On the tensor algebra of a non abelian group and applications

H.J. Baues and D. Conduché

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

On the tensor algebra of a non abelian group and applications

H. J. Baues and D. Conduché

For the classifying space $B G=K(G, 1)$ of a group G we consider the word length filtration $J_{n} B G, n \geq 0$, in the infinite reduced product $J(B G)$ of James [15] which is homotopy equivalent to the loop space $\Omega \Sigma(B G)$. We introduce the "crossed tensor algebra" $J(G)$ which is a differential algebra in the monoidal category of crossed chain "complexes and we describe $J(G)$ together with its differential d explicitly in terms of the elements of G. Our main result shows that one has a natural isomorphism (see (1.2) and (1.9))

$$
\begin{equation*}
J(G)_{n} \quad \cong \quad \pi_{n}\left(J_{n} B G, J_{n-1} B G\right) \tag{1}
\end{equation*}
$$

where the right hand side is a relative homotopy group. This isomorphism is compatible with the boundary maps and with the multiplications in $J(G)$ and $J(B G)$ respectively. Let $I G$ be the augmentation ideal in the group ring $\mathbb{Z}[G]$. We form the quotient

$$
I_{1} G=\frac{I G}{I(G, G) \cdot I G}
$$

where (G, G) is the commutator subgroup. Moreover let $\hat{J}_{n} B G$ be the subspace of the universal covering $\hat{J} B G$ of $J B G$ which is determined by $J_{n} B G$. Using (1) one gets the natural isomorphism of differential algebras

$$
\begin{equation*}
T_{\mathbb{Z}[G]}\left(I_{1} G\right) \quad \cong \quad \oplus_{n \geq 0} H_{n}\left(\hat{J}_{n} B G, \widehat{J}_{n-1} B G\right) \tag{2}
\end{equation*}
$$

where the left hand side is the graded tensor algebra with a canonical differental, see (2.6). The right hand side of (2) is given by relative homology groups with integral coefficients. The proof of the isomorphisms above is based on the fundamental theory of Brown-Higgins
on crossed complexes. The tensor algebra in (1) and (2) satisfy the algebraic formula

$$
\begin{equation*}
T_{\mathbb{Z}[G]}\left(I_{1} G\right) \quad \cong \quad I_{*} G \quad \cong \quad C(J G) \tag{3}
\end{equation*}
$$

where C is the chain functor (studied by J.H.C. Whitehead [21] and Brown-Higgins [7]) and where the algebra $I_{*} G$ is defined by universal "multicrossed homomorphisms" on G, see (2.1) and (2.4). The connection between the homology groups $\pi_{n} J G$ and $H_{n}\left(I_{*} G\right)$ is clarified by theorem (2.16); examples of such homology groups are computed in section 3. We also obtain the natural isomorphisms

$$
\begin{equation*}
G \otimes G \cong \quad \frac{J G_{2}}{d J G_{3}} \cong \pi_{2}(J(B G), B G) \tag{4}
\end{equation*}
$$

which yield a new topological interpretation of the tensor square of Brown-Loday [10]. The isomorphisms (4) are actually isomorphisms of G-crossed modules. Therefore one has the formula
(5) $\pi_{3} \Sigma B G \cong \pi_{2} J(B G) \cong \pi_{2} J(G) \cong \operatorname{ker}(G \bar{\otimes} G \longrightarrow G)$
for the third homotopy group $\pi_{3} \Sigma B G$ of the suspended classifying space $\Sigma B G$. Using different methods this result is due to Brown-Loday in [10]. In addition to (5) we obtain new exact sequences for the homotopy group $\pi_{4} \Sigma B G$, see (3.5); in particular, one has always the surjection

$$
\begin{equation*}
\pi_{4} \Sigma B G \quad \longrightarrow \quad \pi_{3}(J G) \tag{6}
\end{equation*}
$$

The computation of the homotopy groups $\pi_{n} \Sigma B G$ is analogous to the computation of the homotopy groups $\pi_{n}(B G)^{+}$of Quillen's (+)-construction which is a fundamental problem of algebraic K-theory. For a perfect group G we study these homotopy groups by use of the suspension homomorphism

$$
\begin{equation*}
\Sigma: \pi_{n}(B G)^{+} \longrightarrow \pi_{n+1}\left(\Sigma(B G)^{+}\right) \quad=\quad \pi_{n+1} \Sigma B G \tag{7}
\end{equation*}
$$

compare (3.15). In this case, however, the tensor algebras (1) and (2) are degenerate, that is $I_{1} G=0$ and $J(G)_{n}=0$ for $n \geq 3$. For an abelian group or for a free group G the tensor algebra $J G$ and $I_{*} G$ are highly non trivial, compare the computation of $H_{n} I_{*} G$ in (3.9) and (3.11) ${ }^{1}$.

The authors would like to acknowledge the support of the Max-Planck-Institut für Mathematik in Bonn and of the mathematical departments in Rennes and Bangor. In particular we are grateful for discussions with R. Brown in Bangor.

[^0]§ 1 The crossed tensor algebra of a group
We consider the classical infinite reduced product $J X$ of a pointed space X as a special case of a free monoid in a monoidal category. The "crossed tensor algebra" of a group G is such a free monoid in the category of crossed chain complexes.

For a filtered space $X_{*}=\left\{X_{0} \subset X_{1} \subset X_{2} \subset \ldots\right\}$ with $X_{0}=*$ we have the (fundamental) crossed chain complex $\pi\left(X_{*}\right)$:

$$
\begin{equation*}
\ldots \longrightarrow \pi_{3}\left(X_{3}, X_{2}\right) \xrightarrow{\delta} \pi_{2}\left(X_{2}, X_{1}\right) \xrightarrow{\delta} \pi_{1}\left(X_{1}\right) \tag{1.1}
\end{equation*}
$$

given by relative homotopy groups. For example let $J(X)$ be the James construction of a pointed space $(X, *)$ with the word length filtration

$$
J_{*}(X)=\left\{*=J_{0} X \subset X=J_{1} X \subset J_{2} X \subset \ldots\right\}
$$

Then the crossed chain complex $\pi J_{*}(X)$ is defined by (1.1). A crucial result for this paper is the following computation of $\pi J_{*}(X)$ in case $X=B G=K(G, 1)$ is a classifying space of a discrete group G.
(1.2) Theorem: Let G be a group, then there is a natural isomorphism of crossedchain complexes

$$
\tau: J(G) \cong \pi J, B G
$$

where $J(G)$ is the crossed tensor algebra of G defined as follows.

For the definition of $J(G)$ we introduce first the following general notion of a free monoid in a monoidal category.
(1.3) Definition: Let (C, \otimes) be a monoidal category with initial object * satisfying $X \otimes *=X=* \otimes X$ for $X \in C$. We suppose that the colimits below exist in C. Then we get for the n-fold tensor product $X^{\otimes n}$ the maps

$$
\begin{equation*}
i_{t}: \quad X^{\otimes(n-1)} \quad \longrightarrow \quad X^{\otimes n} \quad(1 \leq t \leq n) \tag{1}
\end{equation*}
$$

 maps define the diagram
(2) \quad ($\quad \mathrm{X} \quad X^{\otimes 2} \quad \Longrightarrow \quad X^{\otimes 3} \quad .$.
the limit of which is the free monoid $J(X)$. Here $J(X)$ is filtered by $J(X)=\lim J_{n}(X)$ where $J_{n}(X)$ is the limit of the finite subdiagram of (2) given by $X^{\otimes i}, \quad i \leq n$. Moreover $J(X)$ is a monoid in C with multiplication $J(X) \otimes J(X) \longrightarrow J(X)$ in case the bifunctor \otimes preserves the corresponding limits. In this case $J(X)$ is actually the free monoid generated by X in C. Clearly J yields a functor $C \longrightarrow C$.

