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Introduction

An algebraic variety X of dimension n (over the complex field) together with an
ample vector bundle E on it will be called a generalized polarized variety. The
adjoint bundle of the pair (X, E) is the line bundle Ky + det(E). Problems
concerning adjoint bundles have drawn a lot of attention to algebraic geometer:
the classical case is when £ is a (direct sum of) line bundle (polarized variety),
while the generalized case was motivated by the solution of Hartshorne-Frankel
conjecture by Mori ( [Mo}) and by cousequent conjectures of Mukai ({Mu]).

A first point of view is to study the positivity (the nefness or ampleness)
of the adjoint line bundle in the case r = rank(FE) is about n = dirnX. This
was done in a sequel of papers for » > (n — 1) and for smooth manifold X
([Ye-Zhang), [Fujita], [Andreatta-Ballico-Wisniewski}). In this paper we want
to discuss the next case, namely when rank(E) = (n — 2), with X smooth;
we obtain a complete answer which is described in the theorem (4.1). This is
divided in three cases, namely when Ky + det{ F) is not nef, when it is nef and
not big and finally when it is nef and big but not ample. If 2 = 3 a complete
picture is already contained in the famous paper of Mori ([Mol]), while the
particular case in which E = @™~2(L) with L a line bundle was also studied
([Ful], [So); in the singular case see [An]). The part 1 of the theorem was proved
(in a slightly weaker form) by Zhang (JZh]) and, in the case E is spanned by
global sections, by Wisniewski ([Wi2]).



Another point of view can be the following: let (X, E} be a gencralized
polarized variety with X smooth and rankE = ». If Kx + det(E) is nef, then
by the Kawamata-Shokurov base point free theorem it supports a contraction
(see (1.2)); i.c. there exists a map 7 : X — W from X onto a normal projective
variety W with connected fiber and such that Kx + det(E) = 7*H for some
ample line bundle H on W. It is not difficult to see that, for every fiber F' of ,
we have dimF > (r — 1), equality holds only if dimX > dimW. In the paper
we study the "border” cases: we assume that dimF = (r — 1) for every fibers
and we prove that X has a PT-bundle structure given by = (thecorem (3.2)). We
consider also the case in which dimF = r for every fibers and m is birational,
proving that W is smooth and that = is a blow-up of a smooth subvariety
(theoremn (3.1)). This point of view was discussed in the casc £ = @"L in the
paper [A-W].

Finally in the section (4) we extend the theorem (3.2) to the singular case,
namely for projective variety X with log-tenuinal singularities. In particular
this gives the Mukai’s conjecturel for singular varieties.

During the preparation of this paper we were partially supported by the
MURST and GNSAGA. We would like to thank also tlie Max-Planck-Institute
fiir Mathematik in Bonn for support and hospitality.

1 Notations and generalities

(1.1)}We use the standard notations from algebraic geometry. Our language
is compatible with that of [K-M-M] to which we refer constantly. We just explain
some special definitions and propositions used frequently.

In particular in this paper X will always stand for a smooth complex pro-
jective variety of dimension n. Let Div(X) the group of Cartier divisors on
X; denote by Ky the canonical divisor of X, an element of Div(X) such that

Ox(Ky) = Q%. Let Ny(X) = =2} g g N1(X) = {vlsors) g R ang
< NE(X) > = {effective 1-cycles}; the last is a closed cone in N1{X). Let also
p(X) =dimg N'(X) < .

Suppose that Ky is not nef, that is therc exists an effective curve C such
that Kx - C < 0.

Theorem 1.1 [KMM] Let X as above and H a nef Cartier divisor such that
F:= H*n < NE(X) >\ {0} is entirely contained in the set {Z € Ny (X) :
Kx-Z <0}, where H- = {Z : H - Z = 0}. Then there exists a projective

morphistn ¢ : X — W from X onto a normal variety W with the following
properties:



1) For an irreducible curve C in X, o(C) is a point if and only if HC =0,
if and only if cl(C) € F.

i1) @ has only connected fibers
i) H = *(A) for some ample divisor A on W.

1) The tmage ¢* : Pic(W) — Pic(X) coincides with {D € Pic(X): D.C =
0 for all C € F}.

Definition 1.2 The following terminology is mostly used ({KMM], definition
3-2-8). Referring to the above theorem,

the map v is called a contraction {or an extremal contraction); the set F is
an extremal face, while the Cartier divisor H is o supporting divisor for the map
@ (or the face F). If dimp F =1 the face F is called an extremal ray, while ¢
is called an elementary contraction.

Remark We have also ([Mol]) that if X has an extremal ray R then there
exists a rational curve C on X such that 0 < —=Kx-C <n+1and R= R[C] :=
{D €< NE(X)>: D= )C,A € Rt}. Such a curve is called an extremal curve.
Remark Let 7 : X — V denote a contraction of an extremal face F', supported
by H = n*A([iii]1.1) . Let R be an extremal ray in F and p : X — W the
contraction of R. Since 7*A - R =0, 7* A comes from Pic(W) ([iv]l.1). Thus =
factors trough p.

