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Abstract: Using a metastable approximation of certain fibers, resp. cofibers we obtain
natural six term exact sequences for the homotopy groups of Moore spaces and for the
(co) homology groups of Eilenberg—Mac Lane spaces respectively. As an application
we describe a new homotopy invariant of an (n—1)—connected (2n+1)—dimensional
closed manifold.
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We study quadratic functors which are given by homotopy groups and homology
groups respectively, in particular we consider the homotopy groups of Moore spaces
me(A,n), m < 3n—2, and the homology groups of Eilenberg—Mac Lane spaces
H_K(A,n), m < 3n. The main results in this paper describe new natural six—term
exact sequences for these groups, see (2.5), (3.5) and also (4.5). In particular we get
the natural exact sequences

(1) 0— A*’xm{Sn} — Aarn+1M(A,n) —_— A*"er_*l{Sn} —

Aﬂarm{Sn} — 7 M(An) — 7 M(An)—0

(2) 0— A®H {n}+—— H_  K(An-1)+— ®"Hm+1{n} —
AxH_{n} +— H K(An-1) — (B K(A,n—1) —0

which are Eckmann-Hilton dual to each other. Here rm{Sn} is the quadratic
f-module



)

H 2n-1
(3) 7 {8} = (8" = x " By xS
given by the Hopf invariant H and by the Whitehead product map P = [in’in]*‘ On

the other hand H_ {n} is the quadratic Z—module

(4) H_{n} = (H_K(Z;n) -2 H_K(Z,n) + K(Zn) L= H_K(Z,n))

given by the diagonal H =4, and by the map P induced by the Hopf construction
of the multiplication on K(Z,n). The bifunctors *’*"® and ® ®" x are derived
from the quadratic tensor product in [6], see (7.4)[6] where we also describe the pro-
perties of these functors. Using (1) and (2) we obtain for example natural isomor-
phisms

(5) A+ ¥ R(A) ¥ H.K(A2) and

(6) A®T ©AST/3 » N(A)BAST/3 ¥ H,K(A,3)

where I o 13{52} ~ H,{2}. Here R and 0 are the functors of Eilenberg-
Mac Lane in [10]. Moreover we derive from (1) a new homotopy invariant

(7 7(X) € H (X)¥'xy _,{S"}

for any (n—1)—connected (2n+1)—dimensional closed manifold X, n 2 2. The exact
sequence (1), resp. (2), is actually a very special case of an exact sequence obtained
from the metastable approximation of a certain fiber, resp. cofiber. These
approximations surprisingly are Eckmann-Hilton dual to each other, see §5 and §6.

The author would like to acknowledge the support of the Max—Planck—Institut fiir
Mathematik in Bonn.

§1 uadratic homoto u

We introduce additive categories of homotopy abelian co—H—groups and H—groups
respectively and we describe quadratic functors on these categories. The functors are
given by homotopy groups, homology groups, and cohomology groups respectively.

We first fix some notation. A bold face letter like C denotes a category, we write
feC and A €C if f is a morphism and A an object in C. The set of morphisms
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A—B is C(A,B). Maps which are injective, resp. surjective, are indicated by
arrows >— , resp. — ; on the other hand such arrows as well are used for cofibra-

tions, resp. fibrations, see [4]. Let g;g%gaces*/: be the homotopy category of
CW-—spaces with basepoint *; the set of morphisms X — Y in this category is the
set of homotopy classes [X,Y]. We write dim(Y) < m if there is a homotopy equiva-
lence Y~X where X is an m—dimensional CW—complex. Moreover we write

hodim(Y) { m if x(Y) =0 for i > m. Let éﬁ, Tesp. Qz be the full subcategories
of M*/ﬁ consisting of (n—1)—connected spaces X with dim(X) < n+k,
resp. hodim(X) < n+k. Let G be an abelian group. An Eilenberg—Mac Lane space
K(G,n) is a CW—space with  (K(Gn))=G and ij(G,n) =0 for j#n. A
Moore space M(G,n) is a simply connected CW-—space with homology groups
H M(G,n) =G and HjM(G,n) =0, n#j2 1. We clearly have hodim K(G,n) {n
and dim M(G,n) < n+l.

(1.1) Definition; Let HA and coHA be the following subcategories of

Qﬂ—epggs* /=. Objects in HA are homotopy abelian H—groups and morphism are
H—maps. The objects in coHA are homotopy abelian co~H—groups and morphisms
are co—H—maps. Let HA , resp. coHA  be the full subcategories consisting of
(n—1)—connected objects.

For example a double loop space 0%Y and a double guspension %Y are ob jects in
HA and coHA respectively. This shows that one has full inclusions

k k
(1.2) A CcoHA and B CHA for k <n-l.

All categories in (1.2) are additive categories; the biproduct in ¢QHA is given by the
one point union X v Y of spaces and the biproduct in HA is given by the product

X xY of spaces. For a CW—space K let rg and xrll(l be the homotopy functors
defined by
(1.3) 7R (X) = [E™K,X] and #m(X) = [X,0PK].

As usual we have 7(X)=17 (X) if K=5" is the O—sphere and we have

xIII(I(X) = Hk(X,G) if K = K(G,m+k). The sets in (1.3) are groups, resp. abelian
groups, for m = 1, resp. m 2 2. Let Ab be the category of abelian groups. Using the
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homotopy functors (1.3) and the homology and cohomology functors we obtain the
following four functors

(1) ‘.rg : cgHA — Ab with dim(Z™K) < 3n-2,

2 o : HA%? — Ab with hodim(™K) < 3n,
K & ==n

(3) H™(_,G): HA’? — Ab with m < 3,

(4) H (_,G):HA — Ab with m < 3n.

The functor (3) is a special case of (2) when we set K = K(G,m+k). The conditions
on the right hand side describe the meta stable range of these functors. It is well
known that in this range the functors are quadratic. In the stable range (given by

dim(E™K) < 2n—1, hodim(¥™K) < 2n, resp. m < 2n) the functors are additive. To
this end we recall the following notation from [6].

