VACCA-TYPE SERIES FOR VALUES OF THE
GENERALIZED-EULER-CONSTANT FUNCTION AND ITS
DERIVATIVE

KH. HESSAMI PILEHROOD! AND T. HESSAMI PILEHROOD?

ABSTRACT. We generalize well-known Catalan-type integrals for Euler’s constant to
values of the generalized-Euler-constant function and its derivatives. Using gener-
ating functions appeared in these integral representations we give new Vacca and
Ramanujan-type series for values of the generalized-Euler-constant function and Ad-
dison-type series for values of the generalized-Euler-constant function and its deriva-
tive. As a consequence, we get base B rational series for log %, % (where G is Catalan’s

constant), 4;7(22 ) and also for logarithms of Somos’s and Glaisher-Kinkelin’s constants.

1. INTRODUCTION

In [11], J. Sondow proved the following two formulas:

(1) _ Z NLQ(n) + N(),Q(’n,)

m(2n+1)

4 i le(n)—Nog(n)
2 log — = ’ ’
2) - nz:; 2n(2n+1)
where 7 is Euler’s constant and V; »(n) is the number of s in the binary expansion of
n. The series (1) is equivalent to the well-known Vacca series [13]

(3) 7= Z lomn] _ $_pyp Mall3)) + Noa(15))

n

n=1

and both series (1) and (3) may be derived from Catalan’s integral [6]

1 X0
1 n
4 = 21 gy
(4) ¥ /0 1 gan:lx T

To see this it suffices to note that
=1 ngn = Z Ni2(n) + Noa(n))z"
n=1
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is a generating function of the sequence N o(n)+ Noo(n), (see [10, sequence A070939]),
which is the binary length of n, rewrite (4) as

v = /01(1 — x)G(xQ) dx

X

and integrate the power series termwise. In view of the equality

1 o
1= / ZZBQH_I dl',
0 n=1

which is easily verified by termwise integration, (4) is equivalent to the formula

N B N,
(5) 7:1—/0 1+x2$2 dx
n=1

obtained independently by Ramanujan (see [4, Cor. 2.3]). Catalan’s integral (5) gives
the following rational series for ~ :

(6) v=1- /0 (1-2)GaY)dr=1— Z Nia(n) + Noa(n)

2n+1)2n+2)

n=1

Averaging (1), (6) and (4), (5), respectively, we get Addison’s series for + [1]

. 1 ad NLQ(TL) + N(LQ(TL)
T=5t2 on(2n + 1)(2n + 2)

n=1

and its corresponding integral

1 1 11—z n
7 — _ - 2n—1
@) ! 2+2/01+In21‘ ’

respectively. Integrals (5), (4) were generalized to an arbitrary integer base B > 1 by
S. Ramanujan and B. C. Berndt and D. C. Bowman (see [4])

© () e (Ramamjan)
y=1- - = z° dx amanujan),
o \l—2 1-x —

1 B 1 o )
’ B - i Berndt-B .
) ! /0 (1—£EB 1—x>nz::1x (Bern owman)

Formula (9) implies the generalized Vacca series for 7 (see [4, Th. 2.6]) proposed by
L. Carlitz [5]

(10) Y=y @ log n ),

where
B—-1 if B divid
(1) c(n) = i ‘ ivides n
-1 otherwise,
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and the averaging integral of (8) and (9) produces the generalized Addison series for ~
found by Sondow in [11]

> |logg Bn|Pg(n)
(12) __+z:1Ban+ --(Bn + B)’

where Pg(z) is a polynomial of degree B — 2 denoted by

1
m

B—
13 P = (B (B 2)...(B B-1) .
(13) (o) = (B + )(Br+2)...(Ba+ B 1) 3 mo-m

=1

In this short note, we generalize Catalan-type integrals (8), (9) to values of the genera-
lized-Euler-constant function

oo

1 an+b+1 "
1 w0 =3 (s () aven
n=0

and its derivatives, which is related to constants (1), (2) as y1,1(1) = 7, v1.1(—1) = log 2.
Using generating functions appeared in these integral representations we give new Vacca
and Ramanujan-type series for values of v,,(z) and Addison-type series for values of
Ya(2) and its derivative. As a consequence we get base B rational series for log 2, G

