1)
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This implies γ = π/3 and ω± = −2π/3.
We start by considering the spectra of the Hamiltonian HT, defined in (2.12) with γ = π/3,

which describes a stochastic process with open boundaries [28]. It follows that the ground-state
energy is zero for any number of sites.

HT is Uq(sl(2)) symmetric. Its spectrum can be computed using the Bethe Ansatz in the
spin basis [7] or in the link pattern basis [6, 16]. The advantage of the latter basis, is that HT

has a block triangular form and that in order to compute the spectrum, one can disregard the
“off-diagonal” blocks and be left with the “diagonal” ones only. To a given value of the spin S
there are 2S + 1 identical diagonal blocks.

In Appendix A we present the characteristic polynomials which give the spectra of HT for
different sizes of the system and different values of S. We can notice that there are supplemen-
tary degeneracies which occur because q = eiπ/3 is a root of unity. These degeneracies are well
understood [1]. The partition function for a system of size L and spin S and the total partition
function are defined as follows:

ZT
L,S(z) =

∑

i

zEi (3.2)

ZT
L (z) =

∑

S

(2S + 1)ZT
L,S(z) (3.3)

We next consider the Hamiltonian H1T taking ω− = −2γ = −2π/3 in the 1BTL (2.2) and a− = 1
(i.e. δ− = π). H1T describes again a stochastic process [28]. It is helpful to use the spectral
equivalence between H1T and Hd (see (2.17)). Since Sz given by (2.18), commutes with Hd, in
Appendix A we give for different sizes L, the characteristic polynomials for different eigenvalues
m of Sz. Notice that we did not need to use other polynomials than those used already for the
Uq(sl(2)) symmetric chain. We denote by Z1T

L,m(z) the partition function for a system of size L
and charge m and the total partition function by:

Z1T
L (z) =

∑

m∈Z

Z1T
L,m(z) (3.4)

Conjecture 1 The following identities hold for finite chains:

Z1T
L,m =

∑

n≥0

{
ZT

L+1,(3/2+m+3n) + ZT
L,(m+3n)

}
, for m ≥ 0 , (3.5)

Z1T
L,−m =

∑

n≥0

{
ZT

L+1,(1/2+m+3n) + ZT
L,(2+m+3n)

}
, for m ≥ −1/2 . (3.6)

This implies for the total partition functions:

Z1T
L =

1

3
(ZT

L+1 + ZT
L ) . (3.7)

In (3.5) and (3.6) n spans all integer values such that the spin does not exceed the value L/2.
These identities were checked using data up to L = 11 (not included in Appendix A). In the

finite-size scaling limit, as shown in (6.10) the identities amount to obtain the Gauss model from
the Uq(sl(2)) symmetric partition functions [29].

How can we understand the identities (3.5)–(3.7)? We first notice that for γ = π/3, ω− =
−2π/3 the 1BTL algebra is at an exceptional point (see (2.3)). Then, since e2

0 = e0 the 1BTL
algebra has a quotient e0 = 1. If we take e0 = 1 in the one-boundary Hamiltonian (2.13) it
becomes the Temperley-Lieb Hamiltonian (2.12). This may explain why one part of the spectrum
of H1T with L sites comes from the spectrum of HT with L sites. On the other hand, if e0 is
subject to the supplementary condition e0e1e0 = e0, H1T becomes HT with L+1 sites. This may
explain why another part of the spectrum of H1T with L sites comes from the spectrum of HT
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with L + 1 sites1. This suggests how one might generalize Conjecture 1 to the case a− 6= 1 (i.e.
δ− 6= π) keeping ω− = −2γ = −2π/3 unchanged. Let Z1T

L (δ−, z) be the partition function of H1T

in this case.
We also consider a new Hamiltonian (describing again a stochastic process [28]):

HT(δ−) = a−(1 − ẽ0) + HT, (3.8)

where ẽ0 and ei (i = 1, · · · , L − 1) are generators of a TL algebra with L generators. Obvi-
ously, HT(δ−) is Uq(sl(2)) symmetric. Let ZT

L (δ−, z) be the total partition function given by the
spectrum of HT(δ−).

Conjecture 2 The following identity holds for finite chains:

Z1T
L (δ−, z) =

1

3

(
ZT

L (z) + ZT
L+1(δ−, z)

)
. (3.9)

This identity was checked up to L = 6. There are several implications of this conjecture. Firstly,
if L is even and assuming that all levels except the ground-state of HT(δ−) depend on δ−, out
of the 2L levels, p + 1 levels–including the ground-state–will be δ− independent and 2p will be
δ− dependent. Here p = (2L − 1)/3. If L is odd, and p = (2L−1 − 1)/3, then out of the 2L+1

levels, 1+2p are δ− independent and 4p+1 are δ− dependent. In principle, this result can also be
obtained using the methods developed in [6]. The observation that in the spectrum of Hd there
are levels independent of δ− is known for a long time [26,27], the fact that this unusual behaviour
of the energy levels is related to exceptional points of the 1BTL algebra is new (see also [6]).
Moreover, barring accidental coincidences of energy levels occurring for special values of a−, the
degeneracies seen in the Hd chain can be obtained from the known degeneracies of the Uq(sl(2))
symmetric chains HT (δ−) (they are δ− independent).

Another interesting consequence of the Conjecture 2 is that it gives the finite-size scaling limit
of the spectrum of the Hamiltonian (3.8) which, to our knowledge is unknown. Since in the
finite-size scaling limit Z1T

L (δ−, z) is δ− independent [26], from Conjecture 2 so is ZT
L (δ−, z).

It is convenient to divide the spectrum of H1T for δ− = π and L even into two groups according
to the value of m. We denote these two groups by by 0e and 1/3e. The group 0e contains all the
states in the sectors m = 3k and m = 3k + 2 where k is an integer. The group 1/3e contains the
states with m = 3k + 1. For L odd, the two groups denoted by 0o and 1/3o contain the same
states with m replaced by m̃ where m̃ = 1/2 − m. In Appendix A for each value of system size
L the two groups are separated. The partition functions given by the energy levels of the four

groups are denoted by Z
0e,o

L (z), Z
1/3e,o

L (z). These partition functions are going to be used when
we consider the two-boundary case and in section 6.

3.2 The two-boundary chain

We turn now to the Hamiltonian H2T (see (2.14) or (2.19)). We take ω+ = ω− = −2π/3 and
a− = a+ = 1 (δ− = δ+ = π). We did not consider other values of a− and a+

In order to fix the Hamiltonian H2T we have to specify the values of b in the 2BTL. Firstly,
we take b = 1. This choice makes the Hamiltonian H2T describe a stochastic process [20] and
therefore the ground-state energy is equal to zero for any number of sites. Let us observe that for
b = 1 the angle θ in the quantum chain is different for L odd and L even. It is equal to ±2π/3 for
L even and to ±π/3 for L odd.

The spectra of the quantum chain for different sizes of the system are shown in Appendix A.
A closer look at the characteristic polynomials shows that the energy levels which appear for L
sites, are contained in the one-boundary chains of size L and L + 1 and hence in the open chains
of size L, L + 1 and L + 2. This is not entirely surprising since we are at exceptional points of the
2BTL algebra (see (2.8)). As in the case of the one-boundary chain one can take quotients in the

1The existence of these quotients also explains relations between properties of stationary states of various raise
and peel models [20].
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algebra e0 = eL = 1 or conversely to promote a boundary generator of the 2BTL to a generator
of the 1BTL algebra. We first separate the states in 0e and 0o into two groups

Z0e

L = Ze,I
L + Ze,II

L (3.10)

Z0o

L = Zo,I
L + Zo,II

L (3.11)

where

Ze,I
L =

∑

m∈Z

Z1T
L,3m, Ze,II

L =
∑

m∈Z

Z1T
L,3m+2, (3.12)

Zo,I
L =

∑

m∈Z

Z1T
L,3m+1/2, Zo,II

L =
∑

m∈Z

Z1T
L,3m+3/2. (3.13)

The data presented in Appendix A, suggest the following conjecture:

Conjecture 3 The total partition function Zb=1
L (z) for the Hamiltonian H2T for b = 1 and L

sites can be written in terms of partition functions of the one-boundary chain:

Zb=1
L=2r(z) = Ze,I

L=2r(z) + Zo,II
L=2r+1(z) = Ze,II

L=2r(z) + Zo,I
L=2r+1(z), (3.14)

Zb=1
L=2r−1(z) = Zo,I

L=2r−1(z) + Ze,II
L=2r(z) = Zo,II

L=2r−1(z) + Ze,I
L=2r(z). (3.15)

This conjecture was checked up to L = 8.
We take now b = 0. This implies taking in the quantum chain (2.19) θ = 0 for L even and

θ = ±π for L odd. The value b = 0 might look “natural”, but as we are going to notice shortly,
there is more to this choice.

