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Abstract.

Let X be a normal complex projective variety with Gorenstein-terminal singularities; let
L be an ample line bundle over X and let Ky denote the canonical sheaf of X'. Assuming
that Kx is not nef we study the contractions of extremal faces which are supported by
divisors of the form K x + 7L with 7 > (n — 1). In other words we classify the pair (X, L)
which has "nef value” = 7(X,L) > (n — 2) as well as the structure of their associate
"nef value morphisms”. In the case 7 = (n — 2) we assume also that X is factorial. We
study moreover the general case in which (Kx + rL) is nef and big but not ample and the
dimension of the fibers of the nef value morphism is less or equal then r.



Introduction and statement of the theorems.

Let X be a normal projective variety defined over the field of complex numbers and let L
be an ample line bundle over X. We assume that X has at worst terminal singularities,
1.e. the smallest class in which Mori’s program can work; by K x let us denote the canonical
sheaf of X.

Assume that Ky is not nef; the nef value of the pair (X, L) is a real number defined
as follow

7(X,L) =min{t € R,(Kx + tL) is nef}
(see [B-S1}; (0.8) or [K-M-M]; (4.1)).

By the Kawamata rationality theorem 7 is a rational number and by the Kawamata
base point free theorem Ky + 7L is semiample; in particular there exists a projective
surjective morphism ¢ : X — W into a normal variety W which is given by sections of a
high multiple of Kx + 7L; ¢ is called the nef value morphism.

Applying Mori theory and adjunction theory one can classify the pairs (X, L) with
T > (n—1); more precisely they are the projective space, the hyperquadric, P(*~1-bundles
over a smooth curve, generalized cones over either a Veronese curve or a Veronese surface.
See for this the papers of M. Beltrametti-A.J. Sommese ([B-S1], section 2) and of T. Fujita
([F3], section 1).

If 7 = (n — 1) and if the morphism ¢ is of fiber type, that is dimW < dimX or,
equivalently, K'x + (n — 1)L is not big, then X is either a singular Del Pezzo variety, or a
quadric fibration over a smooth curve, or a P("fz)—btlllclle over a normal surface (see again
[B-S1] or [F3]; for the definitions see section 0).

In this paper we want to prove the following

Theorem 1. Let X be a projective variety with terminal singularities and let L be an
ample line bundle on X. Assume also that X has Gorenstein singularities. If the nef value
of the pair (X, L) is 7 = (n — 1) and the nef morphism ¢ is birational then ¢ : X — X' is
the simultaneous contraction to distinct smooth points of disjoint divisors E; = P*~} such
that E; C reg(X), Op;(E;) = Opn-1(—=1) and Lg, = O(-1) fori = 1,...,t. Furthermore
L' :=(¢L)** and Kx+ + (n — 1)L’ are ample and Kx + (n ~ 1)L = ¢*(Kx+ + (n — 1)L")

The pair (X', L’} is called the first reduction of the pair (X, L), using the definition
given by A.J.Sommese.

The above theorem is well known in the smooth case, (see [F1] and [So]). In the
singular case there are results when X is normal and factorial (see [B-S1], Theorem (3.1.4))
and when X is Gorenstein and L has a smooth surface section (see [An] and [So]). The
proof contained in this paper follows strongly the line of [An] using recent results of [A-W].

We prove also this general theorem:

Theorem 2. Let X be a projective variety and assume it has terminal, Q-factorial, Goren-
stein singularities; let L be an ample line bundle on X. Assume that the nef value of the
pair (X,L) is T = r = %, with u,v coprime positive integers; assume also that u > dimF
for every fiber F of ¢ and that the nef morphism ¢ is birational. Then ¢ : X — X'

is the simultaneous contraction of disjoint prime divisors E; to algebraic subset B; C X'
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with dimB; = n — w — 1, X' has terminal, Q-factorial singularities and all fibers F are
1somorphic to P". Moreover the general fibers F' are contained in the smooth set of X

and NE/X]F' ~ O(-1).

This last theorem is proved in the smooth case in [B-52] and in a stronger form, but
always in the smooth case, in [A-W].

