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§ 1, Introduction:

As usual, N, Z; Q, R+, R, C denote the set of natural numbers,
the ring of rational integers, the field of rational numbers,
the multiplicative group of positive real numbers, the real
number field and the complex number field, respectively. Let

k be a finite extension of Q and let W(k) denote the
(absolute) Weil group of k , [26]. For a finite extension

K2k ,let G(Klk) and W(K|k) denote the Galois group of X

over k and the relative Weil group introduced in [29]. Let

1
K

subgroup of idéle~classes having unit volume. Then C

C, be the idéle-class group of K and let C, denote the

1

ER4_xCK ’

K
so that

W(K|k) =R, x W, (K|k)

where W1(K{k) is a compact group isomorphic to a certain
extension of the Galois group G(K|k) by C; . The group W(k)
may be defined as a projective limit of the groups W(K|k) ,

where K varies over finite extensions of k . Let

p : Wik) —> GL(V) {1)

be a continuous representation of W(k) into the group of

invertible linear operators of a finite dimensional complex



vector space V . There
such that p

that

o is normalised.

malised representations

characters generated by
{x1x
Consider a polynomial
o (t)

in Y[t] and let

@g(t)

for ge wW(k)

Qg(a)=t0 as soon as

factors through W(K|k) ;

lal #1 , a€C, g€ Wik)

is a finite Galois extension K of k
if R+gKerp ; We say
Let X1 be the set of continuous nor-
(1) and let Y be the ring of virtual

the set of characters

1§

trp, p EX&} .

a,cy
J

= 1 +
J

i M

5
; t aj(g)

. The polynomial (2) is said to be unitary, if

X

in 1

. Any o

(2)

(3)

may be regarded as a representation of a compact group WT(K]k) ’

therefore it is semi-~simple. Hence one can write

=

a,
J

where ¥

varies over irreducible characters.

z mj(x)x

X

Moreover,

X, (@) = {p{mj(trp)#(l for some 3 1}

the set



is finite. Given a prime divisor p in k , let op and I
denote the Frobenius class and the inertia subgroup in W(k)

at the place p . Let pe€X and let, as in (1), V be the

1
representation space of ¢ . Consider a subspace

I
v P = {vivev , plglv =v for gEIp}

of Ip—invariant vectors in V . Since the restriction
I
p{qg) T of the operator pl(g) to V P 3Joes not depend on
v'p
the choice of g in op , we may set

p(GP) = p{g) oIp ’ g€op '

and extend (4) by linearity to Y . Furthermore, let

™

3
@ {t) = 1 + t° a.{o .
p() j(p)

i=1

I
By (3) - (5), if V P = {0} for each p in X (®) , then

o () = @ (t f n in o .
p( ) g( ) or any g i o

In particular, relation (6) is satisfied for all but a finite
number of primes p in k . Let F Dbe a finite extension of
Q ; we write

|Al=: N A

F/Q

(4)

(5)

(6)

(7)



for any fractional ideal A 1in the ring of integers of F .

In these notations, let

L(s,®) =T @p()pl"s)"1 , Res>1 , s€cC , (8)

P

where the product in (8) is extended over all the prime divisors

p in k.

Theorem 1. The function s }b—> L(s,®) , defined for Res > 1
by an absolutely convergent product (8), can be meromorphically

continued to the half-plane
C._ = {s|Res>0} .

+

If ® is unitary, this function can be meromorphically con-
tinued to the whole complex plane C ; if ©® is not unitary,
then the function L(s,®) has a natural boundary

C° = {s|Res = 0}
and allows for no analytic continuation to the left half-plane

C_ = {s|Res < 0} .

Take, in particular, @{t) = det(1-tp) for some p in X,



then equation (8) defines the Weil's L-function,[29],

L{s,p) =T detﬁ—iprsp(cp))—1 » Res>1 , (9)
P
associated to p . We develop the product (9) in an absolutely

convergent for Res >1 Dirichlet series
L(s,p) = Z ctn,x)|n|"% , x =: trpo ,
n

where n ranges over all the integral divisors of k . Given

r representations op. , 1£j<r , in X with characters

i 1

X. = trp. , let

3 J

- r -5

L(s,x) =L N c{n,x.)|n] , Res>1 , {10)
n j=1 J

be the convolution of the I~functions L(s,pj) r 1s3isrxr .,

sometimes called the scalar product. Let dj = xj(1) denote

the dimension of the representation pj and assume, without

a loss of generality, that
d,2...24d . (11)
Theorem 2. The function s p—> L(s,f) defined for Res> 1

by an absolutely convergent Dirichlet series (10) can be

analytically continued to C_ . If rz2 and



(I’Z3I\d322)\f(d123/\6222) v (12)
then this function has a natural boundary C€° and can not be
analytically continued to C_ . If (12) does not hold, the
function (10) can be analytically continued to the whole plane

C , namely,

-
Lis,X)

il

L(s,p) when either r = 1 or d2 =1 ;

L(S,p)L(ZS,detp)-1 L zp()p]-s) otherwise,

PES,

L(s,X)

i

where p = Py ®...9 Py v S, 1s a finite set of primes in k ,
and zp(t) is a rational function of t satisfying the con-
dition

Zp(a)=#0,w when J|a|+1 . (13)
Consider now r finite extensions k. , 1£jsr , of k and

let dj = [kj:k} denote the degree of kj over k . Given a

Grossencharacter Xj in kj , one defines an L-function Hecke
Lis,x.) = £ x. (A)]A|"% =L ctn,x ) |n|™% , Res>1 ,  (14)
3 A J % J

where A and n range over integral ideals of kj and k ,

respectively. In particular,

c(n,xj) = g xj(fx) . Nk_/koa=4{» p
3



is a finite sum extended over integral ideals A in kj
whose relative norm to k is equal to n . We define the
scalar product L(s,?) of L-functions (14) bg'the equation
(10) . The grossencharacter Xj can be regarded as an one-
dimensional representation of W(kj) ; let pj be the

representation of W(k) induced by Xj . Then
L(S'Xj) = L(Srpj) 14

so that the scalar product L(s,?) coincides with the scalar
product (10) of L-functions L(s,pj)  1$j&r . By theorem 2,
if rz2 and theAdegrees dj satisfy (11) and (12), then
L(s,i) has C€° as its natural boundary and can not be continued
analytically to C_ . This theorem has been proved by N. Kurokawa,
[14], for Grossencharacters of finite order. The author has
generalised the construction of Kurockawa's and has proved this
result for arbitrary Grossencharacters assuming the validity
of the Riemann Hypothesis for L-functions Hecke, [20]. The
scalar product

TR N e

n j=1
of the Dirichlet series I lnl-s c;?) ; 1$jsr , has been
studied by many authors (gee,forinsﬁmme,{G], {251, [24], [23],
{91, [19]1, [5]). The problem of analytic continuation of the
scalar product (10) for L-functions (14) "mit Gr&Bencharakteren”

has been posed by Yu.V. Linnik in the context of analytic



arithmetic in algebraic number fields (cf. [18], [41).

