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Abstract.

Let X be anormal complex projective variety with Gorenstein-tenninal singularitiesj let
L be an ample line bundle over X allel let 1(x denote the canonical sheaf of X. Assuming
that K x is not nef we study the contractions of extrenlal faces which are supportecl by
divisors of the form ](x +TL with T 2: (n - 1). In other words we classify the pair (X l L)
which has "nef value" = T( ..Y, L) 2: (n - 2) as weIl as the structure of their associate
"nef value morphisms". In the case T = (n - 2) we assume also that X is factorial. "VVe
study moreover the general case in which (1('( + 1'L) is nef and big but not aInple anel the
ditnension of the fibers of the nef value morphisln is less or equal then r.
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Introduction and statement of the theorems.

Let X be anormal projective variety defined over the field of complex numbers anel let L
be an ample Hne bunelle over X. We assume that X has at worst terminal singularities,
i.e. the smallest dass in which Mori's program can workj by](x let us denote the canonical
sheaf of X.

Assume t.hat I(x is not ncf; the nef value of the pair (X, L) is areal nurnber defined
as follow

T(X, L) = min{t E R, (I(x + tL) is nef}

(see [B-S1]j (0.8) 01' [I<-M-M]; (4.1)).
By the I<awarnata rationaHty theoreln T is a rational number and by the I<awamata

base point free theorem I(x + TL is semiample; in particlliar there exists a projective
surjective morphism 4> : X -+ W into a nOlmal variety W which is given by sections of a
high multiple of K x + TL; 1> is caIled the nef value Inorphism.

Applying Mori theory anel aeljunction theory one ean classify thc pairs (X, L) with
T > (n-l); more precisely they are the projective space, the hyperqlladl;c, p(n-l)-bunclles
over a srnooth curve, generalizeel cones over either a Veronese curve 01' a Veronese surface.
See for this the papers of M. Beltrametti-A.J. SOlnnlese ([B-Sl], section 2) and of T. F\ljita
([F3], section 1).

If T = (n - 1) and if the 1110rphisnl 4> i8 of fiber type, t.hat is di7nW < dimX 01',

equivalently, ](X + (Tl. - l)L is not big, then X is either a singular Del Pezzo variety, 01' a
quadric fibration over a smooth curve, 01' a p(n-2Lbundle over anormal surface (see again
[B-Sl] 01' [F3]; for the definitions see section 0).

In this paper we want to prove the following

Theorem 1. Let X be a projective variety witll tenninal singularities and let L be an
mnple line bundle on ."Y.. Ass1.une also tbat ."Y. has Gorenstein singularities. H tbe nef value
of tbe pair (..Y, L) is T = (n - 1) ancl tbe nef lJlorpllisnl <p is birational tben <p : X -----+ X I is
the simultaneous contraction to distinct s11100tb points of clisjoint divisors Ei f'V pn-l such
that Ei C reg(X), <9 Ei (Ei) s::; Opn-l (-1) Rlld LEi s::; O( -1) for i = 1, ... ,t. FurtlJermore
L' := (1)L)** and ](XI + (n - l)L' are mnple and I(x + (n - l)L ~ </J*(I(y, + (n - l)L' )

The pair (X I , L') is calleel the firs t red1.1 ction of the pair (..Y, L), using the defini t ion
given by A.J .Somnlese.

The above theorem is weIl known in the smooth case, (see [Fl] anel [So]). In the
singular case there are results when X is nonnal anel factorial (see [B-Sl], Theorem (3.1.4))
and when X is Gorenstein anel L has a Sll100th surface sect.ion (see [An] anel [So]). The
proof containeel in this paper follows strongly the line of [An] using recent results of [A-W] .