From now on we assume that X is a projective variety with terminal and factorial
singularities and that L is a line bundle on it. The case in which 7(X, L) > (n — 2) was
studied in the sections 2 and 3 of [B-§]; in the section 2 of the present paper we consider
the case 7(X, L) = (n — 2). In the smooth case this was studied in [B-S], section 4, while
in dimension 3 it was proved in [Mo), in the smooth case, and in [Cu] in the Gorenstein
case {we apply some proofs contained in these last papers). More precisely we prove:

Theorem 3. Let X be a projective variety and assume it has terminal and factorial
singularities; let L be a line bundle on X. Assume that the nef value 7(X, L) of the pair
(X,L)is (n — 2) and let $ : X — Y be the nef value morphism. Then either (for the
definitions see the section 0)

(3.1) Kx ~ —(n—2)L, ie. (X,L) is a (singular) Mukai variety,

(3.2) (X, L) is a Del Pezzo fibration over a smooth curve under ¢,

(3.3) (X, L) is a quadric fibration over a normal surface under ¢; if moreover ¢ is an
elementary contraction (i.e. the contraction of an extremal ray), then (X, L) is quadric
bundle over a smooth surface under ¢,

(3.4) (X, L) is a scroll over a normal three dimensional variety with terminal singularities
under ¢ (if X is smooth then the image is also smooth),

(3.5) ¢ is a divisorial contraction and it is an isomorphism outside ¢$~1(Z) where Z C Y is
an algebraic subset of Y such that dim(Z) < 1. Let R be an extremal ray on X such
that (Kx + (n — 2})L)R = 0 and let E be the exceptional locus of R. Then ¢ factors
through p = pr: X — W, the contraction morphism of R and we have the followig
possibilities for p:

(i) p(E) = C is 1-dimensional, Y is smooth near C, C is a locally complete intersec-
tion and p is the blown-up of the ideal sheaf I.

(ii) p(E) = {z} is a 0-dimensional and either

(a) (E,Lg) = (P"V, 0(1)), with Ng, = Op(n-2(~2), or

(b) (E,Lg) = (Q,0q(1) with Ng, = Og(-1), Q (possibly singular) hyperquadric
in P".

Also in these two last cases p is the blown-up of the ideal sheaf I,.

If n > 3 and ¢ is birational then all the exceptional locus of the extremal rays con-

tracted by ¢ are disjoint, therefore ¢ is the simultaneous contraction of all the above

described exceptional sets (3.5).

I would like to thank J. Wisniewski for some remarks on a first version of the paper
and Andrew J. Sommese for useful conversations. I also like to thank the Max-Planck-
Institute fiir Mathematik in Bonn, where the last part of this work was done, for support

and hospitality. I was also partially supported by MURST and GNSAGA.



0. Notation and preliminaries.

(0.1). We use the standard notations from algebraic geometry. Our language is compatible
with this of [K-M-M] to which we refer for definitions of the following: Q-divisor, Q-
Gorenstein, numerically effective, terminal or log terminal singularities, .... .

We just explain some special definition used in the statements. Let X be a normal, r-
Gorenstein variety of dimension n and L be an an ample line bundle on X. The pair (X, L)
is called a scroll (respectively a quadric fibration, respectively a Del Pezzo fibration) over

a normal variety Y of dimension m if there exists a surjective morphism with connected
fibers ¢ : X — Y such that

rKx+(n—-m+1)L = p*L

(vespectively r(K{x + (n — m)L = p*L; respectively r(Kx + (n — m — 1)L = p*L) for
some ample line bundle £ on Y. A projective n-dimensional normal variety X is called
a quadric bundle over a projective variety Y of dimension r if there exists a surjective
morphism ¢ : X — Y such that every fiber is isomorphic to a quadric in P(*="+1 and
if there exists a vector bundle E of rank (n — r + 2) on Y and an embedding of X as a
subvariety of P(E).

(0.2). Let X be a projective normal variety of dimension n defined over the field of complex

numbers and let L be an ample line bundle on X.
Assume in this section that X has at most log-terminal singularities.

(0.3) Let R be an extremal ray on X and let p = pr : X — W be the contraction
morphism of R.

(0.3.1) Observe that if 7 is the nef value of the pair (X, L) and R is an extremal ray such
that (Kx + 7L)R = 0, then the nef value morphism of (X, L) factors through pg.

The following is one of the main result in the paper [A-W].

