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Introd uction.

Let Y be an irreducible reduced projective Gorenstein surface over C. Then
Y is called adel pezzo surface if the anti-canonical sheaf Wyl is ample. When
Y is normal, it is well-known by Brenton, Demazure and Hidaka-Watanabe that
the minimal resolution Y is a rational surface 01' a ruled surface over an elliptic
curve. Moreover the structure of Y is also investigated in detail (see [2] ,[3] ,[7]). In
particular, putting d := (wy:l)2 > 0, which is called the degree of Y, it WBB shown
by Hidaka-Watanabe [7] :

(1) Wyl is very ample if d ~ 3.
(2) Wy:2 is very ample if d = 2.
(3) wy:3 is very ample if d = 1.

When Y is non-normal, the structure of such a surface was studied by Nagata
[9], Mori [8] (see also Miyanishi [7]). Now, in this paper, we shall study the more
detailed structure of non-normal DeI Pezzo surfaces and their nonnalizations and
give answers to the questions due to Miyanishi [7] :

Question. Let Y be a non-nonnal DeI Pezzo 8urface. Tben

(1) Does Y bave isolated singularities ?
(2) 18 W~-3 very aJnple ?

The author would like to thank the Max-Planck Institute für Mathematik in
Bonn and SFB 170 "Geometrie und Analysis" in Göttingen, especially, Professor
F. Hirzebruch and Professor H. Flenner for the encouragement. He also thank Dr.
B. Siebert for the helpful discussion.

Notation

wy : dualizing sheaf of Y
K y : canonical divisor on Y
IF t : Hirzebruch surface of degree t ~ 0
E t : minimal section of F t

/t : fiber of F t

Q~ : quadric cone
p(Y) : Picard number of Y
rv : linear equivalence
multEY : multiplicity of Y at a generic point of E
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§1. The structure of non-normal DeI Pezzo surfaces

1. Let Y be an irreducible reduced projective Gorenstein surface over C. The
surface Y is called a non-normal deI Pezzo surface if Y is non-normal and wyI

is ample. Let Y be a non-normal deI Pezzo surface and u : Y --4 Y be the
normalization, and C c Oy be the conductor of u defining closed subschemes
E := Vy(C) in Y and E := Vy{C) in Y. Then Mori proved the following:

(1.1) Lemma (cf.(3.35) in [8]). (i) hO(Oe) = 1, h1(0e) = O.

(ii) X(Oy) = 1, (u*wy . E) = -2.

(iii) (wy . E) = -1 and E is irreducible reduced, in particular, E f"V IrI .

Now, let us consider an exact sequence (cf.(3.34.2) in [8]):

(1.2) o--+ Oy --4 u.Oy --+ wy1 ~WE --40

By operating ~w~-n (n ~ 1, n E Z) on (1.2), we obtain

(1.3) o--4 wC8>-n --+ U Ov 101 wC8>-n --4 w0 - n- I iO>. WE --4 0Y • y'Ol Y Y 'C:I

By the projection formula and the Serre duality theorem, we have:

HO(y j l7*Oy /&) w~-n) e! HO(y; u*Oy(u·wy1»)
~ HO(Yj l1·w~-n)

and

HO(Y;w~-n-I0 W E) ~ H I(EjOE 0w~n+l)

~ H1(Ej CJE(-n - 1»)

f"V HO(Ej OE(n - 1»

"J HO (1P'1 j OIfH (n - 1))
f"V Cn.

Since Hl(Y;w~-n) = 0 by Goto-Mori-Reid (cf. [7] ), we have an exact sequence

This implies

(1.5) Lemma. hO(u·w~-n)= hO(w~-n) + n for n ~ 1, n E Z.
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2. Let It : Y ----.. Y be the minimal resolution with the exceptional set UiAi. We
put 7l" := (1 0 Jl : Y ----+ y

Since wv = u*wy t&l C ( namely, K y rv u* Ky - E as a Weil divisor), we have

(1.6) K y rv 7t"* Ky - E- A,

where E is the proper transform of E in Y, and

A = L: kiAi (ki E Z, ki 2:: 0).
•

Thus we have easily

(1.7) Lemma. Pm(Y):= dirn HO(y; O(mKy )) = 0 for every mEZ, m > O. In

particular, Y is a rational or a ruled surface.