VVe prove also this general theorem:

Theorem 2. Let X bc a projective variety alld assume it has tenninal, Q-factorial, Goren­
stein singularities; let L be an mnple line hundle on X. Assunle that t}le nef value 01 tbe
pair (X, L) is T = r = .;, with u, v coprüne posi tive in tegers,o assume also that u ~ dimF
for every fiber F of 4> and tlJat tlle nef 1110rpbism 1> is birational. Tllen <p : X -----+ X'
is the simultaneous contraction of disjoint prime divisors Ei to algebraic subset Bi C X'
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wit1l dimB j = n - u - 1, X' l];'l.s tenninal, Q-faetorial singulnrities find a11 Ebers F are
isomorphie to pr. Moreover tbe general Ebers F' are eontained in tbe SIllooth set of X
and N E / x IF' /"V (9 ( -1 ).

This last theorem is proved in the smooth case in [B-S2] and in a stronger form, hut
always in thc smooth case, in [A-W].

From now on we assurne that X is a projective variety with terminal and factorial
singularities and that L is a line bundle on it. The case in which r(X, L) > (n - 2) was
studied in the sections 2 and 3 of [B-S]; in the section 2 of the present paper we consider
the case T (X, L) = (n - 2). In the smooth case this was studied in (B-S], section 4, while
in dimension 3 it was proved in [Mo], in the sluooth case, and in [Cu] in the Gorenstein
case (we apply some proofs contained in these last papers). More precisely we prove:

Theorem 3. Let X be a projeetive variety and asslune it bas terminal and faetorial
singulMities; let L be a line bUlldle on ){. Assume that the nef value T(X, L) of tbe pair
(X,L) 1S (n - 2) and let 4> : X --. y~ be the nef value morpllism. Then either (for the
definitions see the section 0)

(3.1) l(y i=::: -(n - 2)L, i.e. (X, L) i8 a (s1Jlgular) Mukai variety,
(3.2) (X, L) is aDel Pezzo libration over a smooth eurve under 4>,
(3.3) (X, L) is a quadrie libration over a nonnal surl'aee under 4>; if moreover if; is an

e1emen tary eon trae tion Ci, e. tlle con tracti011 of a.n extrelnal ray), t1len (X, L) is quadrie
bundle over a smooth surfaee IInder tjJ,

(3.4) (X, L) is ascroll over a nonnal tllree diIllen8ional variety with terminal singu1arities
under if; (i! X is SIllooth then tlle 1Jnage is also smootll),

(3.5) if; is a divisorial contraetion allel it is an isomorpbisnl outside ~-1 (Z) where Z C Y 1S
an algebraie subset of y~ sudl that dimeZ) ::; 1. Let R. be all extremal rayon X such
that (Kx + (n - 2)L )R. = 0 and let E bc the exeeptionallocus oE R. Then 4> factors
through P = PR : X ----40 W, the contraction morphisln of R. and we have thc Eollowig
possibilities for p:
(i) p(E) = C is 1-dimensional, Y i8 slnooth near C, C i8 a loeally complete intersec-

tion and p 1S the blown-up of tlle ideal sheaf I e .
(ii) p(E) = {x} i8 a O-diInensional and either
(a) (E,LE) ~ (p(n-l),O(1)), witll NEx ~ Op(n-:l)(-2), or
(b) (E, L E ) /"V (Q, OQ(1) witll NEx :: OQ(-1), Q (possihly singular) hyperquadric

in pn.
Also in these two last cases p i8 thc blown-up of the ideal sheaf I p •

li n > 3 and 4> i8 biratiollal then all the exceptionalloeus of tlle extrenlal rays eOll­
tracted by 4> are disjoint, tllerefore ~ is tlle sinlultaneous eOlltraction of all tlle above
described exeeptional sets (3.5).

I would like to thank J. vVisniewski for some rCluarks on a first version of the paper
and Andrew J. Sommese for usefnl convcl'sations. I also like to thank the Max-Planck­
Institute für 11athematik in Bonn, where the last part of this work was done, for support
and hospitality. I was also partially supporteel by MURST anel GNSAGA.
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o. Notation and preliminaries.

(0.1). vVe use the standard notations from algebraic geometry. Olu'language is compatible
with this of [K-M-M] to whieh we rcfer for definitions of thc following: Q-divisor, Q­
Gorenstein, numerieally effeetive, tenninal or log tenninal singularities, .....

