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Introduction

Zeta- functions eau be attachecl as certain Euler products to various objects such as
diophantine equations,representations of Galois groups, Inodular fornlS etc. Deep inter­
relations between these objects discovered in last decades are based on identities for the
corresponding zeta functions. They all prestuuably fit into a general concept of Lang­
lands L- functions assoeiated with autolnorphic representations of a reductive group G
over a number field F. Fl'oln this point of view the study of aritluuetic properties of
these zeta functions is beconung espeeially inlportant.

The theory of non-Archin1edcH.ll zct,a~functiolls originates in the work of I(ubota
and Leopoldt [I(u-Le] containing p-nclic interpolation of the special values af Rielnann
zeta-function ((s) at negative integers. Their construetion turned out to by equivalent
to c1assical I(ulumer congruences for the Bel'llOulli llmubers and was used by Iwasawa
[lw] for the descnption of dass groups of eycloton1ic fields. Since then the dass of
functions admitting p-adic analogues has gTadually extended. The theory of modular
syn1bols (due to Mazur allel ~1anin, see [lvlanl]-[Man5], [Maz-SD]) provided a non­
Archimedean construction of functions, which correspond to the case af the group G =
GL2 over F = Q. Several authors (inclucling Deligne, Ribet, N.M.I(atz, I(urcanov
and others, see [De-Ri], [1(al]-[Ka3], [I\urc.l] -[I\urc3], (Sho], [VI], [V2]) investigated
this problem for the case G = GL1 anel GL2 over totally real fields and fields of CM­
type. But the case of more general reductive groups reillained unclear until the mid­
eighties although important conlplex analytic properties of the Langlands L-functions
had been proved. In recent years a general approach to consluction of non-Archimedean
L-functions associated with various classes of auton101vhic fonus was developed, in
particular, for the case of sYlnplectic graups of even degree aver F = Q and the group
G = GL2 X GL2 over a tatally real field F.

In this paper we consider the ease of the group G = GL2 X GL2 over a totally real
field F, and we use the Rankin-Selberg 111ethod for obtaining both cOluplex-valued and
p-adic distributions as certain integrals involving cusp fonns and Eisenstein senes.

The first chapter contains an exposition of S0111e basic properties of p-adie analytic
functions, p-adic measures and their 1\1ellin transfonns (see [1\02]).

In the second chapter we coustruct non-Archiluedean convolutions of two Hilbert
n10dular f0n11S of different (scalar) weight. The exposition here is providecl with same
basic facts about Hilbert n10dular fOrIlls. Now let p be a prüue nun1ber and S a finite
set of primes containing p. '~lC briefty cliscuss convolutions of Hilbert modular farms
and their S -aclic analogues; they cOl1:espolld to the case of the group G = GL2 X GL2
over Cl. totally real field F aod have thc following fann

L(s,f,g) = LG'(Il,f)C(n,g)N(n)-S,
n

where f, gare Hilbert autoillorphic fOrIns of 'hololnorphic type' over F , G(Il, f) ,G(n, g)
their narmalized Fourier coefficients (enuluerated by integral ideals n of the ring of
integers OF CF). Vle consider the functions f, gas being defined on the adelized group
GA = GL2 ( AF) ,where AF the ring of acleles cf F anel we aSSU111e that f is a prituitive
eusp form of the scalar weight k 2:: 2 of ~oncluctor c(f) C 0 F with the charachter
'lj; and g a prin1itive cusp fonn of wcight 1 < k of conduetor c(g) with the character
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w, ('ljJ,w: A~ ~ C X being Hecke chal'acters of finite order). The non-Archimedean
construction is based on the algebraicity properties of the special values of the function
L(s, f, g) at the points s = 1,· .. ,k -1 up to SOHle constant involving the Petersson inner
product (f, f) of the autoluorphic fonn f [Shi6]. Dur theorem about non-Archimedean
interpolation is equivalent to certain generalizcd !(umlner congruences for these special
values. We need some more notations for thc precise formulation of the result. Let
'lj;* ,w* be the ideal group charactel's of F nssociated with 'ljJ,w and let

Le(s, 'lj;w) = L 'ljJ*(n)w*(n)JV(n)-S = rr (1 - 'lj;*(p)w$(p)N(p)-S)-l
n+c=OF P+C=C)F

be the correspoding Hecke L-function with c = c(f)c(g). We now define the normalized
zeta function

wes, f, g) = l'n(s)Lc(2s + 2 - k -1, 1/;w)L(s, f, g)

where n = [F : Q] is the degree of F,

"'((s) = (27T)-2u6r(s)nr(s + 1 _l)n

being the ganuna-factor. Then the function w( s, f, g) adnlits a holomorphic analytic
continuation over the whole comlex plane and satisfies certain functional equation [Ja].
Put n(f) = (f, f)c(f)l then the nUlnber

\lJ(1 + 1', f, g)
(27ri) n(1 -I) O( f)

is algebraic for all integers l' with the conclition 0 :s; l' :s; k - 1- 1.
For the non-Archilnedean construction we introduce the S-adic completion

Os = rr (OF' 0 Zq) = rr Op
qES plqES

of the ring 0 F. Put
SF = {p I p divides q E S}

aod let Gals = Gal(F(S)/F) be the Galois group of the lnaximal extension of F Ull­

ramified outside Sand 00.

We take in this case the ]J-adic analytic Lie group

.-\s = H0111coll t.in(GalS , C;)

consisting of all continuouos p-adic characters of the Galois group Gals as a set on which
our non-Archünedean L-functions will be clefined. Elen1elüs of finite order X E Xs can
be obviously identified with such Hecke characters of finite order, whose conductors are
divisible only by prinle divisors belollgillg to SF, via the decon1position

A x dass field t.hcory G I Qx i p C XX: F ---+ aS~ ~ p'
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Let us denote by the SaIne let tel' X both Hecke characters and the corresponding
elements of Xs . There is a natural hOll10111orphisnl

N : Gals ~ Gal(Q(S)/Q) ~ z~ = II Z;,
qES

defined by the restriction of Galois autolllorphisll1S froln F(S) to Q(S), and we denote
by N x p composition of this hOlll0111011)hislll with the natural projection nq Z; -? Z;
BIld the inclusion Z; C C;.

Again our essential assulnption is that that the cusp fornl f is p-ordinazy, Le. for
the fixed embedding Q ~ C p and for all P I p there exists such a root 0'(p) of Hecke
p-polynomial of f that I ip(O'(p) Ip= 1. \fIle then fix such raats 0'(p) and extend the
definition of 0:( m) to all integral ideals m C 0 F b:r multiplicativity.

Theorem (On non-Archimedeall cOl1volutions of Hilbert Inodular fonns)
Under the above notations and asulnptions there exists a bounded Cp-analytic function
'l's : Xs ~ C p uniquely defined by tlle condition: for eadl Hecke character of finite
order X E X1° rs holds the following equaJit.Y holds:

where Dp is tlle discriInmant of F, T(X) bClll1J tlle Gauss surn ofx, and gP(X) the cusp
form obtained from g by cOlllplex conjugation of its Fourier coefficients and by twisting
it then with the character X.

This result is also valid for the special values ':V (1+ r, f, g) with r = 1,'" k - 1, if
we replace X E Xs by XN x; E A's.

Recently this construction was extenc1ed by Mi Ving Quang (Moscow University)
to the non-p-ordinary,i.e. supersingular case, when I ip(a(p) Ip< 1 for all p I p (at
least when F = Q).In this situa.tion the functions Ws are also uniquely defined by the
condition that they have only a prescribecllogaritlunic growth on Xs.

Ta conclude with, we note that the R.ankin-Selberg method was remarkably gener­
alized by Rallis and Piatetskii-Shapil'o [Ra,-PSh] to other classical groups, and we hope
that our p-adic constructiol1 can also be generalized to the corresponding automorphic
L-functions.
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Chapter 1. Non-Archhuedeall allalytic functions, lueasures and distri­
butions.

In this chapter we give an exposition of wrne standard facts from the theory of con­
tinuous and analytic functions over a non-arehilneadian loeal field. vVe start by reealling
the definitions and notations eoneerning p-adie and S-adie numbers. Then we diseuss
the theory of eontinuous p-adic functions and their p-adie interpolation, and also the ba­
sic properties of p-adic analytic functions. In §3 we introduee distributions and measures
and give a general criterion for the existence of a non-Archin1edean measure with given
values of integrals of functions belonging to certain dense family e"generalized I(um­
mer congruences"). The next §4 is devotcd to a description of the algebra of bounded
measures in terms of their non-Archilnedean IvIellin transforms (Iwasawa isomorphisn1).
The chapter is c0111pleted with an exposition of a general eonstruction of measures, at­
taehed to rather arbitrary Euler proclucts. This eonstruction provides a generalization
of Ineasures first introdueed by Yu.I.11anin {11an4], B.11azur and H.P.F.Swinnerton­
Dyer [Maz-SDJ. Dur construetion [Pa5J, [PagJ was already sueeessesfully used in several
problems eoneerning the p-adic analytic continuatioll of Dirichlet series (ArJ, [Co-Seb],
(SehJ.

§1. p-adic nUlllbers and the Tate fleld

1.1. Let p be a prime llumber, Qp thc field of p-adic nun1bers, Le. the completion
of the feld of rational numbers Q with respect to the p-adic ll1etric, given by the p-adic
valuation

I· Ip : Q ~ R2:o = {x E Rlx ~ O}
la/blp = pordp-ordpa, 10lp = 0,

where ordpa is the highest power of p clividing the integer a. The function I . Ip is
multiplicative, since

ordp(xy) = ordpx + orclpY, (1.1)

and satisfies the non-Archinledeml Pl'0PCl'ty

If !{ is a finite algebraic extension of Qp then !( is generated over Qp by a prilnitive
element a E !(, so that a is a root of an irreducible polynimial of degree d = [!( : Qp] ,

fex) = xd + o,d_1 Xd -
1 + ... + ao E Qp[xJ.

The valuation I. Ip admits a unique extentiou to !( defined by

(1.3)

where JVI</Qpeß) E Qp is the algebraic nonn of an elelnent ß E !(. The fonnula (1.3)

defines a unique extension of j·lp to the algebraic c10sure Qp of Qp, which satisfies (1.2)

(see[I<:ol]). The fuction orclp is then also extendecl to Qp by ordpfr = logp jalp. The
formula (1.3) implies that ordp!(X is an additive subgroup in ~Z, hence ordp!(X = ~Z
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for a certain positive integer e dividing d which is called tbe index of ramincation of the
extension ](/Qp'

Put
(1.4)

then ],,1[( is the maximal ideal in 01'( anel the residue field CJJ'i)M[( is a finite extension
of degree f of F p and there is the relation cl = e . f, in which f is called tbe inertial
degree of the extension. For each x E CJ !\' its Teic11müller representative is defined by

Jn
w(x) = Ern xP

l w(x) =x (n10d ]"1[(),
n-oo

and satisfies the equation
I

W(x)l1 =w(x).

The map w provides a hOn101110rphislu of the group of invertible elelnents

(1.5)

o~ = OK\1I1g = {x E ](1 lxi]) = 1}

of OK onto the group of raats af unity of degree pi - 1 in ](, denoted by J.Lp l-ll and
the isomarphism

( X""" x ( )oK / MI() --Jo Itpl-l C CJK' 1.6

For exaxnple, if e = 1 then the extension ]( is called llilramined. In that case f = d
and the Teichmüller representatives generate ]( over Qp l therefore

On the other hand, if e = d then the extension ]( is called totally ramined. For example,
if ( is a primitive root of unity of degree pH l then Qp(() is totally ran1ified of degree
d = pn - pn-l , and we have that

1
ord ('-1)=---p ~ p1l _ pn-l

1.2. Für a field ]( with the non-Archilueelean vruuation I. Ip let us de:fine

Da(r) = Da (1'; !() = {x E ](J Ix - alp::; r},

Da(r-) = Da(1'-; ]() = {x E ](1 Ix - alp< r}

(1.7)

(1.8)

(1.9)

("closed" and "open" cliscs of the radius l' with the center at the point a E ](, r 2:: 0).
Then we have that Db(r) = Da(r) for any b E D a (7') and Db(r-) = Da(r-) für any
b E Da (r -). Nüte that in topological sense both discs (1.8) and (1.9) are open and
closed subsets of the topological field ].;.

