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ABSTRACT. To a filtration of a ring R by ideals is attached
as usual a Rees algebra. If S is a Krull domain then the
divisor class group CL(S) is envisaged and it is shown that
it is an extension of CL(R) by a finitely generated free
group. The as yet unsolved question of determining the rank

of this free group is considered, as is the question of when
the extension splits. Applications are given for ordinary

Rees algebras ("blow-ups") and symbolic Rees algebras.
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1. Introduction

Recently, several authors considered the question of
computing the divisor class group of a normal Rees algebra
R[It] ("blow-up"). Roughly, the result should depend solely
on the class group of the base ring R and on the blown-up
ideal I « R . In [H-V] a speqial case of this problem was
dealt with. Simultaneously, in [Si] a general exact sequence
was obtained which emphasized the fact that the inlusion
R[It] < R[t] .almost always satisfies condition "P D E" of
Samuel [Sa], which, as is known allows to define a natural
map CR(R[It]) - C2(R[t]) = CR(R) of the respectice class
groups. Of course, in special cases, "ad hoc" methods allow
to compute the divisor class group of R[t] (e.qg., [Br1] '
[Br-5i]). |

The aim of this paper is to give a unified method to
deal with the above computation. Moreover, a suitable
generalization to the set-up of Rees algebras associated
with filtrations allows to draw consequences for the symbolic

Rees algebras as well. We give a few samples of such results.

Theorem 1.1. Let R be a noetherian domain and I < R an ideal

for which the (res. symbolic) Rees algebra S fié éfnormai‘(res.

Krull) domain. Then there is an exact sequence

0 —> 27 —> Cca(S) —> Ca(R) —> 0 ,



where r is the .number of height one prime ideals P o IS

whose contraction P N R has height =22

Theorem 1.2. Let R be a normal (noetherian) domain and let

-~

I c R be an ideal :such that:

(i) I 1is radical and generically a complete intersection

(ii) gr (R) := R[It]/IR[It] 1is R/I-torsion free.

Then R[It] 1is normal and C&L(R[It]) = CL(R) ® ) , where

r :# minimal primes of R/I of height 2 2

Theorem 1.3. Let R be a normal (noetherian) domain and let

I c R be an ideal which is radical and generically a complete

intersection. Then the symbolic Rees algebra ¥ I(n) is a
nz20

Krull domain and C&( } I(n)) = CL(R) ® Z¥ , where r :#
nz20

minimal primes of R/I of height 2 2

Two basic questions touched upon, but not completely

sclved, in this paper are as follows:

Rank Question. To express the rank of free group z" in Th. 1.1

directly in terms of the ideal I .

The authors do not know the answer to this question even
when R 1is a regular local ring, in which case r is the rank
of CL(R[It]) . If one further assumes that ng(R) is reduced,
then it has been proved [Hu-Si-V] that ng(R) is actually

R/I-torsion free, so in this case r is the number of minimal



primes of R/I (cf. Lemma 2.3 in this work) .

Splittig Conjecture. The exact sequence of Th. 1.1 is split.

" Note Th. 1.2 gives some (weak) support to this conjecture.
In Section 3 we give further evidence to the conjecture.

We now briefly explain the organization of the paper.

ééétion 2 is devoted to the proof of the fundamental exact
sequence of the divisor class group of a Rees algebra and to
its various applications.

Section 3 éontains special cases of the splitting conjecture.
A few applications are surveyed, however the emphasis as a whole
is on a general framework that may prove useful in proving the
conjecture. .

Finally, in Section 4 we develop similar results for the
extended Rees algebra associated with a filtration. There is
however a surprising difference in that the freeness of the
subgroup corresponding to the exceptional locus depends on a
unimodular condition on the vector of the multiplicities of the
components of the locus. As a particular instance of our procedure
we obtain the result of Shimoda [Sh].

The authors wiéh to thank the hospitality of the Istituto
di Matematica (Genova), where initial conversations on the
subject were started. The first named author is also grateful
to Craig Huneke and Wolmer Vasconcelos for valuable interchange

around these ideas.