Definition 1.3 To an extremal ray R we can associate:
1) its length I(R) := min{—Kx - C; for C rational curve and C € R}

ii) the locus E(R) := {the locus of the curves whose numnerical classes are in
R}y cCcX.

Definition 1.4 [t is usual to divide the elementary contractions associated to
an extremal ray R in three types according to the dimension of E(R): more
precisely we say that ¢ is of fiber type, respectively divisorial type, resp. flipping
type, if dimE(R) = n, resp. n — 1, resp. < n— 1. Moreover an extremal ray is
said not nef if there exists an effective D € Div(X) such that D-C < 0.

The following very useful inequality was proved in [Io] and [Wi3].

Proposition 1.5 Let ¢ the contraction of an extremal ray R, E'(R) be any
irreducible component of the exceptional locus and d the dimension of « fiber of
the contraction restricted to E'(R). Then

dimE'(RY+d > n+{{(R) - 1.



(1.2)Actually it is very useful to understand when a contraction is clemen-
tary or in other words when the locus of two distinct extremal rays are disjoint.
For this we will use in this paper the following results.

Proposition 1.6 [BS, Corollary 0.6.1] Let Ry and Ry two distinct not nef
extremal rays such that [(R1)+[(R2) > n. Then E(R)) end E(Hg) are disjoint.

Something can be said also if {(R1) + {(Rg) = n:

Proposition 1.7 [Fu3, Theorem £.4] Let 7 : X — V as above and suppose
n >4 and L(R;) > n— 2. Then the exceptional loci corresponding to different
ertremnal tays, are disjoint with each other.

Proposition 1.8 JABWI] Let 7 : X — W be a contraction of a face such that
dimX > dimW. Suppose that for every rational curve C in a general fiber of ©
we have —Kx - C > (n+1}/2 Then 7 is an elementary contraction except if

a) ~Kx -C = {(n+2)/2 for some rational curve C on X, W is a point, X
is a Fano manifold of pseudoindez (n +2)/2 and p(X) =2

b) —Kyx -C = (n+1)/2 for some rational curve C, and dim W< 1

The following definition is used in the theorem:

Definition 1.9 Let L be an an ample line bundle on X. The pair (X, L) is
called a scroll (respectively a quadric fibration, respectively a del Pezzo fibration)

over a normal variety Y of dimension m if there exists a surjective morphism
with connected fibers ¢ : X — Y such that

Ky+(n-m+1)L=pL

(respectively Kx + (n — m)L = p*L; respectively Kx + (n —m — 1)L = p*L)
for some ample line bundle L on Y. X is colled o classical scroll (respectively
quadric bundle) over a projective variety Y of dimension r if there erists a
surjective morphism ¢ : X — Y such that every fiber is isomorphic to P*~7
(respectively to a quadric in P71 ) and if there exists a vector bundle E of
rank (n — v + 1) (respectively of rank n — v + 2) on Y such that X ~ P(E)
(respectively exists an embedding of X as a subvariety of P(E)).

2 A technical construction

Let E be a vector bundle of rank » on X and assume that E is ample, in the
sense of Hartshorne.



Remark Let f : P! — X be a non constant map, and C = f(P!), then
detkl - C > 7.

In particular if there exists a curve C such that (Ky + detE).C < 0 (for
instance if (Kyx + detE) is not nef) then there exists an extremal ray R such
that {(R) > r.

(2.1) Let Y = P(F) be the associated projective space bundle, p: ¥ — X
the natural map onto X and £g the tautological bundle of Y. Then we lhave
the formula for the canonical bundle Ky = p*(Kx + detE) — r€g. Note that p
is an elementary contraction; let I be the associated extremal ray.

Assuine that Ky + detE is nef but not ample and that it is the supporting
divisor of an clementary contraction = : X — W. Then p(Y/W) = 2 and —Ky
is m o p-ample. By the relative Mori theory over W we have that there exists
a ray on NE(Y /W), say Ry, of length > r, not contracted by p, and a relative
elementary contraction ¢ : ¥ — V. We have thus the following commutative
diagram.

117 lw (1)

X - W

where ¢ and ¥ are elementary contractions. Let w € W and let F(n)y, be
an irreducible component of 7= (w); choose also v in ¥~'(w) and let F(yp),
be an irreducible component of ¢~ (v) such that p(F(@)y) N F(r)y # 0; then
p(F(p)y) C F(m)y. This is true by the commutativity of the diagram. Since
p and ¢ are elementary contractions of different extremal rays we have that
dim(F(p) N F(p)) = 0, that is curve contracted by @ cannot be contracted by
D
In particular this implies that dimp(F(p),) = dimF(p),; therefore

dimF (), < ditnF(7),.

