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§ 1. Introduction: 

As usual, ., Xi Q, R+, R, C denote the set of natural numbers, 

the ring of ~ational integers, the field of rational numbers, 

the multiplicative group of positive real numbers, the real 

number field and the complex number field, respectively. Let 

k be a finite extension of Q and let W(k} denote the 

(absolute) Weil group of k, [26]. For a finite extension 

K;2 k ,let G{K\k) and W(K\k) denote the Galois group of 

over k and the relative Weil group introduced in [29]. Let 

Ck be the idale-class group of K and let C1 
K 

denote the 

subgroup of idele-classes having unit volume. Then 

so that 

K 

where W
1

(Klk) is a compact group isomorphic to a certain 

extension of the Galois group G(Klk) by C~. The group W(k) 

may be defined as a projective limit of the groups W(Klk) , 

where K varies over finite extensions of k. Let 

p W (k) -> GL (V) (1) 

be a continuous representation of W(k) into the group of 

invertible linear operators of a finite dimensional complex 
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vector space V. There is a finite Galois extension K of k 

such that p factors through W(KI k) i if R+:= Ker p I we say 

that p is normalised. Let X, be the set of continuous nor­

malised representations (1) and let Y be the ring of virtual 

characters generated by the set of characters 

{X I X = tr P,P E X, } 

Consider a polynomial 

R, 

t j a. e(t) = 1 + 1: I a. E Y 
j=1 J J 

in yet] and let 

R. 
tja. (g) eg(t) = 1 + 1: 

j=1 J 

for g E W (k) • The polynomial (2) is said to be unitary I if 

(2 ) 

(3) 

eg(a)*O as soon as lal*1 I aEe, gEW(k) . Any P in X1 

may be regarded as a representation of a compact group W
1

(Klk) I 

therefore it is semi-simple. Hence one can write 

a. = E m
J
. (X) X 1m. (X) E Z , 

J X . J 

where X varies over irreducible characters. Moreover, the set 
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is finite. Given a prime divisor p in k, let o 
p 

denote the Frobenius class and the inertia subgroup in 

and I 
P 

W(k) 

at the place p. Let p E X
1 

and let, as in (1), V be the 

representation space of p. Consider a subspace 

I 
V P = {vIVE V , 

of I -invariant vectors in V 
p 

p(g)1 I of the operator p (g) 
VP 

p(g)v == v for gEl} 
p 

. Since the restriction 
I 

to V p does not depend 

the choice of g in 0 , we may set p 

= p{g) I I 
V P 

and extend (4) by linearity to Y. Furthermore, let 

R, 
t j 

~p(t) = 1 + E a. (0 ) 
j=1 J P 

I 

on 

By (3) - (5) , if V P == {OJ for each p in Xo (!l» , then 

~p(t} = ~g(t) for any g in o 
P 

In particular, relation (6) is satisfied for all but a finite 

number of primes p in k. Let F be a finite extension of 

Q ; we write 

(4) 

(5) 

(6) 

(7) 
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for any fractional ideal A in the ring of integers of F. 

In these notations, let 

Res> 1 , s E: C , (8) 

where the product in (8) is extended over all the prime divisors 

p in k. 

Theorem 1. The function s r--> L(s,~) , defined for Res> 1 

by an absolutely convergent product (8), can be meromorphically 

continued to the half-plane 

C + = {s I Res> O} . 

If ~ is unitary, this function can be meromorphically con-

tinued to the whole complex plane C : if ~ is not unitary, 

then the function L(s,~) has a natural boundary 

CO = {siRes = O} 

and allows for no analytic continuation to the left half-plane 

C = {siRes < O} • 

Take, in particular, ~(t) = det(1-tp) for some p in X1 ' 
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then equation (8) defines the Weil's L-function,[29], 

L(S,p) , Res> 1 , 

associated to p. We develop the product (9) in an absolutely 

convergent for Res> 1 Dirichlet series 

L(s,p} = 1: c(u,X) lul-s , X =: tr p 
u 

where n ranges ov~r all the integral divisors of k. Given 

r representations P
j 

, 1;$ j ~ r , in Xl with characters 

Xj :::: tr Pj , let 

r 
= t n 

n j=l 

-s c (n, X .) I n I I Res> 1 , 
J 

be the convolution of the L-functions L(S,P j ) , 1:;l j $; r , 

sometimes called the scalar product. Let d j = Xj(l) denote 

the dimension of the representation Pj and assume, without 

a loss of generality, that 

Theorem 2. 
...l. 

The function s 1--> L(s,X) defined for Res> 1 

by an absolutely convergent Dirichlet series (10) can be 

analytically continued to c+ • If r ~ 2 and 

( 9) 

(10) 

( 11 ) 
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then this function has a natural boundary Co and can not be 

analytically continued to C • If (12) does not hold, the 

function (10) can be analytically continued to the whole plane 

C , namely, 

..l. 
L(s,X) = L(s,p) when either r = 1 or d 2 = 1 . , 

= L(S,P)L(2s,detp)-1 otherwise, 

where p = P1 ® ••• @ Pr 1 So is a finite set of prim~s in k, 

and 1p (t) is a rational function of t satisfying the con­

dition 

t (a) =I: 0,00 
P 

when lal =1= 1 

Consider now r finite extensions k. I 1 ~ j ~ r , of k and 
J 

let d. = [k. :k] 
J J 

Grossencharacter 

denote the degree of k j 
over k. Given a 

in k. , one defines an L-function Hecke 
J 

( 12) 

( 13) 

L(s,X.) = E x. (A) IAl- S =. t c(n,x.) Inl- s 
I Res> 1, (14) 

J A J • J 

where A and n range over integral ideals of k j and k, 

respectively. In particular, 
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is a finite sum extended over integral ideals A in k. 
J 

whose relative norm to k is equal to n. We define the 

scalar product of L-functions (14) by the equation 

(10). The grossencharacter Xj can be regarded as an one-

dimensional representation of W (k.) ; let 
J 

p. 
J 

be the 

representation of W(k) induced by Xj . Then 

~ 

so that the scalar product L(s,X) coincides with the scalar 

product (10) of L-functions 

if r ~ 2 and the degrees 

L (s , p .) , 1 ~ j ~ r • By theorem 2, 
J 

d
j 

satisfy (11) and (12) I then 
-" L(s,X) has CO as its nat~ral boundary and can not be continued 

analytically to C • This theorem has been proved by N. Kurokawa, 

[14], for Grossencharacters of finite order. The author has 

generalised the construction of Kurokawa's and has proved this 

result for arbitrary Grossencharacters assuming the validity 

of the Riemann Hypothesis for L-functions Heeke; [20]. The 

scalar product 

r 
n 

j=l 

of the Dirichlet series tin ,-s c (j) I 1:;;; j !l r I has been 
n 1J. 

studied by many authors (see I for instance, [6], [25 J, [24], [23] I 

[9], [19J, [5J). The problem of analytic continuation of the 

scalar product (10) for L-functions (14) "mit GroBencharakteren" 

has been posed by Yu.V. Linnik in the context of analytic 
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arithmetic in algebraic number fields (cf. [18], [4]). 