(where G is Catalan’s constant), ( of Somos’s and Glalsher—
Kinkelin’s constants. We also mentlon on connection of our approach to summation of
series of the form

> Nen(m)Qn. B) and 3 — Ny,5(n) Ps(n)

(Bn+1)---(Bn+ B)’

where Q(n, B) is a rational function of B and n

(15) Q(n, B) = ! ’ +ot bl
n e
Bn(Bn + 1) Bn(Bn+2) Bn(Bn+ B —1)’
and N, p(n) is the number of occurrences of a word w over the alphabet {0,1,...,B—1}

in the B-ary expansion of n, considered in [2]. In this notation, the generalized Vacca
series (10) can be written as follows:

(16) =3 La(k)Q(k, B

where Lp(k) := |logy Bk| = 3.7 N, (k) is the B-ary length of k. Indeed, represent-
ingn:Bk-l—r,OgrgB—landsummmgin (10) over k> 1and 0 <r < B—1 we
get

- B-1 1 1 0o
|1 Bk | — — | = 1 BE|Q(k, B).
Y= kz:; 08p < Bk Bk +1 Bk+B_1> kz:;togB |Q(k, B)



By the same notation, the generalized Addison series (12) gives another base B expan-
sion of Euler’s constant

(17)
JR— Lp(n)Pg(n) B—1
7:§+nlen(Bwr1) (Bn+ B) __+ZLB ( nB)_QBn(rH—l))

which converges faster than (16) to . Here we used the fact that

oo B-1

B
ZZ n+1 B—-1’

which can be easily checked by [3, Sectlon 3]. On the other hand,

B-1
B-1 1 2 1
By__ > - _Z
Q. B) = S 1) QH;(BTL Bn+m+Bn+B>
B

1 2m(B — m) Pg(n)
= 2m — B = .
Bn(BrH—B)n;(m * Bn+m ) Bn(Bn+1)---(Bn+ B)
Acknowledgements: Both authors thank the Max Planck Institute for Mathematics
at Bonn where this research was carried out. Special gratitude is due to professor
B. C. Berndt for providing paper [4].

2. ANALYTIC CONTINUATION

We consider the generalized-Euler-constant function ,;(z) defined in (14), where
a,b are positive real numbers, z € C, and the series converges when |z| < 1. We show
that v,,(2) admits an analytic continuation to the domain C\ [1, +00). The following
theorem is a slight modification of [12, Th.3].

Theorem 1. Let a,b be positive real numbers, z € C, |z| < 1. Then

(18
— ) L1 — 1) 1 1
a, drdy = dx.
Yaol2 / / 1—zx“ —logxy) vy /0 1—zx® 1—:L"+10g:1; .

The integrals converge for all z € C\ (1, +00) and give the analytic continuation of the
generalized-Euler-constant function v,4(2) for z € C\ [1, +00).

Proof. Denoting the double integral in (18) by I(z) and for |z| < 1, expanding
(1 — zz%y*)~! in a geometric series we have

ak+b 1
/ / (xy) )d:vdy
—logmy)
+00
zk/ / / (zy) TR — 1) dadydt

1 1
’ - dt = v,5(2).
Z/O (t—i—ak—l—b) (t—l—ak—l—b t+ak+b+1)> Yab(2)
4
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On the other hand, making the change of variables u = %, v = y* in the double integral

we get
1— a
/ / “ ) dudv.
1 — zuv)(—log uv)

Now by [8, Corollary 3.3], for z € C\ [1, +0o0) we have

1 b 0P b 0P b+1
10 =g0(=1.0) -5 (=0.0) + o (=0.=).
(=) a ‘ a ds = ds ‘ a
where ®(z,s,u) is the Lerch transcendent, a holomorphic function in z and s, for
z € C\[1, +00) and all complex s (see [8, Lemma 2.2]), which is the analytic continuation
of the series

n

- VA
d = — > 0.
o)=Y

n=

To prove the second equality in (18), make the change of variables X = zy, Y = y and
integrate with respect to Y. ([l

Corollary 1. Let a,b be positive real numbers, | € N, z € C\ [1,+00). Then for the
[-th deriwative we have

aH—b 1 1 1 la+b—1 1 — 1 1
/ / (@-1 dy — / x (1—2) N .
(1-— zxa @)+ log xy o (I—zzo)l \1—2z logx