Remark If dimF(p), = dimF{(r),, then dimF(¢), := dim{(y ™' (w)) =r - 1;
if this holds for every w € W then 9 is equidimensional.

Proof. Let Yy, be an irreducible component of p~!7~!(w) such that ¢(Y,,)
F(¢)y. Then dimF(¢),, = dim¥,, — dimF(p), = dimY,, — dimF(m),
dimF(p) = (r —1).

It

(m}

(2.2)Slicing techniques
Let H = ¢*(A) be a supporting divisor for ¢ such that the linear system
|H| is base point free. We assume as in (2) that (Ky + detE) is nef and we
refer to the diagram (1). The divisor Ky + rfg = p*(Kx + detE) is nef on Y
and therefore m(Ky +rég + aH), for m > 0, a € N, is also a good supporting



divisor for ¢. Let Z be a smooth n-fold obtained by intersecting = — 1 general
divisor from the linear system H, i.e. Z = HyN...N H,._, (this is what we call
a slicing); let H; = ¢~ A,

Note that the map ¢’ = ¢z is supported by m|(Ky +7€g +ap* A)|z|, hence,
by adjunction, it is supported by Kz + rL, where L = &g 5. Let ' =pz; by
construction p’ is finite.

If T is (the normalization of) @(Z) and ' : T" — W is the map obtained
restricting ¢ then we have from (1) the following diagram

z X 7

lpf lu» (2)

X D w

In general one has a good comprehension of the map ¢ (for instance in the
case 1 = (n — 2) sce the results in [Ful] or in [An]). The goal is to "transfer”
the information that we hiave on ' to the map 7. The following proposition is
the major step in this program.

Proposition 2.1 Assume that ¢ is equidimensional (in particular this is the
case if for every non trivial fiber we have dimF(p) = dimF(x)). Then W has
the same singularities of T

Proof. By hypothesis any irreducible reduced component F; of a non trivial
fiber F(4) is of dimension r — 1; this implies also that F; = o(F(p)) for some
fiber of p.

Now, let us follow an argument as in [Ful, Lemma 2.12]. We can assume
that the divisor A is very ample; we will choose » — 1 divisors 4; € |4| as
above such that, if T = (,A;, then TN Y~ Yw)rea = N is a reduced O-cycle
and Z = Hyn...N H,_, is a smooth n-fold, where H; = ¢~'4;. This can
be done by Bertini theoremn. Moreover the number of points in N is given by
ATl Y w)ea = 3, AT F; = 5, di. Note that, by projection formula, we
have A™"!. F; = ¢*A™"1 . F(p); morcover, since p is a projective bundle, the
last number is constant i.c. ¢*A™"1. F(p) = d for all fiber F{(p), that is the d,’s
are constant.

Now take a small enough neighborhood U of w, in the metric topology, such
that any connected component Uy, of ¥~ {I/)NT meets 1~ (w) in a single point.
This is possible because 9’ := ¢ : T — W is proper and finite over w. Let 1y
the restriction of 4 at Uy and 1ny its degree. Then degy’ =3 my > 3 . d; =
>, d and equality holds if and only if ¥ is not ramified at w (remember that
¥.;di is the number of Uy).

The generic F (1), is irreducible and generically reduced. Note that we can
choose @ € W such that ¥~ !(#) = @(F(p)) and degy’ = AT . %~ 1(@), the



latter is possible by the choice of generic sections of |A|. Hence, by projection
formula degyy’ = AT -7 1(4D) = ¢ A"~ . F(p) = d, that is m), = 1 and the
fibers are irreducible. Since W is normal we can conclude, by Zarisky’s Main

theorem, that W has the same singularity as 7.
O

3 Some general applications

As an application of the above construction we will prove the following propo-
sition; the case » = (n — 1) was proved in [ABW2],

Proposition 3.1 Let X be a smooth projective complex variety and E be an
ample vector bundle of rank v on X. Assume that Kx +detE is nef and big but
not emple and let 7 : X — W be the contraction supported by Ky + detE. As-
sume also that ™ is o divisorial elementary contraction, with exceptional divisor
D, and that dimF < r for all fibers F. Then W is smooth, m is the blow up of
a smooth subvariety B := w(D) and E = n*E' ® [—D)], for some ample E' on
Ww.

Proof. Let R be the extremal ray contracted by = and F := F(n) a fiber.
Then I(RR) > r and thus dimF > 7 by proposition (1.5). Hence all the fibers
of = have dimension r. Consider the commutative diagram (1); let R; be the
ray contracted by ¢. Since [(R)) > r, again by proposition (1.5), we have that
dimF(p) > r (note that R; is not nef). Therefore, since dimF(p) < dinF, we
have that dimF(p) = dimF =r, {R) = I[(Ry) = r and £g - C; = 1, where C)
is a (minimal) curve in the ray R,. Via slicing we obtain the map ¢’ : Z2 - T
which is supported by Kz + r{g|z. This last map is very well understood:
namely by [AW, Th 4.1 (iii)] it follows that 7" is sinooth and ¢’ is a blow up
along a smooth subvariety. By proposition (2.1) also W is smooth. Therefore
m is a birational morphism between smooth varieties with exceptional locus a
prime divisor and with equidimensional non trivial fibers; by [AW, Corollary
4.11] this implies that 7 is a blow up of a smooth subvariety in W.