We consider the following examples (A), ... , (E) of free monoids.
(A) Let $\left(\right.$ Set $\left.^{*}, \times\right)$ be the category of pointed sets $(X, *)$ with the cartesian product \times. Then $J(X, *)=\operatorname{Mon}(X-*)$ is actually the free monoid generated by the set $X-*$.
(B) Let R be a commutative ring and let $\left(\operatorname{Mod}_{R}^{R}, \otimes\right)$) be the category of R-modules under and over R, which are given by diagrams $(R \xrightarrow{i} X \xrightarrow{0} R)=X$ with $0 i=1$. Then $J(X)=T_{R}(\bar{X})$ is the classical tensor algebra of the R -module $\bar{X}=\operatorname{kernel}(X \longrightarrow R)$ with $X=\bar{X} \oplus R$. Similarly we obtain the tensor algebra $T_{R}(\bar{X})$ of a graded R-module \bar{X} by $J(\bar{X} \oplus R)$ where R is commutative in degree 0 . Clearly here the monoidal structure is given by the (graded) tensor product \otimes.
(C) Let (Top*, \times) be the category of pointed topological spaces $X=(X, *)$ with the monoidal structure given by product of spaces. Then the free monoid $J(X)$ is the classical James construction or "infinite reduced product" of X, compare [15] and [12].
(D) Let $\left(\mathrm{CW}_{o}^{*}, \times\right)$ be the category of cellular maps between CW -complexes X with $X_{0}=*$. Here we take the CW-topology for the product $X \times Y$ so that the monoid $J(X)$ is again a CW-complex. The cells of $J(X)$ are in 1-1 correspondance with the words in the free monoid $\operatorname{Mon}\left(Z_{*}\right)$ where Z_{*} is the graded set of cells in $X-*$. Moreover we know by an old result of James [15] that there is a natural monoid homomorphism

$$
J X \xrightarrow{\approx} \Omega \Sigma X
$$

which is a homotopy equivalence. Here $\Omega \Sigma X$ is the Moore loop space of the suspension ΣX.
(E) Crossed chain complexes $\rho=\left(\ldots \longrightarrow \rho_{2} \xrightarrow{d} \rho_{1}\right)$ or "homotopy systems" as in (1.1) first appeared in the paper [21] of J.H.C. Whitehead, they are "reduced crossed complexes" in the sense of Brown-Higgins [7]. The category cross chain of crossed chain complexes for example is studied in chapter VI [1] and chapter III [2]. The monoidal structure for this category is given by the tensor product \otimes of Brown-Higgins [8], see also (III §9) [2]. The initial object $*$ is the crossed chain complex which is trivial in each degree. We call the free monoid $J(\rho)$ the crossed tensor algebra of the crossed chain complex ρ. In fact, if $\rho_{1}=*$ this is just the tensor algebra $T_{\mathbb{Z}}(\rho)$ of the chain complex ρ. In case $\rho=G$ is just a group (that is, ρ is concentrated in degree 1) we get the crossed tensor algebra $J(G)$ of the group G which is used in theorem (1.2). The tensor product preserves direct limits so that $J(\rho)$ and $J(G)$ are monoids in cross chain which we call "crossed chain algebra". Recall that for a crossed chain complex ρ we define

$$
\pi_{n}(\rho)=\frac{\operatorname{kernel}\left(d_{n}\right)}{\operatorname{image}\left(d_{n+1}\right)}
$$

where $d_{n}=d: \rho_{n} \longrightarrow \rho_{n-1}, d_{1}=0$. An n-equivalence $f: \rho \longrightarrow \rho^{\prime}$ is a map which induces isomorphisms $\pi_{i}(f)$ for $i \leq n$ and a weak equivalence f is a map for which $\pi_{i}(f)$ is an isomorphism, $i \geq 1$.
(1.4) Explicit description of $J(\rho)$. We now describe the crossed tensor algebra $J(\rho)$ in terms of the elements of the crossed chain complex $\rho=\left(\ldots \longrightarrow \rho_{2} \xrightarrow{d} \rho_{1}\right)$. We write $|x|=i$ if $x \in \rho_{i}$ and we set $|a b|=|a|+|b|$ if a, b are elements in the free monoid Mon(ρ). Words of length one in $\operatorname{Mon}(\rho)$ are denoted by $y=[y], y \in \rho$. The action in a crossed complex ρ is written y^{x} where $y^{x}=y$ for $|x| \geq 2$. Moreover the group structure of ρ_{i} is denoted by + for $i \geq 1$, clearly $x+x^{\prime}$ is only defined if $|x|=\left|x^{\prime}\right|$. We introduce the bracket
(1) $\|x, y\|=\left\{\begin{array}{clr}-x-y+x+y & \text { if } & |x|=|y|=1 \\ -y^{x}+y & \text { if } & 1=|x|<|y| \\ -x+x^{y} & \text { if } & |x|>|y|=1 \\ 0 & & \text { otherwise }\end{array}\right.$
for all $x, y \in \rho$.
Now the crossed tensor algebra $J(\rho)$ is the crossed chain complex generated by the graded set $\operatorname{Mon}(\rho)$ with the following relations where $x, x^{\prime}, y, y^{\prime} \in \rho$ and $a, b \in \operatorname{Mon}(\rho)$
(2) $\left[x x^{y}=[x y]\right.$
and

$$
\begin{aligned}
& {[x+x]=[x]+[x]} \\
& |x| \geq 2
\end{aligned}
$$

(3) $(a[x] b)^{y}=a\left[x^{y}\right] b$
for
(4) $a[x+x] b=\left\{\begin{array}{lll}a x^{\prime} b+(a x b)^{\prime} & \text { for } & |a| \geq 1 \\ (a x b) x^{\prime}+a x^{\prime} b & \text { for } & |b| \geq 1\end{array}\right.$

The boundary d of $J(\rho)$ is given by the formulas

$$
\begin{align*}
& d[x]=[d x] \tag{5}\\
& d(a b)=\quad(d a) b+(-1)^{|a|+1}\|a, b\|+(-1)^{|a|} a(d b) \tag{6}
\end{align*}
$$

where we set $d a=0$ for $|a|=1$ and $0 b=0=b 0$.
The filtration of $J(\rho)$ is given by the subcomplex $J_{n}(\rho) \subset J(\rho)$ given by all words of length $\leq n$ in $\operatorname{Mon}(\rho)$. Moreover the multiplication $J(\rho) \otimes J(\rho) \longrightarrow J(\rho) \quad$ carries generators $a \otimes b$ to $a b$. We get $J(\rho)_{1}=\rho_{1}$ by (2) and $J(\rho)_{2}$ is generated as a ρ_{1}-crossed module by $\operatorname{Mon}(\rho)_{2}=\rho_{2} \cup \rho_{1} \times \rho_{1}$. Moreover $J(\rho)_{n}, n \geq 3$, is generated as a $\pi_{1}(J(\rho))$-module by the set $\operatorname{Mon}(\rho)_{n}$. Here $\pi_{1}(J(\rho))=\pi_{1}(\rho)^{a b}$ is the abelianization of $\pi_{1}(\rho)$ by (6).

We now consider the functor

$$
\begin{equation*}
\rho: \quad C W_{0}^{*} \quad \longrightarrow \text { cross chain } \tag{1.5}
\end{equation*}
$$

which carries a CW-complex $X, X^{0}=*$, to the crossed chain complex $\rho(X)=\pi\left(X^{*}\right)$ given by the CW-filtration $X^{*}=\left\{X^{0} \subset X^{1} \subset \ldots\right\}$. The crossed tensor algebra $J(\rho)$ above has the following important property.
(1.6) Proposition: For X, Y in $C W_{0}^{*} \quad$ one has natural isomorphisms

$\tau: \rho(X) \otimes \rho(Y)$	\cong	$\rho(X \times Y)$
$\tau: J \rho(X)$	\cong	$\rho J(X)$

The proposition is based on the following general property of the tensor product in cross chain. Let X_{*}, Y_{*} be filtered topological spaces with $X_{0}=*=Y_{0}$ and let $X_{*} \otimes Y_{*}$ be the filtered topological product for which $\left(X_{*} \otimes Y_{*}\right)_{n}$ is the union of all $X_{p} \times Y_{q}, p+q=n$ in $X \times Y$. Then one has by [9] or [2] theorem III2.3 a natural transformation

$$
\begin{equation*}
\tau: \quad \pi\left(X_{*}\right) \otimes \pi\left(Y_{*}\right) \quad \longrightarrow \quad \pi\left(X_{*} \otimes Y_{*}\right) \tag{1.7}
\end{equation*}
$$

which is an isomorphism in case X_{*}, Y_{*} are CW-complexes in $C W_{0}{ }^{*}$.

Since we assume $X^{0}=*$ we see that the James filtration satisfies $J(X)^{n}=J_{n}(X)^{n}$. Whence the filtered map $i: J(X)^{*} \longrightarrow J_{*}(X)$ induces a natural surjective transformation

$$
\begin{equation*}
i_{*}: \quad \rho J(X)^{*}=\pi J(X) \quad \longrightarrow \pi J_{*}(X) \tag{1.8}
\end{equation*}
$$

In addition to theorem (1.2) we show the next result which characterises the isomorphism τ in (1.2).
(1.9) Theorem: Let G be a group. Then the classifying space $B G$ in $C W_{0}^{*}$ admits a unique weak equivalence $\varepsilon: \rho(B G) \longrightarrow G$ in cross chain which induces the identity on π_{1} and for which the following diagram commutes

$$
\begin{array}{lcc}
\rho J(B G) & \xrightarrow{i_{*}} & \pi J J_{*}(B G) \\
\tau \uparrow \cong & & \tau\rceil \cong \\
J \rho(B G) & \xrightarrow{\varepsilon_{*}} & \\
\tau & J(G)
\end{array}
$$

Moreover $\varepsilon_{*}=J(\varepsilon)$ is a 2-equivalence but in general not a 3-equivalence.