3. We put {, := -7t"* K y . Then {, is oef and big on Y since -Ky is ample. On
the other hand, since -(Ky + (,) = E+ A is effective, the ,adjoint bundle K y + r.
is not nef. Hence, by the Cone theorem (cf. [6] [8]), there exists a contraction
<p : Y --t Z of the extremal ray R := l4[l], where i rv pI with

(i) p(Y) = p(Z) + 1,

(ii) (K9 +(,) .R < 0,

(iii) <p(C) is a point for a curve C iff CER.

(1.8) Lemma. dim Z ~ 1 alld p(Y) :$ 2.

Proof. Assmne that dirn Z = 2. Then <p : Y~ Z is birationaJ. and there exists an
irreducible curve CER such that (C 2 ) < 0 and (KY +(,) .C < O. Hence C is a
(-1)-curve and ({, . C) = O. This shows that C is an exceptional curve of Jl. This
is absurd because Jl : Y~ Y is the minimal resolution. Thus we have dirn Z ::; 1,
hence p(Y) ::; 2 by (i). 0

By (1.8), we have two cases : p(Y) = 1 and p(Y) = 2.

(1.9). The case of p(Y) = 1 :

In this case, we abtain Y = Y rv p2 by (1.7). We put d := (w}) = (K?) > O.
Then we have -u* K y rv..JJ·G for a line Gin r 2 • Since -(Ky -(1* K y) rv (3-v'd).G
is ample on p2, we obtain d = 1 or d = 4.

(1.9.1). H d = 1, we have (1*Wy I = Op2(1). Hence we have hO(U*WyI) = 3 and

hO(Wy:I) = 2 by (1.4). Let ~IWyll : y - -- >- plwy11 be a rational map defined

by the linear system IwyII. Then the composition ~lwyll 0 U : p2 - -- >- pI has

a unique point of indeterminancy, that is, BslwyII =F 0. Hence wyI is not very
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ample. Moreover, since (G . E) = (U·Wy:l . E) = 2, E is aconie (not necessarily
irreducible) in p2.

(1.9.2). H d = 4, we have U·Wy:l = Op2 (2). Hence we obtain hO(u*wy:l) = 6
and hO(wy:l) = 5 by (1.4). The linear system IU*Wyl Igives the Veronese embedding
~lwyll : y I'"V IP'2 ~ p5 and then Y is obtained by the one point projection !rom the

Veronese image ~(P2) ~ pS (see (1.4) with n = 1). One can see that IWyl I is very
ample. Moreover, since (a*wy:l . E) = 2(G· E) = 2, E is a line on p2, and then the
restriction OE : E ---+ E is a two-fold covering.

(1.10). The case oE p(Y) = 2 :

In this case, <p : Y ---+ Z is a pl_bundle over a smooth algebraic curve Z. Let f
be a fiber of <p. Then, by (ii), we obtain (KV +!) . f = -2 + (.c . f) < 0, hence we

have (r. . f) = (a*wy1 . f) = 1. Since -(Ky + r.) = E+ A, we have two cases:

(a) (A· f) = 0, (E. I) = 1, or

(b) (A· f) = 1, (E. f) = O.

(1.10.a). In the case (a), since (A . I) = 0, Y is smooth, hence we have Y =
Y, E = E, r. = -u·Ky and K y I'"V u· Ky - E. By (1.1)-(i), E is connected and
each irreducible component of E is a smooth rational curve. On the other hand,
since (E . I) = 1, E has an irreducible component E 1 with (E1 . I) = 1. This
implies Z is rational and hence Y I'"V Ft for some t E Z, t ;:: O. Since (E . It) =
(-a*K y . ft) = 1, we have linear equivalences:

-u* K y I'"V E t + mit

E I'"V E t + nlt ,

for some m , n E Z.

