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Introduction.

Let Y be an irreducible reduced projective Gorenstein surface over C. Then
Y is called a del Pezzo surface if the anti-canonical sheaf w;l is ample. When
Y is normal, it is well-known by Brenton, Demazure and Hidaka-Watanabe that
the minimal resolution ¥ is a rational surface or a ruled surface over an elliptic
curve. Moreover the structure of ¥ is also investigated in detail (see [2] ,[3] ,[7]). In
particular, putting d := (wy')? > 0, which is called the degree of Y, it was shown
by Hidaka—Watanabe [7] :

(1) wy' is very ample if d > 3.

(2) wy? is very ample if d = 2.

(3) wy? is very ample if d = 1.

When Y is non-normal, the structure of such a surface was studied by Nagata
[9], Mori [8] (see also Miyanishi [7]). Now, in this paper, we shall study the more
detailed structure of non-normal Del Pezzo surfaces and their normalizations and
give answers to the questions due to Miyanishi [7] :

Question. Let Y be a non-normal Del Pezzo surface. Then

(1) Does Y have isolated singularities ?
(2) Is w@™? very ample ?

The author would like to thank the Max-Planck Institute fiir Mathematik in
Bonn and SFB 170 ”"Geometrie und Analysis” in Géttingen, especially, Professor
F. Hirzebruch and Professor H. Flenner for the encouragement. He also thank Dr.
B. Siebert for the helpful discussion.

Notation

wy : dualizing sheaf of Y

Ky : canonical divisoron Y

F, : Hirzebruch surface of degree t > 0

Yt : mimimal section of Fy

ft : fiber of Fg

Q32 : quadric cone

p(Y) : Picard number of Y’

~ : linear equivalence

multgY : multiplicity of Y at a generic point of E



§1. The structure of non-normal Del Pezzo surfaces

1. Let Y be an irreducible reduced projective Gorenstein surface over C. The
surface Y is called a non-normal del Pezzo surface if Y is non-normal and w3’
is ample. Let Y be a non-normal del Pezzo surface and 0 : Y — Y be the
normalization, and C C Oy be the conductor of o defining closed subschemes
E:=Vy(€C)inY and E := V&={(C) in Y. Then Mori proved the following:

(1.1) Lemma (cf.(3.35) in [8]). (3) h°(Og) =1, h'(Og) = 0.
(i6) X(OF) =1, (o*wy - E) = —2.
(ii2) (wy - E) = —1 and E is irreducible reduced, in particular, E = P!,

Now, let us consider an exact sequence (cf.(3.34.2) in [8]):
(1.2) 0-—>Oy—>o.0?-—>w;l®wg—>0

By operating ®w§€?—" (n>1, n € Z) on (1.2), we obtain

(1.3) 0 — W& " —>o,03,-®w$—" —>w$_"_1®wg—r0

By the projection formula and the Serre duality theorem, we have:

HY(Y;0.0y ®uwy™) = H°(Y; 0.0¢(c*wy"))
= HO(F;0w§ )

and

H(Y;w@™" ' Quwg) = HY(E; O @ wd™1)
= HI(E; Og(—n - 1))
~ H°(E;Op(n-1))
> H°(P'; Opi(n — 1))
= C".
Since H'(Y;w$™™) = 0 by Goto-Mori-Reid (cf. [7] ), we have an exact sequence

(14) 00— HY;0d™) — B(V;0*wf™") — HO(B; Op(n — 1)) — 0

This implies

(1.5) Lemma. h°(0*w® ™) =R (w@ ™) +nforn>1, nekZ



2. Let p: Y ~— Y be the minimal resolution with the exceptional set U;4;. We
put T:=cop: Y —Y

Since wy = ¢*wy @ C ( namely, Ky ~ 0* Ky — E as a Weil divisor), we have

(1.6) Ko ~m* Ky —E— A4,
where E is the proper transform of E in f’, and

A=) kidi (ki €Z, ki >20),

Thus we have easily

(1.7) Lemma. P,(Y):= dim HO(?;O(mK;;.)) =0 foreverym€Z, m>0. In
particular, Y is a rational or a ruled surface.