The spectra for b = 0 and different lattice sizes are shown in Appendix A. Keeping the notation
introduced at the end of the previous section:

Z
1/3e

L=2r =
∑

m∈Z

Z1T
L,3m+1, Z

1/3o

L=2r−1 =
∑

m∈Z

Z1T
L,3m−1/2, (3.16)

one observes that the following conjecture is compatible with the data:

Conjecture 4 The total partition function Zb=0
L (z) for the Hamiltonian H2T for b = 0 and L

sites can be written in terms of partition functions of the one-boundary chain:

Zb=0
L=2r(z) = Z

1/3e

L=2r(z) + Z
1/3o

L=2r+1(z), (3.17)

Zb=0
L=2r−1(z) = Z

1/3o

L=2r−1(z) + Z
1/3e

L=2r(z). (3.18)

This conjecture was checked up to L = 8. In section 5 we shall prove generalizations of conjectures
3 and 4 relating spectra of H1T and H2T for arbitrary values of ω− and δ− keeping (±θ − ω−)
fixed. These are always exceptional points of the 2BTL algebra (2.8).

We have shown that for the one and two-boundary chains with proper boundary conditions, the
energy levels can all be found in the open chain. Should we look for other values of b? Probably
not since for ω± = −2γ, γ = π/3, one can see from (2.8) that there are no other exceptional
points.

4 Spectra with magic. The case q = eiπ/2.

4.1 The open and one-boundary chain.

The case q = eiπ/2 is special since one can find the spectrum and the wavefunctions of the XX
model with the most general boundary conditions without using the Bethe Ansatz (see [30] and [31]
and references therein).
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We are going to show, that similar to the case q = eiπ/3, magic exists and can be again related
to the TL algebra and its extensions. Throughout this section we are going to take

e2
j = 0, (j = 0, 1, . . . , L). (4.1)

This implies γ = π/2, ω− = ω+ = −π. (We have fixed the parameters of the TL and 1BTL
algebra and three out of the four parameters of the 2BTL algebra).

We start with the Uq(sl(2)) symmetric Hamiltonian (2.12). The characteristic polynomials for
different sizes and spin sectors S are given in Appendix B.

Next, we consider H1T, defined in (2.13), in which we take a− = 1 (δ− = π). Using the spectral
equivalence of H1T and Hd (see (2.17)) in Appendix B we give the characteristic polynomials for
different values of m (the eigenvalues of Sz). We have to keep in mind that ω− = −π is an
exceptional value of the 1BTL algebra (see (2.3)).

One notices the following two identities:

Z1T
L,m(z) = Z1T

L,−m(z), (4.2)

and
Z1T

L,m(z) =
∑

n≥0

ZT
L+1,1/2+m+2n(z) (m ≥ −1/2). (4.3)

from which it follows that:
∑

n≥0

ZT
L,2n(z) =

∑

n≥0

ZT
L,2n+1(z), for L even (4.4)

Here ZT
L,S is the partition function in the spin sector S for a system size L of HT and Z1T

L,m is the

partition function in the sector m for a system of size L of H1T. The relations (4.4)–(4.3) can be
proven for any system size [32].

¿From (4.3) one can show that

Z1T
L (z) =

1

2
ZT

L+1(z). (4.5)

where Z1T
L (z) is the total partition function of the open chain in which one takes into account the

multiplicity of each spin S sector, and ZT
L (z) is the total partition function for the one-boundary

chain obtained by summing over the values of m ( −L/2 ≤ m ≤ L/2).
We want to check if, as observed for the case q = eiπ/3, one cannot extend the relation (4.5)

to the case when a− 6= 1 (i.e. δ− 6= π) in (2.13).
We consider the Uq(sl(2)) invariant Hamiltonian (3.8) and compare it’s spectrum with that of

H1T, this brings us to a new conjecture

Conjecture 5 The following identity holds for finite chains:

Z1T
L (δ−, z) =

1

2
ZT

L+1(δ−, z) (4.6)

where ZT
L+1(δ−, z) is the total partition function for HT(δ−) with L sites and Z1T

L (δ−, z) is the
total partition function for H1T for L sites.

This conjecture was checked up to L = 5 sites. The existence of this relation should again be
related to the fact that one is at an exceptional point of the 1BTL algebra.

Before proceeding, let us pause for a moment and look again at the relation (4.5) in order to
illustrate how little the spectra tell us about the physical problem. HT for q a root of unity has, as
is well known, indecomposable Jordan cells, Hd is Hermitian and therefore is fully diagonalizable.
Moreover, if one adds a dummy site to the L-site Hamiltonian Hd (a zero fermionic mode) the
spectrum of the Hamiltonian in the larger vector space is precisely the one of HT with L + 1
sites. On the other hand, H1T although it has the same spectrum as Hd, has again Jordan cell
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structures [6]. These observations are relevant since, as we are going to see, various characters
of c = −2 conformal field theory are going to show up in the finite-size scaling limit (see Section
7) and the observation concerning different theories having the same partition functions for the
finite chains should imply different conformal field theories related to the same c = −2 characters
expressions.

4.2 The two-boundary chain.

We consider the Hamiltonian H2T (see (2.14) or (2.19)) in which we take only a− = a+ = 1
(δ− = δ+ = π). We employ the same strategy as in the case of q = eiπ/3 and we are going to get
a surprise.

We first take b = 1 in the 2BTL algebra (see (2.5)). This choice is quite “natural” if one has
in mind the link pattern representation of the 2BTL, not discussed here (see [16]). For L even,
(the angle θ in (2.7) becomes complex) the spectra of H2T have nothing to do with those of HT

or H1T (they are not shown in Appendix B). The situation is entirely different if L is odd. In this
case, using (2.7) one finds θ = 0, the Hamiltonian is Hermitian and has a very simple form:

H =
1

2

(
L−1∑

i=1

σx
i σx

i+1 + σy
i σy

i+1 + σx
1 + σx

L

)
. (4.7)

Before proceeding let us mention a known curious fact [33]. For L odd only, the operator

Y =
1

8

L−1∑

i=1

[(
1 + (−)

j
)

σx
i σy

i+1 −
(
1 − (−)

j
)

σy
i σx

i+1

]
+

1

4
(σy

1 − σy
L) , (4.8)

commutes with H given by (4.7). The fact that in the presence of two boundaries, quantum chains
with even and odd number of sites behave so differently, is a surprise. One possible origin of the
surprise can be found in (2.8). If we take γ = π/2, and ω− = ω+ = −π in the equations, for L
odd, one finds two solutions: θ = 0 and θ = ±π whereas for L even only one solution: θ = ±π/2.
The latter two solutions correspond to the case b = 0 which will be discussed soon.

The characteristic polynomials which give the spectrum of H in (4.7) are shown in Appendix
B. Comparing the characteristic polynomials for a system of size L = 2r−1 with the characteristic
polynomials for the one-boundary case and size L = 2r, one is led to the following conjecture:

Conjecture 6 The total partition function for the Hamiltonian H2T, θ = 0 and L = 2r − 1 sites
is related to the charge even sector (m = 2n) of H1T with L = 2r sites:

Zb=1
L=2r−1(z) =

∑

n∈Z

Z1T
L=2r,2n(z). (4.9)

We consider b = 0 in the 2BTL algebra. We start with L odd. This corresponds to θ = ±π. The
characteristic polynomials are shown in Appendix B, their expressions suggest the next conjecture:

Conjecture 7 The total partition function for the Hamiltonian H2T, θ = ±π and L = 2r − 1
sites is related to the charge odd sector (m = 2n + 1) of H1T with L = 2r sites:

Zb=0
L=2r−1(z) =

∑

n∈Z

Z1T
L=2r,2n+1(z). (4.10)

We consider again b = 0, with L even. This corresponds to θ = ±π/2. The characteristic
polynomials given in Appendix B, suggest the conjecture:

Conjecture 8 The total partition function for the Hamiltonian H2T, θ = ±π/2 and L = 2r sites
is related to 1/2 of the partition function of H1T with L = 2r + 1 sites:

Zb=0
L=2r(z) =

1

2

∑

m∈Z+1/2

Z1T
L=2r+1,m(z). (4.11)
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These three conjectures were checked up to L = 8. It is interesting to mention that the spectra of
the three quantum chains H2T (4.9), (4.10), and (4.11) exhaust the spectra of H1T. This is another
argument for not expecting more exceptional points of the 2BTL algebra for γ = π/2, ω± = −π.
As will be discussed in Section 7, all the conjectures made above are valid in the finite-size scaling
limit.

In the next section we shall prove generalizations of conjectures 6, 7 and 8 relating spectra
of H1T and H2T for arbitrary values of ω− and δ− keeping (±θ − ω−) fixed. These are always
exceptional points of the 2BTL algebra (2.8).