P.K.J. Dra¥l,[2lhas proved that L(s,§3 can be meromorphically
continued to C, for any set of Grossencharacters {le1 $jsrl.
0.M. Fomenko, [4], has continued L(s,f} meromorphi~
cally to the whole plane € in the case of two quadratic fields
= d

r =d = 2 (cf. also [9]), while the author, [19], has

1 2
obtained an explicit expression for L(s,?) in terms of L-
functions Hecke in this case. Theorem 1 has been proved by

N. Kurokawa, [12], [13], under an additional assumption that
each of the characters in X, ,(®) is of Galois type (so that the
corresponding representation of W{(k) has a finite image).

Here we remove this assumption, For this aid, the construction
of [12], [13] is generalised to compact groups and a new
equidistribution theorem for Frobenius classes in Weil groups

is proved. This equidistribution theorem takes the place of

the Chebotarev density theorem in [12]. In the case k = Q and
for polynomials ¢ with constant coefficients (that is, when
©(t) € 2[t]) theorem 1 has been known classically, [3] (see also
{151, [1] for related results). A preliminary exposition of

the results proved here has been given in the last paragraph

of the book [21].



§ 2. On polynomials associated to representations of
compact groups.

Consider a compact group G and let X be set of all the

irreducible representations of G . Let

Y= {Em{x)x |m(x) €2 , x =trp, p€X}
X
be the ring of virtual characters of G , so that m ranges
over all the functions m : § —> % on the set
§ = {x|]x = trp, p€X} of irreducible characters of G, for
which the set {yx| m(x) *0} is finite. Given a polynomial

®(t) of the form (2), we define Qg(t) by (3) and let

L
<I>g(t) = T (1—aj(g)t) r 9EG . (15)
j=1
Let, moreover,
y==mmﬂaﬂ9” 1¢3s8, geEG . {16)

By lemma 14 in [20]}, we have

1Sy<= (17)

A polynomial ®(t) in Y[t] is said to be unitary, if y = 1 .

By (16) and (17), &(t) is unitary if and only if
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¢g(q)#0 whenever |gj+1 and g€G , q€C . (18)

v

Write aj = 3 mj(x)x with y€X and let, for ¢(t) having
X

the form (2) ,

Xo(®) = {p|lwEX , mj(trm) +0 for some j}
be the set of all the irreducible representations of G which

are contained in one of the coefficients of @ . By definition

of Y , the set X,{(®) is finite.

Proposition 1. Let o(t) € Y[t] and suppose that @(0) = 1 .

There exists a sequence of integer valued functions

b :+: X—> 2 r 1 §n<ow ’

n
such that

b (@) =0 for ¢§X.(®) , (19)
identity

o(t) = § n det('l-—tn(p)bn(‘p) ,. (20)

n=1 @QEX

holds formally in the ring of formal power series Y[[t]] with

coefficients in Y , for each g in G the product



_11_

b (9)

o (t) = 1 n det(1-t"p(g)) (21)

n=1 @eX

1

converges absolutely in the circle |t]| <y ' , and the
following estimates hold:
I bleltrelg) |s5RLey® |, new, geq, (22)
n
PpeEX
and
b_(®) M -
£ I |logaet(i-tfo(g P | sEUEY ynen jej<y! L, (23)
n2M @€eX (1-v|t])

where Tt(n) denotes the number of positive divisors of n

and 2 1is the degree of &(t) .

Proof. To deduce (20) one constructs inductively twO sequences

{b |b :X—>2% , 1snsw}

and

{F | F (£) €e¥IE] , 1sn<«}

satisfying the following relations:

n+1)

F o(t) = oft) (mod t (24)
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and

n v b, (@)
Fn(t) = T m det{(1-t’y) (25)
v=1 €eX

Let F,(t) = 1 , suppose that (24}, (25) hold and, moreover,
X, (®) 2 X, (Fn) . (26)

Then, since %(0) = 1 , we have, by (24),

n+2

1y & (£) (mod t%%) , bev .

F.(8) = (1 + bt

In view of (26), one can define bn+1 by the relations:
b_.,(p) =0 for @e§X, (® , b= I b_ . (pltre ;
nt1 ° veX, (@) 1
let
b (0)
F () = F_(t) T det (1-t™ 1) 2*1
PEX, (®) :

Then (19) holds by construction, while (20) follows from

{25). Write @{(t) in the form (2) and define ¢ functions

aj:G-"")c r 1$j$£ '

by (15); then (20) may be rewritten as
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2 ' o n bn(cp)
I (1-ta,) = I I det(1-t¢) (27)
j=1 J n=1 ¢@&X
We apply the operator
-t 1og : Y[[£]] ~ ¥[[t]]
ot )
to both sides of (27)and obtain an identity
% oy - n n ,~1
z -1-—_—,1—:35—= b £ nb (o) tr(tie (1-t7e) ") (28)
=1 3 n=1 @&EX
in ¥[[t]] . Let
ofmyg) = £ a.(@™, h g =n £ b_(¢)trelg)
. J n n
j=1 W X
for g € G .
It follows from (28) that, for any g in G ,
£ tolmg) = = t7h (g™ in €(t]],
m=1 m,n=1
or eguivalently,
14
oln,g) = % h(g") ,mEN, m €N . (29)

mm' =n
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Introducing the M8bius function ¢y : N - (0,1} one obtains

from (29) an equation

Eont) o3,¢") =h (g) , neN (30)
v n

vin

Since | olm,g)| < iynl, estimate (22) follows from (30). Esti-

mate (23) is an easy consequence of (22) and the well known

operator identity logs det = tr « log . The absolute conver-

gence of (21) for |t| < Y_1 follows from (23) . This proves

the proposition.

Proposition 2. If ¢ is unitary, then there exists ng such

that

whenever either n > n

it
o

bn(w)

o
or v ¢ X (®) (31)
and therefore
n
o b_{o)
o(t) = 1 1 (1-t"g) n (32)
n=1 cpEXo(Q)

Proof. By condition, y= 1 . Therefore it follows from (22)

that one can find n, in N for which
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| & b (o) tr o(g)| < 1 whenever n>n_,g € G, (33)
eEX

In view of orthogonality relations, (31) follows from {(33) and

(19). Identity (32) is a formal consequence of (20) and (31).
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§ 3. Continuation of L(s,®} to m+ .