The theorem shows that J in general does not carry weak equivalence to weak equivalence. The functor J, however, carries weak equivalences between totally free objects in crosschain to homotopy equivalences.

Proof: For $X_{*}=(B G, *)$ we have $\pi X_{*}=G$, whence we get by (1.7) natural maps

$$
\tau: \quad G \otimes \ldots \otimes G \quad \longrightarrow \pi\left(X_{*} \otimes \ldots \otimes X_{*}\right)
$$

for n-fold tensor product, $n \geq 1$. These maps induce τ in (1.9) since one has the filtered map $\otimes^{n} X_{*} \longrightarrow J_{*} B G$ for all $n \geq 1$. Moreover the naturality of τ in (1.7) shows that the diagram in (1.9) commutes. We now show that τ on the right hand side of (1.9) is an isomorphism. For this we consider the following commutative diagram where $J_{n}=J_{n} B G$ and $\quad J=J B G, \rho=\rho(B G)$. We have surjections

$$
q_{n}:\left(J_{n} \rho\right)_{n+1}=\pi_{n+1}\left(J_{n}^{n+1}, J_{n}^{n}\right) \longrightarrow \pi_{n+1}\left(J_{n}, J^{n}\right)
$$

Moreover we have exact sequences of triples:

$$
\begin{array}{rll}
\pi_{n+1}\left(J_{n}, J^{n}\right) \xrightarrow{\partial} & \pi_{n}\left(J^{n}, J^{n-1}\right) & \xrightarrow{i}
\end{array} \quad \pi_{n}\left(J_{n}, J^{n-1}\right) .
$$

where $j i=i_{*}$ is the map in (1.9). This actually shows that i_{*} is surjective. We now have the commutative diagram
$\left(J_{n} \rho\right)_{n+1} \xrightarrow{\partial q_{n}} \pi_{n}\left(J^{n}, J^{n-1}\right) \xrightarrow{i} \pi_{n}\left(J_{n}, J^{n-1}\right) \xrightarrow{\dot{\longrightarrow}} \pi_{n}\left(J_{n}, J_{n-1}\right)$

By definition of ε it is clear that the compositions $\varepsilon_{*} \tau^{1} \partial q_{n}$ and $\varepsilon_{*} i_{n-1}$ are trivial maps. Here we use the fact that $X^{0}=*$ so that $\left(J_{n} \rho\right)_{n+1}$ and $\left(J_{n-1} \rho\right)_{n}$ do not contain generators which are products only of 1 -cells in X. We know see that $\varepsilon_{*} \tau^{1} \partial q_{n}=0$ implies that there is a broken arrow x with $x i=\varepsilon_{*} \tau^{1}$. Moreover x induces the inverse of τ_{n} since $x i^{\prime} q_{n-1}=\varepsilon_{*} i_{n-1}=0$. This completes the proof that τ on the right hand side of (1.9) is an isomorphism.

The properties of $\varepsilon_{*}=J(\varepsilon)$ are obtained by the next lemma.
(1.10) Lemma: ε_{*} in (1.9) induces the map

$$
\pi_{n} \varepsilon_{*}: \pi_{n} J \rho B G \longrightarrow \pi_{n} J(G)
$$

which is an isomorphism for $n \leq 2$ and surjective for $n=3$. For $G=\mathbb{Z} / 2$ the map $\pi_{3} \varepsilon_{*}$ is not an isomorphism. Moreover there is a perfect group G for which $\pi_{3} \varepsilon_{*}$ is not an isomorphism.

This lemma is a consequence of the exact sequences in $\S 3$, see (3.6), (3.9) and (3.14).

We now study the crossed module $J G_{2} \longrightarrow J G_{1}=G$ with the tensor square $G \bar{\otimes} G$ of Brown-Loday [10].
(1.11) Definition: Let G and B be groups.We say that a function $O: G \times G \longrightarrow B$ is a 2 -crossed morphism if the following equation are satisfied $(x, y, z \in G)$
i) $(x+y) \odot z-y \odot z=-x \odot y+x \odot(z+y)$
ii) $0 \odot 0=0$

Observe that, first taking $x=y=0$ and then, taking $y=z=0$ in i) we get, using $i i$)

$$
0 \odot x \quad=\quad x \odot 0 \quad=\quad 0
$$

(1.12) Proposition: The function $G \times G \longrightarrow J G_{2}$ which carries (x, y) to the product $x y$ is the universal 2-crossed morphism for G.

In §2 we shall see that the composition $G \times G \longrightarrow J G_{2} \longrightarrow\left(J G_{2}\right)^{a b}$ is the universal 2 -crossed homomorphism in the sense of (2.1) with $\varphi=a b: G \longrightarrow G^{a b}$.

Proof of (1.12): For $J G_{2}$ in (1.4) only reminds relation (3), which, in this case, can be written

$$
\begin{aligned}
x[z+y] & =x y+(x z)^{y} \\
{[x+y] z } & =(x z)^{y}+y z
\end{aligned}
$$

These equalities imply relations i) and $i i$).
Now we can equivalently see $J G_{2}$ as a group generated by elements $x y$ with $x, y \in G$ with relations

$$
\begin{aligned}
& {[x+y] z-y z=-x y+x[z+y]} \\
& 00=0
\end{aligned}
$$

and define the operation of G on generators of $J G_{2}$ by

$$
(x z)^{y}=\quad-x y+x[z+y]
$$

as the equalities
$(x z)^{y+y^{\prime}} \quad=\quad\left((x z)^{y}\right)^{y^{\prime}}$ and $(x z)^{0}=x z$ are consequences of this definition, this yields no further relation.

We have the following examples of 2 -crossed morphisms on G. First the commutator map

$$
(,): G \times G \longrightarrow G
$$

is a 2-crossed morphism which induces the homomorphism $d: J G_{2} \longrightarrow G$ in $J G$. Moreover for the tensor product of Brown-Loday the function

$$
\bar{\otimes}: \quad G \times G \longrightarrow G \bar{\otimes} G
$$

is a 2 -crossed morphism which induces the natural homomorphism $\bar{\otimes}: J G_{2} \longrightarrow G \bar{\otimes} G$.
(1.13) Proposition: The sequence

$$
J G_{3} \xrightarrow{d} J G_{2} \xrightarrow{\otimes} G \bar{\otimes} G \longrightarrow 0
$$

is exact. Moreover $d J G_{3}=$ kernel $\bar{\otimes}$ is generated as a normal subgroup by the relations

$$
(x y)^{z} \approx\left[x^{z}\right]\left[y^{z}\right], \quad(x, y, z \in G)
$$

Proof: The isomorphism

$$
\frac{J G_{2}}{(x y)^{z} \approx\left[x^{z}\right]\left[y^{z}\right]} \quad \cong \quad G \bar{\otimes} G
$$

is given in [13].
The proof of the inclusion $d J G_{3} \subset$ kernel $\bar{\otimes}$ is given in [11]. We translate it from left to right operations and commutators. We use the equality

$$
\begin{aligned}
& \\
& \text { in } G \bar{\otimes} G . \text { As }(x \otimes y)^{z}= \\
& x \otimes(z+y-z+z) \\
& \text { and } \quad(y+x-y+y) \otimes z=x \otimes z+(x \otimes(z+y-z))^{z} \\
& (y+x) \\
& \text { a } \quad(y+x-y) \otimes z)^{y}+y \otimes z
\end{aligned}
$$

we have (a) $x \otimes(z+y)=x \otimes z+\left(x^{z}\right) \otimes y \quad$ and
(b) $(y+x) \otimes z=x \otimes\left(z^{y}\right)+y \otimes z$