5 Spectral equivalences from the Bethe Ansatz

The Bethe Ansatz equations for the spectrum of H2T have been written down only at exceptional
points of the 2BTL [12–14,16]. The cases in this paper are precisely of this kind, and we will use
the Bethe Ansatz solution to prove conjectures 3, 4 and 6-8. In fact, we will prove a generalization
of these conjectures.

Let us start by briefly stating the results for H2T at the exceptional point (2.8) with ε = 1
[12–14]. To simplify the presentation we recall from (2.15) that

a± =
2 sin γ sin(γ + ω±)

cosω± + cos δ±
, (5.12)

and we will also use the definition

s± =
sin ω±

sin(γ + ω±)
. (5.13)

The eigenvalues of H2T split into two groups, E2T
1 (k) and E2T

2 (k), which can be written as

E2T
1 (k) = a−(1 − s−) + a+(1 − s+) + L − 1−

b(L−1)/2c−k∑

j=1

2 sin2 γ

cos 2ui − cos γ
, (5.14)

E2T
2 (k) = a− + a+ + L − 1 −

bL/2c+k∑

j=1

2 sin2 γ

cos 2vi − cos γ
, (5.15)

for all k ∈ Z satisfying (2.8). The complex numbers ui and vi are solutions of the equations

z(ui)
2L =

K−(ui − ω−)K+(ui − ω+)

K−(−ui − ω−)K+(−ui − ω+)

b(L−1)/2c−k∏

j=1
j 6=i

S(ui, uj)

S(−ui, uj)
, (5.16)

z(vi)
2L =

K−(vi)K+(vi)

K−(−vi)K+(−vi)

bL/2c+k∏

j=1
j 6=i

S(vi, vj)

S(−vi, vj)
, (5.17)

where we have used the following functions,

z(u) =
sin(γ/2 + ui)

sin(γ/2− ui)
, S(u, v) = cos 2v − cos(2γ + 2u), (5.18)

K±(u) = cos δ± + cos(γ + ω± + 2u). (5.19)

We are going to compare these solutions to the Bethe Ansatz for H1T [16]. As described in [6],
the eigenvalues E1T of H1T are the same as those of Hd [7] and can therefore be grouped into
sectors labelled by the eigenvalues m of Sz. We give the Bethe Ansatz equations for H1T explicitly,
to emphasize their similarity with (5.14)–(5.17),

E1T (m) = a−(1 − s−) + L− 1−

L/2−m∑

j=1

2 sin2 γ

cos 2µi − cos γ
, (5.20)
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and

E1T (m) = a− + L − 1 −

L/2+m∑

j=1

2 sin2 γ

cos 2νi − cos γ
. (5.21)

Here, the complex numbers µi and νi satisfy the equations

z(µi)
2L =

K−(µi − ω−)

K−(−µi − ω−)

L/2−m∏

j=1
j 6=i

S(µi, µj)

S(−µi, µj)
, (5.22)

z(νi)
2L =

K−(νi)

K−(−νi)

L/2+m∏

j=1
j 6=i

S(νi, νj)

S(−νi, νj)
. (5.23)

We will now describe some connections between the spectra of H2T and that of H1T. In particular,
we set a+ = 1, ω+ = −2γ (i.e. δ+ = π) and take several values for γ and b, see (2.7) and (2.8).

5.1 γ = π/3

We take δ+ = π and ω+ = −2π/3 and find

K+(u + 2π/3)

K+(−u + 2π/3)
= 1,

K+(u)

K+(−u)
=

(
sin(γ/2 − u)

sin(γ/2 + u)

)2

= z(u)−2, (5.24)

This will allow us to identify (5.16) and (5.17) with (5.22) and (5.23) either with the same system
size L or with L replaced by L + 1. We will consider this correspondence in detail for b = 1 and
b = 0.

• b = 1, L even

¿From (2.7) we find that b = 1 implies θ = ±ω−, and it follows from (2.8) that k ≡ 2 mod 3.
The eigenvalue (5.14) and the Bethe Ansatz equations (5.16) are identical to in (5.20) and
(5.22) by identifying m = k + 1 ≡ 0 mod 3. Similarly, the eigenvalue (5.15) and the Bethe
Ansatz equations (5.17) are identical to (5.21) and (5.23) with L replaced by L + 1 and
m = k − 1

2 ≡ 3
2 mod 3.

Let Zb=1
L (ω−, δ−, z) be the total partition function of the Hamiltonian H2T with b = 1,

ω+ = −2γ = −2π/3, a+ = 1 (i.e. δ+ = π), and arbitrary values of δ− and ω− in the left

boundary term. Denote by Z
e,I(or II)
L=2r (ω−, δ−, z), Z

o,I(or II)
L=2r+1 (ω−, δ−, z), Z

1/3e

L=2r(ω−, δ−, z) and

Z
1/3o

L=2r+1(ω−, δ−, z) the partition functions defined as in eqs.(3.12), (3.13), (3.16) (see also

discussion at the end of section 3.1) for the Hamiltonian H1T with arbitrary values of the
left boundary parameters ω− and δ−

¿From the Bethe Ansatz equations one therefore obtains:

Zb=1
L=2r(ω−, δ−, z) = Ze,I

L=2r(ω−, δ−, z) + Zo,II
L=2r+1(ω−, δ−, z), (5.25)

This is a generalization of the first equality (3.14) in conjecture 3.

• b = 1, L odd

¿From (2.7) we find that b = 1 implies θ = ±(π + ω−), and it follows from (2.8) that
k ≡ 1 mod 3. The eigenvalue (5.14) and the Bethe Ansatz equations (5.16) are identical to
in (5.20) and (5.22) by identifying m = k + 1

2 ≡ 3
2 mod 3. Similarly, the eigenvalue (5.15)

and the Bethe Ansatz equations (5.17) are identical to (5.21) and (5.23) with L replaced by
L + 1 and m = k − 1 ≡ 0 mod 3. Thus,

Zb=1
L=2r−1(ω−, δ−, z) = Zo,II

L=2r−1(ω−, δ−, z) + Ze,I
L=2r(ω−, δ−, z). (5.26)

The second equality of (3.15) in conjecture 3 is a corollary.
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• b = 0, L even

¿From (2.7) we find that b = 0 implies θ = ±( 2π
3 + ω−), and it follows from (2.8) that

k ≡ 0 mod 3. The eigenvalue (5.14) and the Bethe Ansatz equations (5.16) are identical to
in (5.20) and (5.22) by identifying m = k + 1 ≡ 1 mod 3. Similarly, the eigenvalue (5.15)
and the Bethe Ansatz equations (5.17) are identical to (5.21) and (5.23) with L replaced by
L + 1 and m̃ = 1

2 − m = k ≡ 1 mod 3. Hence,

Zb=0
L=2r(ω−, δ−, z) = Z

1/3e

L=2r(ω−, δ−, z) + Z
1/3o

L=2r+1(ω−, δ−, z), (5.27)

Equation (3.17) in conjecture 4 follows as a corollary.

• b = 0, L odd

¿From (2.7) we find that b = 0 implies θ = ±(−π
3 + ω−), and it follows from (2.8) that

k ≡ 2 mod 3. The eigenvalue (5.14) and the Bethe Ansatz equations (5.16) are identical
to (5.20) and (5.22) by identifying m = k + 1

2 and hence m̃ = 1
2 − m = −k ≡ 1 mod 3.

Similarly, the eigenvalue (5.15) and the Bethe Ansatz equations (5.17) are identical to (5.21)
and (5.23) with L replaced by L + 1 and m = k − 1 ≡ 1 mod 3. Hence,

Zb=0
L=2r−1(ω−, δ−, z) = Z

1/3o

L=2r−1(ω−, δ−, z) + Z
1/3e

L=2r(ω−, δ−, z). (5.28)

Equation (3.18) in conjecture 4 follows as a corollary.

5.2 γ = π/2

We take δ+ = π and ω+ = −2γ = −π and find

K+(u + π)

K+(−u + π)
=

K+(u)

K+(−u)
=

(
sin(γ/2− u)

sin(γ/2 + u)

)2

= z(u)−2, (5.29)

As before, this allows us to identify (5.16) and (5.17) with (5.22) and (5.23) with L replaced by
L + 1. We will consider this correspondence in detail for b = 1 and b = 0.