We return now to notations of § 1. In view of the remarks made
in § 1 , any polynomial ¢ in Y[t ] may be regarded as a poly~-
nomial with coefficients in the ring of virtual characters of

a compact group G = W1(K{k) for some finite Galois extension

K 2 k . Given a representation (1) we denote by
I
S) ={p|Vv P £ {o}}

the set of all the primes p in k at which p is ramified.
It follows from the definitions, [29] , that S{p) is a finite
set. Indeed, let p € X and suppose that p factors through
W(K|k) . Denote by Up the group of p- adic units in K

and regard Up as a subgroup of C, . By continuity of p ,

K
we have Up € Rer o for all but a finite number of prime
divisors P in X . On the other hand, one can show {(cf., for
instance, [21], p.18) that if K|k is unramified at p and
if UP ¢ Ker p  for each P dividing p , then S(p) does

not contain the prime divisor p of k . Thus S(p) is finite

and, therefore, the set
5(¢) = {p|p € 8(p) for some p in XO(Q)}

is also finite. Moreover, by (6) ,
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= o}
®p(t) ®g(t) for p ¢ s(®) , g€ o, (34)

Proposition 3. If ¢ is an unitary polynomial and ¢ (0) = 1 ,

then L(s,?) can be meromorphically continued to the whole

plane € .

Proof. It follows from the relations (8), (9), (32) and (34)

that

b_{p) -
L(s,®) = I ins,e) ® 1 o (ip™HV, (35
PEX  (8) pEs(d) P

where

1%(s,0) =: L(s,p) T  det(1-p(o_)|p| S )
pES(2) P
Since L(s,p) is a meromorphic function, [29], and the set

XO(Q) is finite, the assertion follows from (35).

Remark 1. The product I appears in (35) because ¢_(t)
pES(2) P

can not be evaluated by (32) when p € sS{®) .
Choose two rational integers M and N subject to the con-
dition:

M>o0, YM < N, N> |p|l for each p in 5(9) (36)
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with y defined by (16) and let, in notations of (20) and (4),

b_{w)
T det(1-t"¢(c )) B ; (37)
pEX P

fncp(t}

We define, generalising the construction of [12] , two finite

products

-1

z,,(s) = T o (|p|™® and (38.1)
N lpj<n P
(s) = T T £ _(pl™% , (38.2)
RN’M p¢s (%) n<M n,p
Ip|<N
and two infinite products
-5, -1

Uyls) = T T £ (p]™® . (38.3)
M n<M pg¢s(e) =P
T o (s) = I T £ _(lp]”5H] (38.4)

NIM n'_>__M ‘P‘Z’.N n,p

It follows from (38) and (20) that

L(s,@) = zy(s) Ry \(s) Uyls) Ty (s) (39)

N,M

as a formal Euler product. Moreover, it follows from (9) that

bn(p) -s
UM(S) = I i L(ns,p) it £ tlpl 7y , (40)
n<M peEX_(0) pes(g) TP
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since, by (19), b (p) = 0 when p ¢ X_(®) .

Lemma 1. The functions
St RN,M(S) , S I{(’s}“ ; Sr» ZN(S)
are meromorphic in € .

Proof. Since L(s,p) is meromorphic in € , [29], the asser-

tion follows from (38.1), (38.2), and (40).

Lemma 2. Suppose that M , N satisfy (36). Then the product

TN,M(S) converges absolutely for Re s > g .
Proof. By (36), we have
-n Re s 1
yipl <1 for Res > g, pl2N. (41)

In view of (41}, we deduce from (23) and (37) that

-n Res M
- L(ylpl~® ) 1
I Jlog £ _(Ip|™®] < - for Res > = .
n>M n,p - (1~Y!Pl Re 5)2 M

then

Therefore, if Re s > % ’
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M o0
- '3 k: -M R
T L |log £ p(lpl %yl « = [ —?}M 2 n T
n>M |p|>N ' AL

e

(42)
n=1 4

since there are no more than [k : @] prime divisors p in
k such that |p] =n , n € N . The assertion of lemma 2

follows from (42) and (38.4).

Proposition 4. Let ¢&(t)e Y[t] , #(o) = 1 . The function de-

fined by (8) for Re s > 1 can be meromorphically continued

to the right half-plane L

Proof. Choose M,N satisfying (36). By lemma 1 and lemma 2 ,
equation (39) defines a meromorphic continuation of L(s,®) to
the half-plane

1
E1/M={s}Res>M~} .

Therefore the assertion follows from an obvious relation:
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§ 4. A general prime number theorem

Let K 2 k be a fixed throughout this paragraph finite Galois
extension of k of degree n+1 =[K : @] over @ and let
“1. be a finite subset of normalised irreducible representa-
tions each of which factors through W(K|k) . Thus m may be
regérded as a subset of X . Let Gr(K) denote the group of
all the grossencharacters in K trivial on R, , so that
Gr(K) is a discrete group isomorphic to the group of charac-
ters of C; . For ¢ € Gr(X) , let :?(W) denote the conductor
of ¢y ; given p in X, which factors through wiklk) , we

write

and denote by £ (p) the least common multiple of
fk¢1),..., fTwr) . We fix an integral divisor jyo in k satis-

fying the condition

:Fog 0(f(p)) for each p in ML , (43)
and let
s = U sip)
PEWL

be the finite set of primes outside of which any representation
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\'
in fl is unramified. Let Wl ={x |x=trp, o €Y1} be the

set of characters of representations in L . ror g € W(Xlk) ,

£ >0 let
ga(gae') ={plp ¢ s, lx(op)-x(g)l < g for each ¥ infﬁ}

and let, for x, > x4 > o,

2
B (gieixyx) ={pip ePlae) . x < Ipi<x,)

where, as usual, p varies over prime divisors of k . We de-
note by P(g.,c ;x.‘,xz) the cardinality of the set gb(g,e ;x1,x2) .
The main purpose of this paragraph is the proof of the follow-

ing statement.

Proposition 5. There are two positive numbers 4 and c,

such that

X
2 du

f‘_—n—""'—-‘v
Tog © e

Pg,eixg x,) > c,len ! + 0(x, exp(-c,/log x,))

%1

for every €,9rXy 1%y subject to the conditions

1>e>0,x2>x1>0,g€W(Kk), (45)
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where the O - constant does not depend on €/9:1Xq %, .

Remark 2. The constants in (44) may depend on the set XfL .
We believe to be true, but couldn't prove, the following state~

ment.

Conjecture. There is a function cW¥e) such that

X

2 .
- }—13 ‘.—.-—__...d u -~
P(g,e i%,,%,) —Cﬂﬂﬁ)i{ Tog G + O(x, expl cleog %5))
1
¢, > 0, (46C)

where c, and the O - constant do not depend on the data (45).

Obviously, (46C) and (44) imply the inequality
cl,e) > c1en for any ® . (47)

We deduce Proposition 5 from Proposition 6 to be stated below.