Then, by (a) $(x \otimes y)^{z}=-x \otimes z+x \otimes(y+z)=-x \otimes z+x \otimes y+\left(x^{y}\right) \otimes z$
$=\quad((-x) \otimes z)^{x}+x \otimes y+\left(x^{y}\right) \otimes z \quad=\quad(-x) \otimes\left(z^{x}\right)+x \otimes y+\left(x^{y}\right) \otimes z$
$=x \otimes y+((-x) \otimes z)^{x+(x, y)}+\left(x^{y}\right) \otimes z \quad$ (here we use the second crossed modules property)
$=\quad x \otimes y+((-x)(x, y)) \otimes\left(z^{x+(x, y)}\right)+\left(x^{y}\right) \otimes z$
$=\quad x \otimes y+((-x)-y+x+y) \otimes\left(z^{x+(x, y)}\right)+(x y) \otimes z$
We can write relation b) $\alpha \otimes\left(\gamma^{\beta}\right)=(\beta+\alpha) \otimes \gamma-\beta \otimes \gamma$
and take $\alpha=(-x)^{-y}+x+y, \quad \beta=-y+x+y, \quad \gamma=z$
Then we have $\left((-x)^{-y}+x+y\right) \otimes\left(z^{-y+x+y}\right)=(x, y) \otimes z-\left(x^{y}\right) \otimes z$
and $(x \otimes y)^{z}=x \otimes y+(x, y) \otimes z-\left(x^{y}\right) \otimes z+(x y) \otimes z$
so that $(x, y) \otimes z=-x \otimes y+(x \otimes y)^{z}$
and $\quad \bar{\otimes} d(x y z)=(x, y) \otimes z-(x \otimes y)+x \otimes y=0$
thus we have $d_{J} \subset \subset$ kernel $\bar{\otimes}$

Conversely we show that $\left[x^{z}\right]\left[y^{z}\right]$ is congruent to $(x y)^{z}$ modulo $d J G_{3}$.
We have $\left[x^{z}\right]\left[y^{z}\right]=[x+(x, z)][y+(y, z)]$
$=(x[y+(y, z)])(x, z)+[(x, z)][y+(y, z)]$
$=\quad-x z+x[y+(y, z)]+x z+[(x, z)][y+(y, z)]$
$=-x z+x[(y, z)]+(x y)^{(y, z)}+x z+[(x, z)][(y, z)]+([(x, z)] y)^{(y, z)}$
$=-x z+x[(y, z)]-y z+x y+y z+x z+[(x, z)][(y, z)]-y z+[(x, z)] y+y z$
We have $[(x, z)][(y, z)]=-d([(x, z)] y z)-(y z)^{(x, z)}+y z$
$=\quad-d([(x, z)] y z)+(x z ; y z)$
and $\quad[(x, z)] y=d(x z y)-x z+(x z) y$
so that, taking congruences modulo $d J G_{3}$ we get
$\left[x^{z}\right]\left[y^{z}\right] \quad \equiv \quad-x z+x[(y, z)]-y z+x y+y z+(x z)^{y}+y z$
Otherwise, using relation (4) in (1.4), $x[(y, z)]=x[-y-z+y+z]$
$=\quad x z+(x y)^{z}+(x[-z])^{y+z}+(x[-y])^{-z+y+z}$
but $x[-z]=-(x z)^{-z}$ so that $\quad(x[-z])^{y+z}=-(x z)^{y+(y, z)}$
$=\quad-y z-(x z)^{y}+y z$
and $(x[-y])^{-z+y+z}=-(x y)^{(y, z)}=-y z-x y+y z$
so $x[(y, z)]=x z+(x y)^{z}-y z-(x z)^{y}-x y+y z$
thus we have $\left[x^{z}\right]\left[y^{z}\right] \equiv(x y)^{z}$. and the sequence is exact.
(1.14) Corollary: There are natural isomorphisms

$$
\pi_{3} \Sigma B G \cong \pi_{2} J(G) \cong \operatorname{ker}(G \bar{\otimes} G \longrightarrow G)
$$

where the right hand side isomorphism is the commutator map.

Proof: The isomorphism on the left hand side is given by (1.3)(D) and (1.10), see also (3.5). The isomorphism on the right hand side is given by (1.13). In fact one has the following commutative diagram
in which the vertical arrows are isomorphisms.

This corollary was proved by Brown-Loday using different methods, see [10] proposition 4.12 . In section 3 we shall give also some informations on the homotopy group $\pi_{4} \Sigma B G$.

There is a further description of $J G_{2} \longrightarrow G$ by the following result of Gilbert-Higgins [13]. Consider the commutative diagram of groups

where $G * G$ is the free product and where ∇ is the folding map. Moreover $G \square G$ is the kernel of the projection map (p_{1}, p_{2}): $G * G \longrightarrow G \times G$
and i is the inclusion. The map i is a crossed module since the injection of a normal subgroup is a classical example of crossed module.
(1.15) Proposition: There is a natural map φ such that $d: J G_{2} \longrightarrow G$ is the G-crossed module induced by ∇.

Proof: Let i_{1} and i_{2} be the two canonical injections: $G \longrightarrow G * G$. Then, by [17] (see also [18]) $G \square G$ is a free group with basis the elements

$$
x \square z=-i_{1} x-i_{2} z+i_{1} x+i_{2} z=\left(i_{1} x, i_{2} z\right), \quad x, z \in \bar{G}-\{0\}
$$

the group $G * G$ acting by conjugaison on $G \square G$ we have, by commutators identities

$$
\begin{aligned}
(x \square z)^{i_{1} y} & =[x+y] \square z-y \square z \\
(x \square z)^{i_{2} y} & =-x \square y+x \square[z+y]
\end{aligned}
$$

For any $G * G$-equivarient homomorphism ψ with domain $G \square G$ we have

$$
\psi\left((x \square z)^{i_{1} y}\right)=\quad(\psi(x \square z))^{y}=\psi\left((x \square z)^{i_{2} y}\right)
$$

otherwise

$$
\psi([x+y] \square z-y \square z)=\quad \psi(-x \square y+x \square[z+y])
$$

whence, relation $i i$) being clear, the map ψ factors throught the group $J G_{2}$.

In the next section we give a simple description of the higher dimensional part of $J G$, namely $(J G)_{n}=I_{n} G$ for $n \geq 3$.

§ 2 The multi crossed algebra of a group

We consider multi crossed homomorphisms which generalise the notion of a crossed homomorphism introduced by J.H.C. Whitehead in [21]. The universal multi crossed homomorphisms yield an algebra $I_{*} G$ which is actually a tensor algebra and which is isomorphic to the algebra $C(J G)$ of chains on $J G$.
(2.1) Definition: Let $\varphi: G \longrightarrow A$ be a homomophism between groups and let M be a (right) A-module. A function

$$
f: \quad G^{n}=G \times \ldots \times G \longrightarrow M
$$

is a multi φ-crossed homomorphism if
(1) $f\left(g_{1}, \ldots, g_{i}+g_{i}^{\prime}, \ldots, g_{n}\right)=f\left(g_{1}, \ldots, g_{i}, \ldots, g_{n}\right) \varphi\left(g_{i}^{\prime}\right)+f\left(g_{1}, \ldots, g_{i}^{\prime}, \ldots, g_{n}\right)$
for $g_{1}, \ldots, g_{n}, g_{i} \in G, 1 \leq i \leq n$. Let
(2) $\quad h_{n}: G^{n} \longrightarrow I_{n}(G, \varphi)$
be the universal multi φ-crossed homomorphism. For any multi φ-crossed homomorphism $f: G^{n+m} \longrightarrow M$ we define a \mathbb{Z}-bilinear map
(3) $\quad \check{f}: \quad I_{n}(G, \varphi) \times I_{m}(G, \varphi) \longrightarrow M$
by the multi φ-crossed homomorphism

$$
\bar{f}: \quad G^{n} \quad \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(I_{m}(G, \varphi), M\right)
$$

which carries $g=\left(g_{1}, \ldots, g_{n}\right)$ to the A-module map $\bar{f}(g)$ which is given by the multi φ-crossed homomorphism $\left(g_{n+1}, \ldots . g_{n+m}\right) \rightarrow f\left(g_{1}, \ldots, g_{n+m}\right)$. Thus, taking $M=I_{n+m}(G, \varphi)$ and $f=h_{n+m}$ we define a multiplication
(4) $\quad \mu: \quad I_{n}(G, \varphi) \times I_{m}(G, \varphi) \longrightarrow I_{n+m}(G, \varphi)$

The map \check{f} is even $\mathbb{Z}[A]$-bilinear if A is abelian. Whence μ yields a \mathbb{Z}-algebra for $I_{*}(G, \varphi)$ which is a $\mathbb{Z}[A]$-algebra if A is abelian. For the abelianization homomorphism $a b: G \longrightarrow G^{a b}$ we get the $\mathbb{Z}\left[G^{a b}\right]$-algebra

$$
\begin{equation*}
I_{*}(G) \quad=\quad I_{*}(G, a b) \quad, \quad * \geq 0 \tag{5}
\end{equation*}
$$

which we call the multi φ-crossed algebra of the group G. Here we set $I_{0}(G)=\mathbb{Z}\left[G^{a b}\right]$.