3. We put £ := —7*Ky . Then £ is nef and big on ¥ since —Ky is ample. On
the other hand, since —(Kp + £) = E + A is effective, the adjoint bundle Ko +L
is not nef. Hence, by the Cone theorem (cf. [6] [8]), there exists a contraction
¢ : Y — Z of the extremal ray R := R, [f], where £ = P! with

() p(¥)=p(2)+1,
(i) (Kp +£)-R <0,
(iii) ¢(C) is a point for a curve C iff C € R.
(1.8) Lemma. dimZ <1 and p(¥) < 2.

Proof. Assume that dimZ = 2. Then ¢: ¥ — Z is birational and there exists an
irreducible curve C' € R such that (C?) < 0 and (K¢ + £) - C < 0. Hence C is a
(=1)-curve and (L - C ) = 0. This shows that C is an exceptional curve of u. This

1s absurd because p : ¥ — Y is the minimal resolution. Thus we have dim Z < 1,
hence p(¥) < 2 by (i). O

By (1.8), we have two cases : p(¥) =1 and p(¥) = 2.
(1.9). The case of p(}A’) =1:

In this case, we obtain ¥ = ¥ 2 P2 by (1.7). We put d := (w}) = (K%) > 0.
Then we have —o* Ky ~V/d-G for a line G in P?. Since —(Kp —0"Ky) ~ (3—vd)-G
is ample on P?, we obtaind =1 or d = 4.

(1.9.1). If d = 1, we have o*wy' = Op2(1). Hence we have h°(0*wy') = 3 and
RO(wy') = 2 by (1.4). Let oy ¥ ——— > Pl“v'| be a rational map defined
by the linear system |wy!|. Then the composition B -1 00: P2 — —— > P! has

a unique point of indeterminancy, that is, Bslwy'| # 0. Hence wy' is not very
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ample. Moreover, since (G - E) = (0*wy' - E) = 2, E is a conic (not necessarily
irreducible) in P2.

(1.9.2). If d = 4, we have 0*wy' = Op2(2). Hence we obtain h%(c*wy') = 6
and h“(wyl) 5 by (1.4). The linear system |o*wy! | gives the Veronese embedding
®. UK Y = P? — P® and then Y is obtained by the one point projection from the

Veronese image ®(P?) — P° (see (1.4) with n = 1). One can see that jwy| is very
ample. Moreover, since (¢*wy! - E) = 2(G-E) = 2, E is a line on P?, and then the
restriction o : E — E is a two-fold covering.

(1.10). The case of p(?) =

In this case, ¢ : Y — Z is a P'-bundle over a smooth algebraic curve Z. Let f
be a fiber of ¢. Then, by (ii), we obtain (K¢ + L) - f = =24 (L f) <0, hence we
have (L - f) = (0*wy' - f) = 1. Since —(Kp + £) = E + A, we have two cases:

(@) (4-f)=0,(E-f)=1,0r

() (4-H=1, (B-f)=0.

(1.10. a) In the case (a), since (A- f) = 0, Y is smooth, hence we have Y =
Y, E=E, L= —0*Ky and Ky ~ o*Ky — E. By (1.1)-(i), E is connected and
each irreducible component of E is a smooth rational curve. On the other hand,
since (E - f) = 1, E has an irreducible component E; with (E; - f) = 1. This
implies Z is rational and hence Y = F, for some ¢t € Z, t > 0. Since (E- f;) =
(—=o*Ky - fi) = 1, we have linear equivalences:

—O'*KY ~ Et + mft
E ~ i+ nfe,

for some m, n € Z.
Taking into consideration that (—o*Ky-X;) > 0 and d = (—o* Ky )?, one obtains
the following
Y=F;, (d22)
(1.10.1) —0*Ky ~ Xy o+ (d—1)fs4—2
E~Zi s+ faa,
or
Y=F;y (d>4)

(1.10.2) —0*Ky ~ Zg_4+ (d—2)fa—4
E=24, . .