2. The fundamental exact sequence of the divisor class group

Throughout R will stand for a (not necessarily noetherian)
domain equipped with a (multiplicative) filtration
F : R = IO > I1 = 12 D ey ImIn c Im+n' where In is an ideal

for every n 2 0 . We will be concerned with the Rees algebra

associated with F , namely, the graded R-algebra

R[F] := ) Intn c R[t] (t an intermediate over R). The ideal
nz0 -

(F) := § In+1tn of RIF] plays a distinguished role and will
nz0’ .

sometimes be referred to as the "exceptional locus" of RIF] .
For our purpose, the filtration F will henceforth be

assumed to be "adic in codimension one", that is to say, it will

satisfy the condition Ian = I?Rp for every n > 1 and every
height one prime p < R . This condition is automatically satisfied
if ht(I1) 2 2.

Needless to emphasize, the main examples envisaged herein

will be the filtration of the powers 1" of an ideal, the

filtration of the symbolic powers I(n) of an ideal and the
filtration Fa : Ra o Ia'D (12)a > ... , where (In)a denotes

the integral closure of the ideal " . It is well known that Ra[Fa]
is the integral closure of R[It] in K(t) (or K[t] ), where

K := quotient field of R . Note that if R 1is noetherian, then

Ra[Fa] is a Krull domain, so the results will often be applicable
to Ra[Fa] .

After these preliminaries, we can state the basic result of
this section, where for a Krull domain A , C2(A) stands for

its divisor class group (cf. [Bou2] or [Fol).



Theorem 2.1 ("Fundamental exact sequence')

Let F be a filtration of a domain R , adic in codimension

one. If RI[F] is a Krull domain then (so is R and) there exists

an exact sequence of groups

0 —> 2t > CL(R[F]) —> CL(R) —> 0

where 1r 1is the number of the height one prime ideals p

containing the exceptional locus (F) .and such that

ht(P N R) 2 2

Supplement. If, moreover, ht(I1) 2 2, then the inclusion

R[F] < R[t] satisfies condition P D E of Samuel and the above

map CR(R[F]) —> CAL(R) can be taken to be the naturally induced
map CL(R[F]) ——> C&(R[t])}

Proof. The proof rests on two elementary facts pertaining the

nature of R[F] which allow for the construction of a map

CL(R[F]) —> CL(R)

Facﬁ 1. Let DivR(R[F]) := <[P] ¢ Div(R[F])[P N R + 0> . Then
the image of DivR(R[F]) "in C2(R[F]) is the whole of
C2(R[F]) |

Fact 2. For every height one prime p < R , the extended ideal

pRp{Fp]‘ is prime (here Fp : Rp = (I1)p =

The first of these facts is a standard argument using

cen )

Nagata's theorem (cf. [Fo, proof of Th. 8.1]). The second fact



is easy: if I, ¢ p, Rp[Fp] = Rp[t] ; otherwise, Rp[Fp] = Rpf(Il)pt]
since F 1is adic in codimension one. But 1f Rp is
regular then (Il)p is .principal, hence Rp[Fp] is again a
pclinomial ring over Rp . Thus, it remains to show that Rp
1s regular. But we have in fact that R 1is a Krull domain as
R = R[F] N K

Observe that Fact 2 means that for every height one prime
of R there exists a unique height one prime P < R[F] 1lying
over p and such P 1is unramified.

We can now proceed to define a homomorphism C&L(R[F] ——> C2(R)

First define it on the level of divisors by the assignment

Yo DivN(RIF])

> Div(R)

[PNR] if ht(PNR) = 1
[P] F—> -
0 if ht{PNnR) 2 2 .

Note one may restrict oneself to DivR(R[F]) due to Fact 1. Now
consider an element £ ¢ K(t) - the quotient field of (R[F]) -

such that the corresponding divisor [f] belongs to DivR(R[F])

say [£] = ¥ v _(£)[P] . Then, w[f] = y v_(f)[PNR] . But
© PNR#0 ht (PAR) =1 P
since K{(t) 1is also the quotient field of K([t] and VQ(f) =0

for every height one prime Q < R[F] with QN R =0 , it

follows that £ must be a unit of K[t] , hence £f e K . Finally,
from Fact 2, vp(f) = VPnR(f) if ht(P) = ht(PNR) = 1 . We must
conclude that y[f] is the divisor of f in Div(R) . This
implies the induced homomorphism CR(R[F]) ——> CL(R)

Again, by Fact 2, this homomorphism is surjective.