Let Ot be an integral divisor in K and let

%(a) = {yly € 6r(x) , FW) o}
be the group of those grossencharacters whose conductor divides

QL . By a theorem of Hecke, [8] (cf. also [7], § 9), gf(ﬁh

is an abelian group of rank n , so that

Op (0 =G 00 x Gy (@, Oy (o0 = z"
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and %}o(ma is a finite group. We choose & system
A.11<3i<n}
of free generators of ?T1(0Q and write

Ay() = exp(2nip (@), a€ Gt € 3 € nmp < oyla) < 5 - (48)

2 P
Consider, for e > O , an € - neighbourhood V{c;®) of the
neutral element in CK consisting of the idele-classes
satisfying the following condition:

Abya) =1 ,'cpj(ya)l < %: whenever 1 < j < n ,vy€G(Klk) ,

A e%(m '

where CK is regarded as a left G(K|k)-module. For each prime
divisor p in k we choose an element Tp in ¢ fixed
throughout this paragraph and, for each t in Wikl k) , let

#H(g,tesn = (p] t"1'rpt e Vie:if))g , p ¢ sm,lpl < x} ,

where the divisor 570 defined by (43) is regarded as a
G(k| k) invariant integral divisor in k and p ranges over
primes in k . Let A(g,t,e;x) denote the cardinality of the

finite set f%(g,t,e;x) and let
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A (geix) = I Aflg,t,.c:x) dw(t) , (49)
Wy (X] k)

where pu denotes the normalised by the condition 14(w1(K[k))=1

Haar measure on W1(K{k) .

Proposition 6. The function +tw A(g,t,;%x) is § -~ measur-

able, so Ao(g,a;x) is well defined. Moreover, there are two
positive constants C3:C, such that for any € in the inter-

val 0 < e <« 1 we have

du
log u

Ao(g,e;x) = c3£n g +0(x exp(—c4{i;§‘§5) (50)
with an O - constant independent on g,t,x .

The proof of Proposition 6 depends on a prime number theorem
generalising both the Chebotarev density theorem and the
classical estimates, [8], for grossencharacters. Let us re-

call that any ¥ in Gr(K) may be regarded (cf., for instance,
{71, § 9) as a character of the group of fractional ideals
generated by the set of all those prime divisors in K which
do not divide the conductor f%w) of ¢ . Write, in parti-

cular,

it(y) (Yo v (Y)

= R =1, {51
¥ ((a)) o] for ((a),£(¥)) (51)

I |yol
Y
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where (o) denotes the principal ideal generated by a# O ,

o € K, and Y varies over all the n+1 distinct isomorphisms

of X into € . Here ¢t{y) eR , v({y) €¢ 2 , and

v(y) € {0,1} when Y corresponds to a real place of K ,

so that vY(K) €IRR . The exponents t(y) , v(y) are known, [8]
(oxr [7], §9), to satisfy certain normalisation conditions. For

P € Gr(K) we let

vip) = I (Je) + DUve) + 1D (51.1)
i

in notations of (51). Suppose that p € X

. p factors through

W(K| k) and

i = LA ;E < y < 2' .

We define then the weight of p by

vip) = max Vv{{.) (51.2)
(EALI

with v(xbj) given by (51.1). For brevity, we write

v{¥) = v(p) when Yy = trop » 0 € X,
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Theorem 3. Let Y| < X, and suppose that each p in I
factors through W(K|k) for a finite extension K 2 k and
that there exists an integral ideal OL in X satisfying the

condition

5

0(f(p)) whenever p € )L .

Then there is c¢. > 0 such that

X

du log x
5 = ;S —2_+0 ~ - 52
Iplox x(cp) g(x)2 iog @ (x exp( Cy /log:x+~logv1x)))’ (52)

whenever y = tr p , p € L . Here P ranges over prime divisors
in k ; the O -constant and cy may depend on fl but not on
a particular representation p in T ; g{x) denotes the

multiplicity of the identical representation in p .

Proof. Since v(p1 @ pz) > v(pj) . 3=1,2 , and both Py and
p, factor through W(K|k) as soon as pq ® p, does, it is
enough to prove (52) for irreducible representétions. Suppose
now that p € Yl and p 1is induced by another representation,
say,

W(Klk)

= Ind N keck' ¢ X p' € X
e wklkny ? 0 TS &0 1

and p' factors through W(K|k') . Then L(s,p) = L(s,p') ,
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so taking the logarithmic derivative in the Euler product de-
composition (9) one obtains an estimate

1/2+a

I (o) = I w(cp.)+0a(x )

lpl<x ~ ®  |pi<x
for any o > O , where x=tr p , x' = tr p' , the Oa - con-
stant depends only on o and the degree of X over @ ; p
and p' vary over prime divisors of k and k' , respectively.

Moreover, since

xfa) =2 x'"lya) » 0 € C¢
¥ .
where vy ranges over a system of representatives of the, say,
right classes of G(X]k') in G(X|k) , we conclude that
vix) = v{x') . Thus passing, if necessary, to an intermediate
field k' one may assume that p is a primitive irreducible
representation of W(K|Jk) . A classical argument (cf.[29],

p. 32-34) shows then that p may be written in the form

°
H
TR

. . . € & 53
aj% ray ' (53)

j=1

where Yy o 1< 3<%, is a monomial representation of W(K|k)
induced by a grossencharacter kj in Gr(kj) , k € kj €K,
and

wj(a) = njm(a) for a €C (54)

K ¥



where ® is a grossencharacter in Gr(XK) . It follows from (53)
and (54) that v{(p) = v(wj) = v{(w) , On the other hand, by (53),

a

L(s,p) = L(s,Ay) i, (55)

=t

j=1

where L(S,Aj) is a Hecke L-function in kj 1 <3 <.

Taking the logarithmic derivatives in (55) one obtains an esti-

mate

I x{a)) =

1/2+a
lpl<x P 5 s

I e

L
1 31? f<x 3

where p and p j range over prime divisors of k and kj ’
respectively, and the Oa - cdonstant depends only on o> O
and on the degree of K over {§ . By a classical theorem, (8]

(cf. also [111, 171 ,

= log %
IF lEx & (?3 g()\ )f log u+0(x exp (- CeViog x + logv(?x )))
3
(s7)
0, A, # 1
with g(i.) = 3 + Cg > 0, where c, and the
J 1, X, =1
j .
O - constant depend only on the conductor of Aj (and the field
W{K]k)
kj). Since Yq = Ind (A.}) , it follows from (54) that
w(Klkj) J

w(a)) = Aj((NK,kja); for & € X', (a,8) =1 (58)
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when one regards o and xj as characters of fractional ideals

in K and kj . By (58) and (51) ,
vix) = vip) = viw) > v(xj) . (59)
Estimate (52) follows from (56), (57) and (59).