We want to show that £ = 7*E’ ® [—D]. Let D be the exceptional divisor
of ; first we claim that £g + D, is a good supporting divisor for ¢. To see
this observe that (€g + D)) - €| = 0, while (€g + D) - C > 0 for auy curve C
with ©(C) # pt (in fact ££ is ample and D, - C > 0 for such a curve). Thus
€ + D1 = ¢* A for some ample A € Pic(V); moreover by projection formula
A-l =1, for any line { in the fiber of ¢. Hence by Grauert theorem V = P(E’)
for sotne ample vector bundle E' on W. This yields, by the commutativity of
diagram (1), to EQ D = p,(ép + D)) = pup*A =" h, A= 1" E'.

- O
We now want to give a similar proposition for the fiber type case.



Theorem 3.2 Let X be a smooth projective complex variety and E be an ample
vector bundle of rank v on X. Assume that Ky +detE isnefand letm: X - W
be the contraction supported by Ky + detE. Assume that v > (n+1)/2 and
dimF <r -1 for any fiber F of 7. Then W is smooth, for any fiber F ~ P!
and E\p = @"O(1).

Proof. Note that by proposition (1.5) 7 is a contraction of fiber type and all
the fibers have dimension r — 1. Moreover the contraction is elementar, as it
follows from proposition (1.8).

We want to use an inductive argument to prove the thesis. If disn¥ = 0 then
this is Mukai's conjecturel; it was proved by Peternell, Kollar, Ye-Zhang (see for
instance [YZ]). Let the claim be true for dimension m — 1. Note that the locus
over which the fiber is not P7~! is discrete and W has isolated singularities.
In fact take a general hyperplane scction A of W, and X' = w7 !{A) then
mx: : X' — A is again a contraction supported by Kx: 4 detE|y-, such that
7 > ((n—1) +1)/2. Thus by induction A is smooth, hence W has isolated
singularities.

Let U be an open disk in the complex topology, such that UNSingW = {0}
Then by lemma below 3.3 we have locally, in the complex topology, a m-ample
line bundle L such that restricted to the general fiber is O(1). As in [Ful, Prop.

2.12] we can prove that U is smooth and all the fibers are P"~1.
a

Lemma 3.3 Let X be a complex manifold and (W,0) an analityc germ such
that W\ {0} ~ A™\{0}. Assume we have an holomorphic map = : X — W with
—Kyx m-ample; assume also that F ~ PT for all fibers of m, F # Fy = 7~ 1(0),
and that codimFy > 2. Then there exists a line bundle L on X such that L is
m-ample and Lip = O(1).

Proof. (see also [ABW2, pag 338, 339]) Let W* = W\ {0} and X* = X \ F,.
By abuse of notation call 7 = mx. : X" — W?; it follows immecdiately that

R'm.Zx-=0and R?n.Zx- = Z.
If we look at Leray spectral sequence, we have that:

EP* = Z and E2'' = 0 for any p.

. a1 . )
Therefore d; : E;’"* — E‘; is the zero map and moreover we have the following
exact sequence

0,2 0,2 d1 13,0
0—- E2 — Ey* = Ey,

. 0,2 |
since the only non zero map from E,* is ds and hence E3? = kerd;. On
the other hand we have also, in a natural way, a surjective map H%(X*,Z) —



E%?% — 0. Thus we get the following exact sequence
HY(X*,Z) % EY? — EX° = H3(W*, Z).

We want to show that a is surjective. 1f dimW := w > 3 then H3(W* Z) =
0 and we have done. Suppose w = 2 then H*(W*,Z) = Z; note that the
restriction of —Kx gives a non zero class (in fact it is 7 + 1 times the generator)
in Eg.z and is mapped to zero in Eg'3 thus the tmapping Eg’2 — Eg'ﬂ is the zero
map and e is surjective. Since Fp is of codimension at least 2 in X the restriction
map H%(X,Z) — H*(X*,Z) is a bijection. By the vanishing of R;7.Ox we get
H*(X,0x) = H}(W,Ow) = 0 hence also Pic(X) — H?*(X,Z) is surjective.
Let L € Pic(X) be a preimage of a generator of Eg'z. By construction L,
is O(1), for t € W*. Moreover (r + 1)L = —Kx on X* thus, again by the
codimension of X, this is true on X and L is m-ample.