We now claim that
ker (CL(R[F]) ——> CL(R)) = <[P]eDiv(R[F]) |ht(PNR)2 2>

(modulo principal divisors). For this, note that if
D e Div (R[F]) is such that y(D) = (£l , with £ ¢ K , then

by Fact 2. D-[£f] belongs to <{P] & Div(R[F]) |ht(PNR) 2 2> .

R{F]
Finally, we verify that this subgroup of C&(R[F}) 1is free
on its generators C&(P), ht(PNR) 2 2 . Thus, let £ e K(t) be

such that the divisor [f] .belongs to

R[F]
<[P] € DivR(R[F])lht(PnR) 2 2> . As before, £ ¢ K . Again, by
Fact 2, vp(f) = vp(f) = 0 for every height one prime p c R and
the unique P < R[F] such that PN R = p . It then must-be the
case that f 1is a unit in R, so [f]R[F] = 0 as required.
This finishes the proof of the theorem. The proof of the

supplement goes along the following lines: Let p c R[{] be a
prime of height 1. Clearly, ht(p) s 1 , where p = p N R . There-
fore,.Il ¢ p and so

R[F]an[F] = Rp[(Il)pt] = Rp[t]

pRL(T)) ] PR, [E]

R[t]p .

This implies that ht(pnNR[F]) = hti(p)= 1 , thus showing

R[{F] =« R{t] satisfies P D E condition.

The map CR(R[F]) —> CL(R) defined in Th. 2.1 will hence-

forth be referred to as the "canonical map".



As an immediate corollary we get ocur Theorem 1.1 in the
first section. Special cases of Theorem 2.1 are Theorem 2.14
of [Vil, Theorem of [H-V] (the splitting part is given in our
§ 3) and Theorem 2.3 of [Br-Si]. We now indicate an interesting
consequence of Th. 2.1 that contains Theorem, (a) of [H-V] as a

particular case.

Corollary 2.2, Let I < R be a divisorial ideal of the normal

domain R such that R[It] is normal. Then the following

conditions are equivalent:
(1) C&(R[It]) = CR&(R) wvia the canonical map.
‘(ii)~ng(R) is R/I - torsion free.

Next we consider the rank question referred to in § 1. We
will work in the general set-up fitrations. For this purpose, Let
Ass(R/In) denote the set of associated primes of I, + i.e.
primes p of R for which there exiéts an element x € R

such that p =I_ : x .

Lemma 2.3. Let R[F] be a Krull domain. Then

oo
{PAR | P 2 (F), htP = 1} = U Ass(A/I )
. n=1
Proof. We note that (F) as a module over S := R[F] is
isomorphic to s’ . Since S+ is a height one prime ideal
of S,

S s ns's

It
1]

. n s's_ .
S htp=1 P
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Therefore, we alsoc have

' (F) = n (F)S
htP=1
Hence (F) 1is a divisorial ideal of S , and there exist only
a finite number of height one primes P > (F) .
Let p € Ass(A/In) for some n 21 . If p + P n-R for
all height one primes P > (F) , one can find an element x € p

such that x € P for all such primes P . Therefore

(F) : x = n (F)s_ : x = n (F)s_. = (F) .
htp=1 P htP=1
That means (In+1 : X} n In = In+1 or, eqguivalently, In+1 : X =
In+1 , for all n 2 1 . Hence x € p , a contradiction.

Conversely, let Q be an arbitrary height one prime
containing (F) and g = QNR . Then one can find a homogeneocus

element £ € S such that (F)SQ : £ = QS Let g€ S be a

Q
homogeneous element such that g ¢ Q and g € P for any height

one prime P > (F), P *+ Q . Then

(F) : fg° = n (F)S_ : £fg" =5 n s, = Q
htp=1 P
. m _ n-1 -
for all large m . Write £fg = xt ;, X € R . Then In P X =q .
Hence g € Ass(R(In) , as required.