Theorem (0.4). (see [A-W], theorem (5.1) and lemma (5.3)) Let ¢ : X — W be a nef
value morphism for the pair (X,L) with nef value T = r; assume also that X has log
terminal singularities. Let F' be a fiber of ¢. Assume moreover that

either dimF <r+1 ifdimZ < dimX

(5.1.1) or dmF <r+1 if ¢ is birational.

Then there exists a divisor G from |L| which does not contain any component of the fiber F
and which has at worst log terminal singularities on F. Moreover the evaluation morphism
¢*d.L — L Is surjective at every point of F.

Corollary (0.5). In the hypothesis of the theorem (0.4) and in order to study the struc-
ture of the nef value morphism it is possible to assume that L is base point free.

Proof. Observe first that we can change L with L+m(Kx +rL), where m is any positive
rational number such that m(Ky + rL) is Cartier. If m >> 0 then L + m(Kx + rL) is
base point free; by abuse of notation this bundle will be called again L.
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Lemma (0.6). (see [F3], lemma 1.5) Let p: X — W be the contraction morphism of
an extremal ray R as above. Suppose that p is birational and that dimp™(z) =k > 0 for
a point  in W. Then

(Kx + (k+1)A)R >0

for any p-ample line bundle A. Moreover if (Kx + kA)R < 0 the normalization of any
k-dimensional component of p~!(z) is isomorphic to P* and the pull back of A on it is

o(1).

Lemma (0.7). (see [B-S1], Corollary 0.6.1 and [F3],Theorem 2.4 ) Let (X, L) be as above
and let Ry, Ry be two distinct extremal rays of divisorial type on X. Let E;, E, be the loci
of Ry, R respectively and assume that E; are Q-Cartier. Assume also that (Kx +tL)R; =
0 for some rational number t, i = 1,2. Let [t] = r be the smallest integer > t. If
[t] > (n+1)/2 then E,, E, are disjoint. Moreover, the same is true in the caset = (n —2)
andn >3 (ie forn=4)

Proof. The above result is proved in [B-S1] and [F3] with slightly different hypothesis.
We will follow here the proof of [F3]. Let § = E; N E;; we have that dim(S) = (n — 2)
(since the E; are Q-Cartier). Let then ¥ be a fiber of the map pas 2 S — p2{E»). Since
(Kx +tL)R; = 0 by the lemma (0.6) we have that dim(F;) > r for all fiber F; of p;; in
particular this implies that dimp;(E;) < (n —r — 1) and that dimY > (r — 1). By our
hypothesis dimY > dimp (E;); then there exists a curve in Y contracted by p; (and of
course by py): this will give a contradiction. The case in whichn =4 and t = (n — 2) can
be proved exactly as in the last part of [F3].

Proposition (0.8). (Bertini-Seidenberg) Assume that X has at worst terminal (resp.
canonical, resp. log terminal) singularities and that L is base point free. Then the general
element of L is normal and has at worst terminal (resp. canonical, resp. log terminal)
singularities.

Proof. Let f: Y — X be aresolution of the singularities of X. Since f*L is base point free
we know by the usual Bertini theorem that a dense set of elements of f*L are smooth. Let
G be one of the dense set U of elements of L such that G = f~!(G) is smooth. It is easy to
prove that G is normal (Seidenberg theorem), that sing(G) C sing(X) and, by standard
adjunction considerations, that G has at worst log terminal singularities (resp.can., term.).



1. Proof of the theorems 1 and 2.

(1.0) Assume from now on that X has at most terminal singularities; in particular X
has rational singularities (see (0.2.7) in [IK-M-M]) and codim(Sing(X)) > 3 (see (0.2.3) in
[B-S1]).

Let u, v coprime positive integers as in the theorem 2. Then, if a, b are positive integers
such that av — bu = 1, we have that the line bundle L= bR x + aL is ample and that u is
the nef value of the pair (X, L); this is noticed and proved in [B-$2], lemma (1.2). We will
from now on consider the line bundle L instead of L and, by abuse, we will call it again
L; we then consider the pair (X, L) with nef value r = w.

(1.1) Let ¢ : X — X' be the nef value morphism, which we assume to be birational, R
be an extremal ray on X such that (Kx +rL)R =0 and p: X — Y the contraction of
R. Then ¢ factors through p.