(1.4) Definition: Let A be an additive category and let F: A — Ab be a quadratic
functor, that is A(f,g) = F(f+g)-F(f)-F(g) is bilinear for f,g € A(X,Y). A biproduct
XvY with inclusions i_ and retractions r_ (7= 1,2) yields the quadratic cross
effect

(1) F(X|Y) = im{A(i;r ,ipry) : F(X v Y) = F(X v Y)}
such that ¥ = (F(i;),F(iy),i;,):
(2) F(X)®F(Y)BF(X | Y) @ F(XvY)

is an isomorphism where i12 is the inclusion given by (1). Let 19 be the retraction
of g determined by ¥. Then we obtain

3) F{X} = (F(X) =1 F(X|X) = F(X))

by H=r1,F() ad P=F()i, where p=i +ip:X—XvX and
V=141 Xv X — X. Next we obtain the isomorphism

(4) T :F(X|Y) — F(Y|X) with TT =1

by restriction of  F(i,ry+ijry). In [6] we have seen that the tuple
F{A} = (F(_),F(_|_)HP,T) defined above satisfies the proposition of a
"quadratic A—module". For a full subcategory R of A let F{R} be given by
restriction of F{A} to R.
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We now consider the cross effects and the structure maps H,P, T for the quadratic
functors in (1.3)(1)...(4). For suspensions X =Y¥X’, Y =YY’ the Hilton—Milnor
theorem shows

(1.5) TR (EX A V) 1 (X]Y).

Here the isomorphism i8 induced by the injection xg([il,iz]) where
lijdg] :EX’ A Y’ — XV Y is the Whitehead product map. Using (1.5) as an
identification the map T in (1.4) coincides with —HXT,;),  where
To: XA Y — Y’ o X’ is the interchange map. Moreover the maps
AR EX} = (7 (EX) B 7 (8X 4 X7) = 7 (X)),

given by (1.4) and (1.5), coincide with the James—Hopf invariant H = 7, and the
Whitehead product map P = [1,1], where 1 =1y is the identity. These maps H
and P are exactly the operators which appear in the classical EHP—sequence, see
[12]. Next we obtain the cross effects of the functors (1.3)(2)(3)(4) by canonical
isomorphisms

(1.6) FR(X A Y) 2 7 (X]Y),
H™(X » Y,G) » B(X|Y,G),
Hm(x A Y,G) Hm(X|Y,G)
which are readily obtained by the cofiber sequence X v Y =X xY —X 2 Y. For

(1.3)(2)(3) the maps H,P,T correspond to H = (Hp)*, P=a%T= (T21)* where
A:X—X X is the reduced diagonal and where Hu:YX A X — EX is the
Hopf—construction of the H—space multiplication p = r,+1, : XxX — X. In (1.3)(4)
weget H=A,, P=(Hu), and T =(T, ), For the definition of Hp see for

example (I 15.15) [4]. For (Hp)*
isomorphisms 75 (ZX) = 7¢(X) and Hy,41(BX,6) = H (X,G).

and (Hp), we use the canonical suspension

§2 Homoto ToU ¥

We describe a six term exact sequence for the homotopy groups of Moore spaces
which is useful for computation in the metastable range of these groups. As an
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application we obtain a new homotopy invariant 7(X) of an (n—1)—connected
(2n+1)—dimensional closed manifold X.

Let R CcoHA  be a small subringoid comsisting of suspensions X =YX’ A
CW—space U gives us the R®P—module (= additive functor)
[R,U): R*P — Ab

which carries X € R to the abelian group [X,U]. The quadratic R—module xﬁ{g}
associated to (1.3)(1), see (1.4), and the tensor product (3.1) [6] can be used for the

natural homomorphism (dim ™K < 3n-2)

K
(2.1) A :[R,U] @Brg{g} — 7,(U)
which we call a fensor approximation of = (U). For a € [EX,U], b € [EY’,U],

(EX’,EY' €R), and for a € [ETY,EX], B€ETY,EX' r 2] we define A by
A(a®a) = aca and A([a,b]®f) = [a,b]of where [a,b] is the Whitehead product.
The image of A is the subgroup generated by all compositions

EmY——E'—:le o ¥ Xk—a'—rU
with Xi €R, k2 1. The map a is in the metastable range, the composition aoa,
however, needs not to be in the metastable range.

(2.2) Lemma: A in (2.1) is a well defined natural homomorphism. Moreover A is an
isomorphism if U=X,v..v X, with X.€R andif [XX]CR(XX,) for al
i=1,.,k and X €R.

The lemma is a consequence of the distributivity laws [3] and of (4.4) [6].

(2.3) Remark: A natural description of the homotopy group rgM(A,n) of the Moore
spacec M(A,n) can be obtained by the tensor approximation (2.1). For this we need

to consider elementary More spaces M(Z,n) = s or M(Zl/pi,n), p = prime. Let R
be the full homotopy category consisting of elementary Moore spaces. Then (2.1)
yields the natural homomorphism, n 2 3,
K K
A: [R,M(A,n)] @grm{g} — 7, M(A;n)
which i8 an isomorphism if A is finitely generated. This follows from (2.2).



We now consider an example of A in (2.1) where R~ 7Z is the full subcategory
consisting only of the sphere S" and where U = M(A,n). Then 7111(1{5-} is just the
. K;eny _ ;. Keny H K,20-1, P K L
quadratic Z-module 7 {57} = (7 (") — 7 ,(S )— 7 (S)) which is
K . _ . L B

defined by F = x_(_) asin(1.4)(3); here H is the Hopf invariant and P = [1,1],
as in (1.5). Now (2.1) gives us the natural homomorphism

(2.4) A: A®y S (5"} — xEM(An)

which is an isomorphism if A is a free abelian group (here A needs not to be finite-
ly generated). It is an old result of Hopf that 74{s%} »7'= (2 1+ 72+ 7). There-

fore we derive from (2.3) the natural homomorphism A :[(A) = Aer’ v 7,M(A,2)
which is actually an isomorphism for all abelian groups A, see [25] and (2.11), (4.9)

in [6]. In general the map A in (2.3) is not an isomorphism. Let S C xf]{lM(A,n) be
the subgroup generated by all compositions EPK — §tv...v st — M(A,n) and let
ArgM(A,n) = rIII{IM(A,n)/S

be the quotient group. For dim Z™K < 3n—2 this is the cokernel of A in (2.4). Now
A is embedded in the following exact sequence which shows the relevance of the cor-
responding derived functors in (7.4) [6].

2.5) Theorem: For dim(XK) < 3n—2 there is a natural exact sequence
(2.5)
, . K K K a
0— Ax rm{Sn} — Arm_*_lM(A,n) — Ax" xm_l{Sn} —
Ao (smy A, Kman) 4 7EMa ) —0
where q is the quotient map.

We prove this theorem in (5.8). Computations based on (2.5) are described in the
examples (2.11) below.

(2.6) Corollary: For m € Min (2n,3n—3) one has the natural short exact sequence
A
0— A@rm{Sn} - me(A,n) — A*’rm_l{sn} —0
and the isomorphism ,x_  M(A;n) Avxx {s"}.
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Proof: Since '2n-182n-1 =T we see that Ax" rm_l{Sn} =0 for m < 2n, com-
pare (7.8) [6]. Whence (2.6) is a consequence of (2.5). In the stable range m < 2n—1
the sequence (2.6) is well known (see for example [1]); in this case we have

A®x {S"} = A®x _S" and Avx . {S"} = A*x_,S", see(7.5)]6].