P.K.J. DraXl.,(21has proved that can be meromorphically 

continued to C + for any set of Grossencharacters {Xj 11 :.:; j :.:; r} • 

O.M. Fomenko, [4], has continued meromorphi-

cally to the whole plane C in the case of two quadratic fields 

r = d 1 = d 2 = 2 (cf. also [9), while the author, [19}, has 

obtained an explicit expression for in terms of L-

functions Hecke in this case. Theorem 1 has been proved by 

N. Kurokawa, [12), [13], under an additional assumption that 

each of the characters in Xo(~) is of Galois type (so that the 

corresponding representation of W(k) has a finite image}. 

Here we remove this assumption. For this aid, the construction 

of [12], [13] is generalised to compact groups and a.pew 

equidistribution theorem for Frobenius classes in Weil groups 

is proved. This equidistribution theorem takes the place of 

the Chebotarev density theorem in [12]. In the case k = 0 and 

for polynomials ~ with constant coefficients (that is, when 

~ (t) € x[ t]) theorem 1 has been known classically, [3] (see also 

[15], [1] for related results). A preliminary exposition of 

the results proved here has been given in the last paragraph 

of the book [21]. 
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§ 2. On polynomials associated to representations of 

compact groups. 

Consider a compact group G and let X be set of all the 

irreducible representations of G. Let 

y = {E m ( X) X I m ( X) E Z, X = tr p, p EX} 
X 

be the ring of virtual characters of G 1 so that m ranges 
v 

over all the functions m: X --> Z on the set 
v 
X = {X I X = tr p, p E X} of irreducible characters of G, for 

which the set {xl m(x) *O} is finite. Given a polynomial 

~(t) of the form (2), we define 

Let, moreover, 

R. 
n (1 -a. . (g) t) 

j=1 J 
, 

<l) (t) 
g 

gEG 

y = sup{ I ct j (g) I \1 ~ j ~ R., g E G} 

By lemma 14 in [20J, we have 

by (3) and let 

( 15) 

( 16) 

( 17) 

A polynomial ~(t) in yet] is said to be unitary, if y = 1 • 

By (16) and (17), ~(t) is unitary if and only if 
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4> 9 (a) * 0 whenever I al * 1 and 9 E G , a E C -

Write a. = E m.(x)x with 
J X J 

v 
X E X and let, for ~(t) having 

the form (2) I 

Xo (~) = {q> lq> EX, mj (trq» * 0 for some j } 

be the set of all the irreducible representations of, G which 

are contained in one of the coefficients of 4>. By definition 

of Y t the set Xo (4)) is finite,_ 

Proposition 1_ Let ~(t) E y[t] and suppose that ~(O) = 1 . 

There exists a sequence of integer valued functions 

, 1 ~n<(Xl 

such that 

bn (<p) = 0 for q> 4 Xo (4)) , 

identity 

4>{t) = 
00 

n n 
n=1 q>EX 

I 

holds formally in the ring of formal power series y[[t]l with 

coefficients in y, for each 9 in G the product 

( 18) 

(19 ) 

(20) 
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cpg (tl = rr 
n=1 

rr 
q>EX 

n b n (q» 
det(1-t q>(g}) 

converges absolutely in the circle -1 I t I < y , and the 

following estimates hold: 

nEH,gEG, 

and 

(21) 

(22) 

E E I log det<1_tnq>(g»bn (q» I ~ R.(jtly)M when It\ <y-1, (23) 
n~M tPEX ( 1-y I t I )2 

where T(n) denotes the number of positive divisors of n 

and R. is the degree of cp(t) • 

Proof. 

and 

To deduce (20) one constructs inductively two sequences 

X -> Z 

{F I F (t) E y[t] n n 

, 

, 1~n<(X)} 

satisfying the following relations: 

F (t) iE iLl (t) (mod t n +1 ) 
n 

(24) 
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TT 
tpEX 

v b v (tp) 
det (1-t tp) 

Let Fo(t) = 1 , suppose that (24), (25) hold and, moreover, 

Xo (<r» ::> Xo (F ) 
- n 

Then, since ~(O) = 1 , we have, by (24), 

In view of (26), one can define bn+1 by the relations: 

bn+ 1 (tp) = 0 for tp ¢ Xo (ell) I 

let 

Fn+1 (t) 

Then (19) holds by construction, while (20) follows from 

(25). Write ell(t) in the form (2) and define t functions 

<lj : G -> C. , , 

by (15); then (20) may be rewritten as 

(25 ) 

(26 ) 
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a 
-t at log y([ tl1 .. y[ ( t)] 

to both sides of (27)and obtain an identity 

~ taj 
1-ta. 

j=1 J 

in Y[ [t]] . Let 

00 

= r: 
n=1 

for 9 f G . 

It follows from (28) that, for any g in G I 

00 00 

r: 
m=1 

t m () tnm. ( m) a mig = r: nn 9 
m,n=1 

or equivalently, 

in I:[[t]] , 

o(n,g) = l: h ( m') 
m g , mEN, m' El'i. 

mm'=n 

(27) 

(28) 

(29) 
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Introducing the Mobius function B + {0,±1} one obtains 

from (29) an equation 

n \1 L lJ (\1) 0 (\jIg ) = h n (g) , n E ::N 
\lIn 

(30) 

Since I o(m, g) I ..::: ~ y m , estimate (22) follows from (30). Esti­

mate (23) is an easy consequence of (22) and the well known 

operator identi ty log .. det = tr • log . The absolute conver­

gence of (21) for I t I < y-1 follows from (23) • This proves 

the proposition. 

Proposition 2. If ~ is unitary, then there exists 

that 

bn(W) = 0 whenever either n > no 

or W f X (~) 
o 

and therefore 

no 
~(t) = II 

n=1 

b (I.;) 
II (1-tnw) n 

wEX (4)) 
o 

such 

(31) 

(32) 

Proof. By condition, y = 1 • Therefore it follows from (22) 

that one can find in ::N for which 
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IE bn{(j» tr (j)(g) I < 1 whenever n>no,g E G. (33) 
(j)EX 

In view of orthogonality relations, (31) follows from (33) and 

(19). Identity (32) is a formal consequence of {20} and (31). 
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§ 3. Continuation of L(s,~) to ~+ . 