We just explain same special definition used in the statements. Let X be a nonnal, r­
Gorenstein variety of dimension n and L be an an ample line bundle on X. The pair (X, L)
is ealled ascroll (respeetively a quadrie fibration, respectively aDel Pezzo fibration) over
anormal variety Y of dimension m if there exists a surjective morphism with connected
fibers 4> : X -+ Y such that

r(!(x + (n - m + I)L ~ p*L-

(respectively r(!(x + (n - m)L ~ P*L-; respectively r(Kx + (n - m - I)L ~ p*L-) for
some ample line bundle L- on Y. A projective n-dinlensional normal variety X is called
a quadric bnndle over a projective variety Y of dilnension r if there exists a surjective
morphism 4> : X -+ Y such that every fiber is isomorphie to a quadric in p(n-r+l) and
if there exists a vector buncUe E of rank (n - r + 2) on Y anel an embedcling of X as a
subvariety of P(E).

(0.2). Let X be a projective normal variety of dimension n defineel over the field of cOlnplex
numbers and let L be an alnple line bundle on X.

Assurne in this section that )( has at most log-tenninal singularities.

(0.3) Let R be an extremal rayon X and let P = PR : X --+ W be the contraction
morphism of R..

(0.3.1) Observe that if T is the nef valne of the pair (X, L) anel R, is an cxtremal ray such
that (I(1( + TL)R = 0, then the nef value morphism of (X,L) factors through PR.

The following is one of the main result in the paper [A-Vv].

Theorem (0.4). (see [A- Wj, theorenl (5.1) alld lemma (5.3)) Let 4> : X -t W be a nef
val tle morphisln for the pair (.X, L) wi tll nef value T = r; assume also that X h as log
terminal singuletrities. Let F be a fiber of 4>. ASSUllle moreover tllat

(5.1.1)
eitller
01'

dirnF< r + 1
di1nF :::; r + 1

if dimZ < dinl,X
if ,p is birational.

Then there exists a divisor G fronl ILI which does not contain any cOlnponent of the fiber F
and which has at worst log terminal singularities on F. Moreover tlle evaluation morphisln
4>* f/J*L -+ L is surjective at every point of F.

Corollary (0.5). In tlle hypotlJesis oE the theorem (0.4) and in order to study the struc­
ture of the nef value Inorphisnl it is possible to assume that L is base point free.

Proof. Observe first that we can change L with L+m(I<x +rL), where m is any positive
rational number such t.hat 1n(I(x + rL) is Cm'tier. If m » 0 then L + m(I(x + rL) is
base point free; by abuse of notation t.his bundle will be callcel again L.

4



Lemma (0.6). (see [F3], lelnllla 1.5) Let P : X ----+ W be thc eontraetion morplJism of
an extremal ray R. as above. Suppose that pis birational and tllat dhnp-I(x) = k > 0 for
a point x in W. Then

(I(x + (k + l)A)R > 0

for any p-ample line bundle A. Moreover if (I(x + kA)R ::; 0 tbe normalization of an}'

k-dimensional eomponent of p-I (x) is iSOlllOlpbic to pk and the pull back of A on it is
0(1).

Lemma (0.7). (see [B-51], Corollary 0.6.1 alld [F3],Theorem 2.4 ) Let (X, L) be as abovc
and let R I , R 2 be two distinet extrenla1 rays of divisorial type on X. Let EI, E 2 be the lad
of RI ,R2 respeetively and Cl.-~SUIJle that Ei are Q-Cartier. Assume also tbat (I(x + tL )Ri =
o for same rational nunlber t, i = 1,2. Let rtl = r be the smallest integer 2: t. Jf
ftl ~ (n + 1)/2 then EIl E 2 are disjoint. Moreover, tbe saIne is tnIe in tlle eRse t = (n - 2)
and n > 3 (i.e. for n = 4).