Next we consider the cross effects of the exact sequence in (2.5). For this let
M(A|B,n) = M(A,) A M(B,n-1) andlet ,xM(A |B,n) = x~M(A |B,n)/S’
. ‘s 2n-1
where §’ is the subgroup generated by all compositions LK - S — M(A | B,n).

(2.7) Corollary: For dim(Z™K) < 30—2 there is a natural exact sequence
Kq2n—1 K K q2n-1
0 — Trp(A,B,7 S ) — A’rm+1M(A |B,n) — A¥B*x S
lij Kq2n-1 K K
—2 A®B®x S — x_M(A|B,n) — ,x M(A|B,n) — 0

Here Trp is the triple torsion product of Mac Lane [14], see also (7.7)(3) in [6].
Corollary (2.7), is the *cross effect sequence’ of (2.5) obtained by the formulas (7.7)
[6]. It is an interesting problem to compute the boundary operators & in (2.5) and

(2.7) only in terms of 'some structure’ of the homotopy groups rlf(S-') of spheres, in

particular if K = s0.

(2.8) Remark: There are many papers in the literature concerning the homotopy
groups of Moore spaces . M(A,n), see for example [22] and [8], [17]. We here are
mainly interested in the functorial properties of armM(A,n), m < 3n — 2, which are
not 8o well understood; an early approach in this direction is due to Barratt {1] for
m < 2n-1.

The functorial properties of the groups =« mM(A,n) are of special interest for the

homotopy classification of manifolds and Poincaré—complexes respectively. Let Pi

be the class of (n—1)—connected (2n+k)—dimensional Poincaré—complexes.

(2.9) Examples: Let n > 2. For X € Pg there is a homotopy invariant
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e(X)EH (X)®ry, . {S"}
where H X isa finitely generated free abelian group. In fact X is the mapping cone
X=C; of amap f: g2n-1 — M(H_X,n) and e(X)= /\_1({) is given by the
isomorphism A in (2.4). Whence ¢(X) is a complete homotopy invariant of X,
that is for X,Y € Pg there is an orientation preserving homotopy equivalence
XY iff there is an isomorphism p:H X~ H Y with (¢81)e(X) = €(Y). We
can write the invariant €(X) in terms of the cohomology H"(X) as follows. Since

H (X) = Hom(H™(X);Z) we have by (5.5) [6] the isomorphism

x: H (X)®r, . {S"} & Hom(H"(X),x, _,{S"})
Therefore ye(X) = (aya,,) is a quadratic form with a,: H(X) — T, Il__1Sn and

with a_ : H'(X) x H%(X) — T, n_lsm“l v I. Here a,, is just the cup product
pairing in X. Moreover a, = ¥ is exactly the cohomology operation considered by
Kervaire—Milnor in 8.2 [13]; (the formula there is equivalent to the fact that
(aga,,) is a quadratic form, compare the first equation in (5.1)(2) [6]).

(2.10) Example: For X € Pll1 (n 2 2) we define a new homotopy invariant

7(X) € H (X)¥'x, . {S"}
which we call the torsion—invariant of X. We obtain 7(X) by a homotopy equiva-
2
lence X =~ C;where f:§ - M(Hn+1X,n+1) v M(H Xn). Let 1,f € r, M(H X,n)
be given by the retraction r, and let 7(X) be the image of r,f under the
homomorphism

1o M(H X,;n) —- 7, M(H X;n) & Hn(X)*’rzn_l{Sn}
given by (2.6). One can check that an orientation preserving map v:X —Y with

XY€ Pll1 satisfies

(H (v)+1)(r(X)) = (Y)
so that 7(X) is a well defined homotopy invariant. For n 2 3 the exact sequence
(2.6) can be used for the computation of all possible f which yield the same torsion

invariant. This yields a kind of homotopy classification of objects in lel’ (using diffe-

rent invariants such a classification is intensively studied in {19}, [20], [18], [11], [24]).
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(2.11) Examples of computations: The following list shows some examples of the qua-

dratic Z—modules rm{Sn} where we use the notation for indecomposable quadratic
I-modules in (2.4), (2.11) [6]. These examples can be deduced from Toda’s computa-
tions [23]. In the list we denote a cyclic group Z/n simply by n and we denote a
direct sum Z/n®Z/m by n®m. Moreover (n,m) and (n,m,r) are the greatest com-
mon divisors.

n,m r {s"} I/x®r_{s"} Ifrr {S"} I/kx"x {S"}
23 | 2¥ (k2,2k) (k,2) 0
35 | e (k,2) (k,2)®k 0
36 | H(2,1)83 (k,12) (k,12)®(k,2) (k,2)
47 | Eles (& 2Kk)8e, (k,24) 0
o(k,3)

4,8 . 0 0 0 k=1(2)

/2y’ 2 2 0 k = 2(4)
4,9 202 202 0 k = 0(4)
59 | P(1) (k,2) (k?,2k) 0
510 | (2/2)° (k,2) (k,2) 0
511 | (z/2)e2  (x2) (k,2)8(k,2) (k,2)
512 | H(1,3)815  (k,2)®(k,15) (k,2)8(k,3) (k,3)®

o(z/3)! &(k,8)8(k, 15) (k,8)
611 | 175 k 0 0
612 | @2t (k2 (k,2)8(k,2) (k,2)
6,13 | H(2,1)®15 (k,60) (k,60)8(k,2) (k,2)
614 | (z/8)fe2 (k2 (k,2)8(k,2) (k,2)

®(z/3)5 ®(k,2k,24) &(k2,2k,24)
6,15 | 28202 (k,2)8(k,2) (k,2)®(k,2) 0

o(k,2) o(kx,2)
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The quadratic Z-module El (see (n,m) = (4,7)) is given by
! = (zen/4 (L0, 7 B71) | ge7/4)
and € in this line is
2 k=0(4),k#0(8),
= 14 k=0(8),
0 otherwise .

Moreover for (n,m) = (4,8), (4,9) we use (ZI/Z)T = [er]ﬂll/2 as defined in (2.1) [6].

The computation of the groups in this list is readily obtained by (7.9) [6]. Combining
the groups in the list with the exact sequence (2.5), (2.6) we immediately get the
following short exact sequences.