Remark. Since there are only a finite number of height one primes

P> (F), U

Ass(A/In) is a finite set. Thus,
n

1
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3] Ass(A/In)

Ass(A/In) for n large (cf. [Bro] for a
n=1

similar result in the noetherian case).
The following result answers the rank question for the

ordinary blow-up in a special situation.

Proposition 2.4. Let R be a normal (noetherian) domain. Let

I « R be a nonzero ideal such that gr. (Rp) is a domain for
P
every p € Ass(R/I) (e.g., I 1is radical and generically a

complete intersection). Then the following conditions are

equivalent:

(i) R[It] 4is normal and the kernel of the map

C2(R[It]) -» C&(R) has rank = #{p € Ass(R/I) |ht p 2 2} .
(i1) ng(R) is R/I-torsion free.

Proof. (i) = (ii). From Theorem 2.1 and Lemma 2.3 we get
{PNR|P=(F), ht P = 1} = Ass(R/I) . Note that gr (R) =

R{It]/IR[It] . Then, since ng (Rp) is a domain for every
b

p € Ass(R/I) , using the pigeon-hole pfinciple we can derive

that ng(R) is reduced. From this it follows that ng(R) is
R/I-torsion free.

(ii) = (i). From the assumptions we can conclude that ng(R) is
reduced and that there is an one-to-one correspondence between
the height one primes P o (F) and the associated primes of

I . Therefore, R[It] 41is normal [Bal] and the kernel of the
canonical map CR(RIIt]) - C%(R) has rank =

# {p € Ass(R/I)|ht p 2 2}
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We now give results for the symbolic Rees algebra. These
will often be more definite as we now imply.

First recall that for an. ideal I < R 1in a noetherian

ring, we define its“nEE symbolic power" to be

™ InRM NR,nzO,

where M = R~U p,p € Min R/I . In particular, I(l)

p
the non-embedded part of I .

stands for

The following observations explain why the symbolic

filtrations are arithmetically simpler.

Lemma 2.5. Let R be a normal (noetherian) domain and I €« R an

ideal. Then 5 r™¢™) i 2 krull domain if and only if

Rprp t] 1is normal for every p £ Min R/I

Proof. We have:

;e -7 (1P
n n

n
M N Rt

(3(n I™t™ n R[t](p € Min R/I)
np P

(g Rp[Ip t]) n R{t]

Since a finite intersection of normal domains is a Krull domain,

(cf. [Boul] or [Fo)) we are through.

" Remark. There is a complicated proof for Lemma 2.5 for the case.

I being a prime ideal by Katz and Ratliff [K-R] .



Using this lemma, along with Th. 2.1 and Lemma 2.3, we

obtain the following results.

Proposition 2.6, Let R be a normal (noetherian) domain and

I c R a divisorial ideal: Then § 1M® is a Krull domain

and c2(3 ™M) = ca(r)

‘Proposition 2.7. Let R be a normal (noetherian) domain and

I c R an ideal for which gr; (Rp) is a domain for every

p
p € Min R/I (e.g. I is radical and generically a complete

intersection). Then E I(n)tn is a Krull domain and there‘is

an exact sequence
0 —> 25 —> ca(y I(n)tn) ~—> C&(R) —> 0

where r = #{p ¢ Min R/I|height(p)} 2 2} .
To close this section, here are some critical examples to

bear in mind.

Example A. Let F + G ¢ k[X1,...,Xm] , where F and G are

forms of degree s and s+1 , respectively, with no common

proper'factors. Set R := k[X1,...,Xn]/(F+G) and assume R 1is
normal (e.g., F = x1...xs, s $m-1, and G a form in the
remaining variables XS+1,...,Xm ). Set I := (X1{...,Xm)R ,

T = T1""’Tm . Then ng(R) = k[T]/(F(T)) . If, moreover, F is
square-free - say, F = F1"'Fr' Fi distinct and irreducible -

then R[It] is normal and.the height one primes containing
TR[It] correspond to (I,Fi(g)),1 <i sr . Clearly,

(I,F;(T)) n R =1I for every 1 £ 1i 5 r . This shows:
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(A.1) ng(R) is R/I-torsion free

(A.2) The rank of ker(CR(R[It]) -» CL(R)) is r .