O

4 An approach to the singular case

The following theorem arosc during a discussion between us and J.A. Wis-
niewski; we would like to thank him. The idea to investigate this argument
came from a preprint of Zhang [Zh2] where he proves the following result un-
der the assumption that E is spanned by global sections. For the definition of
log-terminal singularity we refer to [KMM].

Theorem 4.1 Let X be an n-dimenstonal log-terminal projective variety and
E an ample vector bundle of rank n + 1, such that ¢\(E) = ¢1(X). Then

(X,E)=(P™, @™ Op.(1)).

Proof. We will prove that X is smooth, then we can apply proposition (3.2).
We consider also in this casc the associated projective space bundle Y and the
commutative diagram

P(E)=Y 2 vV
l” l“” (3)
X = pt

as in (1) it is immediate that ¥ is a weak Fano variety (i.e. Y is Gorenstein, log-
terminal and — Ky is ample; in particular it has Cohen-Macaulay singularities);
moreover, as in (3.1}, dimF(p) < dimF(x) = n and the map ¢ is supported by
Ky + (n+ 1)H, where H = £€g + A, with £g the tautological line bundle and
A a pull back of a ample line bundle from V. It is known that a contraction
supported by Ky +7rH on a log terminal variety has to have fibers of dimension



> {r — 1) and of dimension > r in the birational case {[AW, remark 3.1.2]).
Therefore in our case ¢ can not be birational and all fibers have dimension
n; moreover, by the Kobayashi-Ochiai criterion thie general fiber is F ~ P".
We want to adapt the proof of [BS, Prop 1.4]; to this end we have only to
show that there are no fibers of ¢ cntirely contained in Sing(Y'). Note that, by
construction, Sing(Y) C p~'(SingX) hence no fibers F of ¢ can be contained
in Sing(Y). Hence the same proof of [BS, Prop 1.4] applies and we can prove
that V' is nonsingular and ¢ : ¥ — V is a classical scroll. In particular ¥ is
nonsingular and therefore also X is nonsingular.

8

More generally we can prove the following.

Theorem 4.2 Let X be an n-dimensional log-terminal projective variety and
E be an ample vector bundle of rank r. Assume that Kx + detE is nef and let
w: X — W be the contraction supported by Kx + detE. Assume also that for
any fiber F of m dimF < v -1, thatr > (n+1)/2 and codimSing{X} > dim.
Then X is smooth and for any fiber F ~Pr—1,

Proof. The proof that X is smooth is as in the theoremn above and then we
use proposition (3.2)
a

5 Main theorem

This section is devoted to the proof of the following theoremn.

Theorem 5.1 Let X be o smooth projective variety over the complex field of
dimension n > 3 and E an ample vector bundle on X of rankr = (n—2). Then’
we have '

1) Kx + det(E) is nef unless (X, E) is one of the following:

i) there exist a smooth n-fold, W, and a morphism ¢ : X — W express-
ing X as a blow up of a finite set B of points and an ample vector
bundle E' on W such that E = ¢*E' ® [—¢~1(B)].

Assume from now on that (X, E) is not as in (i) above (that is even-
tually consider the new pair (W, E') coming from (i)).

i) X =P" and E = "~ 20(1) or &*°0(2)~ Y 0(1) or O(2) a3
O(1) or O(3) &"~3 O(1).

i) X = Q" and E = ®"~D0O(1) or O(2) &3 O(1) or E(2) with E
a spinor bundle on Q™.

iv) X = P2 x P? and E = ®20(1,1)

10



v) X is a del Pezzo manifold with by = 1, i.e. Pic(X) is generated
by an ample line bundle O(1) such that O(n - 1) = O(-Kx) and
E =g D001).

vi) X is a classical scroll or a quadric bundle over a smooth curve Y.

wi) X is a fibration over a smooth surface Y with all fibers isomorphic
to pn-2),

2) If Kx +det(E) is nef then it is big unless there exists « morphism ¢ : X —
W onto a normal variety W supported by (a large multiple of ) K x +det(E)
and dim(W) < 3; let F be a general fiber of ¢ and E' = E\p. We have
the following according to s = dimW:

i) If s =0 then X is o Fano manifold and Ky + det(E)=0. If n>6

then ba(X) =1 except if X = P® x P? and E = @'0(1,1).

i) If s =1 then W is « smooth curve and ¢ is o flat (equidimensional)
map. Then (F, E') is one of the pair described in [PSW/, in particular
F is either P™ or a quadric or a del Pezzo variety. If n > 6 then 7 1s
an elementary contraction. If the general fiber is PP~! then X is a
clussical scroll while if the general fiber is Q"~! then X is a quadric
bundle.

itt) If s =2 and n > 5 then W is a smooth surface, ¢ is a flat map and
(F, E') is one of the pair described in the Main Theorem of [Fu2]. If
the general fiber is P"~2 all the fibers are P™72,

tv) If s = 3 and n > & then W is a smooth 3-fold and all fibers are
isomorphic to P*3,