(1) 7/(k,12) >— 7 M(L/k,3) — (k,2) © Ik
(2) k = 1(2) 0 )
k = 2(4) /2  >— 1gM(T/k,4) —- T/(k,24)
k = 0(4) /2912
(3) k=1(2) 0 ) 0
k = 2(4) Z/2 | >0 7 M(T/k4) ——  {T/2
k = 0(4) 1/201j2 | 1/291/2
(4) 1/(k,2) >— 7, M(Z/k,5) —- T/(2kk°)
(5) Z/(k,2) >— 7 M(Z/k;5) — T/(k,2)

By a result of Sasao [17] the sequence (1) is non split only for k =0(2) and
k/(k,12) = 1(2); in this case onme has  x M(Z/k3)=1T/281/2k ® I/(k,12)/2.
Moreover Tipple [22] showed that (3) is split and that (4) is non split only for
k = 2(4). Finally we deduce 7 M(Z/k,6) = /(k,12) from the list above. We leave
it to the reader to describe further examples for the exact sequences (2.5).

§3 Homology of Eilenberg-Mac Lane complezes

We describe a six term exact sequence for the metastable homology groups of
Eilenberg-Mac Lane complexes. This sequence is a kind of Eckmann-Hilton dual of



the corresponding exact sequence for metastable homotopy groups of Moore spaces in
§2.. Moreover we use the operators in Whitehead’s certain exact sequence for a map
which carries the homotopy groups of Moore spaces to the homology groups of
Eilenberg-Mac Lane spaces.

Let RCHA_ be a small subringoid, see (11) A homotopy abelian H—space U,

U € HA, gives us the R°P—module

[&rU] g gop — &
which carries X € R to the abelian group of H-maps [X,U]” = HA(X,U) which is
a subgroup of [X,U]. The quadratic R—module H_{R,G} associated to (1.3)(4), see
(1.4), and the tensor product (3.1) [6] yield the natural homomorphism (m < 3/n)

(3.1) A: @,U]’@BHm{B_,G} — H_(U,G)

as follows. For a€[X, U}/, b€[Y, U]/, a€ H_(X,G), B€H_ (XAY,G) let
A(a®a) = a_(a) and A({a,b]®F) = H(u),(2arb),(B), compare (1.6). The image of A
is the subgroup of Hm(U,G) generated by all elements @ (a) where
a:X;x.xX; —7U isan H-map, X.€ R, k 2 1, and where a € Hm(xlx...x Xk,G).

(3.2) Lemma: A in (3.1) is a well defined natural homomorphism. Moreover A is an
isomorphism if U = XIX...X Xk, Xi €R for i=1,..k andif R is a full subringoid
of HA .

Similarly as in (2.2) the lemma is a consequence of (4.4) [6].

(3.3) Remark: A natural description of Hm(K(A,n),G), m < 3n, can be obtained by
(3.1). For this let¢ R be the full homotopy category consisting of elementary

Eilenberg—Mac Lane spaces K(Z,n) or K(ﬂ/pi,n), p = prime. Then (3.1) yields the
natural homomorphism (n 2 2)

A: [B,K(An) 8 H_{R,G} —= H_(K(An),G)

which is an isomorphism for all A—E Ab. This follows essentially from (3.2), compare
(4.6) [6]. We clearly have [R,K(A,n)] = [R,K(An)}’.
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We now consider a special case of A in (3.1). For this let R~ 7 be the full
subcategory consisting only of K(Zn) and let U =K(A,n). Then H_{R,G} is the
quadratic Z-module (see (1.6))
G H P
H_{n} = (H_(K(Z;n),G) — H_(K(Zn) » K(Z,n),G) — H_(K(Z,n),G))
and we get by (3.1) the natural homomorphism

(3.4) A : A®;HC (0} — H_(K(A,0),G)

which is an isomorphism if A is free abelian; here A needs not to be finitely gene-
rated. In fact A is the tensor approximation of the functor Ab — Ab which carries
A to H_(K(An),G), compare (4.8) [6]. For G=17 weset H {n} = Hi{n}.
Since K(Z,2) = CP_ we readily see that H,{2} I'. Therefore we derive form

(3.4) the natural homomorphism A : [(A) = A®T' » H,K(A,2) which is actually an
isomorphism for all A, compare [10]. The following list shows some examples of
quadratic Z7-modules H_{n}. We use in this list the notation for indecomposable
quadratic Z-modules in (2.4), (2.11) [6]; the examples can be deduced from the
computations in [10].

m n Hm{n} Hm(K(A,n))

3 2 0 0

4 2 i I(A)

5 2 0 R(A)

5 3 1/2 I/28A

6 3 t I/2xA®A%(A)

7 3 1/3 I/3%xA®N(A)

8 3 @/2)® I/3% ABA®AST /2
7 4 0 I/2xA

8 4 1'en/3 I/3®A8I(A)

9 4 0 1/3%ABR(A)

9 5 1/281/3 (Z/291/3)®A

10 5 A (Z/201/3)xABA%(A)
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In general the map A in (3.4) is not an isomorphism. As an analogue of theorem
(2.5) we proof in (6.13) below the following result, in which, however A above does
not appear. Again we use the derived functors in (7.4) [6].

(3.5) Theorem: Let m < 3n—3. Then there is a natural map
x:H_(K(A,n-1),G) — A*Hg{n} such that H (K(A,n—1),G) = kernel(x) is
embedded in the natural exact sequence
e G
0 — A®H’{n} — KHm_l(K(A,n—l),F}) — A®"H_  {n} —

G
A¥H {0} ~H_(K(A,n-1),G) »— H_(K(A,0-1),G) —0
where i i8 the inclusion.

In the stable range m < 2n—2 this yields just the short exact sequence
(36) AxH_(K(Zn),G) +—H_(K(A,0-1),G) —< A®H_ +1(K(Zn),G)

which is a kind of Eckmann—Hilton dual of (2.6). Using the formulas in (7.7) [6] it is
easy to obtain the exact "cross effect sequence” of (3.5), this is a sequence of a similar
nature as in (2.7).

(3.7) Examples: We describe some applications of (3.5) where we use the list in (3.4).
Since H,{4} =0 and since Hy{4} =0 we obtain the isomorphism
AST ®A®T/3 = A®HL(4)

o ~H7K(A,3)

= H,K(A,3) ¥ NA®A®T/3
which corresponds to the isomorphism AG’EFg A in (7.12)[6]. Since H7{3} =1/3
we have A®"H, {3} =0 sothat H.K(A,2)2 A®TA where 7h= H{3}. Moreover
we have H,{3} =0 so that _H,K(A2)=H,K(A,2)2T(A). Therefore we derive
from (3.5) the exact sequence

A®L/2 +—T(A) —< A®' T O AxT/2 % R(A) —< A®T

which is the union of two natural short exact sequences. By (2.10) [6] this shows that

there are natural isomorphisms A®"TM v SP2(A) x AST®.
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(3.8) Remark: J. Decker got a formula for H_K(A,n), m < 3n, in terms of a list of
homology operations a, see I (4.3) [9]. This list of homology operations (based on
results of Cartan [7]) allows in principle the computation of H_K(A,n) as a functor
and whence we can derive the quadratic Z-module H_{n}. The exact sequence (3.5)
still is helpful for understanding the somewhat intricate functors f1 q and R q which
appear in Decker’s formula. They generalize the functors ! and R of
Eilenberg—Mac Lane [10}, that is 1, =0, Ry =R.