However, # Ass R/I = 1

— 2—
Example B. Let R := k[X1,X2,X3,X4]/(X2 X3X4) and

I := (X1,X2,X3)R . Clearly, ng(R) 8 k[X4,T1,T2,T3]/(X4T3) and

R 1is normal. Therefore, R[{It] is normal with exceptional primes

(X1,X2,X3,X3t)R[It] and (X1,X2,X3,X4)R[It] . Thus:

(B.1) ng(R) is not R/I-torsion free, as (X1,X2,X3,X4)R is an
associated prime of R/I2 but not of R/I

.

{B.2) The rank of ker(CL(R[It]) - CL(R)) 1is 2.

(B.3) I 1is generically a complete intersection.

However, # Ass R/I = 1

.

Example C. Let R := k[x,y,z] = k[X,Y,Z]/(YZ—XZ) and I := (x,y)

Then R[It] is normal. By Prop. 2.6, C&(} I(n)tn) = CL(R) = &/2E .

As a matter of suggesting that Prop. 2.6 1s a non-trivial result,

we give an explicit presentation of E I(n)tn It is easy to check

that § 1™ t" - Rixt,yt,xt?] < R[t] . Define a map

RIT,U,v] —4—s § 1(M¢?

with deg(T) = deg(U) = 1, deg(V) = 2 and Y(T) = xt, p(U) = yt,
2

p({V) = xt” . A little computation yields that ker vy lifted to
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k[X,Y,2,T,U,V] contains (Y2—XZ,XU—YT,YU—ZT,U2-ZV,YV-UT,T2—XV) .
Regrading X,¥,Z to have degree 1 each and V to have degree
1, we see that the latter ideal is the ideal of

2x2 minors of
the 3x3

symmetric generic matrix

G < ™
H X oK
< H G

hence must be the whole of ker y

We have thus. ocbtained that for the ideal J of

2x2 minors
of a 3x3

symmetric generic, the factor ring is normal and its
class group is Z/2Z[Go]
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3. Splitting principles (with an application to computing the

canonical class).

We ask for conditions under which the fundamental sequence
of Th. 2.1 splits. One expects this to be always the case. In
the lack of such a result in all generality, we indicate a
technique that ought to work under fairly broad hypotheses.

Let M c R be a multiplicative set and let F : R o I1 > ...

be a filtration, adic in codimension one. Assume R[F] is a Krull

domain. By Th. 2.1, we have an exact commutative diagram

0 > G > CL(R[F]) —=> CR(R) —> 0
l | |

0 > Gl — CL(Ry[Fy1)—> C2(R,) —> 0
l l |
0 0 0

where G 1is freely generated by the classes of height one
primes P > (F) such that ht(P N R) 2 2 and GM is similarly

obtained. Clearly, there is a (natural) splitting G ;::> GM .

Lemma 3.%1. Assume the following conditions hold for M :

(a) ¢M & (0)
M
(b) The sequence 0 —> G —> CR(RM[FM]) e CQ(RM) —> 0
splits (e.g., CR(RM) = (0)) .
Then the sequence 0 —> G ———> CL(R[F]) —> C&(R) —> 0

splits.
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Proof. This is clear by'composing along the various sections

0 —> G —> C&(R[F])

?

M
0 —> G E) CQ(RM[FM])

v

We emphasize that a (free) generator of GM is the class
of a height one prime P o (F) such that ht(P N R) 2 2 and

PNM=20

Theorem 3.2. Let F : R o Il > ... be a filtration, adic in

codimension one, for which R[F] is a Krull domain. Assume that

Rp is factorial for every p & U Ass R/In . Then
nz1

C2(R[F]) = 2¥ ® Co(R) , for some r 2 0 .

Proof. We apply Lemma 3.1 with M = R~ U Ass R/In . By Lemma 2.3,
nz1
M r

G z2G =% for some r 2 0 . Since U Ass R/I is finite, RM
nz1 n

is a semi local domain whose localizations at the maximal ideals
are factorial rings. In this case, every height one prime ideal
of Ry, is principal [Na, (28.9)]. Hence Ry is factorial and
CR(RM) = 0 [Bou 2, Theorem 1, p. 32].