In both cases, we have h%(0*wy') = d+2 and hence h%(wy') = d+1 by (1.5). Then
the linear system |o*wy | gives an embedding @ := D)ozt Y - P4t ifd > 3 for
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(1.10.1) (resp. d > 4 for (1.10.2)) with a relation d = deg ®(Y) = codim (Y) + 1.
Next, take a general irreducible member C € |wy'|. Let C € |o*w3!| be the proper
transform of Cin Y = Fy, wheret =d -2 (d > 3)ord—4 (d > 4). Then C
is a smooth rational curve with the self-intersection number (-C'_z) = d in Fy. Since
p.(C) =1, C is a rational curve with a cusp or a node. Let us consider an exact
sequence

0— Oy —wy! = 0c®uwy — 0.

Since H'(Y; Oy) = 0, we obtain

(k) 00— H'(Y;0y) — H(Y;wy') — H(C;Oc @uwy') — 0.

One can easily show that Oc(wy') is very ample on C if d > 3. Hence wy' is
also very ample by (%). Indeed, C (:_IP‘"‘1 is obtained from C C P¢ by a point
projection, and Y is obtained from ®(Y) < P4*! by a point projection (see (1.4)
with n = 1).

(1.10.b). In the case (b), since (A- f) = 1, we have Sng # 0, namely, Y #£Y.
In particular, A is the negative section of the P!-bundle ¥, hence Y is a cone
over the curve Z. From the relatlon (E f) =0, we obtmn a linear equivalence
E~Ekf (k€ Z) Since (0*wy’ E) = 2 and (0*wy' - f) = 1, we have easily
k = 2, that is, E ~ 2f. This yields (E- A) = 2. Thus E consists of two different
generating lines or double generating lines. By the adjunction formula, one has
2p.(A) -2 = A- (K¢ + A) = A(— E+ a"‘Ky) = —(A- E) = —2. This yields
pa(A) = 0, namely, the negative section A is a smooth rational curve. From the

relations
(a'w;l -A) =0, (J‘w;l -f)=1, ((.'Jf'(...),?])2 =d,

we obtain

Y=F, (d>2)
(1.10.3) o*wy! ~ Ty + dfs
A=5Xy

Hence we have h%(0*wy') = d + 2 and h%wy') = d+ 1 by (1.5). If d > 3, then
Y < P4t! is a cone over a smooth rational curve of degree d in P¢ and E consists
of two different generating lines or double generating lines. One can also see that

wy! is very ample and that Y is a cone over a nodal or a cuspidal rational curve if
d>3.

Summarizing (1.9.1),(1.9.2),(1.10.1),(1.10.2) and (1.10.3), we have the following

Theorem I (cf. [9], [7]). Let Y be a non-normal del Pezzo surface and o : Y —
Y the normalization. Let C C Oy be the conductor of o defining closed subschemes
E:=Vy(C)inY and E := V5{C) in Y. Let d := (wy')? be the degree of Y. Then
we have the following five cases:



(A)d=1 and
(1) (Y, o*wy') = (P?, Opa(1)).

(2) E is a (not necessarily irreducible) conic in Y = P2. In the case where E is
a smooth conic, o : E — E is a two-fold covering.

(3) Ro(wy') =2.

(4) wy! is not very ample.

(5) Bs|wy'| # 0.
(B) d =4 and

(1) (¥, o*wy') = (P?, 0p(2))._

(2) E is a line in P?, and 0 : E — E is a two-fold covering.

(3) howy') =5.

(4) wy' is very ample and Y is obtained by a point projection from the Veronese
transform ® -1, : P2 — P° of P? in P®.

(C)d>2 and

(1) (¥, 0%wy') = (Fa—z, O(Za—z + (d — 1) fa-2))- _

(2) E ~ X4+ fq isirreducible (it can occuronly ifd =2, 3), or E = £4_5U f4_5
(consisting of the negative section and a fiber). In the case where E is
irreducible, the restriction o|z : E — E is a two-fold covering.

(3) Kwy") = d +1.

(4) Ifd > 3, then Y = Fy_; is embedded into P4t! with degree d by the linear
system |Z'd 2 + (d — 1)fa—2| and then Y is obtained by a point projection
from Y — P4+ in particular, wyl is very ample.