Proof. The above result is proved in [B-Sl] and [F3] with slightly different hypothesis.
We will follow here the proof of [F3]. Let S = EI n E 2 ; we have that dim.(S) = (n - 2)
(since the Ei are Q- Cartier). Let then y~ be a fiber of t he map P21 s : S -4 P2 (E2). Since
(I(x + tL)Ri = 0 by thc lemIna (0.6) we have that dim.(Fd ~ r for all fiber F i of Pi; in
particular this implies that di1npi( Ei) ::; (11 - r - 1) and that dimY ;:: (r - 1). By our
hypothesis dimY > dimpl (EI); then there exists a curve in Y contracted by PI (and of
course by P2): this will give a contradiction. The case in which n = 4 and t = (n - 2) can
be proved exactly as in the last part of [F3].

Proposition (0.8). (Bertini-Seidenberg) Assullle that X bas at warst terminal (res]).
cfLllonical, resp. log terminal) singula.rities allel that L is base point free. Tbell the general
element oE L is ll0rIllal alld lläs at worst tenllinal (resp. eanonical, resp. log tenrullal)
singulari ties.

Proof. Let f : Y -4 ..){ be aresolution of the singularities of X. Since f* L is base point free
we know by the uEunl Bertini theorem that a dense set of elements of f* L are smooth. Let
G be one of the dense set U of elClnents of L sucl~ that G= /-1 (G) is smooth. It is easy to
prove that G is nonnal (Seidenberg theorem), that $1:ng(G) C $ing(X) and, by standard
adjunction considerations , that G has at warst log terminal singlliarities (resp.can., tenn.).
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1. Proof of the theorems 1 and 2.

(1.0) Assume from now on that X has at most terminal singularities; in particular X
has rational singularities (see (0.2.7) in [I(-M-M]) and codim(Sing(X)) ~ 3 (see (0.2.3) in
[B-S1]).

Let u, v coprime positive integers as in the theorem 2. Then, if a, bare positive integers
such that av - bu = 1, we have that the line bundle L = bKx + aL is ample and that u is
the nef value of the pair (X,i); this is noticed and proved in (B-S2], lelnma (1.2). We wiH
from now on consider the Ene bundle L instead of Land, by abuse , we will call it again
L; we then consider the pair (X, L) with nef value r = u.

(1.1) Let 4> : X ~ X' be the nef value morphisln, wmch we assume to be birational, R
be an extremal rayon X such that (Kx + rL)R = 0 and p : X ---. Y the contraction of
R. Then 4> factors through p.

We want first to understand the structure of the map Pi let F be a fiber and E be
the exceptional locus of p. Not.e that, by (0.6), we have that dimF ~ Ti on the other
hand, since 4> is birational, we have that dimF = (n - 1) in the first t.heorem. For the
second we have the hypothesis that di1nF ::; r anel therefore dimF = T. Applying again
the lemma (0.6) we get that the nornlalization of F is pr and that the pun back of L
on this normalization is 0(1). But , by the theoreln (0.4), L is base point free on F and
therefore hO(L[F) ~ n. Now it is obvious, computing for instance the delta genus of thc
pair (.X:,L) (see [FOD, that (F,L) = (pr

, O(l)).

Take now n - 1 - r general very ample divisors on Z , call them Hi, and consider
the int.ersection of their puH-back to X. The resulting variety, X", has again terminal
singularities by the Bertini theorem; can agaiu , by abuse of notation, L = L1XII and let
n" = dimX" = r + 1. The restriction of p to X" is given by a high multiple of [(X" + r L
and contracts a general fiber F , being now a divisor in X", to a point. (Note that this
step is empty for thc theorelll 1)

By t he theorem (0.4) there exist (an open subset of) sections of L not containing the
fiber F and with at worst tenninal singularities.

We then take (r +1-2) general sections of L not containing Fand intersecting scheme
theoretically with )(" in a surface with telminal singularities. Since terminal singularities
in dimension two are smooth, this surface is smooth. Being L an alnple Cartier divisor
this implies in particular that di1n( SingJ-r" n F) < n" - 2.