The important property of the field Qp and of its finite extensions is that they are
locally compact, so that the dises (1.8) and (1.9) are compact. The disc



8

is a compact topological ring (the ring of p-adic integers), wmch is isolnorphic to the
projective limit of residue rings Z/pllZ ,) with respect to the homomorphislns of reduction
modulo pn:

Analogously, we have that

n

and

n n

(the projective limit of groups).
1.3. The structure of the 111ultiplicative group Q; and 1(. Put v = 1 for

p > 2 and v = 1 for p = 2, and define

(1.10)

Then there is an isomorphism U .:::. Zp of the nlultiplicative group Up and of the additive
group Zp which is provided by cOlubining the natural homolnorphism

n

and by special isomorphisnls

given by
(1.11)

one easily checks that (1.11) is weH definied and gives the desired isomorphism. There­
fore, the group U is a topolo.g;ical cyclic group, and 1+pn can be taken as its generator.
There are the following decompositions

Q _ z Zx
p-p X p'

Analogously, if [I( : Qp] = d, then

I(X = 7rz X Ojx.
\ ,

(1.12)

where 7r is a generator of the principinl ic1eal 1\'1]( = 'TrO]( (i.e. any element 1r E I(X

with ordp 7r = l/e),

The structure of the group UK is thCll dcscribecl as a direct product of d copies of the
additive group Zp and a finite group cOl1sistil1g of all p-primary roots of unity contained
in!( (see [Ca-F], [1(01]).



1.4. The S-adic nUlllbers. Let 8 be a finite set of prime numbers.For a positive
integer :At/ denote by 8(At/) its support, i.e. the set of all prüne numbers dividing At/.
Let us consider the projective lünit

Zs = liIn Z/A1Z,
M, S(/ll)CS

which is taken over all positive integel's NI with the condition SeM) c S with respect to
the homonl0rphisms of reduction. then it follows froln the Chinese Relnainder Theorem
([SeI], [Weil]) that

Zs :: II Zq.
qES

Put
Qs = II Qq, _~1o = II q.

qES qES

1.5. The Tate fleld. For the purposes of analysis it is convenient to embed Qp
into a bigger field, which is already cOluplete both in......the topological and in algebraic

sense. This field is constructed as cOlupletion Cp = Qp of an algebraic closure Qp of
Qp with respect to its single valuation with the condition IPlp = ~. The prüof of the
fact C p is algebraically closed is not clifficult anel is based on the I(rasner's lemma (see
[1(01], [1(02], [Wal).

We will use the notations

(1.13)

Note that the Op and 11p are no longer cOlllpact , and therefore the field Cp is not
locally compact. We also have that

(1.14)

is the algebraic closure of F p'

§2. Continuous and analytic functions overe a non-Archhlledean Held

2.1. Let!( be a closed subfielcl of the Tate field Cp. For a subset lV C !( we
consider continuous functiolls f : Hf -+ C Il . The standard exmnples of continuous
functions are provided by polynonuals, by rational functions (at points, where they are
finite), and also by locally constant functions. If TV is compact then for any continuous
function f : vV -+ C p and f01' any c > 0 there exis ts a polynolnial h(x) E Cp (x], such
that

I/(x) - h(x)lp < c JOI' all x E T'V.

If f (111) C L für a closed subfield L of Cp then h(x) cau be chosen so that h(x) E L [x]
(see [1(02], [VVa]).

Interesting eXaJuples of continuous p-adic functions are provided by interpolation
of functions, defined on certain subsets , such as TV = Z 01' N with !( = Qp.
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Let f be any function on non-positive integers with values in Qp 01' in sotne (com­
plete) Qp-Banach spaee. In order to continue I(x) to al1 x E Zp we ean llse the
interpolation polynonuals

(
x) = x(x - 1)· .. (x - 11 +1) .
n n1

Then we have that (~) is a polynotnial of deg;ree 11 of x, and for x E Z,x ~ 0 we get a
binomial coefficiellt. H x E Zp then x is elose (in p-adic topology) to a positive integer,
hence the value of (~) is also elose to an integer 1 therefore (~) E Zp.

The classical theorenl of !\1ahler says that any eontinuous function f : Zp -+ Qp
ean be written in the fonn (see ('.Na], p.nD):

f(x) == f an (~),
n=O

(2.1)

with an -+ 0 (p- adically) for 11 -+ 00. For a function I (x) defined for x E Z, x ~ 0 one
eau write formally

where the eoefficients cau be found froln the following systenl of linear equations

J(n) = ~am(n),
. ~ nl

JI1:::::O

that is

ru ( )a m = ?:(_l)m-i ~l I(i).
1:::::0

The series for f (x) is always reduced to a filli te swn for a1l x E Z, x ~ O. If an -+ 0 then
this series is eonvergent for all x E Zp. As was noticed above, the inverse statement
is also valid ("MahIer's criterion"). If eonvergenee of an to zero is so fast that the
series defining the eoefficients of the x-expansion of I( x) also eonverge, then I(x) ean
be continued to an allalytical fun ctiOll , see 2.2 below. Unfortunately, for an arbitrary
sequenee an with an -+ 0 thc at telupt t 0 use (2.1) for continuation of f (x) out of the
subset Zp of C p Juay fail. However, in thc sequel we 1110stly consider analytic functions,
for which such a cOlltinuation is providecl by sUIUlnation of the series defining this
function.

2.2. Analytic functiolls alld power series. (see [1(02], p.13). The weIl known
criterion of eonvergence of a series L:~=o an is that the partial StUUS L:N<n<M an are
small for Iarge N, A1 with At[ > AT. In view of the non-Archimedean property (1.2) in Cp

this occures if and only if Ja n I -+ 0 01' orclpa n -4 00 for n -+ 00. Therefore convergence
of the power senes L:~=o anx H depencls only on Ixlp but not on the precise value of x,
hence there is no "conditional convcrgence" in this case. Thus, for any power senes
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L:n>O anx n we can define its radius of convergence l' such that only one of the following
holdS:

00

L anx n converges <==> x E DO(1'-)
n=O

00

L a n x 71 converges <==> x E Do(r)
n=O

(2.2)

(2.3)

An example of the first alternative is L:~=o x'\ where (2.2) is satisfied with r = 1, and
an example for the second is

00

Lpn:,;pn_1;

n=O

here the conclition (2.3) is satisfied also with l' = 1.
The important examples of analytic fWlctions are exp( x) and logex), which are

given as the power senes

and we have that

00 n

exp(x) = ""' =-,L..J n!
71=0

00 ( 1)n+1
log(l +x) = L - n xn,

"=1

exp(x) conve1'ges on DO(p-l/(p-1)-), r = p-1/(p-1>, (2.5)

log(l + x) converges on Do(l-), l' = 1. (2.6)

(see [1(02], [B-Saf]), so that exp(x) converges in a disc SIllaller than the unit disc, and
log(l + x) has bettel' convergence that exp(x).

Since the identity
logexy) = logex) + log(y)

holds as a formal power senes identity, it follows that (2.7) holds in C p as lang as

Ix - 11p < 1, and Iv - 11p < 1

(2.7)

in particular, since I( - IIp < 1 for ( any p71_root of unity, we can obviously to apply
(2.7) to conc!ude that log ( = O. Also \ve have that for all x E D O(p-1!(p-1)-) the
following identities hold

exp(log(l + x» ::::: 1 + x, logeexp( x» = x,

which are deduced from the corresponcling properties of the fonual senes and can be
used for establishing isol11orphisms beween certain additive and ll1ultiplicative subgroups
in Cp and C;: for U = D) (plJ-; Q]J) with v as in 1.6 there are the isolllorphisms

(2.8)

where n ;::: O.
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2.3. Theoreln (on analyticity oE interpolation series). Let r < p-l/(p-l) < 1 and

f(x) = fa,,(~),
n=O

(2.1)

be aseries with the condition lan Ip ~ lvfpH fol' S01l1e lvI> O. Then I( x) is expresible aB a
certain power series whose radius of convel:gence is not less than R = (rpl/(p-l»)-l > 1
(see [Wa]' p.53).

As an examp1e consider the funetion (arz: which is defined for a E Zp by meCl:Os
of the decomposition a = w(a)(a) where w(a) is the Teichmüller representative of a for
p > 2 and w(a) = ±1 for p = 2 with w(a) =a(111od4), and the exponentiation is given
by the binomial fonnula

(a)" = (1 + (a) - 1)" =~ (~)«(a) - 1)". (2.9)

Since I(a) -llp ::; pV we n1ay put in the ahove theoren11' = p-v and get that the function
(a):I: is apower series in x with the radius cf convergence not 1ess than pV-I/(p-l) > 1,
and the following equality holds:

exp(x iog(a) = ~ (~) «a) - 1)", (2.10)

because both parts of of (2.10) are analytic in x and coincide for x E N.
2.4. Newton polygons (see [1<02], p.21). The Newton polygon M f for apower

series
00

I(x) = :L anx n E Cp[{x]]
71=1

is defined as the convex hull of the points (n,ordpa n ) (where we agree to take ordpO =
(0).

It is not hard to prove the following

Proposition. Jf a segment of 111/ 1]8s slope ..\ anel 1]orizontallengt11 N (i.e., it extends
from (n, ordpan ) to (n+N, AN +ordp Cl: 71 ) tl1cn I has precisely N roots rn witll ordpan =
-A (counting multiplicity).

The following thorelTI is the p-adic analog of the \Veierstrass Preparation Theorem
(see [1(02], p.21)

2.5. Theorelll. Let

be apower series lvhich converges on Do(p\ C p). let (N,ordpaN) be tbe right endpoint
of the last segment of 111f with slope ~ A, iE tl1is N is infinite. Otherwise, tbere will be a
last infinite1y lang segment of slope A allel on1y finitely many points (71, ordpan ) on that
segment. In that case let N be the last sudl n. Tllen there exists a unique polynomial
h(x) of tbe form
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witb bm = a m and a unique power series g(x) which cOllverges and is non zero on
Do(p'\ Cp) such that

f(x) = h(x) D ( >. C )
)

on 0 P; p'g(x

In addition A1h coineides with ll/If as [ar as t11e point (N,ordpaN)'
Corollary. Apower series Wl1id1 cOllverges evelyw11ere and 11as no zeroes is a

constant.
A simple proof of the Weierstrass Preparation Theorem for power series of the type

00

f(x) = L CLnX
n

E Op[[x]]
n=l

is based on a generalization of the Euclid algol'ithlll (see [11an1]).
2.6. There exits another definition of the Newton polygon (see [I(02}, [VI]) of a

senes
00

f(x) = L anxu
E Cp[[x]J

n=l

Instead of the points (n, ordpun ) let us look at the !ines Zn : Y = nx +ordpan with slope
n and y-intercept Zn . Then 111/ is defined as the graph of the function mi~n In(x ).The
x-coordinate of the points of intersection of the In which appear in MI give ordp of the
zeroes, and the difference between the slopes 11, of the successive Zn which appeal' in MI
give the number of zeroes with given ordp .

The first obvious consequence of consideration for this type of Newton polygon is
that a function

00

f(x) = L anx n E Cp[[x]]
n=l

is bounded in the open disc Do(l- j eJl) if anel only if all the coefficients an are uniformly
bounded.

§3. Distributions, lueasures, aad the abstract K Ulurner congruences

3.1. Distributions. Let us consider a COl1ul1utative associative ring R , an R­
n10dule A and a profinite (Le. C0111pact and totally discol1nectecl) topological space Y.
Then Y is a projective lilnit of finite sets:

(3.1)

where I is a (partially ordered) indnctive set and for i ~ j, i,j E I there are surjective
homomorphisms 7r .. : y;. -+ 11'"· with thc condition 'n" .. 0 'n". k = 'n". k for i > J' > k.I,) 1 ) I,) ), I, __

The inductivity of I Ineans that for any i,j E I there exist k E I with the condition
k ~ i, k ~ j. By the universal property we have that for each i E I a unique map
'n"i : Y ---+ Yi is defined, which satisfies the property 7rij 0 7ri = 7rj (for· each i,j E I)

Let Step(Y, R) be the R-n10dule consisting of aU R-valued locally constant functions
4>: Y -+ R.
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Definition. A distribution on Y witll values in aR-module A is aR-linear homo­
morphism

IL : Step(Y·, R) ---+ A.