We return now to notations of § 1. In view of the remarks made 

in § 1 I any polynomial ~ in Y[ t] may be regarded as a poly-

nomial with coefficients in the ring of virtual characters of 

a compact group G = W1 (Klk) for some finite Galois extension 

K ~ k . Given a representation (1) we denote by 

I 
S (p) = {p I V p :j= {O}} 

the set of all the primes p in k at which p is ramified. 

It follows from the definitions, (29) , that S{p} is a finite 

set. Indeed, let P E X and suppose that p factors through 

W(Klk) • Denote by U~ the group of r - adic units in K 

and regard Up as a subgroup of CK . By continuity of p , 

we have U~ C Ker P for all but a finite number of prime 

divisors r in K • On the other hand, one can show (cf., for 

instance, [21], p.18) that if K I k is unramified at p and 

if Uf' ~ Ker p for each ~ dividing P I then s (p ) does 

not contain the prime divisor p of k • Thus S{p) is finite 

and, therefore, the set 

S(~) = {p I p E S(p) for some p 

is also finite. r·1oreover, by (6) , 

in X UP)} o 
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~ (t) = ~ (t) for p * S (~) , g E (J • (34) p g p 

Proposition 3. If ~ is an unitary polynomial and ~(O) = 1 , 

then L(s,~) can be meromorphically continued to the whole 

plane t:. 

Proof. It follows from the relations (8), (9)', (32) and (34) 

that 

~ b n (p ) , I -s -1 
IT (L (ns , p ) ) IT cI> (I PI) 

PEX (~) pES(cI» p 
o 

(35) 

where 

~ 
L (S,P) =: L ( S,P) IT de t ( 1 -p (() ): p I - s ) . 

pES (4') P 

Since L(s,p) is a meromorphic function, (291, and the set 

Xo(~) is finite, the assertion follows from (35). 

Remark 1. The product IT 
pES(~) 

appears in (35) because 

can not be evaluated by (32) when p E S(~) • 

~ (t) 
p 

Choose two rational integers M and N subject to the con-

dition: 

H > 0 , yM < N , N > Ip! for each p in S(~} (36) 
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with y defined by (16) and let, in notations of (20) and (4), 

(37) 

We define, generalising the construction of (12) , two finite 

products 

~,M{S} = II 
pltS(~) 

\pl<N 
and two infinite products 

and 

II 
n<M 

I -s-1 
II fn,p( pi ) 

pfS(Ill) 

It follows from (38) and (20) that 

(38.1 ) 

(38.2) 

(38.3) 

(38.4) 

(39) 

as a formal Euler product. Moreover, it follows from (9) that 

II 
n<M 

L(nSfP)bn(P) II 
pES(!l» 
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since, by (19), bn(p) = 0 when 

Lemma 1. The functions 

are meromorphic in ~. 

Proof. Since L{s,p) is meromorphic in £ 1 [29], the asser-

tion follows from (38.1), (38.2), and (40). 

Lemma 2. Suppose that M, N satisfy (36). Then the product 

converges absolutely for 

Proof. By (36), we have 

y\p\-n Re s < 1 for 

1 
Re s > M 

1 
Re s > M I I pi;:. N • 

In view of (41), we deduce from (23) and (37) that 

Therefore, if 1 
Re s > M I then 

for 1 
Re s > M 

{41 } 
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since there are no more than [k: w] prime divisors p in 

k such that Ipi = n , n E ~ • The assertion of lemma 2 

follows from (42) and (38.4). 

Proposition 4. Let $(t)E Y[t] , $(0) = 1 • The function de­

fined by (8) for Re s > 1 can be meromorphically continued 

to the right half-plane £+' 

Proof. Choose M,N satisfying (36). By lemma 1 and lemma 2 , 

equation (39) defines a meromorphic continuation of L(s,$) to 

the half-plane 

£1/M = {s I Re s > ~} 

Therefore the assertion follows from an obvious relation: 
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S 4. A general prime number theorem 

Let K ~ k be a fixed throughout this paragraph finite Galois 

extension of k of degree n+1 = [K : ml over m and let 

nt be a finite subset of normalised irreducible representa­

tions each of which factors through W(Klk) • Thus nr may be 

regarded as a subset of X. Let Gr(K) denote the group of 

all the grossencharacters in K trivial on m+ ' so that 

Gr(K) is a discrete group isomorphic to the group of charac­

ters of c~ . For 11> E Gr (K) , let f (lj; ) denote the conductor 

of $ given p in X1 which factors through W(Klk) , we 

write 

and denote by f(p) the least common multiple of 

f(lP 1 ) , ••• , f(l/J r ) • We fix an integral divisor f 0 in k satis­

fying the condition 

and let 

for each p 

s (ltD = V s (p) 
pEWl. 

in m , (43) 

be the finite set of primes outside of which any representation 
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V 
inttL is unramified. Let m ={x Ix= trp, p Em} be the 

set of characters of representations in m . For 9 E w(KI k) , 

e: > 0 let 

and let, for x
2 

> x1 > 0 , 

where, as usual, p varies over prime divisors of k. We de­

note by P (g,e: ; x1 ' x2 ) the cardinali ty of the se t fJ:> (g ,e: ; x1 ' x2 ) • 

The main purpose of this paragraph is the proof of the follow-

ing statement. 

Proposition 5. There are two positive numbers and 

such that 

(44 ) 

for every e:,g,x1 ,x2 subject to the conditions 

1 > e: > 0 I x2 > x1 > 0, 9 E W{K k) , (45) 
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where the 0 - cons tan t does not depend on e: , g , x1 ' x2 • 

Remark 2. The constants in (44) may depend on the set ~ • 

We believe to be true, but couldn't prove, the following state-

mente 

Conjecture. There is a function c (f1l"e:) such that 

c 2 > 0 I (46C) 

where c2 and the 0 - constant do not depend on the data (45). 

Obviously, (46C) and (44) imply the inequality 

for any .WL • (47) 

We deduce Proposition 5 from Proposition 6 to be stated below. 