Collecting Th. 3.2 and Prop. 2.4 (resp. Prop. 2.7) one easily
obtains Th. 1.2 (resp. Th. 1.3) mentioned in § 1 (In fact, Th.
1.2 is a consequence of Th. 1.3 ).

We now proceed to the main application of this section,
namely, to an explicit computation of the canonical class of

R[F] . We shall derive our results only for the symbolic Rees



algebras, leaving to the reader the suitable modifications
needed to produce the general case. Our computations of the
canonical class generalizes the one in [H-V] and is baéed
on the ideas of loc. cit. The result, however, will have
independent interest as we point out afterwards.

For a ring A , we denote by Wa its canonical module
(provided it exists). In order to avoid tedious repetitions,
we shall make the general proviso that all relevant rings in
sight admit a canonical module. For an ideal ¢ in a Krull

domain A , cf{a) will denote the class in CL(A) of its

divisorial closure.

Theorem 3.3. Let R be a normal (noetherian) domain and let

I c R be an ideal of height 2 2 such that:
{a) I 1is radical
(b) I 1is generically a complete intersection.

Then S := ) I(n) is a Krull domain and

cl{wg) = calwp) - ) (ht(P N R) - 2)ci(P) ,
P

where P runs through the height one primes of the exceptional

L (1)

locus + I(z)t + ... and cl(wR) is viewed as an element

of CR(S) via the splitting of Th. 3.2.

" Proof. From (b), using Prop. 2.7, we know that S 1is a Krull

domain. Since (a) implies, moreover, that R is regular for

P
every p € Min R/I , we have a splitting of C&(S) as in
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Th. 3.2. Reading that splitting more closely, we can write

c£(ws) =C - g npcl(P) ,

for suitable C e CL(R) and integers ng with P running
through the height one primes of the exceptional locus.
By changing to a polynomial ring - R[X] , if needed, we may

assume the existence of a prime element x ¢ I([H-V], [Tr,

Korollar 2.3]). Then C&(R) = CR(RX) by Nagata's trick and,

1]

clearly, Sx Rx[t] . Hence the preceding formula yields

c = cﬂ,(wS ) = cz(wR } = cR(wR) with the proper identifications.
X X
To determine np we localize at p := P N R . By assumption,
Rp is regular and, therefore, CQ(RP) = 0 and PSp = pSp , thus

yielding cR,(wS )y = npcz(psp) . But, Sp is a determinantal ring,

hence np = ht(p) 2 [Brzl , as required.

Corollary 3.4. Let R be a normal domain which is a factor of a

Gorenstein ring. Let I <« R be an ideal of height 2 2 such

that:
(a) I 1is radical and generically a complete intersection
(b) ¥ 1™ g noetherian.

Then (E_I(n)tn is normal and) the following conditions

are equivalent:
(i) R 1is quasi-Gorenstein and ht(I) = 2

(ii) ) e g quasi-Gorenstein.



(n)tn are Cohen-Macaulay rings,

If, moreover, R and ) I
then "quasi-Gorenstein" can be everywhere replaced by "Gorenstein".
An occurence of application of Cor. 3.4 are the noetherian cases

of symbolic algebras of monomial curves in A3[Hu] .

Remark. If I(n) = 1" for all n (e.g. if ng(R) is R/I-torsion

free), one can apply Theorem 3.3 and Corollary 3.4 to obtain similar
results on the ordinary Rees algebra R[It] and one can recover
results of [H-V] and [Ro].

Here's an improvement of Th. 3.3, in the spirit of [H-S-V,

Th. 2.7). The proof is similar and is left to the reader.

Proposition 3.5. Let R be a normal domain, factor of a

Gorenstein ring. Let I » R be an ideal of height 2 2 such

that R is factorial and gro (Rp) is a Cohen-Macaulay domain
P P
for every p € Min R/I . Then

cllwg) = chlwp) - ; (ht(P'N R) - p(I, 5 py=1Ica(P)
where S := E I(n)tn , P runs through the height one primes of

the exceptional locus and } is the reduction number of

PIp o R

Ipar ™ Bopp-
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4. Extended Rees Algebras

et F : R > Il > ... be a filtration as in § 2. We now

deal with the extended Rees algebra

s := RIFI[t 1] < Rt, ¢t

1.