• b = 1, L odd

¿From (2.7) we find that b = 1 implies θ = ±(ω− + π), which means that k in (2.8) takes on
only odd values. The eigenvalue (5.14) and the Bethe Ansatz equations (5.16) are identical
to (5.20) and (5.22) by replacing L with L + 1 and identifying m = k + 1. Similarly, the
eigenvalue (5.15) and the Bethe Ansatz equations (5.17) are identical to (5.21) and (5.23)
with L replaced by L + 1 but now m = k − 1. We thus conclude

Zb=1
L=2r−1(ω−, δ−, z) =

∑

n∈Z

Z1T
L=2r,2n(ω−, δ−, z). (5.30)

Here Z
b=1(or 0)
L=2r−1 (ω−, δ−, z) (respectively, Z1T

L=2r,m(ω−, δ−, z)) denotes the total (resp., the

charge m sector) partition functions of the Hamiltonian H2T with b = 1(or 0) (resp., H1T),
where δ+ = π and ω+ = −2γ = −π are taken, but values of the left boundary parameters
ω− and δ− are kept arbitrary.

Conjecture 6 follows as a corollary.

• b = 0, L odd

This case is complementary to the previous case. Namely b = 0 implies from (2.7) that
θ = ±ω−, and now k in (2.8) takes on only even values. Using exactly the same argument
as above, we conclude

Zb=0
L=2r−1(ω−, δ−, z) =

∑

n∈Z

Z1T
L=2r,2n+1(ω−, δ−, z). (5.31)

Conjecture 7 follows as a corollary.
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• b = 0, L even

¿From (2.7) we find that these values imply θ = ±(ω− + π/2), which means that k in (2.8)
takes on only even values. Using again the same reasoning as above, it follows that

Zb=0
L=2r(ω−, δ−, z) =

1

2

∑

m∈Z+1/2

Z1T
L=2r+1,m(ω−, δ−, z). (5.32)

Conjecture 8 follows as a corollary.

We would like to remark that in [13] for the case θ = π, δ+ = δ−, ω+ = ω−, and γ = π
M+1

for any positive integer M (also an exceptional point of the 2BTL algebra (2.8)), the spectrum of
H2T on L sites (for L odd) is related to the spectra of diagonal chains, and therefore also of H1T .

Let us finally comment on how the relations (5.25)–(5.28) can be interpreted from an algebraic
point of view. In the 2BTL algebra when we have e2

i = ei and e2
L = eL, i.e. γ = π/3 and ω+ =

−2π/3, one can perform two types of quotient. In the first eL = 1 and the L-site two-boundary
Hamiltonian H2T (2.14) becomes the L-site one-boundary Hamiltonian H1T (2.13). In the second
quotient we take eLeL−1eL = eL and therefore the L-site two-boundary Hamiltonian H2T (2.14)
becomes the one-boundary Hamiltonian H1T (2.13) now on L + 1 sites. These two quotients, and
relations between the Hamiltonians hold for generic values of the boundary parameters ω− and δ−.
However we found that the magical connections between the spectra, (5.25)–(5.32), only occurred
at the non-semisimple points (2.8). A proper understanding of this fact is still missing.

The conclusion of this section is that the spectrum of the 2BTL Hamiltonian (2.14) in the
exceptional cases can be related to one-boundary Hamiltonian (2.13). Since the finite-size scaling
limit of the spectra of the latter is known [7] this allows us to derive the finite size scaling limit of
the 2BTL case. In the next section we shall do this.

6 Finite-size scaling limits of the spectra at q = eπi/3 and

c = 0 CFT

In the next two sections we discuss the finite-size scaling limit of the spectra discussed in Section
3 and 4. The case of finite size scaling of the Hermitian two-boundary chain, at the exceptional
points (2.8), was considered in [23].

We start with some general observations. As is standard in finite size scaling the partition
function (3.3), used in section 3 and 4, has to be substituted by a different one:

Z̃L(z) =
∑

i

z
eEi , (6.1)

with

Ẽi =
(Ei − E0)L

πv
, (6.2)

where E0 is the ground-state energy, L is the size of the system and v is the sound velocity [22],

v =
π

γ
sin γ. (6.3)

Since all the spectra are contained in the HT Hamiltonian, so are the ground-states. Therefore,
for q = eiπ/(M+1), in the finite size scaling limit one can use the result of [1] which states that the
central charge c of the Virasoro algebra is:

c = 1 −
6

M(M + 1)
. (6.4)
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We also expect the finite-size scaling limit of the spectrum of Hd in the sector m (eigenvalue of
Sz called “electric” charge) to be given by a free boson field with Dirichlet-Dirichlet boundary
conditions [21, 24]:

χm = z
M

M+1 (m+α)2− 1
4M(M+1) P (z), (6.5)

where
P (z) =

∏

n≥1

(1 − zn)−1, (6.6)

and α depends on ω− only and not on δ− [26].
In the case of H2T, the situation is more complicated. One expects, depending on the boundary

parameters, the finite-size scaling spectrum to be given by the free boson field theory either
with Neumann-Neumann boundary conditions or with Neumann-Dirichlet boundary conditions.
The connection between the conformal field theory and the boundary parameters of the XXZ
Hamiltonian are known only at the decoupling point q = eiπ/2 [31]. For q = eiπ/3 such a connection
is not known and one of the results of the magic shown in Section 3 is that in four cases (the four
exceptional points of the 2BTL algebra) we will get it. For what we need, it is sufficient to mention
what we expect in the case of Neumann-Neumann boundary conditions in the sector µ [21, 24]

χµ = z
M+1

M (µ+β)2− 1
4M(M+1) P (z). (6.7)

Here the sectors are specified by the values µ (the “magnetic” charge) which are the eigenvalues
of an operator related to a U(1) symmetry not seen in the XXZ chain and β is an unknown
parameter depending on the boundary parameters.

We consider the case M = 2. We have, using (6.4), c = 0. In the continuum, the spectrum of
HT in the sector specified by spin S gives the partition function (we use (6.1)) [29]:

χT
S (z) = lim

L→∞
Z̃T

L,S(z) =
(
zS(2S−1)/3 − z(S+1)(2S+3)/3

)
P (z). (6.8)

Using the results of [26] one can fix the value of α in (6.5) and for the sector m of Hd one obtains:

χ1T
m (z) = lim

L→∞
Z̃1T

L,m(z) = z2(m−1/4)2/3−1/24P (z) = zm(2m−1)/3P (z). (6.9)

Using (6.8) and (6.9) one can check the following identity:

χ1T
m = χ1T

1/2−m =
∑

n≥0

(
χT

m+3n + χT
3/2+m+3n

)
, (6.10)

which corresponds to the finite size scaling limit of (3.5) and (3.6) in section 3.
We define:

χT
e (z) =

∑

S≥0

(2S + 1)χT
S , χT

o (z) =
∑

S≥1/2

(2S + 1)χT
S , (6.11)

χ1T
e (z) =

∑

m∈Z

χ1T
m , χ1T

o (z) =
∑

m∈Z+1/2

χ1T
m . (6.12)

where e and o correspond to the L → ∞ limits for even and odd length chains respectively.
Using (6.8), (6.9) and (6.11), (6.12) one gets:

χ1T
e (z) = χ1T

o (z) =
1

3

(
χT

e (z) + χT
o (z)

)
, (6.13)

which corresponds to the finite size scaling limit of (3.7).
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In order to understand the spectra of H2T at the exceptional points it is important to make
contact with characters of N = 2 superconformal field theory. It is useful to first define the
following functions (with u = y2/3):

χe,I(y, z) =
∑

µ∈Z

χ1T
3µ (z)y3µ = u1/6

∑

µ∈Z

u2µ−1/6z3(2µ−1/6)2/2−1/24P (z),

χe,II(y, z) =
∑

µ∈Z

χ1T
3µ+2(z)y(3µ+2) = u1/6

∑

µ∈Z

u2µ+7/6z3(2µ+7/6)2/2−1/24P (z),

χo,I(y, z) =
∑

µ∈Z

χ1T
3µ+1/2(z)y(3µ+1/2) = u1/6

∑

µ∈Z

u2µ+1/6z3(2µ+1/6)2/2−1/24P (z),
(6.14)

χo,II(y, z) =
∑

µ∈Z

χ1T
3µ+3/2(z)y(3µ+3/2) = u1/6

∑

µ∈Z

u2µ+5/6z3(2µ+5/6)2/2−1/24P (z),

χ1/3,e(y, z) =
∑

µ∈Z

χ1T
3µ+1(z)y(3µ+1) = u1/6

∑

µ∈Z

u2µ+1/2z3(2µ+1/2)2/2−1/24P (z),

χ1/3,o(y, z) =
∑

µ∈Z

χ1T
3µ+5/2(z)y(3µ+5/2) = u1/6

∑

µ∈Z

u2µ+3/2z3(2µ+3/2)2/2−1/24P (z),

It was pointed out by Eguchi and Yang [34] (see also [35]) that the Ramond sector of an N = 2
superconformal field theory for any value of the central charge is related to a c = 0 conformal field
theory. Here we consider the N = 2 superconformal for the case c = 1 only.