3) Assume finally that Ky + det(E) is nef and big but not ample. Then a high
mudtiple of Kx + det(E) defines a birational map, p : X — X', which contracts
an “extremal face” (see section 2). Let Ry, for i in a finite set of index, the
extremal rays spanning this face; call p; : X — W the contraction associated to
one of the ;. Then we have that ench p; is birationel and divisorial; if D is
one of the exceptional divisors (we drop the index) and Z = p(D) we have that
dim(Z) <1 and the following possibilities occur:

i) dimZ =0, D = P and Djp = O(-2) or O(—1); moreover, respec-
tively, E)p = @7 20(1) or Ejp = &"'0(1) ® O(2).

i) dimZ =0, D is a (possible singular) quadric, Q™Y and Dip = O(~1);
moreover Ejp = @""20(1).

ui) dimZ =1, W and Z are smooth projective varieties and p is the blow-up
of W along Z. Moreover E|p = " 20(1).

11



If n > 3 then ¢ is a composition of "disjoint” extremnal contractions as in i), i1)
or ).

Proof. Proof of part 1) of the theorem

Let (X, E) be a generalized polarized variety and assume that Kx + det(E)
is not nef. Then there exist on X a finitc number of extremal rays, Ry,..., R,
such that (Ky + det(E)) R; < 0 and therefore, by the remark in section (2),
(R) >z (n—1).

Consider one of this extremal rays, R = R;, and let p : X — YV Dbe its
associated elementary contraction. Then L := —(Kx + det(E)) is p-ample and
also the vector bundle E| := E @ L is p-ample; moreover Ky +det(F1) = Ox
relative to p. We can apply the theorem in [ABW2] which study the positivity
of the adjoint bundle in the case of rankE; = (n — 1). More precisely we need
a relative version of this theorem, i.e. we do not assume that F; is ample but
that it is p-ample (or equivalently a local statciment in a neighborhood of the
exceptional locus of the extremal ray R}. We just notice that the theorem in
[ABW?2] is true also in the relative case and can be proved exactly with the
same proof using the relative minimal model theory (see [K-M-M]; see also the
section 2 of the paper [AW] for a discussion of the local set up).

Assume first that p is birational, then Kx + det(E1) is p-nef and p-big;
note also that, since {{R;) > (n — 1), p is divisorial. Thercfore we are in the
(relative) case C of the theorem in [ABW2] (sce also the proposition 3.1 with
r = (n — 1}); this implies that Y is smooth and p is the blow up of a point in
Y. Since I(R;) 2 (1 — 1), the exceptional loci of the birational rays are pairwise
disjoint by proposition (1.6). This part give the point (i) of the theorem 5.1; i.e.
the birational extremal rays have disjoint exceptional loci which are divisors
isomorphic to P"~1 and which contract simultaneously to smooth distinct
points on a n-fold W. The description of E follows trivially (see also [ABW2]).

If p is not birational then we are in the case B of the theorem in [ABW2);
from this we obtain similarly as above the other cases of the theorem 5.1, with
some trivial computations needed to recover E from E|.

O

Proof of the part 2) of the theorem

Let Ky + detE be nef but not big; then it is the supporting divisor of a
face F = (Kx + detE)L. In particular we can apply the theorems of section
{(2): therefore there exist a map m: X — W which is given by a high multiple
of Ky + detE and which contracts the curves in the face. Since Ky + detFE is
not big we have that dimlWV < dimX. Moreover for every rational curve C in a
general fiber of m we have —Kx - C > (n — 2) by the remark in section (2). We
apply proposition (1.8), which, together with the above inequality on ~Kx - C,
says that 7 is an elementary contraction if n > 5 unless either n = 6, W is a
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point and X is a Fano manifold of pseudoindex 4 and p(X) = 2 or n = 5 and
dimW < 1.
By proposition (1.5) we have the inequality

n+dimF>n+n—-2-1;

in particular it follows that dimW < 3.

(5.1)Let dimW = 0, that is Ky + detE = 0 and therefore X is a Fano
manifold. By what just said above we have that b3(X) = 1 if n > 6 with an
exception which will be treated in the following lemma.

Lemma 5.2 Let X be a 6 dimensional projective mantfold, E is an ample
vector bundle on X of rank 4 such that Ky + detE = 0. Assume moreover that
by > 2. Then X =P3 x P? and E = ¢'0O(1, 1).