- We want first to understand the structure of the map p; let F' be a fiber and E be
the exceptional locus of p. Note that, by (0.6), we have that dimF > r; on the other
hand, since ¢ is birational, we have that dimF = (n — 1) in the first theorem. For the
second we have the hypothesis that dimF < r and therefore dimF = r. Applying again
the lemma (0.6) we get that the normalization of F' is P" and that the pull back of L
on this normalization is O(1). But, by the theorem (0.4), L is base point free on F and
therefore h°(Ljz) > n. Now it is obvious, computing for instance the delta genus of the
pair (X, L) (see [F0]), that (F,L) = (P",0(1)).

Take now n — 1 — r general very ample divisors on Z , call them H;, and consider
the intersection of their pull-back to X. The resulting variety, X", has again terminal
singularities by the Bertini theorem; call again, by abuse of notation, L = L|x» and let
n' = dimX" = r 4+ 1. The restriction of p to X" is given by a high multiple of K'x» + 7L
and contracts a general fiber F, being now a divisor in X", to a point. (Note that this
step is empty for the theorem 1)

By the theorem (0.4) there exist (an open subset of ) sections of L not containing the
fiber F' and with at worst terminal singularities.

We then take (r+1—2) general sections of L not containing F' and intersecting scheme
theoretically with X" in a surface with terminal singularities. Since terminal singularities
in dimension two are smooth, this surface is smooth. Being L an ample Cartier divisor
this implies in particular that dim(SingX" N F) < n" — 2.

Assume that X" has hypersurface singularities; we can now apply the main theorem
of [L-S], namely the theorem (2.1}, to our map pjx~: this says that either F'N Sing(X")
is empty or of pure dimension n” — 2. Therefore, for what above, F is contained in the
smooth locus of X" and p|y» is the blow-down of F' = P” to a smooth point on ¥ and
Npyx» = O(—1). Since X" is the intersection of Cartier divisors, then X itself is smooth
in a neighborhood of F. We can therefore apply the theorem (4.1.iii) of [A-W] and conclude
in particular that dimFE = (n — 1). Therefore p is a contraction of divisorial type, E is a
prime divisor on X and X' has terminal, Q-factorial singularities (see [K-M-M], proposition
(5.1.6)).



We will prove now that if X is Gorenstein then every singular point z is locally a
hypersurface (that is if R is the local ring Ox ; of £ on X, then R is isomorphic to -f%,

where S is a regular local ring of dimension (n+1)). Note first that if X is Gorenstein the
same is for X".

Claim (1.2). If X" is Gorenstein then every singular point z is locally a hypersurface.
g p P

Remark (1.2.1). If the dimension of X" is three the claim is proved in [L-S]; the following
is the proof of [L-S] adapted in higher dimension. It is on the other hand well known that
a rational Gorenstein 3-fold singularity is terminal iff it is ¢cDV (compound Du Val; see
Corollary 3.12 in [Re]) and therefore, in particular, it is locally a hypersurface.

Proof. Since L is base point free and ample for every point z € X" we have that the
linear system |L — x| has finite base point. In particular there exists a general divisor, D,
of L passing through z and with singularities in codimension two. Since X" is Gorenstein
the same is for D which, by Serre criterion, is therefore also normal. By induction we
have (n — 2)-divisors in the linear system |L — | which intersect scheme theoretically in a
Gorenstein surface, S, containing x. It is easy to see, using the adjunction formula, that
F NS is a rational curve P, that pg contracts P to a point and that NgP = —1.

We use now the theorem (0.1) in [L-S]: we have that z is an A,-type rational singularity
for some n > 1 on § and therefore it is a hypersurface singularity on S. Since the divisors
in L are locally principal and S is a surface section of L, we have that X" is a hypersurface
at z (and therefore also X).

(1.3) Let us go back to the birational nef value morphism ¢ : X — X' and let R; for 7 in
a finite set of indexes be extremal rays on X such that (Kx +(n—1)L)R; = 0. Let E; be
the loci of the R;. By the theorem (0.7) and what we have proved above we have that the
E; are pairwise disjoint. The structure of each pg, : X — Y, the contraction of R;, is
given above. Therefore ¢ is the simultaneous contraction of all the E;, and the theorems
are proved (see for instance the last part of the proof of the theorem (3.1) in [B-S1]).



2. Proof of the theorem 3.

(2.1) Let 7 = (n — 2) be the nef value of the pair (X,L) and let ¢ : X — Y be the nef

value morphism.