From Corollary 1, [8, Cor.3.3, 3.8, 3.9] and [2, Lemma 4] we get

Corollary 2. Let a,b be positive real numbers, z € C\ [1,400). Then the following
equalities are valid:

st =gt (1) rr(8) - Lo(2),

= 10 (e1.2) <28 () £ 2 (122

Vap(2) == %<D(z,17§+1) +ﬁ+g?9—f(z 0,§+1) —g—f(z,—l,ngl)—

R ) )

where ®(z,s,u) is the Lerch transcendent and (z) = LlogI'(z) is the logarithmic
deriwative of the gamma function.



3. CATALAN-TYPE INTEGRALS FOR 7\ (z).

In [4] it was demonstrated that for # > 0 and any integer B > 1, one has

1 2 B—-2
1 1 (B —1)+ (B —2)x3% + (B — 3)xBF + -+ x 5%
(19) 1— +1 :E: BN 2 B—1 :
X Ogﬂ? 1 Bk(1+x3k _|_Z‘Bk —'—"'—i—IB}‘J)

The special cases B = 2, 3 of this equality can be found in Ramanujan’s third note book
[9, p.364]. Using this key formula we prove the following generalization of integral (9).

Theorem 2. Let a,b, B > 1 be positive integers, | a non-negative integer. If either
z€ C\[1,400) andl > 1, or z € C\ (1,400) and | = 0, then

20) o= [ (s - ) At

where

0 L,L,(b+al)Bk71(1 —r

L paBR)It1
=~ (1= zaePh)

B’“)

(21) Fi(z,x) =

Proof. First we note that the series of variable x on the right-hand side of (19)

uniformly converges on [0, 1], since the absolute value of its general term does not exceed
la+b 1(1

5221 Then for [ > 0, multiplying both sides of (19) by T)Hl) and integrating over
0<x<1we get

00 B—2

0 () = /1 a1 (1 — 7) .(B_1)+(B—2)Iﬁ+,,,+xﬁ
0

o B} — d.T
P (1 — zoo)i+t B’f(1+gpﬁ +$§+---+x%)

Replacing z by 8" in each integral we find

() = o /1 gUath)BE =11 _ 5:BY) (B-1)+(B-2z+---+a"? o
/Ya,b - i1 0 (1 - ZIGB’C)Z+1 1 +$+CE2 + ... _|_$B—1
1
B 1
0
as required. -

From Theorem 2 we readily get a generalization of Ramanujan’s integral.

Corollary 3. Let a,b, B > 1 be positive integers, | a non-negative integer. If either
z€ C\[1,400) andl > 1, or z € C\ (1,400) and | = 0, then

1 btal—1 1 B

0 x (1-—2) / Bz x
22 = —_— — F .
(22) 'Ya,b(z) /0 (1 — zz9)it! dz + s \1—28 1-2z 1(2,2) dx

Proof. First we note that the series (21) considered as a sum of functions of variable
x uniformly converges on [0, 1 — ¢] for any £ > 0. Then integrating termwise we have

1—¢ l—¢ ,.(b+al) Bk 1(1 :L,Bk)
/0 Fi(z,2) dz = Z/ ZwaBk)lH dz.




Making the change of variable y = 28" in each integral we get

k
1—¢ < q (1—¢)B yb+al—1(1 _ U)
Fi(z,z)dx = E —/ " dy.
/0 p Bk 0 (1 _ Zya)l+1

Since the last series of variable € uniformly converges on [0, 1], letting £ tend to zero we
get

1 1 1, b+al—1 1—
(23) / Fi(z,x)dz = / Y (1—y) dy.
0 B 0

—1 (1 _ Zya)l+1

Now from (20) and (23) it follows that

1, b+al—1 1 B
YR (1-y) d _/ Ba” v \p d
Pya,b(z) /0 (1—Zya)l+1 Yy = 0 1 _ B 1_ ¢ l(Z,le) €,

and the proof is complete. 0
Averaging both formulas (20), (22) we get the following generalization of integral (7).