Proof. The lemma is a slight generalizzation of [Wil, Prop B] for dimension
6; the poof is similar and we refer to this paper. In particular as in [Wil] we
can see that X has two extremal rays whose contractions, m;,i = 1,2, are of
fiber type with equidimensional fibers onto 3-folds W, and with general fiber
F; ~ P3. We claim that the W; are simooth and thus W; ~ P3. First of all
note that W; can have only isolated singularity and only isolated points over
which the fiber is not P™~3; in fact let S be a general hyperplane section of
W; and T; = m7(5), then (m)r is an extremal contraction, by proposition
1.8; hence by [ABW2, Prop 1.4.1] S is smooth; moreover the contraction is
supported by Ky + detEp, hence all fibers are P3 by the main theorem of
[ABW2]. Now we are (locally) in the hypothesis of lemma 3.3 so we get, locally
in the complex topology, a tautological bundle and we can conclude, by [Ful,
Prop 2.12], that W; is smooth. Let T = H, N Hy, where H; are two general
elements of 7} (O(1). T is smooth, we claim that 7" =~ P'xP3. In fact 7, . makes
T a projective bundle over a line (since H*(P!,0*) = 0), that is T = P(F).
Moreover g, is onto P?, thercfore the claim follows. Therefore we conclude
that 7; Ops (1), = Op.(1) for i = 1,2. This implies by Grauert Theorem that
the two fibrations are classical scroll, that is X = P(F;), for i = 1, 2; moreover
computing the canonical class of X the F; are ample and the lemma easily
follows.
O
(5.2)Let dimnW = 1. Then W is a smooth curve and 7 is a flat map. Let F
be a general fiber, then F' is a smooth Fano manifold and Ejz is an ample vector
bundle on F of rank (n—2) = dimF -1 such that —Kr = det(Er). These pairs
(F, E, r) are classified in the Main Theorem of [PSW]; in particular if dimF > 6
F is either P*=Y or Q=1 or a del Pezzo manifold with bg(F) = 1. Moreover
if n > 6 then 7 is an elementary contraction by proposition (1.8).
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Claim Let n > 6 and assume that the general fiber is P*~1, then X is a classical
scroll and E|r is the same for all F.

(See also [Fu2]) Let S = W \ U be the locus of points over which the fiber
is not P*~!. Over U we have a projective fiber bundle. Since H*(U,O*) = 0
we can associate this P-bundle to a vector bundle F over U. Let Y = P(F)
and H the tautological bundie; by abuse of language lett H the extension of H
to X. Siuce 7 is elementary H is an ample line bundle on X. Therefore by
semicontimiity A(F, Hp) > A(G, Hg), for any fiber G, where A(X, L) is Fujita
delta-genus. In our case this yields 0 = A(F, Hp) > A(G, Hg) > 0. Moreover
by flatness (Hg)"~! = (Hp)"~! = 1 and Fujita classification allows to conclude.
The possible vector bundle restricted to the fibers are all decomposables, hence
they are rigid, that is H}(End(E)) = &;H'(End(O(a;)) = &;HY(O(-a;)) = 0.
Hence the decomposition is the same along all fibers of 7.

Claim Let n > 6 and assume that the general fiber is Q"~!. Then X is a
quadric bundle.

Let as above S = W\ U be the locus of points over which the fiber is not a
smooth quadric. Let X* = 7~1(U) then we can embed X* in a fiber bundle of
projective spaces over U, since it is locally trivial. Associate this P-bundle over
U to a projective bundle and argue as before.

O

(5.3)Let now dimW = 2 and assume that n > 5; then 7 is an elementary
contraction. This implies first, by [ABW2, Prop. 1.4.1], that W is smooth;
secondly that 7 is equidimensional, hence flat and the general fiber is P*~2 or
Q" 2, see [Fu2).

Claim Let n > 5 and the general fiber is P*2 then for any fiber F' ~ Pn—2
and Ep is the same for all F'.

Let 5§ C W be the locus of singular fibers, then dimS < 0 since W is normal.
Let U C W be an open set, in the complex topology, with U NS = {0} and let
V C X such that V = 7~} (U). We are in the hypothesis of lemma 3.3 thus we
get a “tautological” line bundle H on V and we conclude by [Ful, Prop. 2.12].

There are two possible restriction of E to the fiber, namely Ejp ~ O(2) &
(®"~1O(1)) or E|p is the tangent bundle. As obscrved by Fujita in [Fu2] this
two restrictions have a different behavior in the diagram (1), in the former ¢ is
birational while in the latter it is of fiber type. Hence the restriction has to be
constant along all the fibers.

O

(5.4)Let finally dimnW = 3; the general fiber is P™ 2 (see for instance [Fu2]).
Assume that n > 5, therefore 7 is elementary; we claim that all fibers are P73,

Since 7 is elementary any fiber G has codG > 2. Let § C W be the locus of
point over which the fiber is not P*~3; dimS < 0 since a gencric linear space
section can not intersect S, by the above. Let U C W be an open set, in the
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complex topology, with U NS = {0} and let V C X such that n(V)} = U.
Then by lemma 3.3 we get a "tautological” line bundle H on V; 7 : V = U is
supported by Ky + (n — 2)H. Thus by [AW, Th 4.1] U is smooth and all the
fibers arc P*~% ( we use that n > 5).
O

Proof of the part 3) of the theorem

In the last part of the theorem we assume that Ky + detE is nef and big
but not ample. Then Ky + detE is a supporting divisor of an extremnal face,
F; let R; the extremal rays spanning this face. Fix one of this ray, say R = R;
and let 7 : X — W be the elementary contraction associated to R.