Remark 3. Theorem 3 emphasizes the dependence of the error
term in the prime number theorem on the weight v{x) of the
character but not on its conductor. We could not apply the
Brauer's theorem (53) directly to an arbitrary representation
in i because it is not a priori clear how to relate vip)
and v(!pj) in this case.

After these preparations we are ready to prove Proposition 6.
Let us define two infinitely differentiable functions

f+ : R« R subject to the following conditions:

1) 0< £ (t).< 1, £ (t) = £ (t+1) for each t in R,
and
o
2) f,.(t) =1 for |t] <&, £.(t) =0 for F4aiti<z ,
1
£(t) =1 for |t| <5 -4, £.()=0 for §<ltlc 5 ,

where ¢ and A are two real numbers satisfying the inequali-
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ties

€ € 1
0 < A < 5 < 5—+ A < 3 .
We denote by no(an the order of the group efo(u) and, in

notations of (48), define another two functions

]

1
=

by letting

~ 1 n
h (a) = z Afaw) T T £, (o, . (ya)) . (60)
* n, @) AeQ (@) j=1yEG(K'K) & 3

It follows from (60) and the definition of £, that if O is

G(KJk) - invariant, then

il

h+(a) 1 for o € Vv{e;i) ,

0 for a ¢ vie;a) , (61.1)

fl

g_(a)
and
(61.2)

We substitute the Fourier expansion of £, , say

i+
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o

fi(t) = I bi(k) exp(2ri g t) , (62)

§ =m0

~

in (60) to obtain a Fourier series for h, :

~ n
(3,v)
h, (a) "“TT £ b, (mile) T T AL (ya) ™3
* ;\e% () m * j=1 ye G(K|k) 3 J
(63)
where m ranges over all the functions of the form
m: {j|1 < 3j<n} xGEK|k)=-Z,
and
~ n
b, (m) =: 1 I b (m(j,y)) . (64)
= i=1 y€G(X|k) ~
Consider the character w;m) in Gr(K) defined by
n .
o™ amrla) T o1 A @)™ 3 for ae o, reg @
j=1 Y€EG(K|k)
and let p{m) denote the representation of W(K|k) induced by
lp(m)

In these notations, we define a function

h, : W(K|k) - ¢

*
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by an absolutely convergent series

1 . (m)
h, (@) = by r b, (m)yx {(a) for
* n,(@)-d A€ (o) m SRR

a € W(Kjk) , (65)

where d = [K : k] denotes the order of G(X/k) and

X)fm)

= tr p, . It follows from (63)-(65) that if OL is

G(K|k) invariant, then
h, (@) = h, (@) for o € C_ . (66)

From now on we let Cl==§z), in notations of (43), and define,

for x> 0 and t € W(KJ]k}) , a sum

A (t,x) = 3% 1 x(t"1rptg“1)h+(t’1—fpt g'1)—--?i—dé L, {(67)
- Ipi<x x )
where | !z* is extended over prime divisors of k such that
pl<x

p § St and ¥ ranges over irreducible characters of W(K|k)
trivial on Cp of dimension d(x) (so that L is a finite sum).

' X
It follows from the orthogonality relations
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relations (61) and definition (67) that

a_(t,x) < alg,tes5x) <A (t,x) .
Therefore

22(x) € A _(geix) < AJ(x) , (68)
where, in notations of (49) , we let

AJ(x) = [ dwt) a, (t,x) (69)

W1(Klk)

For brevity, we have suppressed the variables g,€ in the
notations: A, (t,x) and AZ(x) . We need the following simple

lemma.

Lemma 3. Let ¥ be an irreducible character of a compact

group G and let u be the normalised by the condition

#(G) = 1 Haar measure on G . We have
-1 -1 S -1
{ (t h1th2 Ydult) = x(h1)x(h2) d(x) p (70)
G

where h1,h2 € G, and d(yx) denotes the dimension-of ¥ .
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Proof of lemma 3. Write X = tr p, p(h) = (aik(h)) for
he G, 1<1i, k< d{x) . Wwithout loss of generality, we can
assume that p is an unitary representation, so that (aik(h))

is an unitary matrix for each h . By orthogonality relations,

1
é aikZh)an(h) du(h) = a?iﬁail ij . (71)

On the other hand, since aik(h) is unitary,

-1 -1

x (t h1th;1) = tr(p(t) p(hy)p(t)p(hy)) =

X a., (t) a..(h,la., (tYa,, (h,).
. . L
1,03 ik b Tt Iy k& 72

Therefore (70) follows from {(71).
(m)

Write, decomposing the product X Xy into irreducible com-

ponents,

x(a)x(m)(u) =z w;?;l (o) for o € W(K|k) (72)

(m)

with wk X1 € X , and substitute (65) into (67). This gives
[ §. @

Ai(t’X) =1 T )X £+(m)d(x)¢(m) (£~ T tg

no(asz lpj<x A,x,m,i ~ Aoxed P

1.

(73)
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Let

a(x) W ) b, (m) . (74)

¥
n_(©)a d(xp(m))( J) et

ci(m;k,x,i) =

It follows from (69), (73) and (70) that, in notations (74),

o _ . . *  (m)
A (x) = z c, (mja,x,i) & ) . (75)

A,xX,m, i 7 lpl<x Arxed p

By construction, \{J)\ X ; 1is unramified at p whenever p [/ Dﬁ; ’

where D denotes the discriminant of the extension ¥X|k . Thus

(m) (m)
N X, l(Tp) lbk'x i P) for pr'oD’and

Fozowi™ oy . 6

Since y is trivial on C and the character X;m) is in-

K
duced by the grossencharacter

0 s e ) RRSIL A A AN
we have
V(zp(m) O o< vy (78)

A
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In view of (76) and (78), one deduces from (52) in theorem 3 an

estimate
z p(m (T ) = g(w(m) .)}{ du log x
| pl<x AX,ip ALX,i 2 Tog u+0(x exp(-—cs y )

Ylog x + logv (lﬁi;fm) )

(79)

where Cg > 0 ; the O-constant and Cg depend on :Fo and

m only. It follows from (72) that

{m)

A,x,i) = 0 when q,)fm)4=1

gy

and that g(lliém))('i) = 1 for exactly one 1 in (72) when
F
(m) _

wA . Therefore one obtains from (75), (74) and (79) an
estimate

o _ 1 * }5 du
a; (x) = Wa‘ (f“ b, (m))-az o9 = + Of{xg, (x)), (80)

*
where I is extended over phose functions m for which the
m

character

) n .
Am e oq AL (ya) ™) (81)
i=1 y € G(K|k) J

is trivial, and
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q,(®) = T |b, (m | expl~c log x ). (82)
* m,A 5r’log x + log v@b{nﬂ)