We now describe a connection between homotopy groups of Moore spaces and
homology groups of Eilenberg-Mac Lane spaces. To this end recall that the Hurewicz
homomorphism h is embedded in a long exact sequence [25]

b h b

—H X5 xbax-BEx2r  x—

which is natural folrl-:ilmply connected spaces X. For an abelian group A we have
the canonical map (n 2 2)

k : M(A,n) — K(A,n)
which induces the identity H (k)=1, of A. This map induces the natural
homomorphism

(3.9) Q =b T (k)i : 7, M(A,n) — H . K(An)

where we use i and b in the exact sequence above. J.H.C. Whitehead [25] showed
that Ql is an isomorphism for m = n+1. In the meta stable range Q, is part of
the following commutative diagram where we use XM(A,n—1) = M(A,n), m < 3n-2.

(3.10) x M(An)—2— 7_M(A,n)AM(An-1) —E— 7 _M(A,n)
lql le l Q,

K(An) 20 B, K(An)AK(An) —E—H_ K(An)

Hm+1 m+1
The maps H and P are defined as in (1.5) and (1.6) respectively. The map Q, is
defined by Q, =h7_
is the Hurewicz map. Whence Q2 i8 an isomorphism for m = 2n—1. The commuta-
tivity of the diagram shows that Q = (Ql,Q2) is a map between quadratic Z—modu-
les. We obtain the commutativity of (3.10) by the homotopy commutativity of

(3.11) M(A,n) <45 M(A,u)v M(A,n) —2~ M(A,n)
|* ¥ |x

K(A,n) -2 K(A,0)xK(A,n) £— K(A,n)

+1(kAk)2 where ¥ is the suspension operator and where h
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Here u’ and g are the comultiplication and multiplication respectively and k’ is
given by kv k and the inclusion. By applying the functor T m 1o (3.11) we
essentially get (3.10).

For any (n—1)—connected space X with H X~ A we have maps

K o k"
(3.12) k:M(An) — X —— K(A,n)

which induce isomorphisms in homology Hn‘ Here the homotopy class of k" is
unique, the homotopy class of k’, however, is not unique. From (3.10) we derive for
m < 3n—2 the commutative diagram

(3.13) A®r_{s"} + A®H . {n}
A [,\
l ki bk
r M(An) ———— T X——F— H__ K(An)

\Q—l/
which shows that I' X is non trivial if Q, is non trivial. The following lemma
gives information on part of the kernel of Q;.

(3.14) Lemma: Let a € r (M(A;n)) be a map which admits a factorization

a:S™—Y— M(An) where Y is n—connected and dim(Y) < m—1. Then we
have Q,(a) =0. In particular we have Q,([{,7]) =0 for all Whitehead products
[€,n] with £ € 7, M(An), t>n.

(3.15) Example: All arrows in (3.13) are isomorphisms for n = 2, m = 3. Moreover
the map

Q: 7r4M(A,2) — H5K(A,2) ~ R(A)
is surjective and its kernel is the subgroup S in (2.5). Whence we have the natural
isomorphisms

A*’IZP n

= AT4M(A:2) £ H5K(A:2) ~ R(A),

compare (2.6) and (7.12) [6].
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84 Cohomolo s rg-Hac Lane spaces

Here we obtain a six term exact sequence for the cohomology groups of Eilenberg-
Mac Lane spaces in the metastable range.

Let R CHA be a small subringoid, see (1.1). A homotopy abelian H—space gives us
the R°P—module [R,U)’ asin (3.1). Now the quadratic R°P—modules H™{R,G}
and wrl[{l{g} asgociated to the functors (1.3)(3) and (1.3)(2) respectively yield the
natural homomorphisms (m < 3n, resp. hodim(N™K) < 3n)

(41)  A:HE®(U,G)— HomRop([g,U]',Hm{g_,G}),

A: g (U) — HomRop([g,U]',x‘I‘g{;)}

Compate (5.7) [6]. By (5.8) [6] we know

(4.2) Proposition: The homomorphisms A  in (4.1) are isomorphisms if
U= XIX...X X, isa finite product with Ki €R for i=1,..,r andif R isafull
subringoid of HA .

(4.3) Remark: Let R be the ringoid of elementary Eilenberg-Mac Lane spaces as in
(3.3). Then (4.1) yields the natural homomorphism

A : 7R (K(A,n),G) — HomRop([g,K(A,n)],rII](l{,@_})

which is an isomorphism if A is finitely gen_t;.rated.

We now consider a special case of A in (4.1). For this let R~ Z be the full
subcategory consisting only of K(Z,n) and let U= K(A,n). Then H™{R,G} and
rg{l{ﬁ} are the quadratic Z—modules

Bo{n} = (E™(K(Z,0),G) = E™(K(Z,n) » K(Z,1),G) 2~ B™(K(Z,n),)),

{0} = (FEK(Ln) = 7K (Z,n) » K(T,0) 2o 2FK(T,n)
respectively defined as in (1.6). Now (4.1) yields the natural homomorphisms
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(4.4) X : H%(K(A,n),G) — Homy(A,HG{n})
A: r%l(K(A,n)) — HomE(A,arlII(l{n})

which are isomorphisms if A is a free abelian group (here A needs not to be finitely
generated). In the next result we use the derived functors in (7.4) [6].

(4.5) Theorem: Let m £ 3n—2. Then there is a natural map
K : Ext(AHR g{n})—H T(K(A,n—1),G) such that
Hm(K(A n—1),G) = cokernel(x) is embedded in the natural exact sequence
0— Hom’(AHg{n}) — H™ (K(An-1),G) — Hom"(AHG ! {n}) —

Ext(A,Hg {n}) - B™(K(A,n-1),G) = H™(K(A,0-1),G) — 0
where q is the quotlent map.

In the stable range m < 2n—2 this sequence is equivalent to the short exact sequence
(4.6) 0— Ext(A,Hg{n}) — H™(K(A,0-1),G) — Hom(A,Hg ! {n}) — 0

where Hrél{n} = H™(K(Z,n),G) is an abelian group. Theorem (4.5) is a special case
of the next result.