Let Ot. be an integral divisor in K and let 

~(C&.) = {l/I\l/I E Gr(K) I f{l/I}Iat-} 

be the group of those grossencharacters whose conductor divides 

~ • By a theorem of Heeke, (8) (cf. also (7), § 9} I ~(<<) 

is an abelian group of rank n I so that 



- 24 -

and ~o(~) is a finite group. We choose ~ system 

D .. 1<j~n} 
J 

of free generators of ~ 1 (0(.) and write 

A j (a) 
1 1 

< j ~ n I -'2 ~ <P j (a) < 2 • ( 4 8 ) 

Consider, for e > 0 , an e - neighbourhood V (e iOC) of the 

neutral element in CK consisting of the ide Ie-classes 

satisfying the following condition: 

A (ya) = 1 ,t <P j (ya >I < f whenever 1 < j:' n " y E G (KI k) , 

A E'o (ot) , 

where C
K 

is regarded as a left G(Klk)-module. For each prime 

divisor p in k we choose an element lp in Q"p fixed 

throughout this paragraph and, for each t in W{Klk) , let 

where the divisor ~ 0 defined by (43) is regarded as a 

G(K!k) invariant integral divisor in k and p ranges over 

primes in k • Let A(g,t,eiX) denote the cardinality of the 

finite set }t{g,t,e;x) and let 
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AO(g,€ iX) = I A(g,t,€ iX} d]J(t) I 

W1 (Klk) 
(49 ) 

where II denotes the normalised by the condition ]J (vl1 (K! k» = 1 

Haar measure on W1 (K!k) • 

Proposition 6. The function t- A(g,t,€ ;},C) is II - measur­

able, so Ao (g I€ i x) is well defined. Horeover, there are two 

positive constants c 3 ,c4 such that for any € in the inter­

val 0 < € < 1 we have 

with an 0 - constant independent on g,€,x. 

The proof of Proposition 6 depends on a prime number theorem 

generalising both the Chebotarev density theorem and the 

classical estimates, [8], for grossencharacters. Let us re-

call that any ~ in Gr(K) may be regarded (cf., for instance, 

(7], S 9) as a character of the group of fractional ideals 

generated by the set of all those prime divisors in K which 

do not divide the conductor ;($) of ~ • Write, in parti-

cular, 

$ «a» = II 
Y 

for «a) ,;'<$) )=1, (51) 
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where (a) denotes the principal ideal genera ted by a::j:: 0 I 

a E K , and l' varies over all the n+1 distinct isomorphisms 

of K into 

v (1') E {O,1} 

so that y (K) 

(or [7], §9) , 

111 E Gr (K) we 

l' K .... I: 

a: . Here t(1') E lR , v (1') E z I and 

when l' corresponds to a real place of K 

em . The exponents t(y) , v (1') are known, 

to satisfy certain normalisation conditions. 

let 

v (1/J) = n (I t (1' ) I + 1) (I v (1' ) I + 1) 
l' 

, 
(8] 

For 

(51.1) 

in notations of (51). Suppose that p E X1 I P factors through 

W(Klk) and 

pieR =lP 1 e ••• elPR, ,lP j E Gr(K) when 1 < j < Jl, 

We define then the weight of p by 

(51.2) 

with given by (51.1). For brevity, we write 

vex) = v(p) when X = tr p , p E X1 
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Theorem 3. Let n. c:: X1 and suppose that each p in n 
factors through W(Klk) for a finite extension K ~ k and 

that there exists an integral ideal ~ in K satisfying the 

condition 

0(.:: 0 (f{p) } whenever p E XL • 

Then there is Cs > 0 such that 

x 
( ( du log x ) ( ) L X ap ) = g X)! +O(x exp(-c5 - ) 52 Ip j<x 2 log u Ilog x"+ log v(X) I 

whenever X = tr.p I p E Xl,. Here p ranges over prime divisors 

in k i the 0 -constant and Cs may depend on Kt but not on 

a particular representation p in tf., ; 9 (X) denotes the 

multiplicity of the identical representation in p 

Proof. Since v(P1 e P2} ~ v(Pj) , j=1,2 , and both P1 and 

P2 factor through W(Klk} as soon as P1 e P2 does, it is 

enough to prove (52) for irreducible representations. Suppose 

now that pEn and p is induced by another representation, 

say, 

{vCR I k} 
= Ind P 1 

P W(Klk') 
Ike k' ~ K,P' E X1 I 

and p' factors through W(Klk') • Then L(s,p) = L(s,p') , 
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so taking the logarithmic derivative in the Euler product de­

composition (9) one obtains an estimate 

L X (0 ) = 
Ip!<x p 

L Xl (a J) +0 (x1/ 2+a ) 
Ip'I<X p a 

for any Ct > 0 , where X = tr p, X I = tr p' I the 0a - con­

stant depends only on a and the degree of Kover m i p 

and pI vary over prime divisors of k and k' I respectively. 

Moreover, since 

x(a.) = LX' (yCt) I a E CK I 

Y 

where y ranges over a system of representatives of the, say, 

right classes of G(Xlk') in G(K!k) , we conclude that 

v(x) = v~ J) • Thus passing, if necessary, to an intermediate 

field k' one may assume that p is a primitive ir.reducible 

representation of W(Kik) • A classical argument (cf.[29], 

p. 32-34) shows then that p may be written in the form 

9.. 
p = La. lV,. , a J' E Z 

j=1 J J 
(53) 

where $. , 1 < j < 9.. I is a monomial representation of W(Klk) 
J --

induced by a grossencharacter A
J
. in Gr(k.) Ike k. C K I 

J - J-
and 

l/Jj(a) = n .ro (a) 
J 

for (54) 
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where W is a grossencharacter in Gr(K} • It follows from (53) 

and (54) that v(p) = v($.) = v(w) • On the other hand, by (53), 
J 

R, a. 
L (s , p) = II L (s I A

J
.) J (55) 

j=1 

where L(s,A.) is a Hecke L-function in k. , 1 ~ j ~ r • 
) ] 

Taking the logarithmic derivatives in (55) one obtains an esti-

mate 

where p and P j 

t 1/2+a 
1: a. 1: A.Cr.} +0 (x. ) I a > 0, 

j=1 J lJ'jl<x J) a 

range over prime divisors of k and 

(56) 

k. , 
J 

respectively, and the 0a - donstant depends only on a> 0 

and on the degree of Kover m. By a classical theorem, L8] 

(cf. also [11], [17]) , 

x du 1 
= g (A . ) J log ~ + 0 (x e xp (-c6 iliog 'X' + °POgX v (A . ) ) ) 

) 2 J 

with 
A. =f 1 

J 
{

o , 
g(A.) = 

J 1 , A. = 1 
) 

(57) 

, c 6 > 0 t where and the 

° - constant depend only on the conductor of A. (and the field 
w(Klk) J 

k j ). Since $j = Ind (A.) , it follows from (54) that 
WO<t k j ' ] 

for * a E K ( (a I It.) = 1 (58) 
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when one regards w and Aj as characters of fractional ideals 

in K and k. . 
J 

By (58) and (51 ) , 

veX) = v{ p) = v{w) > V(A
j

) (59) -

Estimate (52) follows from (56), (57) and (59). 

Remark 3. Theorem 3 emphasizes the dependence of the error 

term in the prime number theorem on the weight vex) of the 

character but not on its conductor. We could not apply the 

Brauer's theorem (53) directly to an arbitrary representation 

in It. because it is not a priori clear how to relate v{P) 

and v (lP j) in this case. 

After these preparations we are ready to prove Proposition 6. 