In writing out the first term of (80) a well known identity

has been used to carry out summation over X . To estimate

9 ,(x) we notice that, since £  is assumed to be smooth, it

follows from (62) and (64) that

~ n
b, (m) = O(Hmun36_3) , where |m|l=: T X lm(3,7)1.
= 3=1 Y € G(K|k)

(83)

By definition of the weight (51.1), one obtains from (77) and

{81):
v ™) = ova ™)) = o(inlfY . (84)

Relations (82)~(84) give

= -3 3 log x
d,(x) = 0(A" "% ||m|[® exp(-c d )) , e, > 0, (85)
* m ! log x + log m "7 ’

where the O - constants in (83)-(85) and c¢, depend on 570
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and Xrl . Since the number of functions
m: {j!1<3<n} x GRIk)— &

with |Im}]l = 2 can be estimated like Os(ge) for every posi-

tive € , we obtain from (85)

o0
-3 -2 log x
g, (x) =0(Z A ~8& “exp(-c )) .,
* =1 7\/iog x + log?t
so that
-3
qi(x) = O(exp(—cBVlog %A ), Cg >0, (86)

with the O - constant and cg depending on fyo and #T only.

Write 9 (2) =¥ (ya) for Y € G(K|k) , @ € Cc, and

¥ € Gr(K) and define a set of integers
fa®; 3,¥)] ¥ € G(KlK),1 < § < n,1 <% < n

by the eguations

n :
AL = 1 aal®idr) (87)
J £ =1 L
Since, by (81), condition lﬁm)=1 is equivalent to the equations
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R~

z a(%;3,Y)m(3,y) =0, 1 <2<n, (88)
1 Y €G(K k)

Lb,(m) =I fdub,(m) exp(27i I al%:;3,Im{3,Y)yg) ,
m m B %430y

(89)
where the integration in [ du is taken over the cube

&'=:{u\——;—§_u25_-12—,1~<_9v__<_n}.

By (62) and (64), it follows from (89) that

™ n
b, (m) =/ du I I £, (
m j=1 v €EG(K|k) ~

L

waltij,ng). (90)
1

Combining relations (80), (86) and (90) one obtains an estimate

X
a0(x) =(c,+0(a))S ’i?%‘"ﬁ" 0(a %exp(-cg¥Tog ®))
- 2

C8> 0O 7 (91)

where c; = cg(n_(00) a)~'  and ¢y denotes the volume of the
set
& - 1. 5 . 1 .
=:{u|-3 < £ wal;j,y) <=,y € G(K|kK) , 1 < 3j <n} .

2
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. . . . e . n
In particular, since 63 contains the origin in R , we

have

cy > 0. (92)

Proposition 6 follows from (68), (92) and (91) with a properly
adjusted A .

Proof of Proposition 5, Choose €y > O and suppose that for

some t in W(K|k) we have

P Eﬁ'(g:t,€1;x2) \ # (get,e ix4) (93)
_ -1 _ : .
Then X(Gp) = x(t Tpt) = x(apg) for some o, in V(e1,f£)
and for each x in WL . Write X = tro , p(@) = (r, (@)
for o € W(K|k) and let

alx) 0
X (o) = x;:}.(a) , xpj e(}(fo) . for o € Cp . (94)

.

=1
By construction,

P . n o —,. .
= 1P m{j,p;i)
vy =2 n ARt (95)

i=1

for some A3’P in e!oifé) and some integers m{j,p;i) . It

follows from (94) and (95) that
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au) am)
¥ o _g)=1 (g)‘l’ @) = (g) TARGeii) S . (96)
P™ 3= 3=1 EE i=1 *

where d{x) denotes the dimension of p . Moreover, since

E V(e f') we have

3

n s .
‘.H'l)\?(:hp,l)(ap) -1} < ns1'21‘;5(j,0;i)l . (97)
i= 1=

Let M denote the largest of the finite set

Im(3,0:1)]}

'Pﬂﬁ

{ﬂ'r (g)’

of positive real numbers, where p and j vary over WL and
the interval 1 < j < dfx), respectively. Without loss of

generality, we may assume that each P is unitary and, there-
fore, {rij(g)! < 1 . Thus M may be chosen independent of g

in W(Kﬁk) . Relations (96) and {(97) give:
lx(apg) -x(@} < Me , for X € WL, (98)

Inequality (98) shows that p Ef}b(g,me1;x1,x?) whenever (93)

holds for some t in W(K|k) . Therefore

Plgsei %4,%,) > A(g,t,eM—1;x2) - A(g,t.qu;Xﬁ (99)
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for each t in W(K|k) . Integrating in (99) over W, (K]k) and

recalling (49) we obtain

Relation (44) follows from (50) and (1oo0) with c, = c3M—n .

This proves Proposition 5.
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§ 5. Proof of theorem 1 .

For s € £ we denote by Res and Ims the real and ima-
ginary parts of s , respectively. Given t € R, 8e R,

vEIR+ , let
D (§,t) ={s|s €, ——<Res< ~,t_ < Ims< t +8}.
v 'To fv+1 - v ' o - "o

Consider a polynomial ¢ (t) in Y[t] and suppose that @(0) =1
and that Xo(tp) € X for some finite Galois extension K 2 k ,
in notations of § 3 , so that ¢ may be regarded as a poly-
nomial with coefficients in the ring of virtual characters of

W, (xlx) .

Proposition 7. If ¢ is not unitary, then there is Vs in

R such that the function s+ L(s,?) has at least one pole

in D t a v >V .
V(G, 0) S soon as o

We retain the notations of § 3 . In particular, let N,M €N
and suppose that (36) is satisfied, so that equatibn (39) de-

fines a meromorphic continuation of L(s,?) to € . Let,

1/M

moreover, M = v+1 , so that D, (E,to) cc For a mero-

1/M °
morphic function £ we denote by n(f,T) the number of zeros

of £ in the rectangle

{s|0O<Res <1 ,0¢< |Ims| <|T,T.-Ims > O} .
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Let a1(v;6,to) and az(v;ﬁ,to) denote the number of distinct
zeros of UM in DU(S,to) and the number of distinct poles
of 2y in Dv(ﬁ,to) , respectively. To simplify our notations

let us assume that ¢t (t +8) > O .
Lemma 4. The following estimate holds
a1(v;6,to) = O(v2Vlog\)) ' (101)

where the O - constant does not depend on Vv (but may depend

on@,toandﬁ).