Corollary 4. Let a,b, B > 1 be positive integers, | a non-negative integer. If either
z€ C\[1,400) andl > 1, or z € C\ (1,400) and | = 0, then

1 [ ghtel=1(q — 1 (Y (BA+2% 1
7(%(,2):—/ w—(w)dzr—k—/ ( U+a?) +x> Fi(z,x)dzx.
0 0

(1 — zga)itt 2 1—2B l—x

4. VACCA-TYPE SERIES FOR 7,(2) AND 7, ,(2).

Theorem 3. Let a,b,B > 1 be positive integers, z € C, |z| < 1. Then for the
generalized- Euler-constant function v,,(2), the following expansion is valid:

00 00 L
/Ymb(z) = ZakQ(kaB) = Zatgjg(k_)a
k=1 k=1

where Q(k, B) is a rational function given by (15), {ax}2, is a sequence defined by the
generating function

1 o] Ika(l—,Z‘Bk) [ee]

k
== Al
1—7x 1— aB¥ Z
k=0 ZL k=0

(24) G(z,z) =

and (k) is denoted in (11).
Proof. For [ = 0, rewrite (20) in the form

"1-28( B 1 B
’Ya7b(2’)—/0 - (1_x3—1_$> G(z,27)dx

where G(z, ) is defined in (24). Then, since ag = 0, we have

o0

1
(25) %,b(Z) = / (B A xB—l) Zakak—l dr.
° k=1
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Expanding G(z,x) in a power series of x

0o 00
G(Z,IIJ) _ Z Z Zmz(aerb)Bk(l fr4 4 kafl)

k=0 m=0

we see that ay = O(lng k). Therefore, by termwise integration in (25), which can be
easily justified by the same way as in the proof of Corollary 3, we get

00 1
'Ya,b(z) — Z ak/ [(ka—l _ ka) + (:L,Bk—l _ :L,Bk—l—l) N (:EBk—l _ :L,Bk-&-B—Q)] dr
k=1 0

o0

k=1

Theorem 4. Let a,b,B > 1 be positive integers, z € C, |z| < 1. Then for the
generalized- Euler-constant function, the following expansion is valid:

1 b1 _ <
'y(m(z):/o udz—ZakQ(k‘,B),
k=1

1— zxo
where
~ B-1
kB)=—— —Q(k. B
B-1 B -2 1

T BE+B)BEk+1)  BE+B)BEk+2) T

and the sequence {a;}3>, is defined in Theorem 3.

Bk + B)(Bk+ B —1)

Proof. From Corollary 3 with [ = 0, by the same way as in the proof of Theorem 3,
we get

1 Bz? T L Bz? T
/0 (1_IB—1_x>F0(z,a;):/0 - (1_xB—1_$>G(Z,xB)dJU

1 [e¢]
:/ (BxB_l—(1+$+---+$B_1))Zakx3kdx
0 k=1

0 1
— Zak/ [(ka—&-B—l _ ka—&-B—Q) R (ka-i-B—l . $Bk+1) + (ajBk+B_1 . JjBk)] de
k=1 0

axQ(k, B). O

1

k=
Theorem 5. Let a,b,B > 1 be positive integers, z € C, |z| < 1. Then for the

generalized-Euler-constant function v,5(2) and its derivative, the following expansion
18 valid:

1 . btal—1 ©
_t A S =0,1
Tap(2) = 5 /0 (L gyt 0 ; ““Br(Bk+1)- (Bk + B)’ ol

8



where Pg(k) is a polynomial of degree B — 2 given by (13), (z — 1)2+ (I —1)2#£ 0 and
the sequence {ag,}32, is defined by the generating function

1 00 x(b+al)B"~'(1 _ ka) ©
(26) Gz, @) = 1—x (1 — zgoBhyHl - Za’f7ﬂk7 {=0,1.