In the Ramond sector, the N = 2 superconformal algebra has a super sub-algebra with four
generators; L0 (belonging to the Virasoro algebra), two supercharges Gi

0 (i = 1, 2) and a U(1)
charge T0:

1

2

{
Gi

0, G
j
0

}
= δij

(
L0 −

1

24

)
,

[
T0, G

i
0

]
= iεijG

j ,

[
L0, G

i
0

]
= [L0, T0] = 0. (6.15)

We are going to use this observation later in section 8.
The Ramond sector has three representations, (1/24, +1/6), (1/24,−1/6) and (3/8, 1/2) (the

first figure indicates the scaling dimension and the second the charge of the primary fields) [36].
If we define L̃0 = L0 −1/24 then the central charge is shifted from the value c = 1 to the value

zero and the three representations become:

(1/24,±1/6) → (0,±1/6), (3/8, 1/2) → (1/3, 1/2) (6.16)

With this shift in ground state energy the superalgebra (6.15) becomes the superalgebra of quan-
tum mechanics with two supercharges. This superalgebra has two-dimensional representations if
the eigenvalues of L̃0 are different of zero. If the eigenvalue of L̃0 is zero, one has a one dimen-
sional representation if the supersymmetry is unbroken or a two-dimensional representation if the
supersymmetry is broken (keep in mind that we have two representations of scaling dimension
1/24). Moreover the spectrum of L̃0 is non-negative.

The characters in any N = 2 representation R are defined as:

χ(u, z) = Tr
R

(
uT0zL0

)
(6.17)

The characters corresponding to the three representations in the Ramond sector are given by [36]:

χ0,±1/6(u, z) =
∑

µ∈Z

uµ±1/6z3(µ±1/6)2/2−1/24P (z), (6.18)

χ1/3,1/2(u, z) =
∑

µ∈Z

uµ+1/2z3(µ+1/2)2/2−1/24P (z). (6.19)
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Notice that the expressions of the characters are similar to those shown in (6.14) and therefore
we expect to see them in the XXZ model with non-diagonal boundary conditions.

The N = 2 superconformal algebra has a sub-superalgebra which is the N = 1 superconformal
algebra. The last one has, in the Ramond sector, a sub-superalgebra with only one supercharge:

G2
0 = L0 − 1/24 = L̃0. (6.20)

Being the square of an Hermitian operator L̃0 in (6.20) has a non-negative spectrum.
The N = 1 superconformal algebra has only one representation with scaling dimension 1/24

and one representation with scaling dimension 3/8. The two representations (1/24,±1/6) remain
irreducible but coincide in the case of N = 1 superconformal (the charge which distinguished them
in the case N = 2 is not present in the case N = 1). The representation (3/8, 1/2) splits into two
identical representations in the case N = 1.

The characters in any N = 1 representation R are now defined as:

χ(z) = Tr
R

zL0 (6.21)

The new characters are:

χ
(N=1)
1/24 → χ

(N=1)
0 (z) =

∑

µ∈Z

z3(µ±1/6)2/2−1/24P (z) (6.22)

χ
(N=1)
3/8 → χ

(N=1)
1/3 (z) =

∑

µ∈Z

z3(2µ+1/2)2/2−1/24P (z) (6.23)

We make now the connection between N = 2 and N = 1 superconformal theories and the XXZ
chain with boundaries.

We start with the finite-size spectra of H1T. Comparing the partition functions (6.14) and
the character expressions (6.18) and (6.19) one sees that there is mis-match of the charges and it
is not possible to write the partition functions of L even or L odd separately in terms of N = 2
characters. One is able to do it however in terms of N = 1 superconformal characters:

∑

m

χ1T
m (z) = χ

(1)
0 (z) + χ

(1)
1/3(z). (6.24)

for both m even and m odd.
If, however we combine the spectra for L even and odd, the sum of the partition functions can

be expressed in terms of N = 2 characters:

∑

m∈Z

χ1T
m ym +

∑

m∈Z+1/2

χ1T
m ym = χ0,+1/6(u, z) + χ0,−1/6(u, z) + χ1/3,1/2(u, z). (6.25)

where u = y3/2.
We have to keep in mind that we are in the finite-size scaling limit. However, since the

Hamiltonians describe stochastic processes, the ground-state energy is zero and the spectrum is
positive both for H1T and H2T (if b = 1) and one can ask which role the superalgebras (6.20) and
(6.15) can play for the finite chains. For H1T for both L even and odd, the superalgebra (6.20)
does not give anything new. If we combine the spectra of L even and L odd however, if magic
exists, the superalgebra (6.15) might become relevant even for finite chains and we are going to
show in section 8 that this is indeed the case. A closer inspection of equation (6.24) suggests that
if one excludes from the spectra of the finite chains for L even and odd separately those states
which contribute to the character with scaling dimensions 1/3, one has a chance to be able to
use the superalgebra (6.15). This is due to the fact that the two representations (0,±1/6) remain
irreducible for N = 1. In the ‘cleaned’ spectra we will see, in the finite chain for L even and L
odd separately, the ground state as a singlet and the rest of the spectrum has degeneracies which
are multiples of 2.
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We consider now H2T. Conjectures 3 and 4 of section 3 give us only the spectra but not any
assignment of the “magnetic” charge m̃ since no U(1) is known (except at the decoupling point).
We can however “export” the U(1) known for Hd and define magnetic charges in this way.

For b = 1 one finds using (3.14), (3.15), (6.14) and (6.18):

Z̃b=1
even(y, z) ≈ Z̃b=1

odd (y, z) ≈ χe,I(y, z) + χo,II(y, z) ≈ χe,II(y, z) + χo,I(y, z)

≈ u1/6χ0,±1/6(y, z). (6.26)

where the sign ≈ implies equality modulo a redefinition of charges.
An amusing observation: in spite of the fact that for b = 1 one can expect the superalgebra

(6.15) to play a role for finite chains (the ground state is indeed a singlet), it does not. There are
singlets for energy non-zero.

For b = 0 one finds using (3.17), (3.18), (6.14) and (6.19):

Z̃b=0
even(y, z) = Z̃b=0

odd (y, z) = χ1/3,e(y, z) + χ1/2,o(y, z) = u1/6χ1/3,1/2(y, z). (6.27)

The important conclusion of our discussion is that the four exceptional points of the 2BTL algebra
can be related to representations of N = 2 superconformal algebra.

7 Finite-size scaling limits of the spectra at q = eiπ/2 and

c = −2 CFT

¿From (6.4) one obtains c = −2, a case much studied in the framework of logarithmic conformal
field theory (see [37] and [38] for reviews). We are going to touch this topic at the end of the
section. Firstly we have to derive the finite-size scaling limit of the identities discussed in section
4.

¿From [29] and [31] we have:

χT
S (z) =

(
zS(S−1)/2 − z(S+2)(S+1)/2

)
P (z), (7.1)

and:
χ1T

m (z) = z(m2−1/4)/2P (z) = χ1T
−m(z) (7.2)

To derive (7.2) we have used (6.5) and the results of [26]. Equation (7.2) corresponds to the finite
size scaling limit of (4.2). From (7.1) and (7.2) we get:

χ1T
m (z) =

∑

n≥0

χT
1/2+m+2n, (7.3)

which corresponds to the finite size scaling limit of (4.3). We define the total characters for HT

χT
e (z) =

∑

S=0

(2S + 1)χT
S , χT

o (z) =
∑

S=1/2

(2S + 1)χT
S , (7.4)

and H1T

χ1T
e (z) =

∑

m∈Z

χ1T
m , χ1T

o (z) =
∑

m∈Z+1/2

χ1T
m , (7.5)

Using (7.3)–(7.5) we derive the relations:

χ1T
e (z) =

1

2
χT

o (z), χ1T
o (z) =

1

2
χT

e (z) (7.6)

These relations correspond to (4.5).
We now check if (4.9)–(4.11), conjectured for the finite chains, are valid in the finite size scaling

limit. We use here the results of [31] which give the values of β in (6.7) as a function of the angle θ
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appearing in the expression of H2T. We also show that for each value of θ the partition functions
in the finite-size scaling limit are given by one character only of the c = −2 theory.