As a well known special case we get the augmentation ideal $I G=$ kernel $\varepsilon: \mathbb{Z}[G] \longrightarrow \mathbb{Z}$ of the group ring $\mathbb{Z}[G]$, that is
(2.2) $I_{1}\left(G, 1_{G}\right)=I G$ with $\mathrm{h}_{1}(\mathrm{~g})=-1+\mathrm{g}$
compare for example [14]. The algebra $I_{*}(G, \varphi)$ above, however, seems not to be considered in the litterature. For $n=2$ there is a connection of $I_{2}(G, \varphi)$ with biderivations studied by Papakyriakopoulos in [19], p 266. This algebra has the following properties.
(2.3) Lemma: For homomorphisms $G^{\prime} \xrightarrow{\psi} G \xrightarrow{\varphi} A \quad$ there is a natural isomorphism of A-modules

$$
I_{n}\left(G^{\prime}, \varphi \psi\right) \quad=\quad I_{n}\left(G^{\prime}, \psi\right) \otimes_{\mathbb{Z}[G]} \varphi^{*} \mathbb{Z}[A]
$$

in particular for $\psi=1$ we get

$$
I_{n}(G, \varphi)=I_{n}\left(G, 1_{G}\right) \otimes_{\mathbb{Z}[G]} \varphi^{*} \mathbb{Z}[A]
$$

Proof: The A-modules $I_{n}\left(G^{\prime}, \varphi \psi\right)$ and $I_{n}\left(G^{\prime}, \psi\right) \otimes_{\mathbb{Z}[G]} \varphi^{*} \mathbb{Z}[A]$ solve the same universal problem. More precisely any multi $\varphi \psi$-crossed homomorphism $f: G^{\prime n} \longrightarrow M$ is as well a ψ-crossed homomorphism, so it factors through a G-linear map: $I_{n}\left(G^{\prime}, \psi\right) \longrightarrow M$ which extends to a A-linear map.

Using (VI 6.2) in [14] we thus get by (2.2) and (2.3) the formula $I_{1}(G)=I_{1}(G, a b)=I G \otimes_{\mathbb{Z}[G]} \mathbb{Z}\left[G^{a b}\right]=I G \otimes_{\mathbb{Z}[(G, G)]} \mathbb{Z}=\frac{I G}{I(G, G) \cdot I G}$ where (G, G) is the commutator subgroup of G.
(2.4) Proposition: The multi crossed algebra $I_{*}(G)$ of a group G is the $\mathbb{Z}\left[G^{a b}\right]$-tensor algebra generated by $I_{1} G$, that is $I_{*} G=T_{R}\left(I_{1} G\right)$ with $R=\mathbb{Z}\left[G^{a b}\right]$, see (1.3)(B).

Proof: When the group A is abelian the multiplication μ induces an isomorphism

$$
I_{n}(G, \varphi) \otimes_{\mathbb{Z}[A]} I_{m}(G, \varphi) \cong \quad I_{n+m}(G, \varphi)
$$

since these two A-modules solve the same universal problem. Whence we have

$$
I_{n}(G, \varphi) \quad \cong \quad \otimes_{\mathbb{Z}[A]}^{n} I_{1}(G, \varphi)
$$

thus, in the case where $\varphi=a b$, we have $I_{*} G=T_{R}\left(I_{1} G\right)$.
(2.5) Example: If G is perfect we have

$$
I_{1} G=\frac{I G}{I G I G}=H_{1} G=0
$$

so that in this case $I_{*} G=0$, see also (3.12). In case G is abelian we get $I_{1} G=I G$ so that then $I_{*} G=T_{\mathbb{Z}[G]}(I G)$ is the tensor algebra of the augmentation ideal.
(2.6) Definition: The multi crossed algebra $I_{*} G$ is a differential graded $\mathbb{Z}\left[G^{a b}\right]$-algebra by the differential

$$
d: I_{1} G \longrightarrow I_{0} G=\mathbb{Z}\left[G^{a b}\right]
$$

given by $d h_{1}(g)=1-a b(g)$. Here we use (2.5) and the fact that $g \rightarrow 1-a b(g)$ is an $a b$-crossed homomorphism. On products we set $d(a b)=(d a) b+(-1)^{|a|} a d b$. Clearly $\left(I_{*} G, d\right)$ is a functor in G.
(2.7) Proposition: The differential in (2.6) as well is determined by the multi ab-crossed homomorphism

$$
\delta=d h_{n}: G^{n} \longrightarrow I_{n} G \longrightarrow I_{n-1} G
$$

with
$\delta\left(g_{1}, \ldots, g_{n}\right)=\sum_{i=1}^{n}(-1)^{j-1}\left(h_{n-1}\left(g_{1}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{n}\right)-h_{n-1}\left(g_{1}, \ldots, g_{i-1} g_{i+1}, \ldots, g_{n}{ }^{2 b(g)}\right)\right.$
Moreover $\quad \delta\left(g_{1}, g_{2}\right)=h_{1}\left(-g_{1}-g_{2}+g_{1}+g_{2}\right)$ for $n=2$.

Proof: By (2.4) we have $h_{n}\left(g_{1}, \ldots, g_{n}\right)=h_{1}\left(g_{1}\right) \otimes h_{1}\left(g_{2}\right) \otimes \ldots \otimes h_{1}\left(g_{n}\right)$ thus, by induction on the differential of a product, we obtain
$\delta\left(g_{1}, \ldots, g_{n}\right)=\sum_{i=1}^{n}(-1)^{i-1}\left(h_{1}\left(g_{1}\right) \otimes h_{1}\left(g_{2}\right) \otimes \ldots \otimes h_{1}\left(g_{i-1}\right) \otimes d h_{1}\left(g_{i}\right) \otimes h_{1}\left(g_{i+1}\right) \otimes \ldots \otimes h_{1}\left(g_{n}\right)\right)$
then the formula for $d h_{1}\left(g_{i}\right)$ and the $\mathbb{Z}[A]$-algebra structure gives the result.

Now, as the map h_{1} is a crossed homomorphism, we have

$$
h_{1}(-g)=-h_{1}(g)^{a b(-g)}
$$

so that we can write
$h_{1}\left(-g_{1}-g_{2}+g_{1}+g_{2}\right)=h_{1}\left(-g_{1}\right)^{a b\left(-g_{2}+g_{1}+g_{2}\right)}+h_{1}\left(-g_{2}\right)^{a b\left(g_{1}+g_{2}\right)}+h_{1}\left(g_{1}\right)^{a b\left(g_{2}\right)}+h_{1}\left(g_{2}\right)$
$=\quad-h_{1}\left(g_{1}\right)^{a b\left(-g_{1}-g_{2}+g_{1}+g_{2}\right)}-h_{1}\left(g_{2}\right)^{a b\left(-g_{2}+g_{1}+g_{2}\right)}+h_{1}\left(g_{1}\right)^{a b\left(g_{2}\right)}+h_{1}\left(g_{2}\right)$
$=-h_{1}\left(g_{1}\right)-h_{1}\left(g_{2}\right)^{a b\left(g_{1}\right)}+h_{1}\left(g_{1}\right)^{a b\left(g_{2}\right)}+h_{1}\left(g_{2}\right)=\delta\left(g_{1}, g_{2}\right)$

We now describe the topological signifiance of the multi crossed algebra $I_{*} G$ of a group G. For this we consider the universal covering $q: \hat{X} \longrightarrow X$ of a filtered space X_{*} with $\lim _{\rightarrow} X_{*}=X$. We obtain the filtered space \hat{X}_{*} by $\hat{X}_{n}=q^{-1} X_{n}$. We now replace the crossed chain complex $\pi\left(X_{*}\right)$ in (1.1) by the chain complex of $\pi_{1}(X)$-modules $\mathscr{H}\left(X_{*}\right)$:
$(2.8) \ldots \longrightarrow H_{3}\left(\hat{X}_{3}, \hat{X}_{2}\right) \xrightarrow{\delta} H_{2}\left(\hat{X}_{2}, \hat{X}_{1}\right) \xrightarrow{\delta} H_{1}\left(\hat{X}_{1}, \hat{X}_{0}\right) \xrightarrow{\delta} H_{0}\left(\hat{X}_{0}\right)$
given by integral relative homology groups. Whence the filtered space $J_{*} X, X \in C W_{0}^{*}$, yields in the same way the chain complex $\mathscr{H}\left(\widehat{J}_{*} X\right)$ which is actually a $\mathbb{Z}\left[G^{a b}\right]$-algebra with $G=\pi_{1} X$ by using the multiplication of $J X$ which induces a unique basepoint preserving covering map

$$
\hat{J}_{*} X \times \hat{J}_{*} X=\left(J_{*} X \times J_{*} X\right)^{\wedge} \quad \longrightarrow \hat{J}_{*} X
$$

of filtered spaces.
(2.9) Theorem: Let G be a group with classifying space $B G$. Then there is a natural isomorphism of differential $\mathbb{Z}\left[G^{a b}\right]$-algebras

$$
\tau: \quad I_{*} G \cong \mathscr{H} \hat{J}_{*} B G
$$

where $I_{*} G$ is the multi crossed algebra of G.