Firstly, we remark that there is an one-to-one correspondence
between the prime ideals of R[F] containing (F) and the prime
ideals of S containing t_1 . For, if we denote by ng(R) the

associated graded ring © I_/I » then

0 n’" n+1

grp(R) = RIF1/(F) = s/t7's

Proposition 4.1. S 'is a Krull domain if and only RI[F] 1is a

Krull domain.

Proof. If S is a Krull domain, then R = S N K and therefore
RIF] = S n R[t] 1is a Krull domain. Conversely, let p be a

height one prime ideal of S ., If t_1 € p, then p is a
minimal prime over t'1s . Therefore, the corresponding prime
ideal P :=p N R[F] of p 1in RI[F] is minimal over (F) .

Since (F) is a divisorial ideal, ht P = 1 , Since P % R[F]+ ’
RIF]p = Sp . If t-1 ¢ g, Sp is a localization of R[t,t_1

In any case, since R = R[F] n K is a Krull domain, Sp is a

1.

discrete valuation ring. Moreover,; we have



1 1

‘N s, = N s, n R{t,t '] = n R[F] n R[t,t ']
all p t-1€p' (Fle p
n R[F]_ n R[t] = 0 R[F]_ = R[F] .
(F)cP P all p
Hence n s _= R[F][t_1] = § , and we can conclude that S 1is a
all p p

Krull domain.

We now discuss the main result of this section.
In order to avoid tedious technical circumventions we assume,’
once for all that the leading ideal I of the filtration F is

not contained in any principal prime.

Theorem 4.2, Assume S 1is a Krull domain and let
r (2.)

(F) = n P, 1
i=1

exceptional locus. Then there is an exact sequence

be the primary decomposition in R[F] of the

0 —> zr/z-(nl,...,zr) —> CL(S) —> CL(R) —> 0 .

‘Proof. We have S N K = R, hence R 1is a Krull domain. Moreover,

1

] -9 = Rtt,t— 1 . Therefore, an easy application of Nagata's lemma

yields an exact sequence

0 —> ) Zco(p) —> CL(S) —> CL&(R) —> 0 ,
P

-1

where p runs through the primes (t ,Pi), 1$isrc.

Consider the group isomorphism
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v

r ~ T -1
g —> ] Zlp;l, p; = (£ ,P,)
i=1
i
that sends the basis vector (0,...,0, 1, 0,...,0) to [pi] ’
_ r (%)
l £1isr . Since t 1S = N P; . , we see that
i=1 ‘
w((Rl,...,Rr)) = } Ri[pi] is a principal divisor. Therefore,
we obtain an induced map
r r
Z27/B(Lyreesf) —> (izlz[pi] + p)/o .,

where p 1is the group of principal divisors of S . Note that
[pi] £ p, 1 8$1i < r . Indeed, if some P is principal., then
is Pi ; hence also Pi N R . But the latter contains Il and
this would contradict our proviso.

Moreover, if w((nl,...,nr)) is a principal divisor then,
by the "unit trick" of [Br], we easily see that it must be
div(at™) , for some unit u e R and some m ¢ % . That is,
(Ay, .- n ) = m(Zy,e.e,8.) € E(&,...,L) . This proves the

result.

Remark. Clearly, xr/z(zl,...,zr) has rank r-l1 and is free if

and only if gcd (21,...,Er) =1

Corollary 4.3. If R 1is a normal domain and ng(R) reduced,

then S 1is a Krull domain and there is an exact sequence

1

0 —> 2" — cr(s) —> CR(R) ——> 0 ,

where r = # minimal primes of ng(R)
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Proof. Using the relations ng(R) = S/t_lS and

1

sft] = RI[t,t '], it is not hard to see that S is a Krull

~domain.

Corollary 4.4. If R 1is a normal domain, the following are

equivalent:
(i) ng(R) is a domain

(ii) S§ 4is normal and the canonical map

CL(S) ——> CR(R) 1is an isomorphism.