Taking into consideration that (-u* K y . E t) > 0 and d = (-u* K y ) 2
, one obtains

the following

(1.10.1)

or

(1.10.2)

Y I'"V Fd-2 (d ~ 2)

-u*K y I'"V Ed- 2+(d - 1)ld-2

E I'"V E d - 2 + Id-2,

Y I'"V Fd-4 (d ~ 4)

-u·K y I'"V Ed-4 + (d - 2)ld-4

E = E d - 4 •

In both cases, we have hO(a*wy1) = d+2 and hence hO(wy:l) = d+ 1 by (1.5). Then
the linear system lu* wy1 Igives an embedding cI- := cI> Ier. W y1 I : Y ~ pd+1 if d ;:: 3 for
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(1.10.1) (resp. d;:::: 4 for (1.10.2)) with a relation d = deg ~(Y) = codim W(Y) + 1.
Next, take a general irreducible member CE IWy11. Let C E 10'·Wy11 be the proper
transform of C in Y = IF t , where t = d - 2 (d 2:: 3) or d - 4 (d;:::: 4). Then C
is a smooth rational curve with the self-intersection number (C

2
) = d in f t • Since

Pa(C) = 1, C is a rational curve with a cusp or anode. Let us eonsider an exaet
sequenee

0-.. Gy -.. Wyl ~ Oe @Wy l ---+ O.

Since H 1 (Y j Oy ) = 0, we obtain

(*) 0~ HO(YjOy) ---+ HO(Y jWy l) -. HO(C;Oe@ Wy l) -.. O.

One ean easily show that OC(WyI) is very ample on C if d ~ 3. Hence WyI is
also very ample by (*). Indeed, C c pd-I is obtained from C C pd by a point
projection, and Y is obtained from <I»(Y) ~ pd+l by a point projection (see (1.4)
with n = 1).

(l.lO.b). In the case (b), sinee (A· f) = 1, we have SingY # 0, namely, Y # Y.
In particular, A is the negative section of the pl-bundle Y, henee Y is a eone
over the curve Z. From the relation (E . f) = 0, we obtain a linear equivalence
E rv kf (k E Z). Since (u·wy1

• E) = 2 and (u*wy1
• f) = 1, we have easily

k = 2, that is, E f'V 2f. This yields (E . A) = 2. Thus E consists of two different
generating lines or double generating lines. By the adjunction formula, one has
2pa(A) - 2 = A . (Ky + A) = A(-E + u·K y ) = -(A· E) = -2. This yields
Pa(A) = 0, namely, the negative seetion A is a smooth rational curve. From the
relations

we obtain

--
Y~IFd (d;::::2)

* -1 '{"'l d'i0' W y f'VL.ld+ :ld

A=Ed

Henee we have hO(U*Wyl) = d + 2 and hO(wy1
) = d + 1 by (1.5). If d ~ 3, then

Y ~ pd+l is a eone over a smooth rational eurve of degree d in pd and E eonsists
of two different generating lines or double generating lines. One can also see that
WyI is very ample and that Y is a eone over a Dodal or a cuspidal rational curve if
d~ 3.

Summarizing (1.9.1),(1.9.2),(1.10.1),(1.10.2) and (1.10.3), we have the following

Theorem I (cf. [9], [7]). Let Y be a non-normal dei Pezzo sunace and U : Y -..
Y the normalization. Let C C Oy be the conductor of a defining c10sed subschemes
E := Vy(C) in Y and E := Vy{C) in Y. Let d := (Wy:l)2 be the degree of Y. Then
we have tbe following live cases:
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(A) d = 1 and

(1) (Y, O'*Wyl) ~ (IF2 , ~:l(1)).

(2) E is a (not necessarily irreducible) comc in Y rv p2. In the case where E is
a smooth conic, O'E: E ---+ E is a two-fold covering.

(3) hO(wy1
) = 2.

(4) wy1 is not very ample.
(5) B s lwy: 1

l i 0.

(B) d = 4 and

(1) (Y, O'*Wy:l) rv (IF2 , Op:l (2)).
(2) E is a line in p2, and OE : E ---+ E is a two-fold covering.
(3) hO(wy:l) = 5.
(4) wy: 1 is very ample and Y is obtained by a point projection trom tbe Veronese

transform eplwy:11 : p2 '-+ pS of p2 in PS.

(C) d? 2 and

(1) (Y, O'*Wyl) rv (Fd- 2 , 0(Ed-2 + (d -1)fd-2))'
(2) E rv E d+ fd is irreducible (it can occur o1l1y if d = 2, 3), or E = Ed- 2Ufd-2

(consisting of the negative section and a fiber). In tbe case where E is
irreducible, tbe restrietion O'IE : E ---+ E is a two-fold covering.