(D)d >4 and

(1) (Y, o*wy') = (Fa—s, O(Za—yg + (d - 2)fa-4))-

(2) E = Xy_, is irreducible and o|z : E — E is a two-fold covering.

(3) h°(u;,‘) =d+1

(4) Y = Fy_4 is embedded into PA*! by the linear system |X4_4 + +(d —2) fa—4|
with degree d and Y is obtained by a point projection from Y — P¢+1  in
particular, wy! is very ample.

(E)d > 2 and

(1) (Y, o*wy') & (Sq, O(1)), where Sg < P! is a cone over a smooth ratio-
nal curve of degree d in P4 if d > 3.

(2) E consists of two generating lines or double generating lines.

(3) If d > 3, then Y is obtained by a point projection from Sy — P+, hence
Y is a cone over a nodal or a cuspidal rational curve if d > 3, in particular,
w;,l i1s very ample.
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Corollary II. (1) The singular locus of Y coincides with the non-normal locus of
Y, that is, Y doed not have isolated singularities.

(2) Let Y° be the smooth part of Y. Then Y is a compactification of C? if and
only if the fundamental group m(Y?°) = 1.

§2. Very ampleness of w$—3

4. Since w;l is very ample if d > 3, we have only to consider the case of d =1
and d = 2.

R—

(2.1) Proposition. w3 is very ample ifd = 1

Proof. By Theorem I-(A), we have

Y ~ p2
otwy! = 0p(1)
E : conic on P?

(2.1.1). In the case where E = E, + E,, where E;'s are two distinct lines on P?,

we may assume _
{ E] = {21 = O}
Ez = {z0 = 0},
where (zg : 21 : z3) is a system of homogeneous coordinates on PZ.

Looking at the exact sequence (1.4) with n = 3, one can take a basis {hy,..., hs}
of H(Y,w§2) = C7 as follows:

( o*hy = 202122
o*hy =22z
o*hy = 2522

¢ o*hy = (z0+21)°
o*hy =(20-|-21)222
0"’15 = (Zo + ZI)Z%

\ O"hs = Zg .

Let
P = (6" fo:0"hy ... 0%hg) : P2 — PP

®:=(hg:hy:....: hg): P2 — PP
be the associated morphisms. Since

B(E)=(0:0:0:23:222;: 2022 : 23) = P! — P°,

(E;)=(0:0:0:23:2%25: 2922 : ) =P o PP



(E,) = B(E;) = P! = ®(E) is a twisted cubic curve in P3.

On the affine part {z; # 0}, if we put z := -Zg and y := -i—l, the morphism
2 2
® : C?(z,y) — C8(Xy, -, Xs) is given by:

( Xo=zy
X, =z%
X; = zy?
| Xs=(z+yy
Xy =(z+y)?
(| Xs=z+vy.

One can easily verify that @ is one to one and that the Jacobian J(®) has the rank
two on {z # 0, y # 0}. In particular, ® is one to one on Y.

We put
V = ®(P?).
A= @(E)
Vo := ®(z;, # 0) = &(C?) — CE.
By an easy computation, we obtain the defining equation of Vj :
Vo = {(Xo, X1,Xs) € C*| X5 — XoX1 X5 + X{ = 0}.

The non-normal locus of Vj is the Xs-axis {Xy = X; = 0}. Thus V is a
Gorenstein surface with multaV = 2.
One sees that w‘_,l is ample. In fact, take a non-vanishing holomorphic 2-form

wy, on Vg
oy, = dXy A dX, (= dXs A dX, _ dXs ANdX, .
0 Xo X 3X2-X;Xs  XoXs-2X,
Since dz A dy
@*on = y
Ty
we have

*wy =mwp ® Opz(E] + Ez) = Opz(—l).

Thus @'w;l = Opz(1) is ample. Since & is a finite morphism, wy; is also ample.