Assume that X" has hyperstuface sillgularitiesj we ean now apply the lnain theorem
of [L-5], namely the theorem (2.1), to our ll1ap Pp; 11: this says that ei ther F n Sin9(X")
is empty 01' of pure dimension n" - 2. Therefore, for what above, F is contained in the
smooth locus of X" and PIX" is the blow-down of F ::: pr to a smooth point on Y and
N F/XII ::! O( -1). Since X" is the intersection of Cartier divisors, then ..Y. itself is smooth
in a neighborhood of F. ",,·.,Te can therefore apply thc theorem (4.1.iii) of [A-W] and conclude
in particulaI' that di1nE = (n - 1). Therefore p is a contraction of divisorial type, E is a
prime divisor on X and X' has terminal, Q-factorial singularities (see [I(-M-M], proposition
(5.1.6)).
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We will prove now that if X is Gorenstein then every singular point x is loeally a
hypersurfaee (that is if R is the loeal ring 0 x ,x of x on X, then R is isomorphie to jSS'

where S is a regular local ring of din1cnsion (n+1)). Note first t.hat if X is Gorenstein the
same is for X".

Claim (1.2). IE X" is Gorenstein then every slllgular point x is loca11y a hypersuIface.

Remark (1.2.1). JE tbe dimension oEX" is tbree tbe claim is proved III [L-S]; tbe Eollowing
is the prooE oE [L-S] adapted in higber dimension. Jt is on the otber hand well known that
a rational Gorenstein 3-Eold singularity is tenllinal iff it is cDV (compound Du Val; see
Corollary 3.12 in [Re]) and thereEore, in particular, it is loca11y a bypersurface.

Proof. Sinee L is base point free and aInple for every point x E X" we have that the
linear system IL - xl has finite base point. In particlliar there exists a general divisor, D,
of L passing throllgh x and with singlliarities in eodiInension two. Since X" is Gorenstein
the same is for D whieh, by Serre criterion, is therefore also normal. By induction we
have (n - 2)-divisors in the linear systen1 IL - xl which intersect scheme theoretically in a
Gorenstein stuface, S, containing x. It is easy to see, using the adjunction fonnula, that
F n S is a rational curve P, that Ps contracts P to a point. and that ](S P = -1.

We use uow the theareln (0.1) in {L-S}: we have that x is an An-type rational singularity
for some n ~ 1 on Sand thercfol'e it is a hypersurfacc singnlarity on S. Since the divisors
in L are locally principal and S is a sUlface section of L, we have that ){" is a hypersurface
at x (and therefore also X).

(1.3) Let us go back to the birational nef value Inorphisll1 1> : X ~ X' and let B.i for i in
a finite set of indexes be extremal rays on X such that (1("( + (n - l)L)Ri = O. Let Ei be
the loci of the Ri. By the theorem (0.7) aI1cl W hat we have provecl above we have that the
Ei are pairwise disjoint. The strueture of each PRj : X --+ Y, the contraction of Ri1 is
given above. Therefore 4> is thc simultaneous eontraction of all the Ei, and the theorems
are proved (see for instanee the last part of the proof of the theorem (3.1) in [B- S11).
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2. Proof of the theoreln 3.

(2.1) Let T = (n - 2) be the llef vall1c of the pair (){, L) and let 1> : X -t Y be the nef
value morphism.

(2.2) If dimY < dimX then for every fiber F we have dim(F) 2: (n-3) (see for instanee the
remark (3.1.2) iri [A-VvJ); then it follows easily, by definition, that we are in one of the eases
(3.1)-(3.4). It remains to prove the seeond part of the point (3.3): assurne therefore that
1> is an elementary contraetion and that dim(Y) = 2; in partieular rjJ is equidimensional.
Take now an arbitrary point p E Y and we will show that Y is smooth at p. By the
corollary (0.5) we can take (n - 2) general sections of L intersecting transversally in a
smooth surface S and interseeting rjJ-l (p) in a finite nlunbers of points. Replaeing Y with
an affine neighborhood of p, we can assume that S and Y are affine and that S -t Y is a
finite, generically 2-1 map. The proof of the smoothness of p is now exactly as in [Cu], p.
524, lines 9-17. The rest of the statcluent follows siInilarly to [Cu], p. 524, using Grauert
eriterion (see also [A-B-vVJ).