Proof. (i) - (ii) Apply Cor. 4.4.
(ii) - (i) Apply Th. 4.2 to get xr/z(zl,...,zr) = (0) . It must
be the case that r =1 and ll =1, i.e., ng(R) = R[F]/(F)

is a domain.

The localization procedure of § 3 allows us to derive
entirely analogous splitting results for the extended ‘Rees algebra.

Thus, Th. 3.2 goes through in the case of S by replacing z" by

Zr/z(ﬂl,...,ﬁr) , etc. Since the Veronese subrings R[Ije't,t_1

1

] of
a normal extended Rees algebra R[It,t '] are normal again, from
the analogous splitting condition for the exact sequence of

Théorem 4.2 we immediately obtain the following application.

Corollary -4.5. [Sh] Let R be a normal domain, let X
L

l,...,Xn

c RI[X] =

be indeterminates over R and let I := (Xl,...,xn)

1

= R[Xl,...,Xn] . Then S := R[X)[It,t '] is a normal domain
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Ce(s) = (/%) & C2(R)

REFERENCES

J. Barshay, Graded algebras of powers of ideals
generated by A-sequences, J. Algebra 25, 90-99
(1973) . '

N. Bourbaki, Algebre Commutative, Chapitre 2:
Localization, Hermann, Paris 1961.

N. Bourbaki, Algébre Commutative, Chapitre 7:

Diviseurs, Hermann, Paris 1965.

W. Bruns, Die Divisorenklassengruppe der Restklassen-
ringe von Polynomringen nach Determinantenidealen,
Rev. Roum. Math. Pures Appl. 20, 1109-1111 (1975).

W. Bruns, The canonical module of a determinantal
ring, Commutative Algebra: Durham, London Math. Soc.
Lecture Notes, 72 109-120 (1981).

M. Brodmann, Blow-up and asymptotic depth of higher

conormal modules, Preprint.

W. Bruns and A. Simis, Symmetric algebras of modules
arising from a fixed submatrix of a generic matrix,

J. Pure Appl. Algebra, to appear.



- 26 -

[Fo] R. Fossum, The divisor class group of a Krull domain,
Ergebnisse der Mathematik, Band 74, Springer-Verlag,
Berlin-Heidelberg-New York 1973,

[Go] S. Goto, The divisor class group of a certain Krull
domain, J. Math. Kyoto Univ. 17 47-50 (1977).

[Hu] C. Huneke, On the finite generation of symbolic
blow-ups, Math. Zeit. 179 465-472 (1982).

IHu—Si—V] C. Huneke, A. Simis and W. Vasconcelos, Reduced
associated graded rings are domains (provisory title),

in preparation.

[H-S-V] J. Herzog, A. Simis and W. Vasconcelos, On the canonical
module of the Rees algebra and the associated graded
ring of an ideal, J. Algebra, to appear.

[H-VI J. Herzog and W. Vasconcelos, On the divisor class
group of Rees algebras, J. Algebra 93 182-188 (1985).

{K—R] D. Katz and L.J. Ratliff, Jr., On the symbolic Rees
ring of a primary ideal, Comm. Algebra 14 959-870
(1986) .

[RO] M.E. Rossi, A note on symmetric algebras which are
Gorenstein rings, Comm. Algebra 11 (22) 2575-2591
(1983} .

[Sal P. Samuel, Lecture on Unique Factorization Domains

(Notes by P. Murthy) Tata Inst. for Fund. Research,
No. 30, Bombay 1964.

[Sh] Y. Shimoda, The class group of the Rees algebra over
polynomial rings, Tokyo J. Math. Vol. 2, No. 1,
129-132 (1979).



- 27 =

[si] - A. Simis, The basic exact sequence for the divisor

class group of a normal Rees algebra {(unpublished).

[vi] R. Villarreal, Koszul homology of Cohen-Macaulay
ideals, Ph. D. thesis, Rutgers University.

[Tr] N.V. Trung, Uber die Ubertragung der Ringeigenschaften:’
zwischen R und R[ul/(F) , Math. Nachr. 92 215-229
(1979) .