Proof. Since f p(]p§"s) %= 0 when Re s £ 0 and L(p,s) % O
14

when Re s > 1 for any o ‘in X, , it follows from (40) that

1

a1(v;6,to) < I L ln(L(p,-),m(t0+6))~n(L(w,‘),mto)l .
1<m<v+1 pEXO(Q)
Since an L - function Hecke L({X,s) , X €Gr{K) , grows in the
critical strip O < Re s < 1 not faster than a power of Im s,
a classical argument (see, e.g.,[27], § 9.2, or [21], lemma 1,

p. 146-147) shows that
n(L{p,+),T™+1)-n(L{p,+),T) = 0(log;T}) (102)

for an one dimensional p in X, . By a theorem of Weil's ,

[{29], one can write
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2 b
L{s,p) = 1T L(s,xi)
i=1

+ /b, € ®, x; € Cr(k,) , p € X (®)

for some intermediate fields ki : kK € kig K ; therefore (102)

holds for any p in XO(Q) . Thus

a, (vis,t ) =0( £ (md)loglm(t_+6)]) = o(v’logv) ,
1<m<v+1 °©
as claimed.

In notations of § 4 , let Ml = XO(Q) . Write

1

Qg(t) = (1—-a(g)t)b<§g(t), lalg)l =y , b>1; 6g(a(g)" ) £ 0

(103)

for some g in W1(Klk) , so that ct(c_:,t)"'1 is a root of @g

whose multiplicity is equal to b . By definition, S = s(9o) .

Lemma 5. There exists €y in R, such that for every € in

+2

the interval O < g < €o and for each p in qp(g,eb )} the

polynomial @p has a root s<(p)"1 satisfying the condition

|log|k(p}] - log v| < ¢ . (104)

Proof. Choose €, in the interval O < g4 < 1 in such a way

that 5g(t) $ O in the circle: |t - a(g)-1( < e, and let

1
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w be the minimum of l‘f’g(t)! in this circle. Obviously,

w> 0O . Choose w1 > 0 so that

for péga(g,E) y 1< 3<% ,e>0,

(105)

laj(p) - aj(g)l< W, €

where

™M
“.MZO

q>g(t) 1+ taj(g), p(t) 1 4+ 1taj(p).

i=1 j

For each € in the interval O < g < €, we get an estimate

1 oe .

{q:g(t)[ > W ybeb on the circle: |t - a(g)”

Write @P(t) = tbg(t) + hp(t) . By (105), for p E‘.P(g,eb) we
have

1

]hp(t)[ < w1(1+~{)9“9.sb on the circle: [t - alg) | =¢,
as soon as O < g < 1 . Therefore there exists a positive €,
such that

Iy (8)] <[og(t)] when p cP(g,e™") ana

lt - al@ | =€, (106)
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as soon as 0O < g < ¢ . By a well known lemma (cf.,e.g.,{28],

2
§ 3.42), (106) implies that @p has a root K(p)—1 satis-
fying the inequality [K(p)—1 - u(g)"1l < e . This implies

the assertion of lemma 5 .

Lemma 6. If vy >1 , then there are two positive numbers S

and vo such that
. 3 _
az(v,ﬁ,to) > e when Vv > v, - (107)

v-4 A= 4e{v+1) , and define a finite set

Proof. Let ¢

il

L

{i]1ije N, exp((j+1N) LY exp(~e(2v+1))} .

Obviously, there are ¢, > O and v, 0 such that

9
&l > gy3 when v > v, (108)
where |&] denotes the cardinality of £ . In notations of

{103), 1let

Qj(v) =:ﬂb(g,eb+2 ;yv exp (jA +ve),YV exp((§+1)X +ve))

and let
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v +1

Qb)) —.-:ﬂb(g,gb"'z;(yexpe)v , yexp(-€)) ) .

It follows from the definition of I that
Q;0v) € Q) for 5 e d . (109)
By (44) in Proposition 5, one can find v, such that

loj®)] 21 when v >v, jed . (110)

Since Q)< €P (g,eb+2

} , it follows from lemma 5 that for

each p in Qv) there exists «k (p) satisfy.,,ing (104) and such
that QP(K (p)—1) =0, as soon as € < €_ . Let k(p) = lPlS(P)

It follov-rs from (104) that

1 -
537 < Re s(p) f_%— when p € Q(v) . (111

If

27

\T—i-a-é—:{ < 6 ' (1?2}

then we can choose s{p) in such a way that

t, < Im s(p) < t+s . (113)
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In view of (111), (113) and (36) with M = v+1 , we conclude
that for each p in Q(v) the function ZN(s) has a pole
s{p) in Dv(6'to) as soon as Vv satisfies (112) and the in-
equality

£ = v < g . (114)

Moreover, since Re s(p) = (log[ic(y)l)(logipl)_1 , it follows

from (104) that if (112), (114) hold, then condition
s{p) = s(q) , P € Q(v) , g € Q(v)
implies an inequaltiy
|loglp| - loglg|} < 2e(v+1) .
Therefore, since X > 2e(v+1) by definition,
s(p) + s(q) when p € Q,(v), q € Qj,(v),!j-j'l > 2, (115)

as soon as {(112), (114) are satisfied. In view of (115}, (110)

and (108)‘we can choose

— -~ - -1/4
V= max {v1,v2,5 1(log-y) 1(21\"), €, v/ }
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c, . This proves the lemma.

]

and obtain (107) with co = 9

Proof of Proposition 7. It follows from (38.2) and lemma 2

that, in notations of (38),
RN,M(S)TN,M(S) # 0 for s € Dv(ﬁ,to) . (116)

By (101) of lemma 4 and (107) of lemma 6, there exists Vo

for which

az(v;a,to) > a1(v;6,to) when v > vy - (117)

The assertion of Proposition 7 follows from (116}, (117) and

(39).

Corollary 1. If ¢ is not unitary, then ce° = {s | Re s = 0O}

is the natural boundary of the function s+ L(s,®) defined
in €, Dby a sequence of equations (39) when M varies over
H L d

Proof. Let s € c©

. Bach neighbourhood of s contains
Dv(ﬁ,to) for some 6§ in R, , some t_ in R, and some
v > Vg i therefore, by Proposition 7, it contains a pole of

L(s,%) . Thus €° is contained in the closure of the set of
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poles of L(s,®) , and the assertion follows.
Theorem 1 follows from Proposition 3, Proposition 4 and Corolla-

ry 1 .
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§ 6. On scalar product of L - functions; proof of theorem 2.

We start with a few simple remarks concerning convolutions of
L - functions (cf. [20]; [21], Ch.ITI § 1,2). Given r power
series

o

£.(8) = = aln, N , 1 <3<,
J n=0

one defines their Hadamard convolution (cf. [6]) by letting

L r
:I (I a(n,iNt" . (118)
n=0 j=1

L

(f1 * ... *fr)(t)
The following assertion can be deduced by simple calculations
in the ring €[t ]] of formal power series with constant

coefficients (cf. [201], § 3).