(2.3) Assurne then that di1nY = di7n)(, i.e. 1> is birational. Let R be an extremal rayon
X such that (1('( + (n - 2)L)R, = 0 and p : X -----7 Y the eontraetion of R. We want to
unclerstand the strueture of the map p; let F be a fiber and E be the exceptionallocus of
p. Note that, by (0.6), we have dimF 2: (n - 2).

Lelnma (2.3.1). Tlle diInension oE tlle exceptiona11octls, E, is bigger or equal tllen (n-1),
that is p is not a slnall contraction (see [I(-M-MJ).

Proof. Assurne for absurd that di1n(E) = dim(F) = (n - 2). Then we ean take (n-3)
general seetions of L whose intersection is a 3-climensional, normal, Gorenstein varicty with
terminal singularities, X', such that Plxl is a slnall eontraetion. This is in contradiction
with the theorem 0 of [Be].

(2.3.2) Assume that di7n( F) = (n - 2); then we are in thc situation of the theorelu 2,
p(E) is an irreclueible curve C anel all the fiber of p have the same dimension. Since
we are assuming that X is factolial then Y is k-factorial with k = E'C, C an extremal
rational curve sueb that [Cl = R (see [B-S], (0.4.4.2)). In our case is ilnmediate to see
that k = 1, therefore Y is fact olia1. Take now a point q E C anel (n - 2) general sec tions
of L, VI, . .. ,Vn - 2 , interseeting. transversally in a smooth sluface S anel intersecting the
fiber p-l in a finite number of points. Replacing Y with an affine neighborhood of q, we
ean assume to be in the "affine set-up" desc1ibed in the section 2 of [A-W]. In partieular
by the Lemma (2.6.3) in [A-W] we have that the map PjS has connected fibers, therefore
it is an isomorphim with its iInage S' = p( S). Thercfore S' c Y is smooth; since S' is
an irreducible component of p(V1 ) n ... n p(Vn - 2 ) anel Y is factorial, Y is snl00th in a
neighborhood of C. Moreover C is a loeal complete interseetion since it is a eurve lying
on a smooth sU1faee. X is clearly thc blown up of Ie = p""O( -E), since O( -nE) is p very
ample for n » 0 anel p""O( -nE) = Ie,sinee C is a complete intersection.

(2.3.3). Finally we assume that dinl-(F) = dim(E) = (n - 1); we want in this case to
eompute t.he Hilbert polynomial of t.he polarized pair (E, L 1E (we refer to [FO] for more
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details). We can take (n - 3) general sections of Land rechlce to thc case in which ..Y. has
din1ension 3 in order to compute the invariants: Xn(E , L1E ) = d(E , L1E ) and g(E, L1E ) =
l-Xn-l(E, LIE)j in this case is easy to prove that d(E , L IE ) = 1 or 2 and that g(E, L IE ) = 0
(see for instance the first part of the proof of the theorem 5. in [Cu]). Then, since
Hi(E, tLIE) = 0 for t ~ -(n - 3), we easily compute the remaining coefficients of the
Hilbert polynomial. Using [FO] we concluele then that (E, L 1E ) is as described in (3.5.ii).

To prove that p is the blown -up of thc ideal sheaf Ip in Y oue proceed as in [Mo] in
the case in which E is a smooth quadric 01' the projective space (since in this case, being
X factorial, E C reg(X». If E is a singular quach-ic then one conclude exactly as done in
[Cu] for the 3-dimensional case (last part of the proof of Theorem 5 in [Cu]).

(2.4) To conclude we apply the lemma (0.7) as in (1.3).
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