One has:

lim
k→∞

Z̃b=1
L=2r−1(z) =

∑

n∈Z

χ1T
2n (z) (θ = 0)

=
∑

n∈Z

z2n2−1/8P (z) = z−1/8Θ0,2(z)P (z) (7.7)

lim
k→∞

Z̃b=0
L=2r−1(z) =

∑

n∈Z

χ1T
2n+1(z) (θ = π)

=
∑

n∈Z

z2(n+1/2)2−1/8P (z) = z−1/8Θ2,2(z)P (z). (7.8)

lim
k→∞

Z̃b=0
L=2r(z) =

1

2

∑

n∈Z

χ1T
n+1/2(z) (θ =

π

2
)

=
∑

n∈Z

z2(n+1/4)2−1/8P (z) = z−1/8Θ1,2(z)P (z). (7.9)

where
Θλ,κ(z) =

∑

n∈Z

z(2κn+λ)2/4κ. (7.10)

In the continuum there is a well-studied example of a c = −2 logarithmic CFT. This theory has an
extended W -symmetry with only a finite number of irreducible and indecomposable representations
[37, 38]. There are four irreducible fields conventionally written as V0, V1, V−1/8, V3/8 where the
subscript is the conformal dimension. There are also two reducible but indecomposable modules
R0 and R1. The characters (χ = TrzL0) are given by:

χV0 =
1

2
z−1/8 (Θ1,2(z) + ∂Θ1,2(z)) P (z) (7.11)

χV1 =
1

2
z−1/8 (Θ1,2(z) − ∂Θ1,2(z)) P (z) (7.12)

χV−1/8
= z−1/8Θ0,2(z)P (z) (7.13)

χV3/8
= z−1/8Θ2,2(z)P (z) (7.14)

χR = 2z−1/8Θ1,2(z)P (z) (7.15)

where χR ≡ χR0 = χR1 = 2 (χV0 + χV1) and:

∂Θλ,κ =
∑

n∈Z

(2κn + λ)z(2κn+λ)2/4κ. (7.16)

The finite size scaling of the lattice partition functions can now be identified with the continuum
results:

lim
k→∞

Z̃b=1
L=2r−1(z) = χV−1/8

(7.17)

lim
k→∞

Z̃b=0
L=2r−1(z) = χV3/8

(7.18)

lim
k→∞

Z̃b=0
L=2r(z) = χV0 + χV1 =

1

2
χR (7.19)

A very relevant observation is that to each of the three exceptional points of the 2BTL algebra
corresponds to a representation of the c = −2 theory in the finite size scaling limit.

The finite-size scaling limit of the spectra of H1T taken separately for L even and odd can also
be expressed in terms of c = −2 characters:

χ1T
e (z) = χ−1/8(z) + χ3/8(z), (7.20)

χ1T
o (z) = χR(z). (7.21)
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We know that H1T contains indecomposable representations and one can explicitly compute wave-
functions using the methods of [31]. Further work is required to understand properly the continuum
limit of this well defined lattice model.

8 Symmetries in the H1T and Hd quantum chains for q = eiπ/3

In this section we are going to discuss the degeneracies occurring in the spectra of the Hamiltonian
H1T given by 2.13. First we are going to take a− = 1 (δ− = π). Before we present our conjectures,
it is instructive to consider the cases L = 5 and L = 6 and compare the characteristic polynomials
appearing for different values of m.

In Appendix A, for each value of L, the characteristic polynomials for different values of m
are separated into two groups. For L even, the group called 0e in Section 3.2, is given first and
contains the characteristic polynomials for m = 3k and m = 3k + 2 (k ∈ Z); the second group
called 1/3e contains the characteristic polynomials corresponding to m = 3k + 1. For L odd, we
have the group 0o with m = 3k + 1/2 and m = 3k + 3/2 and the group 1/3o with m = 3k + 5/2.

For L = 5 the group 0o contains the levels with m = −5/2,−3/2, 1/2 and 3/2. We notice
that the ground state (energy zero) appears as a singlet, all the other states appear as doublets
except the level of energy 5 which appears as a quadruplet. The group 1/3o (m = −1/2 and 5/2)
contains the energy level 4 twice, the others as singlets. Notice that the energy level 4 appears in
both groups.

What happens with the degeneracies if we change the value of a− (δ− 6= π) in H1T ? The
degeneracies within each group stay unchanged but the energy level 4 which was common to the
two groups splits into two values, one for the doublet in 0o and a second one for the doublet in
1/3o. This observation is true for all values of L: the degeneracies within each of the two groups
are independent on a− and therefore have to be related to properties of the 1BTL algebra. This
is indeed the case. Degeneracies appearing between both groups are accidental.

The 1BTL algebra has a center containing several elements. These elements, which can be
written as a linear combination of words of the 1BTL algebra, have the property that they commute
with all elements in the algebra. If one specifies the XXZ representation of the 1BTL algebra (2.9)
and (2.10) , one obtains operators (centralizers) which commute with the Hamiltonian H1T (2.13)
(2.16) written in the same representation. At the exceptional points of the 1BTL algebra (2.3)
where the algebra is not semi-simple, the centralizers which commute with H1T are of Jordan
form. It is easy to check that if an N ×N matrix is a Jordan cell, any matrix commuting with it
(in particular H1T ) has to have an N -fold degeneracy. One centralizer found by Doikou [25] was
discussed in detail in [6], the construction of the centralizers and their properties will be published
elsewhere. The main message is that the use of the centralizers allows to get all the degeneracies
observed in the H1T quantum chain.

Part of the symmetries observed in the groups 0e and 0o can be understood in the following
way. We consider again the L = 5 example shown in Appendix A. It is convenient to order the
characteristic polynomials according to the value of m̃. We notice that apart the ground-state
which appears at m̃ = 0, one sees doublets at ∆m̃ = ±1. For other values of L one can define a new
“charge” such that doublets occur in the same way. This implies that one obtains representations
of the superalgebra (6.20). The fact that the spectrum in the sectors 0e and 0o is composed of
doublets and one singlet is contained in the following conjecture:

Conjecture 9 The partition functions of H1T satisfy the following identity for all values of L
and δ:

• L even

∑

n∈Z

Z1T
L,3n(δ−) = 1 +

∑

n∈Z

Z1T
L,3n+2(δ−) (8.22)
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• L odd

∑

n∈Z

Z1T
L,3n+1/2(δ−) = 1 +

∑

n∈Z

Z1T
L,3n+3/2(δ−) (8.23)

Notice that the sectors 1/3e and 1/30 contain many singlets and therefore have nothing to do with
the superalgebra (6.15). H1T is compatible with the superalgebra (6.20) for any value of δ in a
trivial way since it describes a stochastic process and therefore the spectrum is non-negative. We
have not tried to find the odd generators of the superalgebras (6.15) and (6.20).

We are going to compare now the spectra for system sizes L = 2p − 1 and L = 2p taking
again a− = 1 and using the tables of Appendix A. We start with the example p = 3. We notice
that not only the sectors 0e and 0o have common energy levels but so do the sectors 1/3e and
1/3o. Combining the spectra of the L = 5 and L = 6 one obtains only doublets (including the
ground-state!). Some doublets may have the same energy. These observations are valid for any
value of p and for a− = 1 only. The super-algebra (6.15) gives doublets in the ground-state only
if the supersymmetry is spontaneously broken. The fact that for a− = 1, combining the spectra
of the sectors 1/3e for 2p sites and 1/3o for 2p − 1 sites, one obtains doublets is the basis of the
following conjecture:

Conjecture 10 The partition functions of H1T for a− = 1 only, satisfy the following identity:

∑

n≥0

(
Z1T

2p,3n+1 + Z1T
2p−1,3n+5/2

)
=
∑

n<0

(
Z1T

2p,3n+1 + Z1T
2p−1,3n+5/2

)
(8.24)

Let us observe that relations between spectra of different sizes which are only valid for a− = 1 are
accidental if one thinks of symmetries coming from the 1BTL algebra. In a different approach [19]
relations to supersymmetry were found for the Hamiltonian Hd (see (2.17)) for the value a− = 1.

We conclude this section with an amusing observation. If one looks at the spectra of H2T

shown in Appendix A although in the finite-size scaling limit they give the same characters as
those of H1T , the degeneracies are very different. New degeneracies appear and some of the energy
levels coincide between systems of different sizes. This suggests, that as in the case of the H1T

Hamiltonian for which the symmetries were given by the center of the 1BTL algebra, the center of
the 2BTL algebra will play an important role for understanding the new degeneracies. The way
to make a connection between the spectra of systems of different sizes has also to be understood.

9 Conclusion

We have observed that for the finite open XXZ spin chain with boundaries at ∆ = 0 and ∆ = −1/2
magic occurs. This magic was discovered accidentally when several computer outputs were lying
on one desk.

We have first noticed that the same energy levels appearing in the Uq(sl(2)) symmetric chain
with an even and odd number of sites can be seen in an non-Uq(sl(2)) invariant XXZ chain with
certain diagonal boundary conditions. The degeneracies are not the same and energy levels seen
in chains with an even and odd number of sites get mixed up. The main point is that the rules
how to obtain the spectra of the diagonal chain (including the degeneracies) from the spectra of
the Uq(sl(2)) invariant chain are simple (see conjecture 1 and eqs 4.2-4.5). The same phenomenon
appears if we look at the XXZ chain with some non-diagonal boundary conditions (see conjectures
3, 4, 6, 7, and 8).