(4.7) Theorem: Let hodim (Q™K) < 3n—2. Then there is a natural map
x :Ext(A,rIII(l{n}) — xIIEK(A,n—l) such that nwlll{lK(A,n—l) = cokernel (k) s
embedded in the natural exact sequence
0— Hom'(A,7{n}) — 7 K(A,n-1) — Bom"(A,7% " {n}) —
Ext(A,rK{n}) £, TK K(A,n—1) 44 KarKK(A,n—l) — 0
where q is the quotient map.

We prove (4.7) and (4.5) in (6.8) below. Again it is obvious how to describe the
"cross effect sequence” of (4.7) by the formulas in (7.7) [6}.
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§5 An exact sequence for homotopy groups of a cofiber

The main result in this section describes an approximation of a certain fiber from
which we deduce various exact sequences, this way we obtain a proof of the exact
sequence for homotopy groups of Moore spaces in (2.5).

Let g: A— B beamapin QB* and consider the following commutative diagram.

(71)

08.—5— CAv B
Ii push IiVI_
PRI

’ W
P P \g

Here CB is the coneon B and i: B >— CB is the inclusion. The mapping cone
C g is defined by the subdiagram ’push’ which is a push out diagram. Let r(g) be the
induced map between homotopy theoretic fibers and let P (g be the homotopy
theoretic fiber of r(g). Let Wg be the composition of fibrations —— as indicated
in the diagram.

(5.2) Theorem: Let A be a suspension, A = EA’, which is (a—1)—connected and
assume B is (b—1)—connected, b 2 2. Then there is a map

§:LA' A A’—-bPr&lg)
which is Min(a,b) + 2a — 3 connected. Moreover the composition Wgé satisfies the
equation

[Wg6:EA’ AA’ = AVB
Wg6 = [i,i; ~iqg]

Here i; (resp.i,) is the inclusion of A (resp. B) into Av B and[,]is the
Whitehead product.

Proof: The theorem is a partial reformulation of (6.9) in [5].
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The next corollary of (5.2) yields an exact sequence which is dual to the sequence of
E. Thomas in (6.4) below.

(5.3) Corollary: Let A be an (a—1)—connected suspension, a > 1,andlet g: A— B

be a map where B is 1—connected. Then we have for dim(E™K) < 2a—2 the exact
sequence

K

K K 9. Koy % K
rm_H(B) — z‘m+1(Cg) — 7 (AVB), — 7 (B) — xm(Cg)

Here rg(Av B), denotes the kernel of the map (1,0), : rllfl(Av B) — ”II;(B) and
8 = (g,1), isinduced by (g,1): A¥B— B.

Compare also (6.9) in [5).

Proof of (5.3): By (5.2) we see that Pr(g) is (2a—2)—connected. Therefore 1(g) in-

duces an isomorphism rﬁ(Pi) N rfl(Piv P wII;(Av B), since dim(ZK) < 2a-2.
Now the fiber sequence for P; yields the exact sequence in (5.3).

(5.4) Corollary: Let g:EX; — EX, be a map between (n—1)—connected suspensions
in coHA  (see (1.1)) and let dim(Z™K) < 3n—2. Then we have the following
commutative diagram in which the column and the row are exact sequences.
K
7 (EX 4 X,)
{P2

K Y
rm(le)exm(le A XO)

E \ D;
K K

K K
'm+1(cg) -3 Tm+1(Cg’EXO) 7 (&) 1 Tm(cg)
H
‘x
7t (EX X))
D,

L .
Y1 (EX )87 (BXy A X))



- 21 -

The row is the exact homotopy sequence of the pair (C EXO) The operators D,
and D, are given by

D, = (P,«1]g),), D; = (8,,P(g|1),)
where P, (g|1), and (1]|g), are defined asin (1.5). In fact (1|g), is (14g), up
to the switch of suspension coordinates and (g|1), = (g41),.-

Proof of (5.4): We apply the operator I}I: to the fiber sequence in the bottom row of

(5.1). This yields the exact column of (5.4) since & in (5.2) is highly connected. Here
we use the isomorphisms

K K

T Pivi Y arm_H(CAv B,Av B),
v 75 (AVB),, see (5.3),
v 752X JorK(EX, 2 X )
="m 177" "m 170

with A =IX,, B =EX,. The map D, is induced by (g,1) : Av B — B. Moreover
D, is induced by WSG in (5.2).

The operations Dl,D2 form a chain complex, that is DlD2 = 0. This chain complex
corresponds exactly to the chain complex M_(d) in (6.3) [6] where d =g and

where M = {xII;} is the quadratic g@n—module associated to the quadratic func-

tor 1'111(1 in (1.3)(1), see (1.4) or (3.5) [6]. We therefore have the homology groups
0{1r }4(8) = cokernel (D,)

(5.5) 1{1rm} +(8) = kernel (D,)/image (D,)

K
Hy{7,},(g) = kernel (D,)
These homology groups appear in the exact sequence of the next corollary where

(5.6) m+1(C ) = kernel &
is the image of the operator j in (5.4).

(5.7) Corollary: With the assumptions in (5 4) there is the exact sequence

0—  Hy{ma},(6) - ims 1(C) S By{ms 3, (0) -5

Hy{rhi(8) - 75 (C,) - jr(c,) —0
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Proof: The maps are given as follows. The inclusion e is induced by E and the map

h is the restriction of H. The map & is induced by 13(11)_1 and i and j are
derived from the corresponding maps i and j in (5.4).

The exact sequences (5.4) and (5.6) are natural with respect to principal maps
F:C_— Cg’ between mapping cones, compare [4] for the definition of principal

g
maps.

(5.8) Proof of (2.5): Theorem (2.3) is a special case of (5.7). For this let

X1 —d—.xo—-HA be a short free resolution of the abelian group A and let

g : M(X{n) — M(X,n) be a map which induces d. The mapping cone of g is the
Moore space M(An) = Cg' Using the isomorphism A in (2.4) (where we replace A
by X, and X respectively) we obtain isomorphisms

Hy{rs},(8) = A®T. {5},
H {x},(g) = Axxh {s"},

K K
H,y{rX},(g) = A+ a5 (5"},
Compare the definition in (7.4) [6]. Now it is easy to see that i in (5.7) corresponds
to A in (2.5). Therefore (2.5) is just a special case of (5.7).

86 An ezact sequence for (co)homology groups of a fiber

The main result in this section describes an approximation of a certain cofiber. This
result is the Eckmann—Hilton dual of the result in §5, the proofs however, are not
dual. We derive exact sequences which, in particular, yield the exact sequences for
homology and cohomology groups of Eilenberg—Mac Lane spaces in §3 and §4 above.