Proof. Expanding G(z,z) in a power series of x

oo o l
Gz, x) = Z Z (m;— )zmx(b+“l+“m)3k(1 +r+a? 4+ 2P

k=0 m=0

we see that a,; = O(k! Ing k). Therefore, for [ = 0,1, by termwise integration we get

Y/B(1+2P) 142 '1—2% (B1+2%) 1+2 B
/0< B —1_$>Fl(z,x)dx:/0 . < S >Gl(z,x )dx

T
L (o0}
=/ (B=1) =2z — 22" — - = 22" 4 (B—1)2"] ) g™ " dor
¢ k=1
_ia B-1 2 2 2 L Bl
& ™\"Bk Bk+1 Bk+2 Bi+B—1 Bk+B

:2Zakl PB(k)

k=1
where Pg(k) is defined in (13) and the last series converges since Bk(kaﬁ@BmB) =
O(k™?). Now our theorem easily follows from Corollary 4. O

5. SUMMATION OF SERIES IN TERMS OF THE LERCH TRANSCENDENT

It is easily seen that the generating function (26) satisfies the following functional
equation:

1— ZEB B xb+al
(27) Gi(z,7) — T2 Gi(z,z ):m;
which is equivalent to the identity for series:
oo o0 o k
k B-1 Bk k—1,.ak+b
aggr” —(1+zx+---+2x apr " = PN .
kZ% k.l ( )kz% k.l ; (l)

Comparing coefficients of powers of x we get an alternative definition of the sequence
{ak,}32 by means of the recursion

agy = a1y = ... = Ggsp—1,; =0
and for £ > al + b,
a if  k#0b (mod a)
L5 )
28 = B -
(28) Ot {GLEJJ + ((kflb)/“)z%_l it  k=b (mod a).



On the other hand, in view of Corollary 2, v,,(2) and 7, ,(2) can be explicitly expressed
in terms of the Lerch transcendent, y-function and logarithm of the gamma function.
This allows us to sum the series figured in Theorems 3-5 in terms of these functions.

6. EXAMPLES OF RATIONAL SERIES

Example 1. Suppose that w is a non-empty word over the alphabet {0,1,..., B—1}.
Then obviously w is uniquely defined by its length |w| and its size vg(w) which is the
value of w when interpreted as an integer in base B. Let N, p(k) be the number of
(possibly overlapping) occurrences of the block w in the B-ary expansion of k. Note
that for every B and w, N, 5(0) = 0, since the B-ary expansion of zero is the empty
word. If the word w begins with 0, but vg(w) # 0, then in computing N, g(k) we
assume that the B-ary expansion of k£ starts with an arbitrary long prefix of 0’s. If
vp(w) = 0 we take for k the usual shortest B-ary expansion of k.

Now we consider equation (27) with [ =0, z =1

1— 2P xb

(29) G(1,z) — G(1,27) = e

1—=x

and for a given non-empty word w, set in (29) a = Bl and

- Bl if vp(w)=
vp(w) if vp(w) 75
Then by (28), it is easily seen that ay := ago = N, p(k), £k =1,2,..., and by Theorem

3, we get one more proof of the following statement (see [2, Sections 3, 4.2]).
Corollary 5. Let w be a non-empty word over the alphabet {0,1,..., B — 1}. Then
. w 1 ‘ 0

3 Nos(B)QUk, B) = s A vs(w) #

k=1 Vpiel, gl (1) if wvp(w)=0.

By Corollary 2, the right-hand side of the last equality can be calculated explicitly
and we have

(30)
in,B(k)Q(kz,B) _ {IOgF (—1_(3\3\ ) log T ( Ll ) — St (”g“:’l’) if v (w) £ 0
k=1 logI' (BIW\) + W — |w|log B if vp(w) = 0.

Corollary 6. Let w be a non-empty word over the alphabet {0,1,..., B —1}. Then
= N, p(k)Pg(k)

Bk(BkE+1)---(Bk+ B)

o0 — g (V(222) — v (%)) i w2

'}/BM,BIM\(D - Qéw\w(ﬁ) — 3B % if UB(UJ) =

k=1




Proof. The required statement easily follows from Theorem 5, Corollary 5 and the
equality

Lab=1(1 _ o >
/o%d:’;:Z(akib_ak;bH):%@(bzl)_d}(s»' -

k=0
From Theorem 3, (27) and (28) with a =1, [ = 0 we have

Corollary 7. Let b, B > 1 be positive integers, z € C, |z| < 1. Then

> e(k
'Ylb ZakQAB ZG%J k)
k=1

where ag = a1 = ... = ay_1 = 0, ak:aL%J—l—zk*b,kZb.