For'P E Step(Y, R) we use the notations

1-'(<p) =i <pd" - i <p(y)dl-'(Y)'

(3.2)

each distribution Il can be defined by a systenl of functions j.Li i Yi ---+ A, satisfying to
the follo\ving finite-additivity condition

(3.3)

In order to get such a systeln it suffices to put

where Di,x is the characteristic function of the inverse image 1r;1 (x) C Y with respect
to the natural projection Y -4 }i. Für an arbitrary function 'Pj : Y j --Jo Rand i 2: j we
define the functions

1T'j'

'Pi = 'Pj 0 1rij, c.p = c.p j 0 1rj, c.p E Step(Y, R), 'Pi: Yi :4 Y j -4 R

A convenient criteriün for the fact that the system of functions J-l{i) : Yi -+ A
satisfies the finite additivity condition (3.3) (anel hence is assüciated to a distribution)
is given by the following condition: for aU j E I, and <Pj : 11'j --Jo R the values of the
sums

Il(<p) = j.L{i)(c.pd = L: c.pi(Y)f/i\y) is independent 0/ i
YiEY'i (3.4)

f 01' all Zarge enoug h i 2: j,

vVhen using (3.4), it suffices to check the condition (3.4) for some "basic" systems of
functions. For eXanlple, if Y = G = linl-;- Gi is a profinite abelian group, and R is a
domain containing aU roots of unity of th~ order divicling the order of Y ("supernatural
number") then it is sufficient to check the condition (3.4) for all characters offinite order
X : G --Jo R, since their R ® Q -linear span coincides with the whole ring Step(Y, R 0 Q)
by the orthogonality properties for characters of a finite group [I(a3], (11az-SD].

Exalnple: Bernoulli distributions (see [La3]). Let A1 is a positive integer,
J : Z -4 C is a periodic function with the period 111 (i.e. J(x + 111) = J(x), f:
Z/111 Z -4 C). The generalized Bernoulli nUlllber (see [Le1], [8afl]) Bk,f is elefined as k!
times the coefficient by t k in the expansion in t of the rational quotient

1\J-1 f( a)teat

L: eM~ - l'
a=O
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that is,

(3.5)

consider the profinite ring

y = Zs = litl1 Z/lvfZ, (S(/v!) C S)
111

the projective limit being taken over the set of all positive integers lvI with support S( l\1)
in a fixed finite set S of prime ntunbers. The the periodic function I : Z/MZ -+ C with
S( AI) C S cau be considered as an elelTICnt of Step(Y, C). vVe claim that there exists a
distribution Es.: : Step(Y, C) -+ C which is uniquely defined by the condition

Ek(/) = Bk,! /01' all f E Step(Y, C). (3.6)

In order to prove the existence of this distribution we use thc above criterion (3.4) and
check that for every f E Step(Y, C) the right hand side in (3.6) (i.e. Bk,!) is independent
of the choice of aperiod !vI of the fWlction f. It folows easily directly fronl the definition
(3.5) ; however we give here a different proof which is based on an interpretation of the
numbers Bk.! as certain special values of L-functions.

For the function f : Z/l\tJZ -+ C let

00

L(s, f) = L f(n)n- S

n=l

be the corresponding L- series which i8 absolutely convergent for all 8 with Re(s) > 1
and admits an analytic continuation Qver aU sEC. For this series we have that

L(l- k,J) = - BZ.!. (3.7)

For example, if f =1 is the constallt function with the period AI = 1 then we have that

(l_k)=_Bk ~Bktl.:=_t_
k' L.J k! e t - 1 '

1.:=0

Bk being the Bernoulli nUlllber. Thc fornltl1a (3.7) is established by means of the contour
integral discovered by RielTIallll (see [La3], eh.XXI). This fornlula apparently implies the
desired independence of Bk.! on thc choice of lvI. \Ve note also that if ]( C C is an
arbitrary subfield, and f(Y) C ]( then we have frolll the fOffilula (3.5) that Bk,! E ](
hence the distribution EI.: is a ](-va.luecl distribution on Y.

3.2. Measures. Let R be a topological ring, and C(Y, R) be the topological
module of all R-valued functions on )'~.

Definition. A measure on 1,r wif.ll "alues in the topological R-module A is a
continuous homomolphisln of R-lnodules

I' : C(Y·, R) -+ A.
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The restrietion of I' to the R-sulnl1odulc Step(Y, R) C C(Y, R) defines a distribution
which we denote by the SaIl1e letter I', ancl the n1easure Il is uniquely detennined by
the corresponding distribution since the R-subn10,dule Step(Y, R) is dense in C(Y, R).
The last statement expresses the weil known fact about the tmiformal continuity of a
continuous fW1ction on a C01l1pact topological space.

Now we consider any closed subring R of the Tate field Cp, R C Cp, and let A be
a complete R- module with topology givcn by a nonn I . IA on A cOlnpatible with the
norm I . Ip on Cp so that the following condi tions are satisfied:

for x E A the equality IxlA = 0 is equivalent to x = 0,
for a E R, x E A laxlA = lalplxlA,
for all x, y E A Ix +vIA ~ ll1ax(lx IA,lvIA).

Then the fact that a distribution (a systeul of functions fL(i) : Yi ~ A) gives rise to a
A-valued measure on Y is equivalent to the condition that the system fL(i) is bounded,
i.e. for some constant B > °and for all i E I, x E Yi the following uniform estimate
holds:

(3.8)

This criterion is an easy consequence of the non-Archill1edean property

Ix + vIA ~ n1ax(lxlA, IvIA)

of the norm I· IA (see [Man4], [VI]).
In particular if A = R = Op = {x E CpI Ix Ip :5 I} is the subring of integers in the

Tate field C p then the set of Op-valuecl distributions on Y coincides with Op-valued
measures (in fact, both sets are R-algebras with lnultiplication defined by convolution,
see §4).

Below we give sorne meaningful exalnples based on the following important criterion
of existence of a measure with giyen properties.

3.3. Proposition (The abstract KUlluller congruellces) (see [I(a3], p.258).
Let {li} be a family of continuous [ullctiollS fi E C(Y,Op) in tlle ring C(Y, Op) of a11
continuous functiolls on tbe conlpact totally disconnected group Y with values in tlle
ring ofintegers Op ofCp SUdl tllat Cp-linear SPaJl of {li} is dense in C(Y, Cp) . Let also
{ad be any family of elements ai E CJp . Then tlle existence of an Op -valued measure
Il on Y wi th the property

is equivalent to the valiclity of the followiI1g' c011g111ences: for an arbitralY choice of
elements bi E Cp almost all of Wllic11 vanisl]

(3.9)

Remark. Since C p -llleasures are dWl'a.cterized as bounded Cp-vaJued distribu­
tions, evezy Cp-measure Oll Y becolnes a Op-vaJued Illeasure after Inultiplication by
some non-zero constaJlt.
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The proof of pl'oposition 3.3. The nessecity is obvious since

2: biai = r (pU Op - valued I unetion )dJl =
i }y

pR [(Op - valtted fttnction )dfL E pROp'

In order to prove the sufficiency we neecl to construct a 1neasure f.l fronl the numbers
ai. For a function f E C(Y,Op) and a positive integer n there exist elements bi E C p
such that only a finite ntunber of bi cloes not vanish, and

f - 2: bili E pnC(Y, Op)
i

according to the density of the C p span of {/i}in C(Y, C p ). By the assumption (3.9)
the value L:i aibi belongs to Op aud is weH defined modulo pn (Le. cloes not depend on
the choice of bi). Following N.M.I(atz [I(a3], we clenote this value by "Iy f dJ.L modpnll.
Then we have that the limit procedure

provides the measure J1.
3.4. The S-adic Mazur lueasure. Let c > 1 be a positive integer coprime to

with S being a fixed set of prime ntllubers. Using the criterion 3.3 we show that the
Q-valued distribution defined by the fonnula

(3.10)

turns out to be a measure where Ek(/) are deßned in 3.1, f E Step(Y, Q) and the
field Q is considered as a subfield in C I, . Dcßne the generalized Bemoulli polynomials

Bi~;)(X):
00 t k /'1'/-1 t (a+X)t

'""' (i\'!) .~' '" eL....J B k,j (.\) k! = L....J J( a) e1dt _ 1
k=O a=O

and the generalized swns of powers

11'1 -1

Sk,f(AtJ) = 2: I(a)a k
•

a=O

Then the definition (3.11) fOl'lnally i1Uplies that

1 (A1) . (Ank [Bk,f (111) - Bk,f (0)] = Sk-1,J( !vI),

(3.11)

(3.12)
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and also we see that

k

Bk~\X) = ?= (~)Bi,f ..Yk-i = Bk,f + kBk-l,j ..Y +... +BO,fX k

1=0

The last identity CRJl be rewritten sYlllbolically as

Bk,/()C) = (Ef + X)k.

(3.13)

The equality (3.12) enabels us to calculate the (generalized) sums of powers in terms
of the (generalized) Bernoulli numbers. In particular this equality implies that the
Bernoulli numbers Bk,! can be obtained by the following p -adic limit procedure ([La3],
Chapter XIII):

Bk f = lim 71} Sk f(l\1pn) (p - adic limit),
, n-oo JI'Jpn '

(3.14)

(3.15)

where fis a Cp-valued function on Y = ZS. Indeed, replacing AI in (3.12) be Alpn with
growing n and let D be the comnlon denonünator of all coefficients of the polynomial
Bk~)(.X·). That we have fronl (3.13) that

1 (A1 pn )() (Al)] _ n) 1 2k[BkJ 1\1.[ - Bk,! (0) = Bk-1,/(lvIp fiod kD P n.

Then the proof of (3.14) finishes by division of (3.15) by lv/pn and by application of the
formula (3.12).

Now we can directly show that the distributions EI. defined by (3.10) are in fact
bounded measures. If we use (3.9) anel take as a fanlily {fd the set of all functions
from Step(Y,Op). Let {bd be such fanlily of elenlents bi E Cp that for all y E Y the
congruence

(3.16)

(3.17)

holds. Put f = L:i bifi and without loss of generality assume that the number n is laxge
enough so that for all i wi th wi th bi :1= 0 the congruence

Bk f; =71 1
1

Sk fi(A1pn)mod p 7l
, JI1 pH ,

is valid in accordance with (3.14). Then we see that

Mpn-l

Bk,! =(lvlpO)-l L L bifi(a)ak 1110d pn

a=O

hence \ve get by the definition (3.10):
\

Ek(f) = Bk,! - ck
BkJe ==

Alpn -1

(!l1pn)-1 L L bdfi(a)ak - fi(ac)(ac)k] modpn.
a=O

(3.18)

(3.19)
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Let
ac E {O,l,···, 1i1pn} ac =ac nl0d 1i4pn

then the map a 1-+ ac is well defined and it acts as apermutation of the set

heuce (3.19) is equivalent to the congTuence

I. ( )k A1p"-1

EC(f) = B. - cl. B . == (1i1p fl)-1 '" (Lc - ac '" b.f.(a)ak .
k kJ kJc L..., A1 n L..., I t

i P 4=0

(3.20)

The assumption (3.16) now formally ünplies that Ek(f) == Omodpn conlpleting the
proof af the abstract I(ummer congruences and the construction of Ineasures Ek.

Renlark. Tbe fonnula (3.20) also ünplies that for a11 f E C(Y, C p ) tbe following
bold

EZ(f) = kEf(X;-l f) (3.21 )

wllere xp : Y ~ C p E C(Y, C p ) is the conlpositioD oE tlle projection Y ~ Zp and the
embedding Zp ~ Cp •

Indeed if we put a c = ac + 1i1pn t for SOlne t E Z theu we see that

a~ - (ac)k = (ac + 1i1]J'lt)k - (ac)k =kAtfpnt(ac)k-1 ulod(1I1pn)2,

and we get that in (3.20)

k ( )k
a c ~l ac =k(ac)k-l a~; ac (nl0d l\lpn).

pn pn

The last congruence is equivalent to saying that the abstract I(ummer congruences
(3.9) are satisfied for all functions of the type X;-l fi and for the measure Er with
fi E Step(Y, C p ) establishing the identity (3.21).