We next compare the result with the corresponding result in (1.2). For this we observe first that the Hurewicz homomorphism yields a $\operatorname{map}(n \geq 1)$

$$
\begin{equation*}
h_{n}: \quad \pi_{n}\left(X_{n}, X_{n-1}\right) \cong \pi_{n}\left(\hat{X}_{n}, \hat{X}_{n-1}\right) \longrightarrow H_{n}\left(\hat{X}_{n}, \hat{X}_{n-1}\right) \tag{2.10}
\end{equation*}
$$

which gives a "chain map" $h: \pi \hat{X}_{*} \longrightarrow \mathscr{H} \hat{X}_{*}$. Moreover for any crossed chain complex ρ one has a natural map $h: \rho \longrightarrow C \rho$ which is the analogue of the map (2.10). For this we consider the commutative diagram
(2.11). .
where q is the quotient map for $\pi_{1}=\pi_{1} \rho$. We set $(C \rho)_{0}=\mathbb{Z}\left[\pi_{1}\right]$, $(C \rho)_{1}=I_{1}\left(\rho_{1}, q\right)$ with h_{1} as in $(2.1)(2)$ and $(C \rho)_{2}=\rho_{2}^{a b}$ with $h_{2}=a b$. For $n \geq 3$ the map h_{n} in (2.11) is the identity. The differential d in the bottom row is uniquely determined by the diagram and by the q-crossed homomorphism $\rho_{1} \longrightarrow \mathbb{Z}\left[\pi_{1}\right], x \rightarrow 1-q(x)$. Let Chain $\hat{\mathbb{Z}}_{\hat{Z}}$ be the category of chain complexes over group rings, morphisms are pairs (φ, f) where φ is a homomorphism between groups and where f is a φ-equivariant homomorphism between modules, see [1]. The construction in (2.11) yields a functor

$$
C: \text { cross chain } \quad \longrightarrow \text { Chain }_{\hat{\mathbb{Z}}}
$$

which is studied in [21], [6] and in (VI.1.2) [1]. For a filtered space X with $X_{0}=*$ one has a natural commutative diagram

where λ is induced by h in (2.10). It is a classical result of J.H.C. Whitehead [21] that λ is an isomorphism if $X_{*}=X^{*}$ is a CW-complex, moreover Brown-Higgins in (5.2) [6] show that λ is an isomorphism if X_{*} is a connected filtered space. For a CW-complex X with $X_{0}=*$ for example the filtered space $J_{*} X$ is connected so that we have an isomorphism

$$
\begin{equation*}
\lambda: C \pi J_{ \pm} X \cong \mathscr{H}_{J} X \tag{2.13}
\end{equation*}
$$

We use this result in the following proof of (2.9).
(2.14) Proof of (2.9): We apply the functor C to the isomorphism τ in (1.2) and (1.9) so that we get isomorphisms

$$
I_{*} G \quad \stackrel{\alpha}{\cong} \quad C J G \stackrel{C \tau}{\cong} \quad C \pi J_{*}(B G) \quad \stackrel{\lambda}{\cong} \quad \nVdash \widehat{J}_{*} B G
$$

The isomorphism α is a direct consequence of the definition of C and of the description of $J G$ in (1.4). In fact, the multi crossed homomorphism

$$
G^{n} \quad \longrightarrow(C J G)_{n}, \quad\left(g_{1}, \ldots, g_{n}\right) \rightarrow h\left(g_{1}, \ldots, g_{n}\right)
$$

induces the isomorphism α.

We now compare the homology of $J G$ and $I_{*} G$, for this we use the natural map
(2.15) $h: J G \longrightarrow C J G \cong \quad I_{*} G$
given by (2.11) and (2.14).
(2.16) Theorem: The natural map h in (2.15) induces an isomorphism $h: \pi_{n} J G \cong H_{n} I_{*} G$ for $n \geq 4$. Moreover one has the natural exact sequence

$$
0 \longrightarrow \pi_{3} J G \xrightarrow{h_{*}} H_{3} I_{*} G \longrightarrow \hat{\Gamma}_{2} J_{*} B G \longrightarrow \pi_{2} J G \xrightarrow{h_{*}} H_{2} I_{*} G \longrightarrow 0
$$

where $\hat{\Gamma}_{2} J_{*} B G$ is the group defined in (3.2) below.

By definition of CJG it is clear that h_{*} is an isomorphism in degree ≥ 4 and injective in degree 3 . The exact sequence of (2.16) is obtained in (3.7) below.
(2.17) Remark: Theorem (2.9) leads to a result of homological algebra which for example can be found in the book of Hilton-Stammbach
(VI, th6.3) [14]. For this we consider the homology sequence of the pair $\left(\hat{J}_{1} B G, \hat{J}_{0} B G\right)=\left(\hat{J}_{1}, \hat{J}_{0}\right)$. Since $J_{0}=*$ we see $H_{1} \hat{J}_{0}=0$. Moreover since $\pi_{1} J B G=G^{a b}$ we see that \hat{J}_{1} is the $G^{a b}$-cover of $J_{1}=B G$. Therefore we get $\pi_{1} \hat{J}_{1}=(G, G)$ and whence $H_{1} \widehat{J}_{1}=(G, G)^{a b}$. Thus we have the following commutative diagram of exact sequences where the vertical arrows are isomorphisms
$\begin{aligned} 0 \longrightarrow(G, G)^{a b} & \longrightarrow I G \otimes_{\mathbb{Z}[G]} \mathbb{Z}\left[G^{a b}\right]\end{aligned} \longrightarrow \mathbb{Z}\left[G^{a b}\right] \longrightarrow \mathbb{Z} \longrightarrow 0$
$0 \longrightarrow H_{1} \hat{J}_{1} \longrightarrow H_{1}\left(\hat{J}_{1}, \hat{J}_{0}\right) \longrightarrow H_{0} \hat{J}_{0} \longrightarrow H_{0} \hat{J}_{1} \longrightarrow 0$
Here we use (2.9) and (2.4).
§3 On the homology of the crossed tensor algebra $J(G)$.
In this section we embed the homology of the crossed tensor algebra $J(G)$ in an exact sequence which is an analogue of J.H.C. Whitehead 's certain exact sequence [20], see also [1]. This leads to applications concerning the homotopy groups of a suspended classifying space $\Sigma B G$.

For a filtered space X_{*} with $X_{0}=*$ we define

$$
\begin{equation*}
\Gamma_{n} X_{*}=\operatorname{image}\left(\pi_{n} X_{n-1} \longrightarrow \pi_{n} X_{n}\right) \tag{3.1}
\end{equation*}
$$

For the skeletal filtration X_{*} of a CW-complex X the group $\Gamma_{n} X=\Gamma_{n} X_{*}$ is the classical Γ-group of J.H.C. Whitehead in [20]. Moreover we define

$$
\begin{equation*}
\hat{\Gamma}_{n} X_{*}=\operatorname{image}\left(H_{n} \hat{X}_{n-1} \longrightarrow H_{n} \hat{X}_{n}\right) \tag{3.2}
\end{equation*}
$$

where \hat{X}_{*} as in (2.8). We now consider the filtered space $J_{*} B G$ given by the James construction of the pointed classifying space $B G$. In this case we get the following natural commutative diagram; the top row in the diagram is the certain exact sequence of J.H.C. Whitehead applied to the space $J B G$.

$\longrightarrow \hat{\Gamma}_{n}\left(J_{*} B G\right) \longrightarrow H_{n}(\hat{J} B G) \longrightarrow H_{n}\left(I_{*} G\right) \longrightarrow \hat{\Gamma}_{n-1}(J+B G)$
(3.3) Proposition: This diagram is well defined for $n \geq 2$ and the rows are longexactsequences.