We have {(R)} > n — 2; this implies first that the exceptional loci are disjoint
if n > 3, proposition (1.7}. Secondly, by the inequality (1.5), we have

dimE(R) + dimF(R) > 2n - 3.

Therefore dimE({R) = n — 1 and either dimF(R) =n —1 or dimF(R) = n — 2;
if Z := p(E) and D = E(R) this implies that either dimZ = 0 or 1.

If dimZ = 1 then dimF(m) = n — 2 for all fibers (note that since the
contraction 7 is elementary there cannot be fiber of dimension (n — 1)); thus we
can apply proposition (3.1) with » = (n — 2). This will give the case 3-(iii} of
the theorem,

Consider again the construction in section (2), in particular we refer to the
diagram (1). Let S be the extremal ray contracted by ¢; note that [(S) > n—2
and that the inequality (1.5) gives

dimE(S) + dimF(S) > 3n — 6;

in particular, since dimF(S) < dimF(R), we have two cases, namely dimFE(S) =
n—5and dimF(S)y=(n—1) or dimE(S) =2n—4 and dimF(S) = (n-1)
or (n — 2).

The case in which dim£(S) = 2n — 5 will not occur. In fact, after "slicing”,
(see 2), we would obtain a map ¢’ = |z which would be a small contraction
supported by a divisor of the type Kz + (n — 2)L but this is impossible by the
classification of [Ful, Th 4] (see also [An]).

Hence dimE(S) = 2n — 4, that is also ¢ is divisorial.

Suppose that the general fiber of ¢, F'(S), has dimension (n —~ 2). After
slicing we obtain a map ¢’ = ¢, : Z — T supported by Kz + (n — 2)L, where
L = £g|z. This map contracts divisors D in Z to curves; by ([Ful, Th 4]) we
know that every fiber F of this map is P("~2) and that D p = O(-1) (actually
this map is a blow up of a smooth curve in a smooth variety). In particular

there are curves in Y, call them C, such that —E{S).C = 1. We will discuss
this case in a while.
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Suppose then the general fiber of ¢, F(S), has dimension (n — 1); therefore
all fibers have dimension (n —1). Slicing we obtain a map @' = ¢z 1 Z = T

supported by Kz + (n — 2)L, where L = €1z- This map contracts divisors D

in Z to points; by ([Ful]) we know that these divisors are either P with
normal bundle O(=2) or Q=Y ¢ P" with normal bundle @(-1). In the latter
case we have as above that there are curves C in Y, such that —E(5).C = 1.

In these cases observe that £(S) - C = 0, where C is a curve in the fiber of
p. Hence E(S) = p*(—M) for some M € Div(X). Let [ be an extremal curve
of E(S). Then, by projection formula, we have —1 = E(S} -l = —M - mC and
thus M generates Im[Pic{X) — Pic{D)], hence M is m-ample; note that in
general it does not generate Pic(D). We study now the Hilbert polynomial of
Mp to show that A(D, M|p) = 0, where A(X, L) is Fujita delta genus. Let
Op(—Kx) ~ Op{(pM), where p = I(R) 2 n — 2, and Op{-D) ~ Op(qM)
for some p,¢ € N. By adjunction formula wp ~ Op(—(p + ¢)M). By [Ando,
Lemma 2.2] or [BS, pag 179], Serre duality and relative vanishing we obtain
that ¢ < 2, the Hilbert polynomial is

P(D, Mjp) = (ni—tl)‘(t + 1)t (n = )E+ <)
and the only possibilitics are ¢ = 1,¢ = n — 1,4 = 1lor2 and a = 2,¢c =
(n—1)/2,q = 1. In particular A(D, M|p) = 0 and, by Fujita classification,
D is equal to P("=Y or to Q(*~1) ¢ P™. Now the rest of the claim in 3) i) and
i) follows easily.

It remains the case in which ¢’ = ¢z : Z — T contracts divisors D = pin-1)
with normal bundle O(-2) to points. We can apply the above proposition (2.1)
and show that the singularities of W are the same as those of 7. Then, as in
([Mo1]), this means that we can factorize 7 with the blow up of the singular
point. Let X' = Bl,{W), then we have a birational map g : X — X’. Note
that X’ is smooth and that g is finite. Actually it is an isomorphism outside D
and cannot contract any curve of D. Assume to the coutrary that g contracts
a curve B C D;let N € Pic(X') be an ample divisor then we have g*N - B =0
while ¢*N - C # 0 contradiction. Thus by Zarisky’s main theorem g is an
isomorphism. This gives a case in 3)i).
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