Proposition 8. Suppose that £, , 1< j < r , has the form

]

d.
J ey =1 .

fj(t) = I (1 -a(i,j)t) , ofli,j) e, (119)
i=1

and let
r
d=nd.,d1>...>d,n=fd.—r+1. (120)
j=13 - - I j=1 J
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The following identity holds formally in €[[t]l] :

(f1 *,..¥ fr)(t) = (£, ... ‘fr)(t)h(t) '

1

h(t) = 1 (mod t%) , (121)

where h(t) is a polynomial of degree not higher than d-1

and

1

r
(£ coo=£)(8) =2 T (1 -t T alv(i),d)) (122)
r o
v =1
with Vv ranging over the set of sequences
{WHL“.,Mm)l1ivﬁ)idj,vﬁ)en} .
-d,
In particular, if fj(t) = (1-v) 4,1 < j < r, so that
af(i,j) =1 for each pair (i,j) , then
_ (4_gyD
h_(£) =1+ (d-n)t(mod t°) , (123)

where hr(t) is a polynomial of degree not higher than n-d, .
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Corollary 2. If r » 2 and condition (12) is satisfied, then

the polynomial h_(t) in (123) has a root B with gl < 1 .

Proof. By (123), we can write

n—d1 n-—d1
h () = 1 (1+8.t) , B.=d4d~-n,
i =1 J =1
so that
d-n
max |B.} > =— .
3 3 n d1

On the other hand, conditions r > 2 and (12) imply the in-

equality

and the assertion follows.

To prove theorem 2 let, for p € X1 ’
-1
= -t plo
fp(p,t) det(1-t p( p))

and let, in notations of (10) ,

fp(‘)z,t) = fp(p1,t)* — fp(pr,t)
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and

ol
f k't) - fp(p1't) "o s ‘fp(prlt) I

o
P
where p ranges over prime divisors of k . Let, furthermore,

p=p1®o.o &pr

and let
r
S =: Usloy) .
j=1
O /> _ - -1
fp(x,t) = det(1 to, (cp) ® ... ® pr(cp))

therefore, recalling (4) and the definition of S(p) , we get
f;(f,t) = £,(p,t) for p § sX) . (124)
By (121), there is hp(t) in ¢€{t] for which

£, (X, t) = £2(X, )b, (1) . (125)
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Lemma 7. There exists a polynomial ¢ € ¥[t] such that

s(®)< s(X) and
ho(£) =8 () for p ¢ sX) .
Moreover, if r > 2 and (12) holds, then ? is not unitary.

Proof. Let T2 and A™A denote the m-th symmetric and ex-
terior powers of a linear operator A 1in a finite dimensional
complex vector space. By well known identities of linear alge-

bra,

det(1+At) = ¢ tmtr(AmA) ’ det(134t)—1= 5 tmtr(TmA)
m=0 m=0

in @©[[t]]. Since, by Proposition 8, the degree of hp(t) does

not exceed d-1 , it follows from (124) and (125) that

a1
h (t) =9 (t) for p ¢ S(R) , where o(t) =1+ I bt  with
) B, 8, x 21,
by = £ (=1) ‘tr(d p) T tx(T p.) .
%,=0 3=1 J

In particular, taking g to be the unit element in W1(K]k)
one obtains Qg(t) = ((1—t)-d1* .o *(1~t;dr )(1~t}d . There-
fore, by Corollary 2, -Q is not unitary when r > 2 and (12)
holds. This proves the lemma.

We notice now that, by definition,
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L(S:)Z) = I £ ﬁ,‘pl"s) )
p P

where p varies over prime divisors of k . Therefore (124) and

(125) give
L{s,X) = L(s,p) 1 L (pl™ n n dpl™% . (126)
pesE) P p P
where
- £O > -
zp(t) = fp(x,t) det (1 tpﬂ3p)} . (127)

It follows from (126), (127), lemma 7 and Theorem 1 that the
function s+ L{s,X) can be continued meromorphically to c,
and has a natural boundary €° when r > 2 and (12) holds.
If r =1 , then L{s{?) = L(s,p1) by definition. Suppose
that r > 2 arnd (12) doesn't hold. It follows from (10) that
L(s,X) = L(s,p) if d, =1 . In the remaining fall d,=d,=2

and either r = 2 or d,=1, so taking p! =p, 1 p. when
3 2 2 3> 3

r > 2 we reduce the problem to the case d1=d2=r=2 . In this
case, however, a direct calculation shows that

fp(Xrt) = fp(p,t)(1-t2detgﬁap)) for p ¢ s(X) . This completes
the proof of theorem 2.

We should like to conclude this article with a few remarks con-

cerning scalar products of L - functions "mit Grdssencharak-
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teren". Let kj s 1 <3< r, be an extension of k and let
dj = [kj : k] denote its degree; let Xj € Gr(kj) . We define
the scalar product L(s;f) of L - functions Hecke (14) by

equation (10).

Corollary 3. Suppose that d1 > el > dr . The function

s~ L(s,X) can be meromorphically continued to €, . If r > 2
and (12) holds, then £° is the natural boundary of this
function. If either r =1 or r > 2 but (12) does not hold,

then L(s,}) is meromorphic in € .

Proof. Regard xj as an one-dimensional representation of
W(kj) + 1 <3< r, denote by 0y the representation of W(k)

induced by Xj and apply theorem 2 taking into account that

L(S:Xj)=L(S:Dj) 11_<__j< r .,

as formal Dirichlet series.

Remark 4. One can prove (cf. [20] or [21], Ch.II § 3) that,

in fact,

a t i -1 -
L(SIX) = I L(St ‘Pi)L(S,@) Q(S:X) ’
i=1

where o(t) e ¥[t] , &(s,X) = @1 & _(|p|™®) for a finite
peSo P
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set S of prime divisors in k , 2p(t) is a rational func-

tion of t and wi € Gr(Ki) . k € K, € K, K denote the smallest
A

Galois extension of k containing k = kyo eee tko the com~

posite field of k1,...,kr . Moreover, if k1,..., are

r

kr
“ r

linearly disjoint over k , so that [k : k]l = 1 4, , then

j=1

A
t =1, K1 = k and

A more careful calculation {(cf. [21], p.90, Corollary 2) shows
that 2(s,X) =1 when the fields k1""'kr are arithmeti-
cally independent over k . We say that k1""'kr are arith-
metically independent over k (cf.[16], [22]) when
{2 : k] = g d. and |

=1

(ei(Pi),ej(Pj)) =1 whenever 1 < i< j<r,

Pile . pylp

for each prime divisor p in k , where Fj ranges over

prime divisors in kj and ej(pa) denotes the ramification
index of Pj in the extension kj 2 k . In particular, if r=2 ,
d1=d2==2 ' and the discriminants of the quadratic extensions

k(2 k and k,2 k are coprime, then (cf. [19])

L(s,X) = L(s,)L(2s,¥ T,
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where ¢ = (X1° Nf/k1)(x2' Nﬁ/kz) and wo is a grossencharac-
ter in k (depending on X4 and X ).
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