§4. Iwasawa algebra and the non-ArchiInedean Mellin transfornl

4.1. The set of argU111ents far the nan-ArchiInedean zeta functio·ns. In the
classical case the set on which zeta functions are defined is the set of complex numbers C
which can be equally interpreted as the set of all continuous characters (nl0re precisely,
quasicharacters) via the following isonl0rphisnl:

(4.1)

The construction which associates to a function h(y) on R~ with certain growth COll­

di tions far y ~ 00 and y ~ 0 the integral
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(which probably converges not for all values of s) is called the Mellin transform. For
example, if (s) = L:~=l n- lt be the Rielnann zeta function, then the function (s)f(s)
is the Mellin transform of the function h(y) = 1/(1 - e-Y ):

100 1 dy
«s)f(s) = 1 _ y8

o - e Y y

so that the integral and the series are absolutely convergent for .,Re(s) > 1. For an
axbitrary function of the type

00

fez) = L a(n)e21rinz
n=l

with z = x + iy E ~ in the upper half plane Jj and with the growth condition a(n) =
O(n C

) (c > 0) on its Fourier coefficients, the zeta ftUlction

00

L(s, J) = L a(n)n- S
,

n=l

coincides essentially with the Mellin trausfonn of J( z), that is

r(s) L( f) =100

f(' ) .9 dy
(2)

s, ty Y .
• 1r lt 0 Y

(4.3)

Both sides of the equality (4.3) converge absolutely for Re(s) > 1 + c. The identities
(4.2) and (4.3) are immediately deduced from the weIl kno\vn integral representation
for the gamma -functioll

100 dyres) = e-Yy~-, (4.4)
o Y

where ~ is a measure on the gTOUp R~ which is invariant nnder the group translations
(Haar measure). The integral (4.4) is absolutely convergent for Re(s) > 0 and it cau
be interpreted as the integral of the pl'oc1uct of an additive character y -Y e-Y of the
group R(+) restricted to R~, anel the Inultiplicative character y ~ y6 with respect to
the Haar measure on the group R~.

In the theory of non-archilneadian functions the group R~ is replaced by the group
Z~ ( the group of uni ts of the S - aclic......COUlpletioll of the ring of integers Z) and the field

C is replaced by the Tate field C p = Qp (the cOlllpletion of an algebraic closure of Qp).
The set, on which p-adic zeta functiolls are defined, is the p-adic analytic Lie group

(4.5)

where

and the symbol
.Y(G) = Honlcontin( G, C;) (4.6)

denote the functor of all p-adic cluu'acters of a topological group G (see[V1]).
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4.2.The analytic structure on ...Y.s. Let us eonsider in more detail the strueture
of the topological group )(s. Define

Up = {x E Z; Ix =1 (modpV)}

where v = 1 01' V - 2 accorcling as p > 2 01' P = 2. Then we have the natural
deeomposition

Xs = ...Y.((Z/pVZ) x X II Z:) x X(Up ).

q~p

The analytie strueture on X(Up ) i5 defined by the following isomorphism (which is
equivalent to a special choice cf a local pararlleter):

<p : X(Up ) ~ T = {z E C; Iit - 1jp <I},

where <p(x) = x(l + pV), 1 + pV being a topological generator of the multiplicative
group Up ~ Zp. Arbitrary character X E ...Ys can be ulliquely represented in the form
X = Xo . Xl where XO 1S trivial on the cOlnponent Up , and Xl is trivial on the other
component

(Z/pVZ)X x II Z:.
q~p

The chaxacter Xo is called tl1e taJl1e cOlnponellt, and Xl the wild cOlnponent of the ehax­
acter X. We denote by the symbol X(t) the wild character which i5 uniquely determined
by the condi tion

X(t)(l + pV) = t

with t E Cp, Itlp < 1.
In some cases it is convenient to use another local coordinate s which i8 analogous

to the classical argument s of the Dirichlet series:

The character X(.5) is defined only for such s for which the series exp is p-adically
conve1'gent. In this domain of values of the argument we have that t = (1 + pV)8 - 1.
But, for example, for (1 + t)pn = 1 there is certainly no such value of s, so that the
s-coordinate parametrizes a smalleI' neighborhood of the trivial character then the t­
eoordinate (whieh cover all wild characters) (see [Man4], [Man6]).

Recall that an analytic function F : T -+ Cp is defined as the SUlll of aseries of
the type E:o ai (t - I) i (ai E C p ), w hieh is assumed to be absolutely convergent for
all t E T. The nation of an analytic function is then obviously extended to the whole
group X s by means of the group translations. The function

00

F(t) = L Cli(t - l)i
i=O

is bounded on T iff all its eoefficients (Li are lUliversally bounded. This last fact ean
be easily deduced for eXBluple fl'Onl thc basic properties of the Newton polygon of the
senes F(t) (see [K02], [VI], [V2]). H we apply to such series the Weierstrass preparation
theorem ([1(01], [La3], [lvlanl] and 2.5) we see that in this case the function F has only
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a finite number of zeroes on T (if it is not identicaly zero). In particular, consider the
torsion subgroup X10rs C X s . This subgroup is discrete in X s in its elements X E x~ors

can be obviously identified with prhnitive Dirichlet characters Xmod A1 such that the
support SeX) = S(A1) of the conducter of X is contained in the fixed finite set S. This
identification is provided by a fixed enlbedding

-x
i p : Q t....+ C;

if we note that each such character X E Xkors can be factorized through some finite
factor group (Z/A1Z)x:

x x -x i p x
X : Zs ~ (Z/lItJZ) ~ Q f-4 Cp ,

and the smallest such number lvI coincides with the conductor of X E X1ors •

The symbol x p will denote the con1position of the natural projection Z~ ~ z;
and of the natural eOlbedding Z; -t C;, so that x p E .Ys and all integers k can be
considered as the characters x; : y ~ yk.

Consider a bounded Cp-analytic function F on Xs. The above statement about
zeroes of bounded Cp-analytic fWlctions iInplies now that the function F is uniquely
defined by its values F(XoX), whel'e XO is a fixed character and X runs through a11
elements X E X1°rs with possible exclusion of a finite llllll1ber of such characters in
each analyticity component of the decolnposition (4.7). This condition is satisfied, for
example, by the set of characters X E ..X"kors with the S-colllpiete conductor (i.e. such
that SeX) = S), and even for the sma11er set of characters which is obtained by imposing
the additional assunlption that the character X2 is not trivial (see [Man4], (Manß], [VI]).

4.3. The non-Archhnedean Mellin tranSfOr111. Let IL be a (bounded) Cp ­

valuedmeasure on z~. Then tbe lJoll-al'c11Ünediian Mellin transform of the measure J.L

is defined by

L" (x) = fl( x) = [ x dJ.l (x E ..Ys ),Jz;
and defines a bounded Cp-analytic function

(4.8)

(4.9)

Indeed, the bOlmdeness of the fund,ion L" is obvious since all characters x E X stake
values in Op and fl also is bounded. The analyticity of this function expresses a general
property of the integral (4.8), nalllely, the analytic dependence of it on the parameter
x E X s . However, we give below a pure algebraic proof of this fact which is based on a
description of the Iwasawa algebra. This description will also illlply that every bounded
Cp-analytic function on ..Xs is the ~1ellin transfonn of a certain nleasure J.L.

4.4. The Iwasawa algebra (see [La3], chapter XII). Let 0 be a closed subring in
Op = {z E C pllzjp ~ I}, G = liln i- Gi (i E I) a profinite group. Then the canonical

homomorphism Gi t ij Gi induces a hOluon10rphism of the con'esponding ~;roup rings
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Then the cOlnpleted group ring O[[GJ] is defined as the projective litnit

CJ[[G]] = lE!10[[Gi]] (i E I)
i

Let us consider also the set Vistr (G, 0) of all O-valued distributions on Gwhich itself is
an O-module and a ring with respect to 111ultiplication given by the convolution, which
defined in terms of families of functions

JJO) II( i) • G· -4> 0
'-1 , r2 . I

(see the previous section) as follows:

(4.10)

Recall also that the O-valued distributions are identified with O-valued measures. Now
we are going identify the O-algebras O[[G]) and 'Distr (G, 0). In the case when G = Zp
the algebra O[[GJ] is called the Iwasawa algebra.

4.5.Theorenl. (a) Under tlle notatioll of 4.4 there is the canonical isomorphism
oE O-algebras

'Distr (G, 0) ~ O[[G]];

(b) HG = Zp then there is aJl iSOll101]Jhism

O[[G]] -::-. O[[X]],

(4.11)

(4.12)

where O[[X]] is the ring of formal power series in X over O. Tlle isolnorphism (4.12)
depends on a choke of the topological generator of the group G = Zp.

4.6. For111ulas for coefficients of power series. We noticed above that the
theorem 4.5 would imply a description of Cp-analytic bounded functiol1s on X s in
tenns of measures. Indeed, such functions are given on analyticity components of the
decomposition (4.7) as certain power series with p-adicaly bounded coefficients, that is
, power series, whose coefficients belang to Op after multiplication by same non-zero
constant from C;. Formulas for the coefficients of such series CM be also deduced
from the proof of the theorem. However, we give a more direct computation of these
coefficients in terms of the corresponcling 11leasures. Let us consider the component aUp
of the set Z~ where

a E (ZjpVZ)X x 11 Z;,
q~p

and let Ila (x) = IL( ax) be the corresponding 1neasure on Up defined by the restrietion
of J.L on the subset aUp C Z;. Consicler the iso1norphisnl Up ~ Zp given by

y = ,x (x E Zp, Y E Up)

with some choice of the generator, of U1l (for excunple, we can take, = 1 + pV). Let
J.L~ be the corresponding 111easure on Zp. Then this measure is uniquely determined by

,..
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LG) dJl~(x) = ai,
p

(4.13)

with the interpolation polynomials (~), since the Cp-spall of the family

{G)}(iEZ,i~O)

is dense in C(Zp, Op) according to :Nlahler's intelvolation theoreln for continuous func­
tions on Zp (see [Mahl). Then it follows fronl the basic properties of the interpolation
polynomials that

L bj (:) =O(modpn) (Ja,. all x E Zp) ===? bj =O(modpn).
1

We can now apply the abstract I{ulluner congruences (see 3.3), which imply that for
arbitrary choice of numbers ai E Op there exist a nleasure with the property (4.13).

On the other hand we state that the Mellin transform Lila of the measure fJ.a is
given by the power series Faet) with coefficients as in (4.13), that is

(4.14)

for all wild characters of the form X(t), X(t)(-Y) := t, It - 1jp < 1. It suffices to show that
(4.14) is valid for all characters of the type y ~ y m, W here m is a posi tive integer. In
order to da this we use the binomial expansion

"(mx = (1 + C'Y11I _l))X = f (:)e'Ym _l)i,
1=0

from which follows that

establishing (4.14).
4.7. Exaluple. The S..adic Mazur 11leaSUre and the non- Archhlledean

Ktibota - Leopoldt zeta function (see [La3], [Ku-Le], [Le2], [Wal). Let us consider
first a positive integer c E Z~ n z, C > 1 copriIne to all prime numbers in S. Then for
each complex number sEC there exists a cOlnplex distribution /--l~ on Gs = Z~ which
uruquely determined by the following

(4.15)
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where Mo = fIqEsq (see 3.1). Moreover, the right hand side of (4.15) is holo1l10rphic
for all sEC including s = -1. H s is an integer and s ;::: 0 then aecording to eriterion
(3.4) the right-hand side of (4.15) belangs to the field

Q(X) c Qab c Q

generated by the values of the character x, and we get a distribution with values in
Qab. H we now apply to (4.15) the fixed elnbedding i p : Q t--+ Cp we get a Cp-valued
distribution j.l(c) = ip(/-lü) which turns out to be an Op.measure in view of 3.3, and the
following equality holds

whieh conneets the special values of the Dirichlet L-functions at different non-positive
points. The function

(4.16)

is uniquely defined and is holomorphie on X s with the exception of a simple pole at
the point x = x p -E X s and is called tlle l1on-Arc11imedeall zeta-function of ](ubota­

Leopoldt. The corresponding lneasure p.(c) will be ealled the S-adic Mazur measure.

§5. Complex valued distributions, associated with Euler products

5.1. In this section we give a general eonstruction of distributions, attached to
rather arbitrary Euler produets. This construction provides a generalization of measures
first introduced by Yu.I.!\1anin [Man4], B.Mazur and H.P.F.Swinnerton-Dyer [Maz­
SD]. Dur construetion [Pa,5], [Pag] was already successfully used in several problems
concerning the p-adic analytic continuatiol1 of Diriehlet series [Ar], [Co-Sch], [Seh].