We first describe the Eckammn—Hilton dual of diagram (5.1). Let g: B— A bea

map in Tog* and consider the following commutative diagram
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Pg——ﬂ—-»“r 0 WAxB
fa e

(6.1)

®D AXB)\
LW

Q" g Cqx1> Cr(g)

Here WB is the contractible path object and P g is the homotopy theoretic fiber of
g which i8 defined by the subdiagram ’pull’ which is a pull back diagram. Let r(g)
be the induced map between mapping cones and let Cr( g) be the mapping cone of
r(g). Let W_ be the composition of cofibrations as indicated in the diagram.

Q—=< ©

g

(6.2) Theorem: Let A be an H—group which is (a—1)—connected and assume B is
(b—1)—connected. Then there is a map
— AArA
which is Min(a,b)+2a—1 connected I&oreover the suspension E(JW ) satisfies the
equation:
E(5Wg) : L(AxB) — E(ArA)

B(6W,) =B(A,p,) —5((1 4 )4) + A
Here Py AxB — A is the projection, & : AxB — AAB is the quotient map, and
AA :A— AArA is the reduced diagonal. Finally A is a map which admits a
factorization A :YXAAB — Y — EAAA where Y is (3a)—connected.

An explicit description of é6W_ 1is given in the proof of the theorem, see (6) in §7
below. In the stable range we obtain by (6.2) the following exact sequence due to
E. Thomas [21], see also [16]; a generalization of this sequence can be derived from
the ’general loop theorem’ (V. 10.6) in [4], see also (6.4.7) [2].

(6.3) Corollary: Let A be an H—group which is (a—1)—connected and let g: B — A
be a map. For hodim(™Y) < 2a—1 we have the exact sequence, m > 1,
m+1(B) -q—; m+1(P )—-o wY(AnB) 2, WY(B) —q——; T (P )

where A » B is the cofiber of iy : B— AxB. The boundary &= (p(g,l))*
induced by the composition p(g,1): B — AxB — A»B.
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Proof: By (6.2) we see that Cr( g) is (2a—1)—connected. Therefore r(g) induces the
isomorphism

Y Y Y
rm(Cq) A 'm(qul) v 7 (A%B)

since we assume hodim(A™Y) < 2a—1. Now the Puppe sequence for C_ yields the
exact sequence (6.3). The next corollary of (6.2) is dual to (5.4).

(6.4) Corollary: Let g: XO — X be a map between (n—1)—connected homotopy

abelian H—groups in HA_ (see (1.1)) and let hodim(2™Y)<3n~2. Then we have the
following commutative diagram in which the column and the row are exact sequences.

m
Ty(X;4X,)

P2

ry (X )@y (X, 4 Xo)

E D

“m+1 m m
¢ 3 Ty (Pg|B) —g— Ty(Xg) ?" ”Y(Pg)

1

H

'm~—1
v (X14X))
D,

B

o 4
1'1{3 (Xl)&)zrr{l (Xl.«XO)

The row is the exact cofiber sequence (Puppe sequence) of the mapping cone C q of

q:P_—+ X, here we write 72 V1(P_|B) = #5(C_) since this group is dual to
g 0 Y g Y'\¥q

the corresponding relative homotopy group 1|r21{1 +1(C g,EXO) in (5.3), compare also

the notation in (I1.14.5) [4]. The operators D, and D, are given similarly as in
(5.4), namely

* * *
D, = (D.A1]g)*), D, = (6", P(g|1)*)
Here P=A*, (1|g)* and (g|1)* are defined by (1.6). In fact we have

(1]g)* = (1rg)* and (g]1)* = (gr1)*".
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Proof of (6.4): We apply the operator r% to the cofiber sequence in the bottom row
of (6.1). This yields the exact column of (6.4) since & in (6.2) i8 (3n—1)—connected.
Here we also use the isomorphism

1
Y(Cqx1) = 7y (WAXB|AxB)
= 7y (AxB/B)
= r%(A)er#(AAB)

with A =X,, B=X,. Themap D, isinduced by (g,1) : B— AxB. Moreover D,

is induced by (6W g)*‘ The formula in (6.2) for T(6W g) yields the formula for D,
above.

The operators DI'D2 form a chain complex, that is D1D2 = (. This chain complex
corresponds exactly to the chain complex M_(d) in (6.3) [6] where d = g°? and
where M = {1111{1} is the quadratic Qgp—module associated to the quadratic func-

tor wIII{‘ in (1.3)(2), see (1.4) above or (3.5) [6]. The homology groups of this chain
complex are the groups

Ho{r?(l}*(g()p) = cokernel (D,),
(6.5) H, {7}, (g°F) = kernel (D,)/image D,

0
H2{7r§l}*(g P) = kernel (Dy) .
They appear in the exact sequence of the next corollary where

. 1
(6.6) j?I'III{1+ (Pg) ~ kernel( 8)
is the image of the operator j in (6.4).

(6.7) Corollary: With the assumptions in (6.4) there is the exact sequence
opy €. . 1 h -1 opy 8
0—  H{rg)(6) S ik T (R - By{rg ), (6% 5
Hy{7k},(&"?) — xf{‘(Pg) -1 jfrlII(l(Pg) —0
The proof of (6.7) is the same as the one of (5.7). The exact sequence (6.7) is natural

with respect to principal maps F : Pg — P g between fiber spaces, compare [4] for
the definition of principal maps.



- 26 — .

(6.8) Proof of (4.7): In fact theorem (4.7) is a special case of (6.7). For this let
g : K(X;,n) — K(Xyn) be a map which induces d in (5.8). Then the fiber of g is
the Eilenberg—Mac Lane space K(A,n—1) = Pg. Therefore we can apply (6.7). Using
the isomorphism A in (4.4) (where we replace A by X, and X, respectively) we
get the isomorphisms

Hy {72} (¢°P) = Hom(A, 72 {n}),
H,{x2}(g°?) = Ext'(A, 72 {n}),
Hy {72} (¢%P) = Ext"(A, 72 {n})

Compare the definition in (7.4) [6]. Now i in (6.7) yields the homomorphism « in
(4.7). Therefore (4.7) and also (4.5) is just a special case of (6.7).

Next we derive a further corollary from (6.2) concerning homology groups of the fiber

Pg'

(6.9) Corollary: Let g: Xy — X; beamapin -H;An as in (6.4). Then we have for
m € 3n—3 the following commutative diagram in which the column and the row are
exact sequences.