Now since (wy;')? = 1 and since H3(V,Z) & Z, we have PicV 2 Z-wy,'. Let £ be

a hyperplace section of V < P®, Since A is a twisted cubic, we obtain (£-A) = 3.
Since £ = (wy')®* for some k € Z, we obtain

3=(£-A)=k(w;l-ﬂ)=k.

This yields £ = w{?"s. By construction, one sees Y is isomorphic to V and hence
w?‘s is very ample.
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(2.1.2). In the case where E = 2E;, where Ej is a line on ¥ = P2, We may
assume .
Eo = {Zu = 0}

In this case, we take a base {ho, ..., h¢} of H(Y;w$™3) = C7 as follows:

(o*hy = 28z
o*hy = ziz;
o*h, =2}

{ oc*hy =23
o*hy =23z
o*hy =z122

( 0*hg = zi” .

We put & := (0*hp : ... : 0*hg) : P2 — P®. Then, by an argument similar

to (2.1.1), one can verify that V := ®(P?) is isomorphic to ¥ and w®~® is very
ample. In particular, the defining equation of Vy := &({z, # 0}) € C8(Xo,--- , X5)
is given by

{(XO'JXZ’X‘l) € C3 |X§ = Xg}.

(2.1.9). In the case where E is an irreducible conic on ¥ = P?, we may assume
E={(z0:21:2) €P?| 2} = 5122}

Then we can also take a basis {h;} (0 < i <6) of H'(Y;w®™?) as follows:

( o*hy = 2p(22 — 2127)
o*hy = z(2 — z123)
o*hy = z2(2¢ — z122)

< O"ha =Zi{
o*hy =2iz
o*hs = z23

\ U'hs = Zg .

Let  := (d*ho : ... : 0*hg) : P2 — P® be the associated morphism of P? to F%.
Claim. CI)(E) =: A 2 P! is a twisted cubic curve in P3.

In fact, we consicer an injection A : P!(s : t) — P%(2g : 21 : 23) with

29 = st
21 =32
Z9 =t2.

Then we have easily E = A(P!), hence
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A =30 AP) =(s%: 5% : 5% : t%) e P,
{u=.s12
v = t2,

then we obtain a two-fold covering p : P'(s : t) — P!(u : v).
Then the morphism

Now we put

(u:v) — (¥ : vl uv? 1 0¥)
yields an isomorphism A 2 P!(u : v), in particular, A is a twisted cubic curve in
P2. Moreover, one can easily see that ®|7 : E — AP C P isa twofold
covering. Thus we have the claim.
Then one can also prove that Y is isomorphic to V := ®(P?) and that w3 is
very ample. The defining equation of V := ®({z; # 0}) C C®(X,,--- ,X5) is given
by

{(Xo0, X2, Xs) € C*| X5 = X2(X2 + X5)).
By (2.1.1),(2.1.2) and (2.1.3), we complete the proof of (2.1). O

(2.2) Proposition. w®™?

Proof. In this case, we have two cases by Theorem I-(C) and (E):

is very ample if d = 2.

Y ~ P! x P!
o*wy! = Opxpi(l,1)
E ~ Lo+ fo,
o Y x Q2
atwy' = Og(1)
E = g1+ g2 or 2o,

where g; (1 = 0,1,2) is a generating line of Q3.
— The case of Y @ P! x P! —

(2.2.1). In the case where E = Xy + f, (two irreducible components with the
self-intersection number £ = f& = 0), let (z : y) x (u : v) be the homogeneous
coordinates of P! x P!, then we may assume

{El Z=20={.’15=0}
Eg = 0={u=0}

By the exact sequence (1.4) with n = 2, one can take a basis {hg, --- , hg} of
HO(Y;w®?) = C7 as follows:
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((o*hy = rlu?
o*hy =z uv
o*hy = zyu?

¢ o*hy = zyuv

o*hy = (zv + yu)?
o*hs = (zv+yu)yv
L o*hs =y?v?.

Let ® ;= (0*hg:---:0*hg) : P! x P! — P® be the associated morphism.