We can, at least partially, understand the origin of this magic in the following way. The
Uq(sl(2)) symmetric XXZ chain is written in terms of a representation of the Temperley-Lieb
algebra. The exceptional points of this algebra where the algebra is not semisimple (it contains
indecomposable representations) occur if q is a root of unity. This is the case for q = eiπ/3

and q = eiπ/2. The XXZ chain with diagonal boundary conditions can be expressed in terms of
generators of the one-boundary Temperley-Lieb algebra. This algebra has also exceptional points
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2.3 and it is at these exceptional points that the magic was observed. In the case of the chain with
non-diagonal boundary conditions, by accident, we have chosen the parameters such that we have
exhausted the exceptional points of the two-boundary Temperley-Lieb algebra compatible with
our choice of the boundary terms of the diagonal chain. There are four exceptional points in the
case q = eiπ/3 and three for q = eiπ/3. For the exceptional points one expects special properties of
the representations of the algebras. It is the interplay of the representations which produces the
magic. This insight in the problem was possible because we were able to find an expression for
the exceptional points of the two-boundary Temperley-Lieb algebra (see eq.2.8).

Once we understood the connection between the quantum chains and the Temperley-Lieb
algebra and its extensions, we were able to extend the “domain of magic” beyond our original
observations (see conjectures 2 and 5). Next, we wanted to go beyond numerics, and use the
Bethe Ansatz in order to check the conjectures. It turned out that precisely at the exceptional
points of the two-boundary Temperley-Lieb algebra (again magic!) one can write the Bethe
Ansatz equations. This is possible because at the exceptional points, the Hamiltonian has a block
triangular form, and that in order to compute the spectrum, one can disregard the off-diagonal
blocks and keep only the diagonal ones. At least in the cases discussed here, the Bethe Ansatz
equations for each block coincided with the equations obtained for a block of the Hamiltonian
with diagonal boundary conditions. In the latter case, the diagonal blocks are labeled by the
eigenvalues m of Sz (eq. 2.18). In this way, part of the conjectures were confirmed by the Bethe
Ansatz equations (see section 5). A look at the Bethe Ansatz equations for more general boundary
conditions suggested a further extension of the ’magic’ (see eqs.(5.25)–(5.32)). The origin of this
new extension could also be located using the one and two-boundary Temperley-Lieb algebra (see
comment in the end of sec.5.2).

The “magic” was observed on finite chains. We have extended it to the finite-size scaling limit.
Part of the “magic” was confirmed by using known characters of conformal field theory for the
Uq(sl(2)) symmetric case and for the Gauss model (see sections 6 and 7).

In our opinion, two remarkable observations have to be mentioned. In the finite-size scaling
limit to each of the exceptional points of the two-boundary Temperley-Lieb algebra corresponds
a representation of a chiral conformal field theory: c = 0 in the Ramond sector of a N = 2
superconformal for q = eiπ/3. In the case c = −2 observed for q = eiπ/2 the situation is more subtle
since the quantum field theory is less under control. One obtains some combinations of a particular
c = −2 conformal field theory. The origin of this mismatch is not clear but can in principle be
fixed since for q = eiπ/2 one is at the decoupling point and one can easily derive the continuum
theory from its lattice realization. The second observation has to do with Jordan cell structure.
In non-minimal models, character functions don’t characterize alone the conformal field theory.
This phenomenon can be seen explicitly in our study. For example, the chains with diagonal
boundary conditions we considered are Hermitian. They have however the same spectra as some
chains with non-diagonal boundary conditions on one side of the chain, corresponding to another
representation of the one-boundary Temperley-Lieb algebra [6]. In this different representation on
has Jordan cells and therefore a different model.

Finally, let us observe, that understanding the connection between the quantum chains and the
Temperley-Lieb algebra and its extensions has another bonus. The quantum chains H1T and H2T

(see eqs. (2.16) and (2.19) have in general spectra with no degeneracies. This is not the case at
the exceptional points of the one and two-boundary Temperley Lieb algebras. An example of this
kind is discussed in detail in section 8 where part of the degeneracies are encoded in Conjectures
9 and 10.
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Appendix A Characteristic polynomials in the case γ = π/3

Here we present characteristic polynomials, factorised over the integers, for the Hamiltonians of
the open (i.e. Uq(sl(2)) invariant) chains (see (2.9), (2.12)), the 1-boundary chains (see (2.13),
(2.16)) with ω− = −2π/3, a− = 1 (δ− = π), and the 2-boundary chains (see (2.14), (2.19)) for
ω± = −2π/3, a± = 1 (δ± = π) in two cases b = 1 and b = 0. In all cases we fix anisotropy
∆ = −1/2 (q = eπ/3). We collect data for the chains of sizes 1 ≤ L ≤ 8 and organize them
according to values of spin S for the open chains (each sector S comes with multiplicity 2S + 1)
and according to values of the charge m for the 1-boundary chains.

We give characteristic polynomials factorized over the integers. For each factor we use its total
degree adding subscripts to distinguish between different factors of the same total degree. For
example 4a and 4b are two different factors of degree 4. Groups of factors which appear always
together are taken in parentheses. Explicit expressions for factors are presented at the end of the
appendix.

L = 1

S open chain

1/2 (10)

m m̃ 1-boundary chain

1/2 0 (10)

−1/2 1 (11)

2-boundary chain, b = 1 case

(12) (10)

2-boundary chain, b = 0 case

(11)2

L = 2

S open chain

0 (10)
1 (11)

m 1-boundary chain

0 (12) (10)
−1 (12)

1 (11)

2-boundary chain, b = 1 case

(13) (12)2 (10)

2-boundary chain, b = 0 case

(2a) (12)(11)

L = 3

S open chain

1/2 (12) (10)
3/2 (12)

m m̃ 1-boundary chain

−3/2 2 (13)
1/2 0 (13) (12) (10)
3/2 −1 (12)

−1/2 1 (2a · 12)

2-boundary chain, b = 1 case

(2b · 2c) (13)2 (12) (10)

2-boundary chain, b = 0 case

(2a)
2 (14)2(12)2

L = 4

S open chain

0 (13) (10)
1 (2a · 12)
2 (13)

m 1-boundary chain

2 (13)
0 (2b · 2c) (13) (10)

−1 (2b · 2c)

1 (2a · 12)(14)
−2 (14)

2-boundary chain, b = 1 case

(2b · 2c)
2 (2d · 13 · 14) (13) (15)2 (10)

2-boundary chain, b = 0 case

(6 · 3a) (2a · 12) (14)4
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L = 5

S open chain

1/2 (2b · 2c) (10)
3/2 (2b · 2c)
5/2 (14)

m m̃ 1-boundary chain

−5/2 3 (15)
−3/2 2 (2d · 13 · 14) (15)

1/2 0 (2b · 2c) (2d · 13 · 14)(15) (10)
3/2 −1 (2b · 2c) (15)

−1/2 1 (6 · 3a) (14)
5/2 −2 (14)

2-boundary chain, b = 1 case

(7 · 5 · 15) (2b · 2c) (2d · 13 · 14)2

(15)4 (16)2 (10)

2-boundary chain, b = 0 case

(6 · 3a)
2 (3b · 3c)

2 (14)2

L = 6

S open chain

0 (2d · 13 · 14) (10)
1 (6 · 3a)
2 (2d · 13 · 14) (15)
3 (15)

m 1-boundary chain

3 (15)
2 (2d · 13 · 14) (16) (15)
0 (7 · 5 · 15) (2d · 13 · 14) (16)

(15) (10)
−1 (7 · 5 · 15) (16) (15)
−3 (16)

1 (6 · 3a) (3b · 3c)
−2 (3b · 3c)

2-boundary chain, b = 1 case

(9 · 4a) (7 · 5 · 15)2 (4b · 2e · 16)2

(2d · 13 · 14) (15)2 (16)4(10)

2-boundary chain, b = 0 case

(16 · 10 · 14) (6 · 3a) (3b · 3c)
4 (17)4

L = 7

S open chain

1/2 (7 · 5 · 15) (10)
3/2 (7 · 5 · 15) (16)
5/2 (3b · 3c)
7/2 (16)

m m̃ 1-boundary chain

−5/2 3 (4b · 2e · 16)
−3/2 2 (9 · 4a) (4b · 2e · 16) (16)

1/2 0 (9 · 4a) (7 · 5 · 15) (4b · 2e · 16)
(16) (10)

3/2 −1 (7 · 5 · 15) (4b · 2e · 16) (16)
7/2 −3 (16)

−7/2 4 (17)
−1/2 1 (16 · 10 · 14) (3b · 3c) (17)2

5/2 −2 (3b · 3c) (17)

2-boundary chain, b = 1 case

(20a · 20b · 18) (9 · 4a)
2 (7 · 5 · 15)