H (X,4X,,G)

1

Hm(Xl'G)eHm(xl AXO’G)
S
Hm—l(Pg’G) & Hm(XO,Pg;G) s H_(XqG) ‘_(':[;- Hm(Pg,G)
i
Hm+1(xl +X,,G)

[o!
Hy,41(X),G0BH, (X, 4X),G)
The row is the exact homology sequence of the pair (XO,Pg) where we use the

mapping cylinder of q: Pg — XO. The operators p! and D! are given by

1 0
D" = (H,~1]g),) and D" = (g,,(1]|g),H)
where H,(l|g), and (g|1), are defined as in (1.6). In fact we have

(1 lg)* = (lAg)* and (g| 1)* = (g"l)*'
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Proof of (6.9): We apply the functor Hm(_,G) to the cofiber sequence in the bottom
row of (6.1). This yields the exact column of (6.9) since & in (6.2) is
(3n—1)—connected. Here we also use the isomorphism
H (C,x1/G)2 H (AxB/B;G)
~ H_(A,G)®H_(A+B;G)

where A =X, B =X, Themap D° is induced by (g1):B — AxB. Moreover
D! is induced by (6W g)*' The formulas in (6.2) for L(6W g) yields the formula for
D1 above.

qx1’

The operators DU,D! form a cochain complex, that is D'D? = 0. This cochain
complex corresponds to the cochain complex M*(d) in (6.3) [6] where d =g and

where M = {Hg} is the quadratic HA —module associated to the quadratic functor
H (_,G) in (1.3)(4), see (1.4) above or (3.5) [6]. The cohomology groups of this
cochain complex are the groups

H:{Hg}*(g) = kernel (DO), |
(6.00) {H:{HS},(g) = kernel (D)/image (D),

2 1
B*{HC}, () = cokernel (D)
They appear in the exact sequence of the next corollary where
(6.11) Hm-l(Pg’G)B = image 4
is the image of the operator 4§ in (6.9).

(6.12) Corollary: With the assumptions in (6.9) there is the exact sequence
1 h 2
0— EYEZ}() < Hy (P60, B EET ) (0)
0,G i
H'{H_},(8) «1- H(P,,G) ~—H_(P 20

The proof of (6.12) is similar to the proof of (5.7). The map e is induced by E and

the map h is induced by &H, moreover & is essentially the restriction of j in
(6.9), the map q is given by q, and i is the inclusion. The exact sequence (6.12)
is natural with respect to principal maps F : Pg — Pg, between fiber spaces.
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(6.13) Proof of (3.5): Theorem (3.5) is a special case of (6.12). For this we consider
K(Ap-1) =P g 8 in (6.8). Using the isomorphism A in (3.4) (where we replace A
by X, and X respectively) we get the isomorphisms

O{H }() 2 A¥ES it}

1, (80) @) ¥ A

G
Hy{Hp} ,(¢) ¥ A®"HD {n} .
Compare the definition in (7.4) [6]. Whence (3.5) is just a special case of (6.12).

§7 Proof of theorem (6.2)
We here prove theorem (6.2); the proof relies on a result of M. Mather [15]). We first
consider the commutative diagram

)
(1) B ll ll 3 AxB >——s C;
l = an —_ Cq:\. (13 Cl:
q r(g) o qx1 r(g)

which is an extension of diagram (6.1). The subdiagram ’push’ is a push out obtained
by the mapping cylinder R of q, and j is the induced map. It is clear that the
diagram yields a homotopy equivalence C f ~ Cr( ) Next we consider the following
diagram which is obtained from the top part of (l)gby setting B=A and g=1.

*~ WA v WAxA

N T
l : Q \ANA>——»C

o glh l

A
AVA —m AxA -9 AnA

L §8Y)
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The map (1,1) is the diagonal in this case. For the definition of the homotopy
equivalence h we use the assumption that A is a H—group with multiplication u
and homotopy invers v. We set

(3) bh: AxA — AXAXA — AxAXA — AxA .

Here the first map carries (x,y) to (x,x,y), the second map is 1x1xv, and the third

map is 1xu. We also write h(x,y) = (x,x—y). The map j" is the inclusion and q is
the quotient map. Moreover the map h’ corresponds to 1 v v since 11i2 o~ i2v and

hi, ~i;. Now it is clear that h induces a homotopy equivalence C i =5 ArA.

The map g induces a map’ from the top part of (1) to the top part of (2) given by
rg:P — WA
4) I1xg: WAXB — WAxA
g:B—A
1xg : AxXB — AxA
Now (4) yields a map BQ Q — Q' for which the following diagram homotopy
commutes

F-—3, Q —J 4 AxB >——C+—F—_ ¥F
1 g 1xg ] 1
Q
.9 . L 3 -+ , e
(5) F— o/~ axa>—cp K_ sy
th" zlh’ ~|h o EUF

. . A
F—it  AvA—dY Axa-9 5 arpa X' wF

Here F = X00A » 1A is the homotopy theoretic fiber of j,j’ and j" respectively as
follows from a theorem of M. Mather (theorem 47 of {15]). Moreover the map i" is
the Whitehead product [ilR AldoR A] where R, : Y1A — A is the evaluation map.
By naturality the map 8Q induces the identity on fibers and h’ induces a homo-
topy equivalence h". The maps kk’ and k" are the canonical maps from the
suspension of the fiber to the cofiber. The map k is (Min(a,b) + 2a—1)—connected
and the maps k’ k" are (3a—1) connected, this follows from lemma (11) below. This
shows that the composition

(6) 6:Cr(g):Cj—»Cj;£AAA

is (Min(a,b)+2a—1)—connected. Hence the first part of the theorem is proved. For the
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second part we have to consider the maps

(7) 6Wg = qh(1xg) : AXB — ArA
given by (5). By definition of h in (3) we get
®) {E(qh) = B(8,p)) + B(1x0)Q) + A,

A; = (ArHp)(E(A , A v))

Here H _ is the Hopf construction of x. The map Al factors through the
(3a)—connected space LArAAA. Moreover we have
(9) T(1av) =-X(1r1) + Ay

where A, factors through the 3a—connected space EAA(A/Aza_l) where A2371
is the (2a—1)-skeleton of A. We see this by the following argument. There is a

homotopy equivalence LA’ A% gince A s (a—1)—connected. Moreover we

have the homotopy commutative diagram

— 2 23—1
v A
. . y K
itigv’ TN I I(l,v) 0

> A28-1 c A

Here v’ is the restriction of the cellular map v and v is the folding map. The
diagram shows that the composition

£A%1 c pp 12, g
is null homotopic. @ Whence 1+Xv admits a  factorization
Ag:SA — E(A/A®7l) S TA, which proves (9) where we set A, =1AA,. This
completes the proof of (6.2). It remains to consider the following lemma which we
used in (6).

Let p:E— B be a fibration with fiber F and consider the following diagram in
which all columns and rows are cofiber sequences.

(10) F — E » EfF
| P |9
* — B -+ B

| | l

k ~J ~
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By the result of Mather we see that EF A OB is the fiber of q. This shows:

(11) Lemma: Let F be (f—1)—connected, f 2 1, and let B be (b—1)—connected. Then
q and k are (f+b)—connected.
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