Let us define two infinitely differentiable functions 

f ::Eo _:R subject to the following conditions: 
± 

and 

2) f+ (t) = 1 

f_(t) = 1 

for 

for 

! tl < ~ , f+ (t) = 0 for 

I tl < ~ - /}" f_ (t) =0 for 

C I I 1 
- +A< I tl < -
2 - - 2 

f.. < I tl < 1. 
2 - - 2 

, 

where E and /}, are two real nun~ers satisfying the inequali-
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ties 

0 < A < ~< ~ + A < 1 
L.I 2,2 L.I 2' 

We denote by no (~) the order of the group '}o (IX) and, in 

notations of (48), define another two functions 

by letting 

n 
A(a) n n f+(c.p.(ya» 

j=1 yEG(K!k) - J 
(60) 

It follows from (60) and the definition of f± that if (Jt. is 

G(Kik) - invariant, then 

h+ (a.) = 1 for a. E V{£ jOt.} I 

h_ (a.) = 0 for a. f V(£ jOt} (61.1) 

and 

(61.::0 

We substitute the Fourier expansion of f± I say 
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co 

r b± U) exp{21Ti R, t) I 

R,=-co 

in (60) to obtain a Fourier series for h± 

(62 ) 

r b+(m)A(a) ~ n A.(ya)m(j,y) 
m - j=1 ytf G (K I k) J .J 

where m ranges over all the functions of the form 

m {j 11 < j ~ n} x G (K I k) - Z , 

and 

Consider the character" 

n 
n n b ± em (j ,y» • 

j=1 yEG(Klk} 

1/1 em} 
A in Gr(K) defined by 

(63 ) 

(64 ) 

,It"\(m): rv ...... '(rv) nn n "\ . (YN)m(j,y) fEe "\ ECfc (N) 
't' 1\ "" or 1\ ..... 1\.... or a K' 1\ 0 "" , 

j=1 yEG(Klk} J 

and let 

1/1 (m) 
A 

denote the representation of W(Klk) induced by 

In these notations, we define a function 
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by an absolutely convergent series 

for 

a E WCKtk) , 

where d = [K : k] denotes the order of G(K:k) and 

x~m) = tr p~m) • It follows from (63) - (65) that if Of, is 

G(Klk) invariant, then 

for a E 

(65 ) 

(66) 

From now on we let Of. = f I in notations of (43), and define, 
o 

for x > 0 and t E W(Klk) , a sum 

A± (t,x) = 1:* 
!p:<x 

1: X<t-1Tptg-1)h+(t-1Tptg-1) d~X) , 
X 

(67) 

where r.* is extended over prime divisors of k such that 
Ip!<x 

P f SCm) and X ranges over irreducible characters of W(Klk) 

trivial on CK of dimension d (X) (so that r. 
X 

is a finite sum) • 

It follows from the orthogonality relations 

1 for a E CK 
.1 1: 
d d(x)x(a) = 

X 
a 4 CK 0 for 
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relations (61) and definition (67) that 

Therefore 

where, in notations of (49) , we let 

.A~ (x) = f d }.l{t) A± (t,x) 
W1 (Klk) 

(68) 

(69 ) 

For brevity, we have suppressed the variables g,E in the 

notations: A± (t,x) and A~(X) • We need the following simple 

lemma. 

Lemma 3. Let X be an irreducible character of a compact 

group G arid let }..I be the normalised by the condition 

}..I (G) = 1 Haar measure on G • We have 

where h 1 ,h2 E G , and d(X) denotes the dimension of X 
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Proof of lenuna 3. Write X = tr P, P (h) = (a ik (h» for 

h E G I 1 < i , k < d(X) • Without loss of generality, we can 

assume that p is an unitary representation, so that (aik(h» 

is an unitary matrix for each h. By orthogonality relations, 

(71) 

On the other hand, since aik(h) is unitary, 

Therefore (70) follows from (71). 

Wri te, decomposing the product X x;m> into irreducible com­

ponents, 

with 

for a E w(Klk) (72) 

~(m) . E ~ I and substitute (65) into (67). This gives A,X,l. 

A±(t,X) = 

(73) 
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Let 

(74) 

It follows from (69), (73) and (70) that, in notations (74), 

A~(X) = (75) 

By construction, is unramified at p whenever p % D~ I 

where D denotes the discriminant of the extension K\k . Thus 

1/1 (m) • h ) = 1/1 (m) • (0') for p i FoD I and 
A'X/~ p A,X,~ P 

; :; 0 (f($ em) .» (76 ) 
o A ,X ,1. 

Since X is trivial on and the character is in-

duced by the grossencharacter 

we have 

V($(m) .) < V{$(m}} 
A/X,1. - A 

( 78) 
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In view of (76) and (78), one deduces from (52) in theorem 3 an 

estimate 

1: 1JI.(m) • (T ) 
I pi < x A, X ,lop 

() x 
= g (lJI ... mx .) I du + 0 ( ( log x ) ) 

1\, ,1. 2 log u x exp -cS I (m) 
li'Og x + logv (WI.. ) 

where C s > 0 i the O-constant and Cs depend on f 0 and 

m. only. It follows from (72) that 

and that (m) 
g(lJIA,x,i) = 1 for exactly one i in (72) when 

(79) 

w;m) = 1 • Therefore one obtains from (75), (74) and (79) an 

estimate 

~(x) = 1 - x du 
( ) d {1:*b+ (m»l + O{xq± (x» , 

no OL. m - 2 log x 
(80) 

0:<* where L> is extended over those functions m for which the 
m 

character 

is trivial, and 

n 
: a""'" IT IT A. (yctlm(j,y) 

j=1 yEG(K!k) J 
{81} 
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( log x ) exp -cS () • liog x' + log v(W" m ) 

In writing out the first term of (80) a well known identity 

Ed(X)=d 
X 

has been used to carry out summation over X • To estimate 

(82) 

q ±(x) we notice that, since f± is assumed to be smooth, it 

follows from (62) and (64) that 

n 
= 0<ilmll- 36- 3) ,where IImll=: II II Im(j,y)l. 

j=1 yEG(Klk) 

(83) 

By definition of the weight (51.1), one obtains from (77) and 

(81) : 

v(~(m)} = O(v(' (m») = o(llml~d) '1'" 1\ II' 
(84) 

Relations (82)-(84) give 

= 0(6- 3E IImlr3 exp(-c
7 

l~g x », c
7 

> 0 , (85) 
m (log x + log m 

where the 0 - constants in (83)-(85) and c 7 depend on f70 
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and Xtl. • Since the number of fUnctions 

m : {j I 1 < j ~ n} x G (K! k) _ Z 

with II mil = 1 can be estimated like 0 (~e) 
e 

for every posi-

t~ve e , we obtain from (S5) 

<Xl 

o ( L 
1=1 

!1 -3 R,-2 ( log x ) ) exp -c7 ' 
v.log x' + log 1 

so that 

-3 = 0 (exp (-csViog x')6 ) I C s > 0 I 

with the o - constant and Cs de:pending on ~o and ltL 

Write W Y (a.) = W (ya.) for Y E G(Klk) I 
(l E CK and 

tP E Gr (K) and define a set of integers 

{act; j,Y) lyE G(Klk),1 < j ::. n,1 <t < n} 

by the equations 

A -::: ~ 
J R. =1 

(S6) 

only. 