Similarly, from Theorem 5 we have
Corollary 8. Let b, B > 1 be positive integers, z € C, |z| < 1. Then

71:1)(2)—5 —~ (k) (k+D+1 )+Zak3k(3k+) (BE+ B)

—_

where ag = a1 = ... =ap 1 = 0, ak:aL%J+z_b,k2b.

Example 2. If in Corollary 7 we take z = 1, then we get that a, is equal to the
B-ary length of |£],i. e.,

B-1
() ()}
On the other hand,

1
Y1) = logh — 1h(b) =logh— Y Z+7
k=1

and hence we get

(31) logh — ¢(b) = EO_O:LB ({%D Q(k, B).

If b =1, formula (31) gives (16). If b > 1, then from (31) and (16) we get

(32) logh = §%+§; (LB (L%J) —LB(k)> Q(k, B),

which is equivalent to [4, Theorem 2.8]. Similarly, from Corollary 8 we obtain (17) and

1 b-1 (Ls(l5)) — Ls(k)) Py(k)
(33) log Z kT 2h z; Bk(Bk+1)--- (Bk+ B)
11



Example 3. Using the fact that for any integer B > 1

Ly ({%D — Lplk) = —1,

from (30), (16) and (32) we get the following rational series for logT'(1/B) :

log T (é) - Bi % + Z<N07B(k) - éLB(k) - 1)Q(k,B).

0
k=1 k=1
Example 4. Substituting b =1, 2 = —1 in Corollary 7 we get the generalized Vacca
series for log f—r.

Corollary 9. Let B € N, B> 1. Then

4 - - e(k
log —=> axQ(k, B) =Y jas, (k),
k=1 k=1

where
(34) ag = 0, ap=aj+ ()" kE>1
In particular, if B is even, then
(35)
4 > > (Nodd,B(L%J) - Neven,B(L%J))
log — = ;(Noddﬁ(k) — Neven,p(k))Q(k, B) = kz:; . e(k),

where Noga,p(k) (respectively Neyen,s(k)) is the number of occurrences of the odd (re-
spectively even) digits in the B-ary expansion of k.

Proof. To prove (35), we notice that if B is even, then the sequence ay, := Noga (k) —
Neven,p (k) satisfies recurrence (34). O

Substituting b = 1, 2 = —1 in Corollary 8 with the help of (33) we get the generalized
Addison series for log %.

Corollary 10. Let B > 1 be a positive integer. Then

4 1 > LB% —L3k+ak PBk‘
Z( (15)) — Lp(k) + ax) Py (k)

log — = -
Tl Bk(Bk+1)--- (Bk+B)

where the sequence ay, s defined in Corollary 9. In particular, if B is even, then

1 > (LB(LgJ)_2Neven,B(k)) PB(k)
Z+Z Bk(Bk+1)---(Bk+B)

4
log — =
7
Example 5. For ¢t > 1, the generalized Somos constant o; is defined by
o= \[1y/2¢/3 . = 1V 31 L Tt
n=1
In view of the relation [12, Th.§]

1 t
36 2) = tlog ————
% () =08



by Corollary 7 and formula (32) we get
Corollary 11. Let BeN, B> 1,te€ R, t > 1. Then
1 R~ k k a
log o =7 T 71 kz:; <LB({?J) B LB(Lt— 1J> B 7) Qk B).

where ag = 0, aj, = a +t7F B> 1.

In particular, setting B = t = 2 we get the following rational series for Somos’s
quadratic recurrence constant:

o0

1 ag
logos=1—-3 %
802 > 2k(2k + 1)’

k=1
where a; = 3, ay, = Q| +2k%1, k> 2.
From (36), (33) and Theorem 5 we find

Corollary 12. Let BeN, B>1,te R, t > 1. Then

3t —1
10g0t = m
> k k Qg B k
i 25;211) kz:; (LB(M) _LB(Lt—J) a t(t2+ 1)) Bk (Bk +]1D)~(~~)(Bk+B)’

where the sequence ay, is defined in Corollary 11.
In particular, if B =t =2 we get

5) 1 > Qg
logoy = 2 — =
B2 =g 2;2k(2k+1)(2k+2)’

where a, = 4, a; = apx) + 51, k> 2.
Example 6. The Glaisher-Kinkelin constant is defined by the limit [7, p.135]