(3) hO(Wy:l) = d + 1.
(4) H d ? 3 , then Y ~ Fd-2 is embedded into pd+l with degree d by the linear

system IEd-2 + (d - 1)fd-21 and then Y is obtained by a point projection
from Y '-+ pd+l, in particular, Wy:l is veryample.

(D) d? 4 and

(1) (Y, (T*Wyl) ~ (Fd- 4 , 0(Ed-4 + (d - 2)fd-4))'
(2) E = E d - 4 is irreducible and (TI E : E ---+ E is a two-fold covering.
(3) hO(wy1

) = d + 1.

(4) Y rv IFd-4 is embedded into pd+l by the linear system IEd-4 + (d - 2)fd-41
witb degree d and Y is obtained by a point projection from Y '-+ pd+l, in
particular, wy1 is very ample.

(E) d ? 2 and

(1) (Y, (T*Wyl) rv (Sd, 0(1)), where Sd '-+ pd+l is a cone over a smooth ratio
nal curve of degree d in pd if d ? 3.

(2) E consists of two generating lines or double generating lines.
(3) H d ? 3, then Y is obtained by a point projection from Sd '-+ pd+l, bence

Y is a cone over a nodal or a cuspidal rational curve if d ? 3, in particular,
Wyl is very ample.
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Corollary 11. (1) Tbe singular locus oE Y coincides witb tbe non-nonnallocus oE
Y, tbat is, Y doed not have isolated singulari ties.

(2) Let Y o be the smooth part oEY. Then Y is a compactmcation ofC'J if and
only iE the fundamental group 71"1 (yO) = 1.

§2. Very ampleness of W~-3

4. Since wy1 ia very ample if d 2: 3, we have only to consider the case of d = 1
and d = 2.

(2.1) Proposition. W~-3 is very ample iE d = 1

Proof. By Theorem I-(A), we have

(2.1.1). In the case where E = EI +E2 , where E/s are two distinct lines on p2,
we mayassume

{
EI = {Zl = O}
E 2 = {Zo =O},

where (zo : zl : Z2) is a system of homogeneous coordinates on p2.
Looking at the exact sequence (1.4) with n = 3, one can take a basis {ho, ... , h6 }

of HO(y, w~-3) rv C7 as folIows:

Let

u*ho
u·h1

u·h2

u·h3

u·h4

u*hs
u·h6

= ZOZlZ2

= Z5 Z 1

= zoz~

= (zo + Zl)3

= (zo + ZI)2 Z2

= (zo +ZI)Z~

- Z3- 2'

<1»: = (u· 10 : u*h 1 : •••• : u*h6 ) : p2 ---+ pB

<I> : = (ho: h1 : •••• : h6 ) : p2 ---+ pB

be the associated morphisms. Since
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<p(E I ) = <p(E2 ) ~ pI = ~(E) is a twisted cubic curve in p3.

On the affine part {Z2 f O}, if we put x

~ : C2(x, y) ---+ C6 (XO'" • ,X5 ) is given by:

X o = xy

Xl = x 2 y

X2 = xy2

X 3 = (x + y)3

X 4 =(x+y)2

Xs = x + y.

One can easily verify that ~ is one to one and that the Jacobian J(~) has the rank
two on {x f 0, y f O}. In particular, ~ is one to one 00 Y.

We put

V := ~(p2).

6:= ~(E).

Vo := ~(Z2 f 0) = ~(C2) L-+ C6
.

By an easy computatioo, we obtain the defining equation of VO :

The non-normal locus of Vo is the Xs-axis {Xo = Xl = O}. ThuB V is a
Gorenstein surface with multt:..V = 2.

One sees that w yl is ample. In fact, take a non-vanishing holomorphic 2-form
wVo on Vo

W~ = dXo 1\ dX1 (= dXs 1\ dX1 = dXs 1\ dXo ).
o XOXI 3X~ - XIXs XoXs - 2X]

Since
;r,.. dx 1\ dy
'*" wVo = ,

xy

we have
~*Wv = WIP:Z ® Op:z(E1 + E 2 ) = Op:z(-1).

Thus ~·wVI = Op:z(l) is ample. Since <Pis a finite morphism, wv: l is also ample.
Now since (wy1

)2 = 1 and sinee H 2 (V, Z) ~ Z, we have Pie V "J Z . wyl
. Let l, be

a hyperplaee seetion of V L-+ p6. Since 6 is a twisted cubic, we obtain ([,·6) = 3.
Since r, = (w yl

)®k for sorne k E Z, we obtain

3 = (r, ·6) = k(w y1 ·6) = k .