{S7} 

Since, by (81), condition ACm)::1 is equivalent to the equations 
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n 
1: t a(R.;j,y)m(j,y) = 0 , 1 < R. < n, (88) 

j=1 Y EG(K k) 

we have 

= I: Jdu b± (m) exp(21fi I: a(R.ij,y}m{j,y}uR.}' 
m R.,j,y 

(89) 

where the i"ntegration in J du is taken over the cube 

By (62) and (64), it follows from (89) that 

*- n n 
I: b+ (m) = f du IT IT f+ ( t uR. a(R.i j,Y}). (90) 
m - Ir j=1yEG{K!k)- =1 

Combining relations (SO), (S6) and (90) one obtains an estimate 

0 
x 

du u + 0{6. -3exP<-csviog = ( c 3 (:n +0 {6. } ) f xl) A± (x) log 
, 

2 

c s > o , (91 ) 

where c 3 = c 9 
(no (ot) d) -1 and c 9 

denotes the volume of the 

set 

I 1 n 1 
""1 =: {u I -"2 < t uR. a Ct i j I Y ) .:s. 2 ' Y E G (K I k) , 1 < 

R.=1 
j < nl 
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contains the origin in n 
JR I we 

(92) 

Proposition 6 follows from (68), (92) and (91) with a properly 

adjusted A 

Proof of proposition 5. Choose £1 > 0 and suppose that for 

some t in W(Klk) we have 

P E k( g , t I £ 1 ; x2 ) \ k (g, t , e: 1 ; x1 ) • (93) 

Then X (0 ) = X Ct-1-r t) = X (Clp9) 
P P 

and for each X in 'ilL . Wri te 

for a E W(Klk) and let 

d(X} 
'll~{a) 'll~ X (a) = t , 

j=1 J J 

By construction, 

p 
Aj,P 

'llj = 

for some Aj,P in ~o (to) and 

follows from (94) and (95) that 

for some 

X = tr P , 
Cl

p 
in V(£1 ;F'o) 

p (Cl) = ( r ik (Cl) ) 

E ~ <fo) , for a E C
K . (94 ) 

~ A~dj,Pii) (95) 
i==1 ~ 

some integers m(j,p;i) . It 
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d{x) p 
X (<1 g) = E r .. {g)1jJ . (<1 ) = 

p j=:1 J) J p 

d{X} n -
E r .. (g) IT A~(j/P;i) (<1 ) I 

j=1 J J i=1 ~ P 

where d (X ) denotes the dimension of p • Moreover, since 

<1p E V(s 1 i;o) , we have 

I ; A ~ (j , P Ii) (ex ) - 11 < 'ITS 1 ~ I m (j , P ; i) I 
i=1 ~ P i=1 

Let 1>1 denote the largest of the finite set 

n 
{'IT:rj).(g)! E lm(j,p;i)l} 

i=1 

of positive real numbers, where p and j vary over 

the interval 1 ~ j ~ d (X) , respectively. Without loss of 

(96) 

(97) 

and 

generality, we may assume that each P is unitary and, there-

fore, ,fr .. (g)! < 1 . Thus M may be chosen independent of g 
~J -

in W(Klk) . Relations (96) and (97) give: 

.; 
X E m (98 ) 

Inequality (98) shows that p E~ (g,Ms 1 iX1,x2) \'lhenever (93) 

holds for some t in W(K!k} • Therefore 
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for each t in W(K\k) • Integrating in (99) over W1 (Klk) and 

recalling (49) we obtain 

(100) 

Relation (44) follows from (50) and (100) with 

This proves Proposition 5. 
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S S. Proof of theorem 1 • 

For 5 E E we denote by Re 5 and Im 5 the real and ima-

ginary parts of s I respectively. Given to E:IR , 0 E :IR+ ' 

\/ E lR+ ' let 

D (0, t ) = 
\/ 0 

1 1 
{s I 5 E (£ '-+1 < Re 5 < -, t < Im s < t +o}. \/ -v 0 0 

Consider a polynomial ~ (t) in Y[t] and suppose that ~(O) = 1 

and that Xo (~ ) ~ X for some finite Galois extension K 2 k , 

in notations of § 3 , so that ~ may be regarded as a poly­

nomial with coefficients in the ring of virtual characters of 

Proposition 7. If is not unitary, then there is v 
o in 

R such that the function s~ L(s/~) has at least one pole 

\/ > \/ o 

We retain the notations of § 3 • In particular, let N,M El~ 

and suppose that (36) is satisfied, so that equatibn (39) de-

fines a meromorphic continuation of L(s/~) to (£1/M' Let, 

moreover, M = \/+1 , so that Dv (0 I to> ~ (£1/M • For a mero­

morphic function f we denote by n(f,T) the number of zeros 

of f in the rectangle 

{s I 0 < Re 5 < 1 I 0 < I Im 5 I :::..1 Ti, T • Im s > O} • 
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Let a1w;~ ,to) and a2~iB ,to) denote the number of distinct 

zeros of UM in Dv (o,to ) and the number of distinct poles 

of ZN in Dv (0 ,to) I respectively. To simplify our notations 

let us assume that t (t +5) > 0 • 
o 0 -

Lemma 4. The following estimate holds 

(101 ) 

where the 0 - constant does not depend on v (but may depend 

on ~ , to and 0 ). 

Proof. Since fn,p <I pl-s) + 0 when Re s f 0 and L(P ,s) -=F 0 

when Re s > 1 for any 

L 
1<m<v+1 

P 'in X1 ' it follows from (40) that 

E !n(L{p,·),m(t +o»-n(L(q>,·),mto>1 • 
pEX (11) a 

o 

Since an L - function Heeke L (X , s) , X E Gr (K) , grows in the 

critical strip o < Re s < 1 not faster than a power of Im S, 

a classical argument (see, e.g.,[27], § 9.2, or [21], lemma 1, 

p. 146-147) shows that 

n(L(p,.) ,T+1)-n{L(p,') ,T) = O{logiTI) (102 ) 

for an one dimensional p in X1 • By a theorem of Weil's , 

[29], one can write 
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R. b. 
L{s,p} = II L(s,X.) J. lb. E Z, X. E Gr(k.) ,p E X (~) 

i=1 J. J. J. J. 0 

for some intermediate fields k. , k C k.C::: K ; therefore (102) 
J. - J.-

holds for any p 

as claimed. 

in X (~) • Thus 
o 

= 0 ( L (mo) log I m (t +o) I ) 
1 <m<v+1 0 

In notations of § 4 , let m = X (~) • write o 

~ (t) = (1-a(g)t)b~ (t), la(g)1 =y, b> 1 
9 9 

- -1 ~ (a (g) ) + 0 
9 

(103) 

-1 for some g in W1 {K!k) , so that <leg} is a root of ~g 

whose multiplicity is equal to b. By definition, Scm) = s(~) . 