1222... n
A= lim ——— " —128242712....
n—o0 n" 5 ”+ﬁe—"T

Its connection to the generalized-Euler-constant function 7, ,(2) is given by the formula
[12, Cor.4]

911/6 A6
(37) Na(=1) =log TP
By Theorem 5, since
1
1 —
/ udz =3log2 -2,
o (I+z)

we have

1, 4 18 Py (k)

“og = 4 =

4ng+G;Q’“’lBk(Bkﬂ)m(BkJrB)’
13

4
log A = §1og2—



where the sequence ay; is defined by the generating function (26) witha =b=1=1,
z = —1, or using (28) by the recursion

a(],l = a171 = 07 Cbk,l = GL%JJ + (—1)k(]€ — 1), k Z 2.
Now by Corollary 10 and (33) we get
Corollary 13. Let B > 1 be a positive integer. Then

- k 5 (k)
log 4 = % - % £ <7LB(k) ~7Ls(|5]) + b’“) Bk(Bk +]13) -~ (Bk+ B)’

where by = 0, by = b x| + (=1)*=1(6k +3), k > 1.

In particular, if B = 2 we get

o0

131 i
log A =
LT 8 36 Z < 22k +1)(2k +2)’

where ¢ = 16, ¢, = ¢ + (= )k’1(6k+3) k> 2.

(2)

Using the formula expressing in terms of Glaisher-Kinkelin’s constant [7, p.135]

¢'(2)  log2m+~
log A = —
8 2 T 13

by Corollaries 8, 10 and 13, we get
Corollary 14. Let B > 1 be a positive integer. Then

C;f) _% N %; <4LB(’“) - LBQ%D + C’“) Bk(Bk +]1Df~(%~)(3k + B)’

where ¢y = 0, ¢, = k) + (—=1)*=16k, k > 1.
Example 7. First we evaluate wg,)l(—l) for { = 0,1. From Corollaries 1, 2 and [12
Ex.3.12, 3.13] we have

— 1) dzd
Y2,1(— // (v 0y :z—QlogF(4)+log\/

(1+22y?)logzxy 4

and
1 1 109
bi(—1)=—-Pd(—1,1,3/2 —d(—-1 2 ——(—1 2
72,1( ) 4 ( ’ 73/)+2 ( 03/)+288( 7073/)
0P 0P 0P
- -1,3/2) — —(-1,0,2 —-1,-1,2).
P12 - 102+ 001 19)
The last expression can be evaluated explicitly (see [12, Section 2]) and we get
G « 1 1
(<) =~ + % —logT' () —3log A +1 ~log?2
Y1(=1) = —+ o —logT{ ;) —3log A +logm + - log2,
or
G 1 1. 4 7
(38) ; = ’}/2,1(—1) — 5’}’271(—1) Z log + 3lOgA — E 10g2

14



On the other hand, by Theorem 5 and (28) we have

T 1 - Py(k)
39 —1)=—=—=-log?2
( ) 72,1( ) 8 4 Og +kz::1ak7OBk(Bk+1).(Bk—|—B)7
Where Cl07[) — O, a2k70 = QL%LO’ l{ Z 1, a2k+1’0 = al%%lJ:O + (_1)k, k; Z 07 and
T 1 > Pp(k)
40 01(—1) = — — 7 log2

where Qg1 = 07 Qok,1 = GL%J:“ k Z 1, Aok+1,1 = GLM%IJ,l + (—].)kilk, k 2 0. Now from
(38) — (40), (33) and Corollary 10 we get the following expansion for G /7.

Corollary 15. Let B > 1 be a positive integer. Then

G - B
T :13_; 2 <%L3(L§D - éLB(k) * C’“) Bk(Bk +]1D) -(%-)(Bk: T B)

k=1

where cg = 0, cop, = Cl2k | +k, kE>1, copy1 = Cleksr + W%(Zk +1), k>0.

In particular, if B = 2 we get

o0

G 11 Ck
T 3_2+;2k(2k+1)(2k+2)’

where ¢; = —g, Co = ¢+ k, Copy1 = Cp + (_l)k%(% +1), k> 1.
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