5.2. Let S be a fixed finite set of priIne l1umbers and

00

'D(s) = L ann- s (s, an E C)
n=l

(5.1)

be a Dirichlet senes with the following ll1ultiplieativity property of its coefficients an:

00

'D(s) = II Fq(q-S)-l L ann-~,

qES ":al
(",5)_1

(5.2)

where the condition (n, S) = 1 lneans that Tl. is not divisible by any prime nunlber from
the set S, and Fq(X) are polynolnials with the constant tern1 equal to 1:

m q

Fq()() = 1 + L Aq,i ..yi .
i=l

(5.3)

We assun1e also that the series (5.1) is absolutely convergent in SOlne right half plane
Re(s) > 1 + c (c ER). This assu111ptiol1 is satisfiecl in lnost eases, for example, when
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the coefficients an satisfy the estilnate lanl = Vene). For a Dirichlet character X
(Z/ ]1/[Z) >< -+ C>< modulo lvI ~ 1 the twisted Dirichlet series is defined by

co

'D(s,X) = L X(n)ann-".
n=1

(5.4)

For all sEC such that the series (5.1) is absolutely convergent and x E Q let us define
the function P" : Q -+ C by the equality

00

P,,(x) = L e(nx)ann-" e(x) = exp(27t"ix)
n=1

(5.5)

Using the functions (5.5) we construct distributions fllJ on the cOlnpact group Z~

such that for every primitive Dirichlet charactcler X viewecl as a homomorphism X :
Z~ -+ C>< the value of the series 'D(S, X) at s with Re(s) > 1 + c is expressed in a
canonical way in terms of the integral

hXXdf,.def L x(a)f.'.(a+(M)).
Zs (I modM

(<\,S)lIIl

Let for every q ES, 0'(q) denote a fixed root of the inverse polynomial

nl q

X mq Fq(.y-l) = .\.""nlq-+ L Aq,i.ymq-i
i=l

(that is, an inverse rüot of Fq(X». Suppose that a(q) =f 0 for every q E S, and extend
by multiplicativity the definition of numbers a(n) to all positive integers whose support
is contained in S:

0'(n) = II C\'( qt rdqn (S( q) eS).
qES

Let us define an auxiliary polynornial

ffi q -1

Hq(.\'"") = 1 + L Bq,i Xi

i=1

by means of the relation

which imply the identities

nl q

B . = - "'"' A ·a(q)i- j (i = 1 ... m - 1)q,l ~ q,) , , q

j=i+l

(5.6)

(5.7)

(5.8)
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for the coefficients of the polynomial (5.6). Let us also introduce the following finite
Euler product

L BS(71)n-~ = TI Hq(q-S),
S(n)CS qES

in which the coefficients BS(n) are given by Ineans of (5.8), llaJ.uely,

BS(n) = TI BS(qordqn) (S(n) eS),
qES

(5.9)

with
for i < ffiq

otherwise.
(5.10)

Now we state the main result of the section.
5.3. Theorelll. (a) For any choice of tlle inverse l'oots a(q) =f 0 ,(q E S and for

any 8 from tbe convergellcy region of tlle sel'ies (5.1) tllere exists a distribution /--Ls = J-L1J,a
on Z~ whose values on open compact subsets of the type a + (M) C Z~ are given by
the following

]v/ 8 - 1 an
jt.,(a+(M)) = Q'(A1) L B

S
(n)P8(Af)n-

lJ
, (5.11)

S(n)CS

so that the sum in (5.11) is finite aJld tlle nUlnbel's BS(n) are denned by (5.10).
(b) For any primitive Dil'ichlet c11al'acter X viewed as a function X : Z~ --. C X the

following equality holds

(5.12)

\vith
G(x) = L x(a)e(;)

Cl mod C;o.,: X

being the Gauss sum, Cx tlle conductor, alld SeX) tlle support of the conductor of X.
5.4. The following proof of this theoren1 differs fronl that given in [Pan5] and is

based on the compatibility criterion (3.4). \!Ile check that the SUll1

L x(a),tlJ(a + (!\f)),
Q mod 111
(0.5) .. 1

(5.13)

does not depend on the choice of a positive integer 111 with the condition Cx lllf,S(lIf) =
S. This will be provided by a calculation whieh also hnplies that (5.13) coincides with
the right hand side of (5.12) (and therefore is independent of M).
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5.5.Lelnma. For an arbitrary positive integer n and Cx lA1 put

Gn ,"'1 = L x(a)e(an/A1).
a mod /lf
(a,5)>::11

then tbe following holds

Gn,M(X) = ~I{ G(X) L JL(d)d-1 X(d)8 ((:;~ ,») X ((M~~ ») ,
x dI(A1 / C x ) X x

in whic11 fl denotes tlle Möbius fUllCtiOll, 5(x) = lor 0 according as x E Z 01' not, and
we assume that the cbaracter X is prünitive 1l10dulo Cx .

The prooE of the leffilna is deduced fronl the weH known property of the Möbius
function:

LIL(d) = {~'
djn '

Consequently, Gn,M takes the foHowing fann:

L jJ.(d)x(a)e(an/lvI) =
dl(a,M)
a mod AI

if n = 1;
if nil.

L jJ.(d) L X(dal )e(da ln/A1) =
djM al mod M /d

since X( al) depend only on allnod Cx , and

In the above equality we changed the order of sununation , then we replaced the index
of summatioll a by dal and extended the systenI of residue classes at mod 111/d to
at mod /\1. Now we transform the SUl1lluation into that one modulo Cx ' It remains to
use the weil known property of Gauss SUllIS (see, for exarnple, [Shi1], lemma 3,63):

establishing the lemma.
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5.6. In order to deduce the theOl'elll, we now traJlsform (5.13), taking into account
the definition (5.11) and lemlna 5.5:

M~-l "" () "" E S ( ) _" "" (ann1)_~
a(1I-1) O!;;;:M X a ~ n n ~ a n1 e~ n 1 =

(o,M)=1

M3-1

o:(M) L L B S
(n)n-

8
anl n1"G nnl ,A1(X) =

n n1

o:(~;C ,G(X) L L BS(n)n-'an1 nj'x
x n n1

X L ll~d)X(d)O((lI~;~,))X((lI~;;~,))'
dl(A1 lex) x x

(5.14)

From the last fonnula we see that non-vanishing tenns in the SUfi over n and n1 fiust
satisfy the condition (M / Cxd) Inn1. Let us now spli t n 1 into two factors n 1 = n ~ . n~

so that S(n~) C S, and (n~, S) = 1. Then

and

oCll~7~x)) = 0 CM~~xd)) ,
since (n~, AIf) = 1. According to (5.2) one has

L an~ n~ -" = II Fq ( q-")-l
S(n~)CS qES

(5.15)

(5.15a)

(5.16)

. Now we use the definition of the finite Euler product (5.9) and of the polynomials
Hq(X) which we rewrite here in the fann

L BS(n)n- S II Fq(q-8)-1 = II(1- a(q)q-")-1.
n qES qES

Consequently,
L ßS(n)n-" L an~ n~ -~ - L a n2 1l2-"

n S(n~)CS S(n2)CS

and for S(n2) C S we have that

O'(n2) = L BS(n)an~'
n2=n·n;

....

(5.17)
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I(eeping in mind (5.15) fUld (5.15a) we transform (5.14) to the following

M8 G() '" '" }J(d) (d) '" -(") 11-8a(M)C, X LJ LJ -d- X LJ X 12 1 ani,n1 x
x n dl(II'1/Cx) (ni/,S)=1

'" S I -lt ( nn~ ) _ ( nn~ )
x f;:, B (n)ani(nn]) 8 (MjCxd) X (MjCxd) .

, 1

(5.18)

Now we transform (5.18) with help of the relation (5.17), taking into account that
non-zero summands can only occur for such n2 = nn~ which are divisible by ],,1j( Cxd),
i.d. we put 122 = (MjCxd)n3, S(n3) C S. We also note that by the definition of our
Dirichlet series we have

L BS(n)anIJn12~)-lt = 'D(s,X) II Fq(X(q)q-lt).
n,n/

1 qES\S(x)

Therefore (5.18) transforn1s to the following:

M~

a(M)C G(X) II Fq(X(q)q-lt)x
x qES\S(x)

L I'Sd)X(d) L x(n3)a (~~) ('~~:r'-
dl(A'1/Cx ) S(ns)CS x x
Clt-laCe )GCX)1J(s,x) II Fq(X(q)q-8)X

x qES\S(X)

x L j1(d)d~-lx(d)a(d)-1 L x(n3)a(n3)n;8.
dl(M/Cx ) S(ns)CS

The proof of the theorem is accomplished by noting that

L j1(d)d8- l x(d)a{d)-] = II (1- x(q)a(q)-lq~-]),

dl(1I1/Cx ) qES\S(x)

L x(n3)a(n3)n;-8 = II (1 - x(q)a(q)q-~)-l =
S(n3)CS qES\S(x)

II Fq(X(q)q-8)-1 Hq(X(q)q-lt).
qES\S(x)

5.7. Concluding relnarks. This construction a(hnits a generalization (Pa7) to
the case of rather general Euler products over prhne ideals in algebraic number fields.
These Euler products have the fonn

D(s-) = L unJV(n )-8 = II Fp(N(p )-8)-1,
n p

where n runs over the set of integral ideals, and P Qver the set of prime ideals of the
ring of integers 0 J( of a nun1ber fielel ](, with Ar(n) denoting the adsolute norm of an
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ideal n, and F p E C[X] being polynoll1ials with the condition Fp(O) = 1. In [Pa7] we
constructed certain canonical distributions, which provide integral representations for
special values of Dirichlet series of the type

n

where X denote a Hecke character of finite order, whose conductor consists only of prime
ideals beloning to a fixed filli te set S of n011-Archimedeall places of ](. The main result
of [Pa7] provides a generalization of theorel114.2 of the ealier work of Yu.I.Manin [Man6].

However, in the construction of non-Arcmmedean convolutions of Hilbert modular
fonns given below in chapter 2, we g;ive aJl0ther approach to local distributions, which
is quite different of that given above and is applicable ooly to certain Dirichlet series
(llamely, to convolutions of Rankin type).
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Chapter 2. Non-Archiluedean convolutions of Hilbert 1110dular forms

§o. Introduction

0.1. Now let p be a prime nunlber and S a finite set of primes containing p. In this
chapter we discuss convolutions of Hilbert 1110dular fornls and construct their S -adic
analoguesj they correspond to certain automorphic forms on the group G = GL2 X GL2

over a totally real field F and reduced to zeta functions of the fonn

L(s, f, g) = :E G(n, f) G(n, g)N(n)-"
n

(0.1),

where f, g are Hilbert autonlorphic fornls of "holo111orphic type" over F, with
C( n, f) ,C(n, g) being their nonnalized Fourier coefficients ( enumerated by integral
ideals n of the ring of integers Op CF). We consider the functions f, g as being
defined on the adelized group GA = GL2(Ap), where AF is the ring of adeles of F
and we assUllle that f is a prinlitive cusp fonn of scalar weight k 2:: 2 and of conductor
c(f) C OF with the chro'achter 'ljJ and g a prinlitive cusp fonn of weight I < k and of
conductor c(g) with the character w, (1/;, w : A~ -t C)( being Hecke characters of finite
order) . The non-ArchiInedean constructiol1 is based on the algebraicity properties of
the special values of the function L(s, f, g) at the points s = I"", k - 1 uP to some
constant involving the Petersson inner product (f, f) of the automorphic form f [8hi6].
Our theorem about non-Archilnedean interpolation is equivalent to certain generalized
!(ummer congruences for these special values.

0.2. We need some more notations far the precise formulation of the result (in a
simplified fann). Let t/J.,w* be the ideal group characters of F associated with 'ljJ,w and
let

Le(s, 1f;w) = L 1f;*(n)w*(n)N(n)-a = II (1 - ?j;-(P)w"'(p)N(p)-")-l (0.2)
n+e=O F p+e=O F

be the correspoding Hecke L-function with c = c( f)c(g). We now define the normalized
zeta function

\lJ(s, f, g) = ,n(s)Le(2s + 2 - k -1, 1/;w)L(s, f,g)

where n = [F : Q] is the degree of F,

,(s) = (21r)-2Ils f(s)nr(s + 1 - I)n

being the garnma-factor. Then the function wes, f, g) aclmits a holomorphic analytic
continuation over the whole conuex plane and satisfies certain functional equation [Ja],
[8hi6]. Put n(f) = (f, f) e(fb then the l1U1nber

(2~~~~:~~{flf) is algebraic for all integel's r with 0 ~ r ~ k - I - 1 (0.3)

For the non-ArchiInedean construction we introcluce the S·adic cOll1pletion

Os=II(OF0 Zq )= II Op
qES plqES
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of the ring 0 F. Put
SF = {p I p divides q E S}

and let Gals = Gal(F(S)/F) be the Galois group of the maximal abelian extension of
F unrammed outside S and 00.