Proof: Let $B G \in C W_{\sigma}^{*}$ Then $X=J B G$ is a CW-complex with the CW-filtration X^{*} and with the James filtration $X_{*}=J_{*} B G$. We have the filtered inclusion map $i: X^{*} \longrightarrow X$. since we assume $(B G)^{0}=*$. Now we apply the certain exact sequence (III 10.7) [1] for $\mathscr{U}=X^{*}$ or $\mathscr{U}=X_{*}$ and we get the top row and the row in the middle respectively. Moreover we can apply (III 10.7) [1] in the category of chain complexes for $\mathscr{U}=C_{*} \hat{X}_{*}$ where C_{*} denotes the cellular chain complex. Then we get the bottom row of the diagram. The maps h_{*} and h are given by the Hurewicz map.

We now consider the diagram above for low degrees, for this we first observe that one has the following formulas for the corresponding Γ-groups.

$$
\text { Lemma: } \begin{align*}
\Gamma_{1} J B G & =\Gamma_{1} J_{*} B G=\hat{\Gamma}_{1} J_{*} B G=0 \tag{3.4}\\
& \Gamma_{2} J B G=\Gamma_{2} J_{*} B G=0 \\
& \Gamma_{3} J B G
\end{align*}
$$

The natural isomorphism for $\Gamma_{3} J B G$ follows by an old result of J.H.C. Whitehead which shows that for any CW-complex X one has $\Gamma_{3} X=\Gamma \pi_{2} X$, see [20]. The other equations in (3.4) are easily derived from the definitions. Using (3.4) we derive from (3.3) the following commutative diagram with exact rows in which \longrightarrow is a surjection and $>$ an injection.

(3.6) Proof of (1.10): The map $\pi_{n} \varepsilon_{*}, n \geq 2$, can be identified with $i_{*}: H_{n} \widehat{J} B G \longrightarrow \pi_{n} J G$ so that (1.10) follows immediately from (3.5) since i_{*} is an isomorphism for $n=2$ and surjective for $n=3$.
(3.7) Proof of (2.16): The exact sequence (2.16) is a consequence of the bottom row of (3.5) since $\pi_{3} J B G \longrightarrow \pi_{3} J G$ is surjective.

For $\hat{J}_{n}=\hat{J}_{n} B G$ we obtain the natural transformation ($n \geq 2$) $\alpha: H_{n}\left(G, \mathbb{Z}\left[G^{a b}\right]\right) \cong \quad H_{n} \hat{J}_{1} \quad \longrightarrow H_{n} \hat{J}_{n-1} \quad \longrightarrow \hat{\Gamma}_{n} J_{\Downarrow} B G$
which is induced by the inclusion $\hat{J}_{1} \subset \hat{J}_{n-1}$. One gets the isomorphism on the left hand side since \widehat{J}_{1} is the $G^{a b}$-cover of $B G$. Moreover one gets the
(3.8) Lemma: There is an exact sequence
$H_{3}\left(G, \mathbb{Z}\left[G^{a b}\right]\right) \xrightarrow{\alpha} \hat{\Gamma}_{3} J_{*} B G \longrightarrow P(G) \longrightarrow H_{2}\left(G, \mathbb{Z}\left[G^{a b}\right]\right) \xrightarrow{\alpha} \hat{\Gamma}_{2} J_{*} B G \longrightarrow 0$ where $P(G)$ is the cokernel of the boundary $\partial: H_{4}\left(\hat{J}_{3}, \hat{J}_{2}\right) \longrightarrow H_{3}\left(\hat{J}_{2}, \hat{J}_{1}\right)$.

The exact sequence is an easy consequence of the homology exact sequence for ($\hat{J}_{3}, \widehat{J}_{2}, \hat{J}_{1}$).
(3.9) Example: If G is abelian we see by (3.8) that $\hat{\Gamma}_{2} J_{*} B G=0$ and $\hat{\Gamma}_{3} J_{*} B G=P(G)$. Therefore we get in this case by (3.3) and (3.5) the isomorphism

$$
\begin{equation*}
H_{2} \hat{J} B G \quad \cong \quad H_{2} I_{*} G \tag{1}
\end{equation*}
$$

and the exact sequence
(2) $\mathrm{H}_{4} I_{*} G \longrightarrow P(G) \longrightarrow \mathrm{H}_{3} \hat{J} B G \longrightarrow H_{3} I_{*} G \longrightarrow 0$

Here $\quad I_{*} G=\left(T_{\mathbb{Z}[G]}(I G), d\right)$ is a differential tensor algebra. If $G=\mathbb{Z}$ we have $P(\mathbb{Z})=0$. Moreover we have for $G=\mathbb{Z}$ the classifying space $B G=S^{1}$ so that by the well known homotopy equivalence $J S^{1} \approx S^{1} \times J\left(S^{2}\right)$ one has the homotopy equivalence

$$
\hat{J} B \mathbb{Z}=\hat{J} S^{1} \approx J\left(S^{2}\right)
$$

Whence we get
(3) $H_{n}\left(I_{*} \mathbb{Z}\right) \cong \quad H_{n} \hat{J} B \mathbb{Z} \cong\left\{\begin{array}{cc}\mathbb{Z} & \text { if } n \text { is even } \\ 0 & \text { otherwise }\end{array}\right.$

Here the isomorphism on the left hand side is obtained by the bottom sequence in (3.3) since $\hat{\Gamma}_{n} J_{*} B \mathbb{Z}=0$ by (3.2). It is not so easy to prove (3) directly by the formula for ($I_{*} G, d$) in (2.6). For the group $G=\mathbb{Z} / 2$ one has $I G \cong \mathbb{Z}$ generated by $x=1-[1]$ and with the action of G on \mathbb{Z} by -1 . One now can compute directly by the formula in (2.6)
(4) $\quad H_{n}\left(I_{*} \mathbb{Z} / 2\right)=\left\{\begin{array}{cc}\mathbb{Z} & n=0 \\ \mathbb{Z} / 2 & n \text { even, } n>0 \\ 0 & \text { n } \quad \text { odd }\end{array}\right.$

Since we know $\pi_{4} \Sigma B \mathbb{Z} / 2=\mathbb{Z} / 4$ by a result of Hennes [5] and $H_{3} \hat{J} B \mathbb{Z} / 2=\mathbb{Z} / 2$ we see by (2) and (4) that $P(\mathbb{Z} / 2) \neq 0$, see (3.8). This as well shows that for $G=\mathbb{Z} / 2$ the map $\pi_{3} \varepsilon_{*}$ is not an isomorphism, see (1.10).
(3.10) Definition: Let $S(A, n)$ and $T(A, n)$ be the free graded symmetric algebra and tensor algebra respectively generated by the free abelian group A which is concentrated in degree n. Then $T(A, n)$ is a graded Lie algebra by setting

$$
[x, y]=x y-(-1)^{|x||y|} y x
$$

where the right hand side is defined via the multiplication for $x, y \in T(A, n)$. Let $L(A, n)$ be the Lie subalgebra generated by $A \subset T(A, n)$; this is a free graded Lie algebra.
(3.11) Theorem: For a free group G with $A=G^{a b}$ one has natural isomorphisms

$$
H_{n}\left(I_{*} G\right) \cong\left\{\begin{array}{cl}
\mathbb{Z} & n \\
0 & n \\
\Gamma A & n \\
\Gamma(A, 1)_{3} & n \\
L & =1 \\
& n
\end{array}\right.
$$

Moreover there is a (non natural) isomorphism of graded free abelian groups

$$
H_{*}\left(I_{*} G\right) \quad \cong \quad S(A, 2) \otimes \otimes_{n \geq 2}^{\otimes} S\left(L(A, 2)_{2 n}, n\right)
$$

Proof: We can choose $B G=V S^{1}$ to be a one point union of 1 -spheres. Therefore $J_{*} B G=(J B G)^{*}$ is the skeletal filtration and whence we get by (2.12) the isomorphism
(1) $\pi_{n} J G=H_{n}\left(I_{*} G\right)=H_{n} \widehat{J} B G$, $n \geq 2$.