(2.2) If dimY < dimX then for every fiber F we have dim(F) > (n—3) (see for instance the
remark (3.1.2) irl [A-W)); then it follows easily, by definition, that we are in one of the cases
(3.1)-(3.4). It remains to prove the second part of the point (3.3): assume therefore that
$ is an elementary contraction and that dim(Y) = 2; in particular ¢ is equidimensional.
Take now an arbitrary point p € ¥ and we will show that Y is smooth at p. By the
corollary (0.5) we can take (n — 2) general sections of L intersecting transversally in a
smooth surface S and intersecting ¢~!(p) in a finite numbers of points. Replacing Y with
an affine neighborhood of p, we can assume that S and Y are affine and that S - Y is a
finite, generically 2-1 map. The proof of the smoothness of p is now exactly as in [Cu], p.
524, lines 9-17. The rest of the statement follows similarly to [Cu], p. 524, using Grauert
criterion (see also {A-B-W]).

(2.3) Assume then that dimY = dimX | i.e. ¢ is birational. Let R be an extremal ray on
X such that (Ky + (n —2)L)R =0 and p: X — Y the contraction of R. We want to
understand the structure of the map p; let F be a fiber and E be the exceptional locus of
p. Note that, by (0.6), we have dimF > (n — 2).

Lemma (2.3.1). The dimension of the exceptional locus, E, is bigger or equal then (n-1),
that is p is not a small contraction (see [K-M-M]).

Proof. Assume for absurd that dim(E) = dim(F') = (n — 2). Then we can take (n-3)
general sections of L whose intersection is a 3-dimensional, normal, Gorenstein variety with
terminal singularities, X', such that p|x+ is a small contraction. This is in contradiction
with the theorem 0 of [Be].

(2.3.2) Assume that dim(F) = (n — 2); then we are in the situation of the theorem 2,
p(E) is an irreducible curve C and all the fiber of p have the same dimension. Since
we are assuming that X is factorial then Y is k-factorial with £ = E-C, C an extremal
rational curve such that [C] = R (see [B-S], (0.4.4.2)). In our case is immediate to see
that k = 1, therefore Y is factorial. Take now a point ¢ € C and (n — 2) general sections
of L, Dy,...,D,—2, intersecting. transversally in a smooth surface § and intersecting the
fiber p~! in a finite number of points. Replacing ¥ with an affine neighborhood of ¢, we
can assume to be in the "affine set-up” described in the section 2 of [A-W]. In particular
by the Lemma (2.6.3) in [A-W] we have that the map p|g has connected fibers, therefore
it is an isomorphim with its image §' = p(S). Therefore §' C Y is smooth; since S’ is
an irreducible component of p(Dy) N ... N p(Dy—2) and Y is factorial, ¥ is smooth in a
neighborhood of C. Moreover C is a local complete intersection since it is a curve lying
on a smooth surface. X is clearly the blown up of I¢ = p.O(—E), since O(—nkE) is p very
ample for n >> 0 and p,O(—nFE) = I, since C is a complete intersection.

(2.3.3). Finally we assume that dim(F) = dim(E) = (n — 1); we want in this case to
compute the Hilbert polynomial of the polarized pair (E, Ljg (we refer to [F0] for more
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details). We can take (n — 3) general sections of L and reduce to the case in which X has
dimension 3 in order to compute the invariants: xn(E, Lyg) = d(E, L) and g(E,Lg) =
1-Xn-1(E, L|g); in this case is easy to prove that d(E, L|g) = 1 or 2 and that g(E, Ljg) = 0
(see for instance the first part of the proof of the theorem 5. in [Cu]). Then, since
Hi(E,tL|E) = 0 for t > —(n — 3), we easily compute the remaining coefficients of the
Hilbert polynomial. Using [F0] we conclude then that (E, L|g) is as described in (3.5.1i).

To prove that p is the blown -up of the ideal sheaf I, in Y one proceed as in [Mo] in
the case in which E is a smooth quadric or the projective space (since in this case, being
X factorial, E C reg(X)). If E is a singular quadric then one conclude exactly as done in
[Cu] for the 3-dimensional case (last part of the proof of Theorem 5 in [Cu]).

(2.4) To conclude we apply the lemma (0.7) as in (1.3).
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