Lemma 5. There exists EO in ~+ such that for every E in 

the interval 0 < E < EO and for each p in ~(g,Eb+2) the 

polynomial ~p has a root 
-1 K(p) satisfying the condition 

Proof. 

that 

Choose 

i (t) 4= 0 
9 

IlogIK{p;·1 - log yl < E (104 ) 

E1 in the interval 0 < E1 < 1 in such a way 

-1
1 in the circle: It - <leg) ~ E1 and let 
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w be the minimum of Ii (t)1 in this circle. Obviously, 
g 

w > 0 • Choose w 1 > 0 so tha t 

I a.(p) - a.(g)1 < w
1

€ 
J J 

for '<J/, €>o, J _ I 

where 

~ g {t} 

For each € 

( 105) 

J/, J/, 

= 1 + 1: tja.(g) , ~ p (t) = 1 + 2: tja. (p) 
j=1 J j=1 J 

in the interval o < € < € 1 we get an estimate 

b b 
~ w y e: on the circle: I t - 0. (g) -1, = € • 

Wri te ~ p {t} = q; g (t) + hp (t) • By (105) I for p E ~ (g I€ b) we 

have 

J/, b -1 I hp (t) I < w1 (1+y) J/, € on the circle: 't - 0. (g) I:; € I 

as soon as 0 < € < 1 • Therefore there exists a positive €2 

such that 

I hp (t) I < I ~g (t)1 when p Eg:> (g le: b+1) and 

It - 0.(g)-1 I = e: I (106) 



- 48 -

as soon as 0< e: < e:
2

• By a well known lenuna (cf.,e.g.,[28], 

S 3.42) I (106) implies that ~p has a root K(p)-1 satis-

fying the inequality I K(p) -1 - ~ (g) -1\ < e: • This implies 

the assertion of lemma 5 • 

Lenuna 6. If Y > 1 I then there are two positive numbers c a 

and v such that o 

when v > \J a 

Proof. Let e: = v -4 I A = 4e: (v+1) I and define a finite set 

(107) 

r = {j I jE :N , exp{(j+1}A):s"Y exp(-e:(2v+1»} • 

Obviously, there are and v 1 > 0 such that 

letl > when \I > \1 1 
(108) 

where Il'l 

(103), let 

denotes the cardinality of ot . In notations of 

and let 
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I'lb b+2:v v +1 
Q(v) =: ';r(g, E ; Ey expd , (y exp(-d) ). 

It follows from the definition of Jt that 

OJ (v) c::: Q {v } for j E £ . (109 ) 

By (44) in Proposition 5, one can find v 2 such that 

when v > v 2 I j Eat. (110) 

Since Q(v)f~ (g,E b +2 ) , it follows from lemma 5 that for 

each p in Q(v) there exists K (p) satisfying (104) and such 

that tp~K (p)-1) = 0 , as soon as E < Eo • Let K (p) = Ipls(p} 

It follows from (104) that 

1 R () < 1 v+1 < e s p _ v when p E Q (v) • ( 111) 

If 

2'JT < 0 
v logy I (112) 

then we can choose s(p) in such a way that 

(113) 
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In view of (111), (113) and (36) with M = v+1 , we conclude 

that for each p in Q(v) the function ZN(s) has a pole 

s(p) in Dv(o,to ) as soon as v satisfies (112) and the in­

equality 

-4 e:=v <e. 
o 

( 114) 

Moreover, since Re s(p) = (log\K(p)\) (logjpj>-1 , it follows 

from (104) that if (112), (114) hold, then condition 

s{p) = seq) , p E Q(v) , q E Q(v) 

implies an inequaltiy 

I log I p I - log \q I I < 2e: (v + 1) • 

Therefore, since A > 2e:~+1) by definition, 

s(p) =1= seq) when p E Qj(v), q E Qj,(v),lj-jll > 2, (115) 

as soon as (112), (114) are satisfied. In view of {115}, (110) 

and (108),we can choose 
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and obtain (107) with 1 
Co = 2 c9 • This proves the lemma. 

Proof of Proposition 7. It follows from (38.2) and lemma 2 

that, in notations of (38), 

SED (15, t ) . 
V 0 

By (101) of lemma 4 and (107) of lemma 6, there exists Vo 

for which 

when v > '\} 
o 

(116 ) 

( 117) 

The assertion of Proposition 7 follows from (116), (117) and 

(39) • 

Corollary 1. If W is not unitary, then £0 = {s IRe s = o} 

is the natural boundary of the function s~ L(s,W} defined 

in £+ by a sequence of equations (39) when M varies over 

H. 

Proof. Let s E £0 • Each neighbourhood of s contains 

Dv(o,to ) for some 0 in E+ ' some to in R , and some 

v > v ; therefore, by Proposition 7, it contains a pole of o 
L(s,W) • Thus £0 is contained in the closure of the set of 
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poles of L(s,~) , and the assertion follows. 

Theorem 1 follows from Proposition 3, Proposition 4 and Corolla­

ry 1 • 
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§ 6. On scalar product of L - functions; proof of theorem 2. 

We start with a few simple remarks concerning convolutions of 

L - functions (cf. [20]i [21], Ch.II § 1,2). Given r power 

series 

00 

f. (t) = E a(n,j} t n , 1 < j < r I 

J n=O 

one defines their Hadamard convolution (cf. [6]) by letting 

co r 
=: I: (n a Cn, j) ) t n • 

n=O j=1 
(118 ) 

The following assertion can be deduced by simple calculations 

in the ring a::[ [t ] 1 of formal power series with constant 

coefficients (cf. [20 J, § 3). 