We put V := ®(P! x P!) C P5. Then one can prove that Y is isomorphic to
V := &(P' x P') and that w$? is very ample as before. Moreover the defining
equation of Vp := ®({y # 0,v # 0}) C C%(X,,--- ,X5) is given by

{(X2)X3aX5) € Ca |X22 - X2X3X5 +Xg = 0},

(2.2.2). In the case where E ~ X + f; is irreducible, we may assume
E={(z:y) x (u:v) € P x P! |zv = yu}.

Then we take a basis of HO(Y;w$™?) 2 C as follows:

(0*hy = (zv — yu)?
O"hl = (I'U hand yu)::u
o*hy = (zv —yu)uv

¢ o0*hy = (zv—yu)yv
o*hy = aly?
o*hs = zyuv

{ 0*hg = u?v?.

We put & := (6*hg : --- : 0*hg) : P! x P! — P°. Then one sees that Y = V :=

@(P! xP!) — P° and w§~? is very ample as before. Moreover, the defining equation
of Vp := &({y # 0,v # 0}) C C®(Xy,- -+, Xs) is given by

{(X3,X4,X5) € CP1 X2+ X3 Xy = X2 X5}

— The case of Y = Q2 —.

In this case, the minimal resolution Y of Yis isomorphic to the Hirzebruch
surface F;. Let 7 : ¥ 25 ¥ -2 Y be as before. Then the proper transform
E = y*E = n*(E) consists of either two distinct fibers E, + E, or double fibers
2E0 of Fg.

Let {(ui,v;) € Ui x P! };=1 2 be a coordinate covering of Y F, with

1

uy

— .2
vz = ujvi,
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where U; = C and v; is a non-homogeneous coordinate of P!.
(2.2.8). In the case where E = E; + E;, we may assume

Ei={u;=0}(=1,2).
Then one can take a basis {hg, k1, ,hs, hg} of H'(Y;wP %) = C" as follows:
( ﬂ‘hg =1
w*h, = uv
w*hy = u?v?
¢ m*h3 = uv(l + uv)
m*hy = 1 + uv?
m*hs =1+ v+ uv
\ 7 he = (1 + v + u?v)?

on Uy x (P! — 00) & C?(u,v) , where we put (u,v) := (u;,v;) for simplicity.

Now we put

$:=(7r'ho:1r'h1:---:w‘hE,:'rr‘hﬁ):?—»PG
=(hg:hyi:--:ths:hg): Y — P°

Then one sees

(1) ‘I'(E )= ®(E) 2 P! is a conic for i = 1, 2.

(2) 3 is injective on Y- (E; U E2 U X,).

(3) @ is injective on Y.

(4) ®(Z2) is a point.

We put V := &(¥) = &(Y) C P°. Then one can also see that ¥ & V and that
w2 is very ample. The defining equation of V; := ®(U; x C) C C¥(X,,- -+, Xg)
is given by

{(X1,X4,X5) € C | (Xs ~ 1)* = X3 (X4 — 1)(Xs — 1) + X} =0}

(2.2.4). In the case where E = 2E,, we may assume that
Eu = {u1 = 0}
Then we take a basis {ho, hy, -+, hs, he} of HO(Y;wg_s) 2 C7 as follows:

(( m*hy =1

m™h; = u?v

T*hy = utv?

$ m*hy = u?v(1 + uv)

m*hy = u?v(1 + v + u?v)
7*hs =1+ v+uv

C m*he = (1 + v + u?v)?
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on Uy x (P! — c0) = C?(u,v). Then we obtain Y & V := &(Y) and w$~? is very
ample, where ® := (hg: hy :---: hs : hg): Y — PE.
By (2.2.1),(2.2.2),(2.2.3) and (2.2.4), we complete the proof of (2.2). O

Therefore we have finally
Theorem II. Let Y be a non-normal Del Pezzo surface and d = (wy')? the degree
of Y. Then

(1) d =1 = w®™* is very ample.

(2) d=2=> wP? is very ample.

3)d23= w}_,l is very ample.

Remark.

(1) One can also prove the very ampleness of wy' (d > 3) by the explicit way
as above.
(2) If Y is normal, then Theorem II is already known (cf. [Corollary 4.5 ;5]).
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