(4b · 2e · 16)4 (3d · 3e · 16)2 (16)2 (18)3 (10)

2-boundary chain, b = 0 case

(16 · 10 · 14)2 (15 · 12)2 (3b · 3c)
2 (17)8

L = 8

S open chain

0 (9 · 4a) (10)
1 (16 · 10 · 14) (17)
2 (9 · 4a) (4b · 2e · 14)
3 (4b · 2e · 16)
4 (17)

m 1-boundary chain

3 (4b · 2e · 16) (18)
2 (9 · 4a) (4b · 2e · 16) (3d · 3e · 16) (18)
0 (20a · 20b · 18) (9 · 4a) (4b · 2e · 16)

(3d · 3e · 16) (18) (10)
−1 (20a · 20b · 18) (4b · 2e · 16)

(3d · 3e · 16) (18)
−3 (3d · 3e · 16) (18)
−4 (18)

4 (17)
1 (16 · 10 · 14) (15 · 12) (17)2

−2 (15 · 12) (17)

2-boundary chain, b = 1 case

——–

2-boundary chain, b = 0 case

——–
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Here

1n := x − n,

2a := x2 − 4x + 2, 2b := x2 − 5x + 5, 2c := x2 − 7x + 11,
2d := x2 − 8x + 13, 2e := x2 − 12x + 34,

3a := x3 − 10x2 + 30x − 26, 3b := x3 − 14x2 + 63x − 91,
3c := x3 − 16x2 + 83x − 139, 3d := x3 − 21x2 + 144x − 321,
3e := x3 − 21x2 + 144x− 323,

4a := x4 − 18x3 + 117x2 − 324x + 321,
4b := x4 − 24x3 + 212x2 − 816x + 1154,

5 := x5 − 21x4 + 170x3 − 661x2 + 1229x− 867,

6 := x6 − 20x5 + 157x4 − 610x3 + 1204x2 − 1078x + 278,

7 := x7 − 28x6 + 323x5 − 1983x4 + 6962x3 − 13868x2 + 14323x− 5770,

9 := x9 − 45x8 + 882x7 − 9872x6 + 69450x5 − 317988x4 + 945869x3 − 1758591x2+
1849158x− 834632,

10 := x10 − 46x9 + 933x8 − 10972x7 + 82698x6 − 416480x5 + 1415230x4−
3192220x3 + 4551945x2 − 3680424x + 1268488,

12 := x12 − 75x11 + 2562x10 − 52701x9 + 726928x8 − 7081826x7 + 49954540x6−
257012522x5 + 956940353x4 − 2513874287x3 + 4421248479x2−
4672270934x + 2242636033,

15 := x15 − 93x14 + 4008x13 − 106163x12 + 1932458x11 − 25600562x10+
254927932x9 − 1942567842x8 + 11417435665x7 − 51744755105x6+
179295171389x5 − 466283136174x4 + 880666793685x3 − 1139877184096x2+
903639748800x− 330565630976,

16 := x16 − 76x15 + 2670x14 − 57512x13 + 849351x12 − 9109048x11+
73289680x10 − 450525464x9 + 2134046231x8 − 7794633798x7+
21803583759x6 − 45993980288x5 + 71220198638x4 − 77391639144x3+
54589655356x2 − 21469924224x + 3193100216,

20a := x20 − 107x19 + 5390x18 − 169909x17 + 3757766x16 − 61956744x15+
789839374x14 − 7968451646x13 + 64579301106x12 − 424317702016x11+
2271049739581x10 − 9910587278544x9 + 35165896339844x8−
100788840091272x7 + 230719077491798x6 − 414591247028377x5+
569799308661865x4 − 575489965955241x3 + 400153245868113x2−
169764861535134x+ 32741611046721,

20b := x20 − 109x19 + 5600x18 − 180287x17 + 4078540x16 − 68907116x15+
901976466x14 − 9365114226x13 + 78317050846x12 − 532575594652x11+
2960318111641x10 − 13469643127548x9 + 50063934003660x8−
151115303430784x7 + 366651617570206x6 − 703734083636583x5+
1042848523879615x4 − 1149127999221811x3 + 885073633040283x2−
424451387835254x+ 95207779114473.

(A.1)
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Appendix B Characteristic polynomials in the case γ = π/2

Here we present characteristic polynomials for the Hamiltonians of the open (i.e. Uq(sl(2)) invari-
ant) chains (see (2.9), (2.12)), the 1-boundary chains (see (2.13), (2.16)) with ω− = 0, a− = 1
(δ− = π), and the 2-boundary chains (see (2.14), (2.19)) for ω± = 0, a± = 1 (δ± = π) and in
cases b = 1 and b = 0 (for L even we only consider b = 0). In all cases we fix anisotropy ∆ = 0
(q = eπ/2).

As for the previous appendix we collect data for the chains of sizes 1 ≤ L ≤ 8 and organize
them according to values of spin S for the open chains (each sector S comes with multiplicity
2S + 1) and according to values of the charge m for the 1-boundary chains. Explicit expressions
for factors are presented at the end.

L = 1

S open chain

1/2 (10)

m 1-boundary chain

1/2 (11)
−1/2 (11)

2-boundary chain, b = 1 case

(11) (13)

2-boundary chain, b = 0 case

(12)2

L = 2

S open chain

0 (11)
1 (11)

m 1-boundary chain

0 (11 · 13)
1 (12)

−1 (12)

2-boundary chain, b = 1 case

——–

2-boundary chain, b = 0 case

(2a) (13)2

L = 3

S open chain

1/2 (11 · 13)
3/2 (12)

m 1-boundary chain

1/2 (2a) (13)
−1/2 (2a) (13)

3/2 (13)
−3/2 (13)

2-boundary chain, b = 1 case

(2b · 13 · 14 · 15) (14)3

2-boundary chain, b = 0 case

(2c · 2d)2

L = 4

S open chain

0 (2a)
1 (2a) (13)
2 (13)

m 1-boundary chain

0 (2b · 13 · 14 · 15)(14)
1 (2c · 2d)

−1 (2c · 2d)
2 (14)

−2 (14)

2-boundary chain, b = 1 case

——–

2-boundary chain, b = 0 case

(2e · 2f · 15) (2g · 14 · 16)2 (15)3
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L = 5

S open chain

1/2 (2b · 13 · 14 · 15)
3/2 (2c · 2d)
5/2 (14)

m 1-boundary chain

1/2 (2e · 2f · 15) (2g · 14 · 16) (15)
−1/2 (2e · 2f · 15) (2g · 14 · 16) (15)

3/2 (2g · 14 · 16) (15)
−3/2 (2g · 14 · 16) (15)

5/2 (15)
−5/2 (15)

2-boundary chain, b = 1 case

(3a · 3b)4 (3c · 3d · 15 · 17)

2-boundary chain, b = 0 case

(3e · 3f · 3g · 3h · 12
6)2 (16)4

L = 6

S open chain

0 (2e · 2f · 15)
1 (2e · 2f · 15) (2g · 14 · 16)
2 (2g · 14 · 16) (15)
3 (15)

m 1-boundary chain

0 (3a · 3b)2 (3c · 3d · 15 · 17)
1 (3e · 3f · 3g · 3h · 12

6)(16)
−1 (3e · 3f · 3g · 3h · 12

6)(16)
2 (3a · 3b)

−2 (3a · 3b)
3 (16)

−3 (16)

2-boundary chain, b = 1 case

——

2-boundary chain, b = 0 case

(4a · 2h)4 (4d · 4e · 4f · 1
2
7)2

(4b · 4c) (17)4

Here

1n := x − n,

2a := x2 − 6x + 7, 2b := x2 − 8x + 11, 2c := x2 − 7x + 11,
2d := x2 − 9x + 19, 2e := x2 − 8x + 13, 2f := x2 − 12x + 33,
2g := x2 − 10x + 22, 2h := x2 − 14x + 47,

3a := x3 − 17x2 + 94x − 169, 3b := x3 − 19x2 + 118x − 239,
3c := x3 − 17x2 + 87x − 127, 3d := x3 − 19x2 + 111x − 197,
3e := x3 − 16x2 + 83x − 139, 3f := x3 − 18x2 + 101x− 167,
3g := x3 − 18x2 + 101x − 181, 3h := x3 − 20x2 + 131x − 281,

4a := x4 − 28x3 + 290x2 − 1316x + 2207,
4b := x4 − 28x3 + 282x2 − 1188x + 1697,
4c := x4 − 28x3 + 282x2 − 1220x + 1921,
4d := x4 − 28x3 + 286x2 − 1252x + 1951,
4e := x4 − 28x3 + 286x2 − 1260x + 2017,
4f := x4 − 28x3 + 286x2 − 1268x + 2063,

(B.2)
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