Proposition 8. Suppose that f. I 1 < j < r I has th e form 
J 

and let 

d = 

d. 

fJ' (t) = J (1 - ex (i,j)t)-1 , ex (i,j) E a: , 
i=1 

r 
n d. , d

1 
> 

j=1 J 
> d r I n = f 

j=1 
d. - r+1 • 

J 

(119 ) 

(120) 
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The following identity holds formally in E[[t]] : 

{f1 * ... * f r > (t) = (f1- •••• f r ) (t)h(t) , 

h(t} :: 1 (mod t 2 ) , 

where h(t) is a polynomial of degree not higher than d-1 

and 

r 
(f1 •••• • fr) (t) =: n (1 - t n cdv (j) ,j»-1 

v j=1 

with v ranging over the set of sequences 

{(v(1), ••• , v(r» i 1 ~ v(j) ~ d j I v(j) EN:} 

In particular, if 
-d. 

f.(t) = (1-t) J I 1 < j < r , so that 
J 

a(i,j) = 1 for each pair (i,j) I then 

h (t) _ 1 + (d-n)t(mod t 2 ) , 
r 

(121 ) 

( 122) 

( 123) 

where hr(t} is a polynomial of degree not higher than n-d1 • 
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Corollary 2. If r ~ 2 and condition (12) is satisfied, then 

the polynomial hr(t) in (123) has a root a with \S\ < 1 • 

Proof. By 

h (t) = r 

so that 

(123), we can write 

n-d 1 
n (1+fLt) 

j=1 J 

max 113 jl > 
j 

n-d 

I t 
j=1 

d-n 
n-d1 

1 
a . = d - n , 

J 

On the other hand, conditions r > 2 and (12) imply the in-

equality 

d-n > 1 
d ' n- 1 

and the assertion follows. 

To prove theorem 2 let, for p E X1 ' 

and let, in notations of (10) I 
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and 

f (P1' t) • •••• f (p , t) , p p r 

where p ranges over prime divisors of k • Let, furthermore, 

and let 

By (122) I 

..:. r 
SeX) =: VS(P.) • 

j=~ J 

therefore, recalling (4) and the definition of S(p) , we get 

for p * S (X) • (124 ) 

By (121), there is hp(t) in c[t] for which 

(125 ) 
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Lemma 7. There exists a polynomial ~ E yet] such that 

S (t ) c: s <X) and 

~ (t) 
p 

for p ~ seX> • 

Moreover, if r > 2 and (12) holds, then ~ is not unitary. 

Proof. Let TmA and AmA denote the m-th symmetric and ex-

terior powers of a linear operator A in a finite dimensional 

complex vector space. By well known identities of linear alge-

bra, 

00 

det(1+At) = E 
m=O 

in €[[t]]. Since, by Proposition 8, the degree of hp(t) does 

not exceed d-1 I it follows from (124) and (125) that 
d-1 

hp(t) = ~p(t} for p f 8(X) , where ~ (t) = 1 + l: bt t9..· with 
9..=1 

! 1 r 1-1 
(-1) 1 tr (A 1p} II tr(T 1p .) 

j=1 J 

In particular, taking g to be the unit element in W1 (Klk) 
-d1 -dr d 

one obtains ~g(t) = «1-t) * ... * (1-t) ) (1-t) • «rhere-

fore, by Corollary 2, ~ is not unitary when r > 2 and (12) 

holds. This proves the lemma. 

We notice now that, by definition, 
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L(S;X) = n fp tX,1 pi -5) , 
p 

where p varies over prime divisors of k • Therefore (124) and 

(125) give 

(126 ) 

where 

(127) 

It follows from (126), (127), lemma 7 and Theorem 1 that the 

function s~ L{s,X) can be continued meromorphically to ~+ 

and has a natural boundary ~o when r > 2 and (12) holds. 

If r = 1 , then by definition. Suppose 

that r > 2 and (12) doesn't hold. It follows from (10) that 

L(s,X) = L(s,p) if d2 = 1 • In the remaining fall d1=d2=2 

and either r = 2 or d
3

= 1 , so taking P2' = P2 n P. 
j~3 J 

when 

r > 2 we reduce the problem to the case d 1=d2=r=2. In this 

case, however, a direct calculation shows that 

fp(x,t) = fp(p,t) (1-t2detp(O"p» for p ~ SeX) • This completes 

the proof of theorem 2. 

We should like to conclude this article with a few remarks con-

cerning scalar products of L - functions limit Grossencharak-
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teren". Let k. , 1 < j < r , be 
J --

an extension of k and let 

d. = [k. : k] denote its degree; 
J J 

let X. E Gr(k.) • We define 
J J 

~ 

the scalar product L(s,X) of L - functions Hecke (14) by 

equation (10). 

Corollary 3. Suppose that d
1 

> ••• > d . The function 
- - r 

..a. 
s~ L(s,X) can be meromorphically continued to ~+ . If r > 2 

and (12) holds, then ~o is the natural boundary of this 

function. If either r = 1 or r > 2 but (12) does not hold, 

then L{S,Y> is meromorphic in E • 

Proof. Regard Xj as an one-dimensional representation of 

W(k.) , 1 ~ j ~ r , denote by p. the representation of W(k) 
J J 

induced by X. and apply theorem 2 taking into account that 
J 

as formal Dirichlet series. 

Remark 4. One can prove (cf. [20] or [21], Ch.II § 3) that, 

in fact, 

L{S,X) = t -1..> 
J[ L(s, "".)L(s,<P) 1(s,X) 

i=1 J. 

where <p(t} E y[t], ~(s'X) = J[ ~p(lpl-s) for a finite 
PESo 
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set So of prime divisors in k, tp(t) is a rational func-

tion of t and "'. E Gr(K.) , k C K. C K , K 
'1'1. 1. - 1.-

denote the smallest 

'" Galois extension of k containing k = k1 • ••.• kr I the com-

posite field of k1 , ••• ,kr • Moreover, if k1 , ••• ,kr are 
'" r linearly disjoint over k I so that [k: k] = IT d. 

j=1 ) 
, then 

.1\ 
t = 1 I K1 = k and 

"'1 = 
r 

IT X J' • NK1/kJ' j=1 

A more careful calculation (cf. [21], p.90, Corollary 2) shows 

that 

cally 

.. t(s,X} = 1 

independent over k 

are arithmeti-

. tie say that 

metically independent over k (cf. [16], 

k1 , ••• ,kr are arith­

[22]) when 
.1\ 

[k . k] = . r 
IT d. and 

j=1 J 

(e.<r.),e.(h.) = 1 whenever 1.:s i < j < r I 
1. 1. J fJ 

Pi I p I ~j I p 

for each prime divisor p in k I where fj ranges over 

prime divisors in k. 
J 

and e. (h.) 
) If) 

denotes the ramification 

index of rj in the extension k j a k • In particular, if r=2 , 

and the discriminants of the quadratic extensions 

k1 2 k and k2 ~ k are coprime, then (cf. [19}) 
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where 1/1 = <X 1 " Nk/k ) (X 2 • Nk/k ) 
1 2 

ter in k (depending on X1 and 

and ,,, 
'f'o 

X2 ). 

is a grossencharac-
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