Since $\pi_{2} J G=\pi_{3} \Sigma B G$ we get the isomorphism in (3.11) for $n=2$, see also (3.4). Moreover we have the natural surjection (see (3.5))

$$
\begin{equation*}
\pi_{4} \Sigma B G \quad=\quad \pi_{3} J B G \quad \longrightarrow \quad H_{3} \widehat{J} B G \tag{3}
\end{equation*}
$$

where $\pi_{4} \Sigma B G=\Gamma(A) \otimes \mathbb{Z} / 2 \oplus L(A, 1)_{3}$, compare [3]. This surjection induces the isomorphism in (3.11) for $n=3$. Finally we derive the formula for $H_{*}\left(I_{*} G\right)$ via (1) from the Hilton Milnor theorem. Let Q_{n} be a basis of $L(A, 2)_{2 n}, n \geq 1$. Then the Hilton Milnor theorem shows that one has a homotopy equivalence

$$
\begin{equation*}
J(B G) \quad \Omega \Sigma B G \approx \mathscr{U}_{1} \times \mathscr{U}_{\geq 2} \tag{4}
\end{equation*}
$$

where

$$
\mathscr{U}_{1}={ }_{x \in Q_{1}} J\left(S^{1}\right), \quad \mathscr{U}_{\geq 2}=\underset{n \geq 2}{\times} \times \times_{Q_{n}} J\left(S^{n}\right)
$$

are products with the CW-topology. Since $\mathscr{U}_{\geq 2}$ is simply connected we see that

$$
\begin{equation*}
\hat{J}(B G) \quad=\hat{\mathscr{U}}_{1} \times \mathscr{U}_{\geq 2} \tag{5}
\end{equation*}
$$

where $\hat{\mathscr{U}}_{1}$ is the universal covering of \mathscr{U}_{1} which by the argument in (3.9)(3) admits a homotopy equivalence

$$
\begin{equation*}
\hat{\mathscr{U}}_{1} \quad=\quad \underset{x \in Q_{1}}{ } J\left(S^{2}\right) \tag{6}
\end{equation*}
$$

Now one obtains the formula for $H_{*} I_{*} G$ by (1), (5) and (6).

We finally consider perfect groups G for which we have the $(+)$-construction $B G \longrightarrow B G^{+}$which induces an isomorphism in homology. Here BG^{+}is 1 -connected. Clearly the induced maps

$$
\begin{equation*}
\Sigma B G \xrightarrow{\approx} \Sigma B G^{+}, \quad J B G \xrightarrow{\approx} J B G^{+} \tag{3.12}
\end{equation*}
$$

are homotopy equivalences. This as well implies $I_{n} G=0$ by use of (2.9), compare (2.5). Moreover one obtains by (3.12) easily the next result where $J B G=\hat{J} B G$ and where α is the map in (3.8).
(3.13) Proposition: Let G be perfect. Then the map

$$
\alpha: \quad H_{n}(G) \quad \longrightarrow \hat{\Gamma}_{n}\left(J_{*} B G\right) \cong H_{n} J B G
$$

is split injective for $n \geq 1$ and an isomorphism for $n \leq 3$. This implies $P(G)=0$ by (3.8). For $n=4$ one has

$$
H_{4} J B G \quad \cong \quad H_{4}(G) \oplus H_{2}(G) \otimes H_{2}(G)
$$

For the proof of (3.13) we use (3.12) and the well known homotopy equivalence $\Sigma J X \approx V_{i \leq 1} \Sigma X^{(i)}$ where $X^{(i)}$ is the i-fold smash product.
(3.14) Example: Let G be a perfect group with $H_{3} G \neq 0$; such a perfect group exists since we can use the result in [16] on the existence of groups with prescribed homology. Since $I_{*} G=0$ we get by (2.16) $\pi_{3} J G=0$, but

$$
\pi_{3} J \rho B G \cong H_{3} \widehat{J} B G \cong \hat{\Gamma}_{3} J_{\star} B G \cong H_{3} G \neq 0
$$

Whence $\pi_{3} \varepsilon_{*}$ in (1.9) is not an isomorphism in this case.

Using (3.12) one obtains for a perfect group G the suspension operator
(3.15) $\Sigma: \pi_{n} B G^{+} \longrightarrow \pi_{n+1} \Sigma B G^{+}=\pi_{n+1} \Sigma B G$
which by the Freudenthal suspension theorem is an isomorphism for $n=2$ and surjective for $n=3$. Moreover this operator is embedded in the following commutative diagram the rows of which are the certain exact sequences of J.H.C. Whitehead [20] for the spaces $\Sigma B G, J B G^{+}$and $J B G$ respectively. The bottom row coincides with the top row in (3.3) and (3.5).

$$
\begin{gathered}
\| \\
H_{4}(G) \oplus H_{2}(G) \otimes H_{2}(G)
\end{gathered}
$$

The map from the row for $B G^{+}$to the top row is given by the functor Σ, compare the remark following (I.3.3) and (III.10.13) in [1]. Moreover the map to the bottom row is induced by the inclusion $B G^{+} \subset J(B G)^{+}$.

The diagram for example shows that one has the exact sequence (G perfect)

$$
H_{2}(G) \otimes H_{2}(G) \quad \longrightarrow \pi_{3}(B G)^{+} \quad \stackrel{\Sigma}{\longrightarrow} \pi_{4} \Sigma B G \quad \longrightarrow 0
$$

where $\pi_{4} \Sigma B G$ can be computed by the top row of the diagram. This seems to be a new estimation of $\pi_{3}(B G)^{+}$in terms of the homology groups $H_{*} G$. The continuation of the diagram above uses the computation of the group $\Gamma_{4} X$ which is described in [3], a further discussion of the operator Σ in (3.15) for $n=4$ will appear elsewhere.

Litterature

[1] H.J. BAUES Algebraic homotopy Cambridge University Press 1989
[2] H.J. BAUES Combinatorial homotopy and four dimensional complexes Preprint Max-Planck-Institut für Mathematik 1990
[3] H.J. BAUES On homotopy classification problems of JH.C. Whitehead p17-55 in "Algebraïc topology" Göttingen 1984 Lecture notes in math. 1172 Springer Berlin New York 1985
[4] H. J. BAUES and R. BROWN On relative homotopy of the product filtration, the James construction and a formula of Hopf preprint 90-25 University of Wales
[5] H.J. BAUES and M. HENNES The homotopy classification of n-1-connected n+3-dimensional polyhedra Preprint Max-Planck-Institut für Mathematik 89/21 to appear in Topology
[6] R. BROWN and P.J. HIGGINS Crossed complexes and chain complexes with operators Math. Proc. Cambridge Phil. Soc.107(1990) 33-57.
[7] R. BROWN and P.J. HIGGINS Crossed complexes and non-abelian extensions in Int. Conf. in Category theory Gummersbach (1981) ed. K.H. Kamps, D. Pumpun, W. Thalen, Lecture notes in Math. 962, 39-50 Springer (1982)
[8] R. BROWN and P.J. HIGGINS Tensor products and homotopies for ω-groupoids and crossed complexes J. Pure and Applied Algebra 47(1987)1-33
[9] R. BROWN and P.J. HIGGINS The classifying space of a crossed complex U.C.N.W. Preprint 89-06 (1989), revised version 90-20 (1990)
[10] R. BROWN and J-L. LODAY Van Kampen theorems for diagrams of spaces Topology $26 \mathrm{n}^{\circ} 3(1987) 311-335$
[11] K. DENNIS In search of new "homology" functors having a closed relationshiptoK-theory Preprint Cornell University 16p +5 p (1976)
[12] T. DIECK, K.H. KAMPS and D. PUPPE Homotopietheorie Lecture notes in mathematics 157 Springer Berlin New-York 1970
[13] N. GILBERT and P.J. HIGGINS The non-abelian tensor product of groups andrelatedconstructions Glasgow Math. J. 31 (1989) 17-29
[14] P. J. HILTON and U. STAMMBACH A course in homological algebra Graduate texts in Math. Springer 1971
[15] I.M. JAMES Reduced product spaces, Ann. Math(2) 62(1955) 170-197
[16] D.M. KAN and W.P. THURSTON Every connected spaces have the homology of a $K(\pi, 1)$ Topology 15(1976) 253-258
[17] F-W. LEVI The commutator group of a free product J. Indian Math. Soc. 4 (1940) 136-144
[18] W. MAGNUS, A. KARASS and D. SOLITAR Combinatorial group theory Pure and Appl. Math. 13 Interscience New York 1966
[19] C.D. PAPAKYRIAKOPOULOS Planar coverings of orientable closed surfaces in "Knots, groups and3-manifolds" (papers dedicated to the memory of R.H. Fox) edited by Neuwirth Annals of Math. Studies 84 Princeton University Press Princeton NJ 1975
[20] J.H.C. WHITEHEAD A certain exact sequence Ann. of Math. 52 (1950) 51-110
[21] J.H.C. WHITEHEAD Combinatorial homotopy II Bull. Amer. Math. Soc. 55 (1949) 453-496

[^0]: ${ }^{1}$ Math. subject classification: 18 G35, 55U15, 20J05, 18G50, 55Q20, 55F20, 55 P 35.
 Key words: crossed tensoralgebra,James construction, crossed complex, filtered space, non abelian tensor product, classifying space.