This yields r, = w~-3. By construetion, one sees Y is isomorphie to V and henee
W~-3 is very ample.
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(2.1.2). In the case where E = 2Eo, where E o is a line on Y c:z 11'2. We may
assume

E o = {Zo =O}.

In this case, we take a base {ho, ... , h6 } of HO(Y;w~-3)~ C7 as follows:

u·ho
u·h l

u·h2

u· h3

u· h4

u· h5

u· h6

= Z5 Z I

= Z5 Z2

- Z3- 0

- Z3- I

= Z~Z2

= zIz5
- z3- 2'

We put <I> := (u· ho : ... : u· h6 ) : p2 ---. p6. Then, by an argument similar
to (2.1.1), one can verify that V := ~(p2) is isomorphie to Y and W~-3 ia very
ampIe. In particular, the defining equation of Va := eil({Z2 =/: O}) C C6(X0 , • • • ,X5 )

is given by

(2.1.9). In the case where E is an irreducible conie on y ~ p2, we may assume

- m.2 2E = {(Zo : ZI : Z2) E r I Zo = ZI Z2}'

Then we can also take a basis {hd (0 ~ i ~ 6) of HO(Y;w~-3) as follows:

u· ho
u· h]

u·h2

u·h3

u·h4

u·hs
u·h6

= zo(z5 -ZIZ2)

=zl(z5 -ZIZ2)

=z2(z5 -ZIZ2)

- Z3- I

= Z~Z2

=zIz5
- z3- 2'

Let <I> := (u· ho : ... : u· h6 ) : p2 ----t p6 be the associated morphism of p2 to p6.

Claim. <I>(E) =: ß I"V pI is a twisted cubic curve in p3.

In fact, we consicer an injection .-\ : PI(S : t) ----t P2(zO : ZI : Z2) with

1
Zo = st

ZI = s2

Z - t2
2 - .

Then we have easily E = .-\(f'l), hence
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Now we put

then we obtain a two-fold eovering J1 : PI(S : t)~ pI(U : v).
Then the morphism

yields an isomorphism 6. ~ fli (u : V), in partieular, 6. is a twisted eubie eurve in
p3. Moreover, one can easily see that ~IE : E ~ 6. ~ pI C p3 is a two-fold
covering. Thus we have the claim.

Then one can also prove that Y is isomorphie to V := 4-(P2) and that W~-3 is
veryarnple. The defining equation of Vo := <1>( {Z2 f O}) C C6(XO"" ,X~d is given
by

{(Xo, X 2,X s ) E C3
1X~ = X~(X2 + X s )}.

By (2.1.1),(2.1.2) and (2.1.3), we complete the proof of (2.1). 0

(2.2) Proposition. w~-2 is very ample if d = 2.

Proof. In this case, we have two cases by Theorem I-(e) and (E):

or

'" pI X pI

= OPI Xpl (1, 1)

'" 1:0 + Ja,

~ 02- '\lo

= OQ~(l)

= 91 +92 or 290,

where 9j (i = 0,1,2) is a generating line of Q~.

- The case ofY '" pI X pI -

{2.2.1}. In the case where E = Eo + 10 (two irredueible components with the
self-interseetion number E~ = IJ = 0), let (x : y) x (u : v) be the homogeneous
coordinates of pI X pI, then we mayassume

:= Eo = {x = O}

:=Jo={u=O}

By the exaet sequence (1.4) with n = 2, one can take a basis {ho, ... , h6 } of
HO(y; w$-2) '" C7 as follows:
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u*ho = X 2 U 2

u*hI = X
2

UV

u* h2 = xyu2

u*h3 = xyuv

u*h4 = (XV + yu)2

u*hs = (XV + yu)yv

u*h6 =y2V2.

Let ~ := (u *ho : ... : u* h6 ) : pI X IFI ~ pe be the assoeiated morphism.
We put V := t1»(PI X PI) C p6. Then one ean prove that Y is isomorphie to

V := <1-(PI X pI) and that w~-2 is very ample as before. Moreover the defining
equation of Vo := <1-( {y i= 0, v i= O}) C e6 (Xo,'" , X s ) is given by

{(X2,X3 ,XS ) E C3 1Xi -X2X3X~ +xi = O}.