The non-ArchiInedean L-functions will be defined on the p-adic analytic Lie group

Xs = Homcontin(GalS , C;)

consisting of all continuouos p-adic characters of the Galois group Gals with C p being
the Tate field. Elements of finite order X E ,.l's can be obviously identified with those
Hecke characters of finite order whose conductors are divisible only by prime divisors
belonging to SF, via the deconlposition

A x dass field theory Ga! QX t p C XX: F ~ S~ --+ P'

Let us denote by the same let tel' X both Hecke characters and the corresponding
eieinents of Xs. There is a natural hOInoIuorphislll

N : Gals -+ Gal(Q(S)/Q) f"V z~ = TI z; ,
qES

(0.4)

defined by the restrietion of Galois autonl0rphisiUS froin F(S) to Q(S), and we denote by
N x p the composition of this homomorphisll1 with the natural projection I1q Z; ~ Z;
and the inclusion Z; C C;

Dur essential assumption is that that the cusp form f is p-ordinary, i.e. for the fixed
embedding Q ~ C p and for all p Ip there exists such a raot a(p) of Hecke p-palynomial
of f that I ip ( a(p)) Ip= 1. We then fix such roots 0:(p) and extend the definition of
0:( m) to all integral ideals nl C CJ F by Inultiplicativity.

0.3. Theorenl (On non-Arc11illlcdean convolutions of Hilbert modular fornls)
Under the above notations and assunlptions there exists a bounded Cp-analytic function
ws: Xs -+ C p uniquely defined by the condition: for each Hecke character of finite
order X E X1°rs the following equality holds

. [ 21... r(x)2Nm1
-

1 \lJ(1,f,gP(X)) ]
Ws(x) = l p DFw (m) o'(nl)2 (-27ri)n(1-l)(f, f) l

where D F is the discrimmaJlt of F, r(x) being the Gauss sum ofX, and gP(X) the cusp
form obtainec1 from g by complex cOlljugatioll oE its Fourier coefEcients and by tlvisting
it then with the character X.

0.4. This result is also valid for the special values w(l +T, f, g) with r = 1, ... k -1,
if we replace X E Xs by XN x; E Xs (see the Main theorenl in §2).

Recently this construction was extended by Mi Ving Quang (Moscow University)
to the non-p-ordin81Jf, Le. supersillgula.r case, when I i p ( 0'(p) jp< 1 for a11 p I p (at
least when F = Q). In this situation the functions Ws are also tlniquely defined by the
condition that they have only a prescribed logaritlunic gTowth on Xs.

0.5. COlltellt of the chapter. vVe recall in §1 SOl1le basic facts about Hilbert
modular forms and their Fourier coefficients. The precise formulation of the main result
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of the chapter is given in §2. The IUOst ilnportant element of our construction is the
complex valued distributions ji~ on the Galois group Gals introduced in §3. Vle establish
algebraicity properties of these distributions in §4 by means of the Rankin-Shimura
integral representation for s = 1" .. ,k - 1. After application of the fixed embedding
ip : Q ~ C p these values beconle p-adic l1ulnbers al1d define p-adic nleasures on Xs
; then the function Ws of the 11ain theoreln is built as the non-Archimedean Mellin
transform of the p-adic nleasure ip(jiI).

Notations
Let the symbols

denote, respectively, the maxilnal order (ring of integers), the group of fractional ideals,
the ring of adeles, the group of ideles, the different and the discrirninant of the totally
real field F of degree n over Q. Let E = Eoo U Eo denote the set of places (i.e.
classes of normalized valuations) of F where Eoo = {OO),"', OOn} are archilnedean
places, Eo = {lJ = lJv C OF} finite (nol1-Arcllinledean ) places l so that if I . Iv be the
corresponding normalized valuatiol1s then the product formula hplds

TI lxIv = 1 (x E F X
, v E E).

v

The archimedean places are induced by thc real embedclings of F : x 1--+ x(v) E R (v =
1,"', n). An element x E px is called totally positive (x ~ 0) if one has x(lJ) > 0 for
all lJ and let F~ denote the nlultiplicative group cf an totally positive elements of F.
We put also Fco = F®Q R ~ Rn C FA, al1d let F ~ OF 0z Q C FA be the subring of
finite adeles where OF is the profinite completiol1 of the ring OF (with respect to all its
ideals). Then FA = F00 (J) F, and for an adele x = (x v )vEE we write x = x 00 + Xo where
Xco E Fco , Xo E F. On the other hand there is the decomposition F; = F~ x F x

and we often use the convenient though slitly ambiguous notation y = Yoo . Yo with
Yoo E F~, Yo E F x. For the idele y E F; let the symbol ii Eldenote the fractional

ideal associated with y so that one has ii8F = Yo 8F.

§1. Hilbert 1110dular forIlls

1.1. The group. We consider here the grollp GL2 (F) as the group GQ of all
Q-rational points of a Q -subgroup G c GL2 Tl' Then the adelization GA = G(A) can
be identified with the procluct

where

The subgroup
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consists of all elements

Q'v = (O'v ßv) ,
'"'{v Ov

such that for a1l v = 1,··· , none has detav > O. Every ele111ent 0' E G~ acts on the
product Jjn of the n copies of the upper half plane by the fonnula

where
Q'v(Zp) = (avz p+ bp)/(cvzv + dp.

For Z = (Zl, ... ,zn) we put {z} = Zl + ... + Zn and eF(z) - e({z}), with e(x) ­
exp(21rix). Let i = (i, ... ,i) E Jj n, then

{Q' E Gtla(i) = i} /R~ '" SO(2)n

is a maximal eompaet subgroup in Gt/R~. For Cl' E Gt , an integer k and an arbitrary
function f : Jj n --t- C we use the notation

(JlkG:)( z) = N( cz + d)- kJ(0:( z))Ndet( Cl' )k/2 ,

with N(z)k = zf' .. z~. Let c c Op be an integral ideal, cp = cOp its p- part,j)p = j)Op
the loeal different. We will use the open SUbgTOUpS lV = liVe C GA defined by

lV = Gt X IIW(p),
p

W(p) = (1.1)

{ (:~) E GL2(Fp)lb E 1l;1 ,e Ellpcp, a,d E Op,ad - be E 0; }.

-Let h = lelFI be the number of ideal c1asses of F (in the narrow sense),

and let us choose the ideles tl,"', th so that t>. COp fonn a complete system of
representatives for elF, (t>.)lXl = 1 alld t>. + mo = Op (A = 1,"', h, mo = TIqESF q).

Put x>. = (~t~) then there is the following decolnposi tion into a disj ointunion ("the

approximation theorem"):

_, (t- 1 0)where x>. = -0 1 ' L denotes the involution given by

(1.2)

(see [Shi6], p.647).

( d-b)
-c a



(1.3)
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1.2. Definition of Hilbert autolllorphic fornls of weight k and level c c 0 F

with a Hecke character 'l/J of finite order. We call a function f : GA -+ C X a Hilbert
automorphic form of weight k and level c c CJ F with a Hecke character 'l/J if the following
conclitions (1.3) - (1.5) are satisfied:

for all x E GA one has f(sax) = 'l/J(s)f(x)

for s E F~ ( the cente7~ of GA), 0: E GQ.

JE we denote by tPo : (CJF / c) x -+ C X the c- part oE the character tP and then extend the
deEnition of'ljJ over lV by

>P ( (~ ~)) = >po(acmodc),

( a e being tbe c-part of a) tllen for all x E GA and for w E liVe with W oo = 1 we have
that

f(xw) = 'ljJ(w')f(x).

Hw = weB) = (wl(B1 ),· .. ,wn(Bn )) with

w LI (BLI) = (c~s B11 - sin B11) ,
Sin BlJ cos BlJ

tben we have that
f(xw(B)) = f(x)e- ik {8} (x E GA).

An autolnorphic form f is called cusp form if

(1.4)

(1.5)

(1.6)

The vector spa.ce M k ( c, 'l/J) of Hi]bert au tomorphic fonns of 11olomo1phic type is
then defined as the set of funet ions satisfying (1.3) - (1.5) and the following holomorphy
eondi t ion (1. 7): for each x E GA \Vi th x 00 = 1 there exist a holmorphic funetion

9x : j)n -+ C such that for all y = (~ ~) E Gt, we have that

(1.7)

(in case F = Q it is also assumed that the fUllctions gx are holomorphic at the cusps).
The property (1.7) enables us to describe 1110re explicitely the automorphic forms f E
Mk( C, 'l/J) in tenns of Hilbert lllodular fonns of j)n. For this purpose we put f).. = 9 -.

(CIO) x..\

where x;' = t 1 ,then f>.(z) E Mk(r,\, 'l/Jo) for the congruence subgroup

r).. = r)..(c) c G~,

r).. = x)..l'Vx>:l n GQ =

{ (~~) E G~lb E t;:lil-1, cE t,.lJc,a,d E OF, ad - bc E O~}.
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This means that for all ! E r A( c) the following conclition (1.8) is satisfied,

!Alk! = 1fJ(,)!A and !A(Z) = LaA(e)ep(ez ),
e

(1.8)

where 0 <t: eE tA ore e= 0 in the SWH over e(see [Shiß] for a luore detailed discussion of
such expansions). The map f ~ (11, ... fh) provides an isomorophism of vector spaces

Put

C(m, I) = { aA(e)N(tA )-k/2, if the i?eal m = et~l is integral; (1.9)
0, othenVlse.

There is a Fourier expansion of the following type

f((~~)) = L C((y,!)!ylk/2 ep((iyoo)X((x),
O«EF,C:=O

(1.10)

where XF : FA / F ~ C x is a fixed adcli tive character with the concli tion Xp (x 00) =
ep(xoo ) (see [Shi6], p. 650).

Let SI.:(c,'lj;) C M(c,'lj;) be the subspace of cusp fonns and f E Sk(C,'l/;) then
aA(O) = 0 for all .,\ = 1, ... , h.

1.3. Hecke operators (see [11iy], [Shi1], [Shi6] ) are introduced by lneans of
double cosets of the type lVyl'V for y froln the semigroup

where

Yc(p) = { (: ~) E GL2 (Fp) I aOp + Cp = Op, b E il;t, cE cpilp, d E Op }. (1.11)

The Hecke algebra ~e consists of all fonnal finite sums of the type L: cyvVylV
with y E Ye, c y E C and with the nlultiplication defined in the standard way by means
of the decomposition of double cosets into a clisjoint union of a finite number of left
cosets. By definition Te(m) is an eleluent of the ri~'He which is the SUffi of aU different

cosets of the type l'VyW with y E Ye such that det(y) = m. Let

(1.12)

be the normalized Hecke operator, whose action on the Fourier coefficients of an auto­
morphic form (of the holomorphic type) f E Mk( c,ljJ) is given by the standard formula

C(m, fiT: (m) = L tP'" (a )JV(a) k-1 C(a - 2 m1\, f)
m+n=a

(1.13)

If f E 11k ( c, 'lj;) is an eigenfunction of all Hecke operators T:(m) with f! kT: (m) = A( m)f
then we have that C(m, f) = A(m)CI( " F , f). If we nonnalize the form f by the condition
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G(0 F, I) = 1 then there is the following expansion inta an Euler product for the L­
function of the fonn f:

(1.14)

L(s, f) = 2: G(n, f)JV(n)-.5 = 2: .\(n)N(n)-" =
n n

II[1- G(p, f)N(p)-'" + ~"'(p)N(p)k-1-2.5}-1.

p

For such a form f all the nunlbers C( n, f) are algebraic integers.
1.4. The Petersson inner product is defined for f = (11,"', fh) E Sk( C, ~)

and g = (gI, ... ,gh) E M k( C, ~) by the equality

(1.15)

where
n

dJ.l(z) = II y;;2 dx v dyv
v=l

is a Gt, -invariant lneasure on .tj n •

If f E Mk( c,~) and flkT:(m) = .\(m)f for all m with m + C = QF then

'x(m) = ~*(m).\(m),

tP"'(m)(flkT~(m),g)e = (f,g[kT~(m))e.
(1.16)

let q be an integral ideal and f E ;\11 k ( C, ~). Let us define the operators f[ q, fJ U(q)
by their action on the Fourier coefficients:

G(rn, f[ q) = G( q-l m, f), G( m, flU( q)) = G( qm, f). (1.17)

Here is given an explicit description of these operators in tenns of the action of double
cosets: for a finite idele q E F~ with ij = q

(flq)(x) = N(q)-kI2f(X(~~),

(fIU(q»(x)=N(q)k/2-1 2: f(xG~)·
VEOF/q

We define also an involution Je by the fOflllula

(1.18)

(1.19)

(fIJ,)(x) = ,p(det(x)-l)f(xbo) with bo = (~~) E GQ,co = C(l2, (1.20)

then flJe E M k( C, ~-l). H j is a prinlitive form (in the sense of Miyake [Miy}) of
conductor ethen the following hold

flJe = A(f)fP, IA(f)1 = 1, G(rn, fP) = G(rn,j). (1.21 )
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It foIlows from the definitions (1.18)-(1.20) that

flJmc = N(m)k/2(fIJc)lm. (1.22)

1.5. Gauss sunlS and the twist operator. Let X be a Hecke character of finite
order with a conductor m and X(x oo ) = sign(xoo)r for r = (rl,' .. ,rn) E (Z/2z)n (the
parity of X ) and let X· be the corresponding character of the group of fractional ideals
prime to m. Put x*( a) = 0 for those a which are not coprime to m and define the Gauss
SUfi by

rex) = sign(x)rX*((x )mD)eF(x). (1.23)

Then Ir(x)12 = N(m).
For an arbitrary eleluent fE Mk(C,'Ij;) there an exist an automorpmc fonn feX) E

Mk(cm2 ,1f;x2
) which is uniquely defined by the condition C(n,f(X» = X*(n)C(n,f)

for all n with n + m = Op. Ha cusp fann fE SI.:(c,1f;) is prinlitive of conductor c and
c + m = Op, then the canductor of fex) is equal to cm2 and the "pseudo-eigenvalue"
of the involution J cm 2 on f is given by the weIl known fonnula

A(f(X» = 'lj;.( m)x·( c)r(x)2N(m)-l A(f) (1.24)

(see [Shi6], p.664)

§2. Description of the non-Archillledean Rankin cOl1volution of Hilbert
autonl0rphic fornls

2.1. As in the IntroductioIl, let fE Sk(c(f),'lj;), 9 E S,(c(g),w) be the primitive
cusp fonns of (scalar) weights k and 1 of the conductors c(f), c(g) with the Hecke
characters of finite order 'lj; and w such that k > land 'lj;(x) = signN(x)l.:, w(x) =
signA'(x) I for x E F~. For an integral ideal adenote by S(a) it5 support:

Sen) = {p I p divides a},

and put S(f) = S( c(f», S(g) = S( c(g» and Sex) = S( m) for a Hecke character of
conductor m.

We assulne that

SF n S(f) = SF n B(g) = S(f) n S(g) = 0,

C( c(f), f) . C( c(g), g) =f 0,

lip(C(q,f))lp = 1 for all q E SF.

(2.1)

(2.2)

(2.3)

Put c = c(f) c(g). For q E Sp we denote by the symbol a(q) such root of the Hecke
polynomial

x 2 - C( q, f) ..Y + 1/'.(q)N( q)k-l,

that lip(a( q»lp = 1 and let (v' be the other root of the polynonlial. Then it follows
from the property (1.16) that the l1unlbers

&(q) = W·(q)a(q), &'(q) = W"'(q)O"(q)
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coincide with the roots of the complex conjugate polynomial

X 2 - C( q, f)X + VJ*( q)-lN( q)k-l

for all q such that q + c(f) = 0 p.

Similarly, if

X 2 - C(q,g)X +w"'(q)N(q)'-l = ()( - ß(q))(X - ß'(q))

then for q with q + c(g) == 0 F the numbers

ß(q) =w*(q)ß(q), ß'(q) =w"'(q)ß'(q)

coincide with the roots of the polynomial

Let us extend the definition of the nUlnbers Cl' ( n ), a' ( n), ß(n ), ß'(n) to all integral ideals
by multiplicativity. As in the introduction we denote by the same letter X both Hecke
characters and the corresponding elenlents of Xs and recall that

N : Gals ~ Gal(Q(S)/Q) ~ z~ = TI z;
qES

is a natural homonlorphism defined by the restrietion of Galois automorphisms from
F(S) to Q(S),so that N x p is the conlposition of this homomorphism with the natural
projection llq Z: ~ Z; and the indusion Z; c C;. Put

S1(f) = (f, f)c(f)

2.2. Theorell1. Under tbe assumptions (2.1) - (2.3) and notations as above there
exists a bounded Cp-analytic function Ws: ...Ys -Jo C p whidl is uniquely determined by
tbe condition: for eacb Hecke charactel' of finite order X E x~ors witll SeX) c SF of
conductor m = c(X) and for each integers r = 0, 1, ... ~ - 1- 1 tbe value WseX N x;)is
given by tbe image under the fixed embeddillg i p of the algebraic number

where
A(1', X) =

TI (1- (x"'a-1ß)(q)N"(qr)(1- (x*a-1ß')(q)N(q)T)x
qESF\S(X)

x (1 - (X'" -10:' ß)( q)Af( q)-l-r)(1 - (X'" -1 a' ß')( q)N( q) -l-T).

D p is the discriminant of F, rex) being the Gauss swn of X, aJld gP(x) tlle cusp fonn
obtained from g by complex conjugatioll of its Fourier coefficients alld by twisting it
tben with the cbaracter X (see §1).
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§3. Distributions Oll the Galois group Gals

3.1.The function \lI sex, f, g) of theorem 2.2 is constructed by means of the theory
of non-Archimedean integration ([Man6], [1(01], [1(02], [VI]). Let Op be the subring
of integral elements in the Tate field CP' Op = {x E Cp Ilxlp :$ I} and C(Gals, Cp)
denote the ring of all continuous p-adic functions on Gals. Then Op -measure on Gals
is an arbitrary Op-linear map j1. : C(Gals, Cp) -4 Op which is denoted also as

f ~ r f d/-l.
JGals

We note that
Xs = HOlUeontin(GalS , C;) C C(Gals, Cp).

Therefore for an arbitrary Op -measure j1. we have that the function

Lp. : Xs ~ CJp (Lp. = r XdJ.l for X E Xs)
JGals

which is called the non-Archimedean Ivlellin ~ransfornl of the lneasure /-l. The function
Lp. is bounded aod analytic on the p-adic allalytic Lie group ",1's . If we fix a character
Xo E Xs then we get that the values of the type L,l(XO X) with X E X~.ors uniquely
determine the function L,& (see [VI], [Man6], [I(a3]). The analytic structure on Xs is
defined by means of the class field theory. Nanlely, let m be an integral ideal, I( rn) be
the group of fractional ideals coprinle to m,

P(rn) = {(O') 1 Q' E F!;} 0' =l(mod X m),

H(m) = l(rn)/ P(nl)

the ideal class group (in the narrow sense) of conductor m. Then if F( m)/ F is the
maximal abelian extension of F unranüfied outside prhnes dividing m and infinity then
the Artin symbol provides an isomorphism:

and we get
F(S) = UmF(m), Gals = lilnH(rn) (S(m) C SF).

There is the following exact sequence

1 -4 Gal~ -4 Gals ~ Galt -+ 1

where Galt = Gal(F(0»/ F) = GzF' F(0) being the Inaximal abelian extension oi F
ramified only over 00,

Gal~ = Gal(F(S)/F(0» = CJ~/(clos(O~),
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where clos(O~) denotes the closure of the group of all totally positive units O~ in the
group

O~ = II(OF®Zq)x.
qES

There is the natural canonical Cp-analytic structure on the group

HOlllcont'in((OF ® Zp)X, C;)

so that trus group is a Cp-analytic Lie group which is n-dimensional over Cp' We extend
this structure onto the whole group Xs by translations (see [Man6] , [VI]).

3.2.We construct a measure /-l = /-l( f, g) on the gToup Gals for which the value
L IJ (XN x;) is giyen by the fonllula (2.4) fUld set llJ s (x) = L IJ ( X ). In order to construct J1.
we use the theory of distributions. R.ecall that for an abelian group Athen a distribution
J1. on Gals is a finite additive family of functions

J.l={J1.m} pm: H(m)~A

so that the compatibility condition

(3.1)

holds for all m1 with m1lm. If A == Op then Il defines an Op-measure. We call a Cp­
distribution a bounded measure if a /-l is a Op -nleasure for some a E C;. Now let A

be a vector space over Qnb (the nlaximal abelian extension of Q ) and Ilm : H (m) -+ A
be an arbi trary family of functiol1s. For a character X : H (m1) -4 Qnb x and for m11 m
we define Xm as the c01nposition of the natural projection H(m) -4 H(m1) (modm1)
and X and put

J1.m(Xm) = L Xm(X)llm(X).
xEH{m)

Then the compatibility condition (3.1) is equivalent to the fact that

J1.m(Xm) is independent on the choice 01 m with mllm. (3.2)

Using this compatibility criterion we construct p( f, g) as a distribution defined by
means of a certain falnily of functions

[ts,m : H(m) -4 Q.

3.3. Proposition. Für evcry sEC there exists a. complex valued distribution
{jl",m} m which is uniquely deternuned by the conrutioll

(3.3)
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where m, m' are arbitraIY ideals with the condition moc(x)lm, c(x)2m~lm',

fo = L M(a)a'(a) fla,
almo

with M( a) beilig the Möbius function (of the ideals) so that trus definition oE fo is
equiva1ent to the identity

L(s, fo) = rr (1 - a'( q)N( q)-")L( 8, f).
qlmo

3.4. The prooE of the proposition is carried out by means of the compatibility
criterion (3.2) according to which it suffices to check that the right hand side of (3.3) is
independent of m and of m'. First of aH g(Xm) = g(Xmo) is independent of m because
of the property S(mo) = S(m) = SFand

L(s,g(Xm» = L X(n)C(n,g)N(n)-" = L(s,gmo(X».
n+mO=OF

On the other hand, the formula (1.22) implies the identity: for m' = m~ c( X) 2 m1 we
have that

g(Xrn)IJcrnl = N(mIc(f»1/2 (grno(X)IJe(g)rn~e(x)2)lmlc(f). (3.4)

Put
(3.5),

n

(3.6)
n

Theu (1.17) and (1.21) imply the equalities

A(nc(f)ml) = a(c(f)m1)A(n) = C(c(f),f)a(ml)A(n),

B(nc(g» = C(c(g),g)X·-1 (c(g»B(n),

(3.7)

(3.8)

Taking iuto account that m1 c(f) + c(g) = OF we obtain froln (3.4), (3.7), (3.8) the
following equality

L(s, foIc(g), g(Xrno) IJern!) =

N( ml c(f) )1/2 L A(nc(g) -1 )B(nm;-l c(f)-l )N( n) -8 =
n

N(ml c(f»'/2 L A(nml c(f»B(nml c(g»N(nm1 c(f)c(g»-" = (3.9)
n

K( f, g)a(ml )X.. - 1(c(g»
Ne c)"N( ml ),,-(1/2) L(s, fo, g(Xrno )IJe(g)e(xp rn 5)

with the constant
~(f, g) = N( c( f»1/2C( c(f), f)C( c(g), g)
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which is not zero due to the assurnption (2.2). It now follows from (3.9) and from the
definition (0.2) that the following identity holds

N( c0 2 )".N(m,),,-(1/2)
0:( m') \lJ( s, foIc(g), g(X m) IJern , ) =

K(f )D 2".N(c(x)mo?"-'X"'(c(g))-1 \lJ( ~ ()IJ )
, g F a( c(x )mo)2 . S, 10, 9 Xrno e(g) e(X)~m~

that is the terms with m' cancel and we see that /l",m(Xm) is independent of m and of
m' proving the proposi tion.

Next we will use the property (1.24) of the twist operator in order to get a more
explicit expression for the right hand side of (3.3) which is essential for the formula (2.4)
in the theorem 2.2.