(2.!1.E). In the ease where E "" Eo + 10 is irreducible, we may assume

E = {( X : y) x (u : v) E pI X pI IXV = yu}.

Then we take a basis of HO (Y j w?-2) "" e7 as follows:

u"ho = (xv - YU)2

u*h I = (xv - yu)xu

u"h2 = (xv - yu)uv

u"h3 = (xv - yu)yv

u"h4 =x2 y2

u"hs = xyuv

u"h6 = u2 v2 •

We put 4» := (u"ho : ... : u"h6 ) : pI X pI -----t pi. Theo one sees that Y ~ V :=

<1-(PI XIP'I) l:-..+ p6 and w~-2 is very ample as before. Moreover, the defining equation
of Va := ~({y -I a,v f. O}) C e6 (Xo,'" ,Xs) is given by

{(X3 ,X4 ,X5 ) E e3 1xi +X 3 X 4 = X1Xs }.

- The case ofY ~ Q5-.
In this case, the minimal resolution Y of Y is isomorphie to the Hirzebruch

.-.. JJ - u
surface F2. Let 7f" : Y ~ Y ~ Y be as before. Then the proper transform
E = p,* E = 7f""(E) consists of either two distinct fibers EI + E2 or double fibers
2Eo of F2 .

Let {(Ui, Vi) E Ui x pI }i=I,2 be a coordinate covering of Y /"V F2 with

{

u2 =~
Ul

V2=U~VI'
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where Ui ~ C and Vi is a non-homogeneous coordinate of pI.

(2.2.9). In the case where E = EI + E2 , we may Msume

Ei = {Ui = O} (i = 1,2).

Then one can take a basis {ho, h),··· ,hs, ha} of HO(Y;w~-2)~ C7
aB follows:

tr· ho = 1

tr· hI = UV

11'"* h2 = u2v2

lI'"·ha = uv(1 + uv)

1I'"·h4 = 1 + uv2

tr·hf!, = 1 + v + u 2v

tr· h6 = (1 + V + u 2
V ?

on UI X (PI - 00) ~ C2 ( u, v) , where we put (U, v) := (u), VI) for simplicity.

Now we put

~ := (11'". ho : 11'". hI : ••• : 7[. h5 : 11'"* ha) : Y~ p6

~ := (ho: h1 : ••• : hs : ha) : Y ~ pB

Then one sees

(1) (j(Ed = ~(E) ~ pI is a conic for i = 1, 2.

(2) ~ is injective on Y - (EI U E2 U 172 ),

(3) ~ is injective on Y.
(4) ~ (172 ) is a point.

We put V := 4i(Y) = ~(Y) c pa. Then one can also see that Y f'"oJ V and that
W~-2 is very ample. The defining equation of Vo := ~(UI X C) C C 6 (X1,'" ,Xa)
is given by

(2.~.4). In the case where E= 2Eo, we may assume that

Eo = {UI = O}.

Then we take a basis {ho, h),··· , hf!" h6 } of HO(Yjw~-a) f'"oJ C7 as follows:

tr·ho = 1

tr· h I = u2 v

tr· h2 = u4 v2

tr· ha = u 2v(1 +uv)

tr·h4 = u 2v(1 +v +u2v)

tr· hs = 1 +V +u2v

11'" *ha = (1 + v + u2
V )

2
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on UI X (PI - 00) =:! C2 (u, v). Then we obtain Y rv V := ~(Y) and w?-2 is very
ample, where ~ := (ho: h l : ••• : hs : h6 ) : Y --+ p6.

By (2.2.1),(2.2.2),(2.2.3) and (2.2.4), we complete the proof of (2.2). 0

Therefore we have finally

Theorem 11. Let Y be a non-nonnal DeI pezzo surface and d:= (wyI )2 the degree
ofY. Tben

(1) d = 1 ===> w?-3 js very ample.
(2) d = 2 ==} W~-2 js very ample.
(3) d 2: 3 ===> wy1 js very ample.

Remark.

(1) One can also prove the very ampleness of wy1 (d ~ 3) by the explicit way
as above.

(2) If Y is nonnal, then Theorem 11 is already known (cf. [Corollary 4.5 ;5]).
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