3.5. Proposition. Under tl1e llotations aJld assulnptions as above the following
equality holds

'l'(s, fo, g(Xmo) IJe(g)e(x)~ m~) =

a(mo)2N(mo)'-2" A(s - I, X)A(g(X))'l'(s, f, gP(X- 1)),

witb

A(s-I,X)=

TI (1 - (X· a -1 ß) (q)N(q),,-1)(1 - (X ... a -1 ß') (q).N(q),,-1) X

qESF\S(X)

x (1- (x*-la'ß)(q)N(q)-")(l- (x*-la'ß')(q).N(q)-")

defined by (2.5) and witl1 tl1e twisted root number

A(g(X)) = w*( c(X))X"'( C(g)T(X)2N( c(X)))-l A(g)

given by (1.24).
3.6. In order to prove the proposition we sinlply input (3.11) into the definition

(3.3):
Ps,rn (X rn) = K( f, g)A(g)A(8- I, X)D1J x

x w*( (X ))r(x)2N( (X))2s-1-1 'l'(s, f, gP(X-1 )) (3.12)

0:( c(X))2 (-27ri)n(1-l)Q(f)'

Now we see frolll the algebraicity property (0.3) that the values /l1+r,m(Y) belong to Q
for aH Y E H(m). Put

/-L(Y, f, g) = ip(pl(Y)/A(g)~(f,g)), (3.13)

In this way we have obtained a C p -valuecl distribution on the Galois group Gals which
satisfy the equality (2.4) with r = O. The p - aclic boundness of the distribution, which
is equivalent to certain generalized !(U1l11uer congruences for the ntunbers

lJ1( s, f, gP(X- 1))

(-27ri)n(1-1)f2(f) ,
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is established in §5 below.

§4. The integral representation of Rankill .. Shhnura

4.1. We start by recalling the definition of Eisensteill series in the Hilbert modular
case. Let 0, b be arbitrary fractional ideals, 1] a Hecke character of finite order modulo
an integral ideal e C OF such that 1]*((x)) = signlV(x)m for x == Imodx

C, x E OF. Put
(for Re(s) > 2 - m)

!(m(Z, s; a, bj 1]) =
L signJV(d)m 71*(db-1 )N(CZ +d)-m IN( CZ + d) 1-2", (4.1)
e,d

Lm (z,s;a,b;1]) =
L sigruV(c)m 11*(ca-1 )N(cz +d)-m IN(cz +d)I-2

S, (4.2)
c,d

the summation in (4.1) and (4.2) being taken over a system of represel1ta'tives (c, d) of
equivalence classes with respect to the O~ - equivalence relation for non-zero elements
in a x b given by (c, d) I"V (uc, ud) with u E 0;. The senes (4.1) and (4.2) cau be
extended to function on the adelized group GA as in §1 so that

!(m(s; a, b;,])'\ = N(t,\)"+( m/2)N(y)" !(m(z, s; tAn0, b j 1]), (4.3)

L m ( s; 0, b; 1]),\ =N(t,\)-"-(m/2)Ar(y)"Lm ( z, Sj 0, blÄ1D-1
j 1]). (4.4)

The functions (4.1 )-(4.4) adnlit al1a1ytic continuation over the whole complex plane
with respect to the paranleter sEC, and under the assumption of the prhnitivity of 1]

modulo e the following functional equatiol1 holds (see [Shi6], p.672):

ß m (l - m - s)I(m(l - 1'11 - Sj 0, b; 1]) =
T(1])N(na be)m+2,,-1~m (s )Lm (s; 0, bc; Tj),

with the r - factor ß m (s) = 1T- n"r( S + nl,) n. If q is an integral ideal then the action of '
the involu tion Jq on (4.3) and (4.4) is easily calculated by the defini tion (1.20) and is
given by the formula

4.2. The integral representatioll. Put

F = fole(g) E s,.( emo, 7/J), G = g(Xmo)!Jcml E SI( em' ,w-1X- 2

Then the following integral representation of Rankill type holds (see [Shi6], (4.32)):

W(s, F, G) = DY2r(s + 1 - l)u1f-ns (FP, V(s - k + l))cml, (4.7)

where
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More precisely

h

\lJ( s, F, G) = D;J2r (.5 + 1 - I)ll 7r -ns L )\f(l).y+l-(k+I)/2 X

).=1 (4.8)

x [ Ff(z)G).(z)l(k-l(z,s - k + 1jt).(),OF;1fW-1X-2)N'(y)"-1 dxdy.
Jr>..(em/)\~n

4.2. Application of the trace operator. The method by which the right hand
side of (4.7) can be explicitly calculatcd is based on an application of the trace operator
(as in [Man-Pa], [PaS], [Pag] , [Ar]) which is described below. Let R be a system of

representatives of the right cosets l11cm l \ liVemo, then the trace VITr~:~ is defined by the
equality: for x E GA, hER

(V JTr~:~ )(x) = L 1f(h- t)V (x h).
hER

Then the scalar product in the right hand siele of (4.7) takes the form:

(4.9)

(4.10)

The explicit fonnula for the action of the trace on the Fourier expansions is provided
by the equality:

VITr~:~ = Ar(m/ möl )1-( k/2)VIJem l U( m'mi;l )Jemo , (4.11 )

which is deduced by the special choice of a systenl of representa.tives for lVem, \ W emo ,
namely

R = {( 1 0) (v E op/m'mö1)}
crnov 1

where crl10 is an idele such that cmo = croD , and from the defini tions (1.1g), (1.20) of
the operators U(m'mö1

) and Je. If we now use (4.10) and (4.11) then the identity (4.7)
transforms to

'!J(s, F, G) = Dy2 r (s + 1 - l)H7t"-l1.9N( m' mö l )1-(k/2) X

X (FP, V'(s - A: + 1)IU(m/möl)Jemo)emo,

where

(_I)nkN( cm'j)2)-s-(k/2) Lk-I(S; Op, Op; "pw- l X- 2 )

according to the fonl1ula (4.6).

(4.12)
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4.3. Nornlalized Eisenstein series. Let us define the normalized Eisenstein
senes for all integers m and r with the condition m ~ 0, m + r > °by

... 2-nDY2r (m + r)n
Em,r(?l) = (-41r)rn( -21ri)mn L m+2r(-r; OF, OF; 1]).

Then the integral representation takes the fonn

wes, F, G) = (_l)nkAr(m/mo1 )1-(k/2)N(cm'(2 )-(,,-k+I)-(k-l)/2 x

x 2n1rn(k-l) (FP, [g(Xmo )E;-m,m+r-l (ww- 1 X-2)]IU(m' mol )Jcmo)cmo

with 8 = 1+ r, m = k - 1- 2r, r = 0," . ,k - 1- 1. This fonnula provides us also with
the integral representation for the values of the distributions (3.3): for 8 = 1+ r, m =
k -1- 2r (r = 0,"" k - 1- 1) mo Im I m' we have that

where

Jls,m(X) =

'( ') (FP, [g(Xmo )E;-m,m-r+l ("pw- l x-21IU( rn'mol
)Jcmo)cmo

, m n(f) ,

,( m') = 2nkik+1o( m,)-lN( mo )(k/2)-1N( c(2)(k+l)/2-1,

n(f) = (f, f)c(f)'

(4.15)

(4.16)

(5.1)

§5. Illtegrality properties and cangruences far the distributions

5.1. In order to prove the theOrelll 2.2 we first show that the distributions (3.3) for
8 = 0,1,"', k-I-l are bounded al1d then we prove a certainp-adic congruenee involving
their values on Dirichlet characters for different s ("generalized !(ummer congruenees")
equivalent to the existence of the p-adie analytie funetion from the theorem 2.2. The
praof is based on the integral representation (4.15).

5.2. Proposition. (a) Under the assumotions and notation as in theorem 2.2
for each r = 0, 1,' .. ,k - 1 - 1 the Cp-valued distribution ip(Jt.l+r on the group Gals is
bounded.
(b) tbe following p-adic equality holds

r <j>N x; dip(jlI) = (_l)rn ( </>N dip(jl'+r)'
JG~s JG~s

5.3. In the prove we use the ftU1ction

(5.2)

whieh is obtained by applying the holoul0rphic projection operator to the Hilbert au­
toruorphic type, whieh for T # 0 is not of the holomorphie type. This operator ean be
described in a very similar way as in the one-dimentional case (see [Shi6], [StIL [St2l);
the neeessary growth conditions are obviously satisfied due to the fact that g(Xmo) is a
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cusp form so that the function (5.2) is a cusp form from Sk( cm', 'tjJ). Then the equality
(4.15) takes the form

'(m')
PI+r,meX) = 'Y

Qef
) (FP, Vr*eX)!U(m'mö1)J,mo),mo'

The functions (5.2) apparently satisfy the sarne compatibility eondition as the values
iL'+r,m(X) and define a distribution on Gals with values in the spaces of Hilbert au­
tomorphie forms of holomorphic type of weight k with the eharaeter 1./J whose level is
growing with the growing conduetor m of the eharacter X.

5.4. Fourier coefficients of the function Vr*(X). Let us consider Fourier
expansions of all funet ions Vr*(X) >. ( z) (for '" = 1, ... , h) on the Hilbert upper half plane
Jjn whieh describe the automorphie form V/eX),

Vr*(X)>.(Z) = L v(E, r, x)>.eF(~z).
o<ee1.x

(5.4)

(5.5)

The eoeffieients v(~, r, X)>. obviously also define a distribution on Gals and they admit
a fairly explicit ealeulation. If, for exanlple, l' = k -I - 1, then the funetion Vt-l-l (X)
is itself of holomorphie type and

Vk"'-I-l(X) = gmo(X)Ek- 1 o(1Pw -
1 X-2

),
l

gmo(X)>.(z) = L b>.(e)X*cel;:l)eFCEz),
e

where the suo1mation over eis taken with 0 <: eE t>., t + m = OF, and

(see 1.9). Due to 1(lingen [1<11], [1(12] we know the Fourier expansion of the holomorphie
Eisenstein series

(5.6)

for m ~ 1, 1] mod c is a Hecke eharacter of finite order with the eondition 1]((x) =
signN(x )m for x =1 ulodxc, A(1\1; 71) is same eoos tant, whieh is explicitly giyen as a
certain special value of, the Hecke L-funetion assoeiated with 7]. In the general case the
function E~,r(7]) admits a eertain Fourier expansion in eF(eZ) in tenns of the Whit­
taker functions (ar eonfluent hypergeoo1etrie functions, [Fe], [ShilO]) and the Fourier
expansion is then obtained by use of a eertain integral formula as in [StIl, [St2], or
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with help of the Shinlura differential operators (as in [Shi6]). As a result we get for
r = 0,' . " k - I - 1 the following identity:

L x~o(6i:;:1)h(el)N(6)k-l-l-r L (,pw-1[2)*(c)N(b)1-k+/+2 r ; (5.7)
e=€l+6 (,Z-bf

eEOp,be i ),

here A'(O)(7]) = A(k -1;17), A'(r) = Ofor r > 0 with ~i is totally positive (i = 1,2)
and the second SUffi is extended over al1 decolnpositions of t2 iuto product of principial
ideals eh with the condition c E Op, bEl>. and 1L>.(~) is an integral linear combination
of the numbers X~o(~l>:l)b>.(~)and of values ofthe Hecke character (~w-lX-2t (which
are certain roots of uni ty ).

Let us consider the linea.r functional

(PP, ~IJcmo)cmo
f2(f)

(5.8)

on the linear space S k ( emo ,.l/J) . It follows froln the Atkin-Lehner theory (in the form
of Miyake [Miy]) that J:, is defined over Q i.e. for a finite nt1ll1ber of ideals mi and for
some fixed algebraic numbers l(mi) E Q we have that

so that the distributions [Ll+r can be written in the fonn

f-l1+r,m(X) = ,(m')J:,(~r,ml(X)),

with

(5.9)

(5.10)

(5.11 )

and the constant ,(m') g-iven by (4.16). Now we see frolll (5.9) that the properties (a)
and (h) of the proposition 5.2 are equivalent to the corresponding statements about the
Fourier coefficients v«(, r, X)>. for ( =0 (nl0d m'möli>.). Indeed, we see that in this case
the Fourier coefficients in (5.9) are expressed according to (1.9) in terms of the nmubers
v(~, r, X)>. as folIows:

_ k 2 { v((, r, X)>., if the fractional ideal (l>:l = nm'mol

N(t>.) / C(n,<I>t,m'(X)) = is not integral, .
0, otherwise.

(5.12)
Therefore the explicit expression (5.7) ilnplies the following congruences

v(~,r,x)>. =(_l)rn L L x*(e-lhl>:1)Ar(e-1hl>:1)r x
€=6 +e~ (~Ilabf

eEOp,lIEi), (5.13)



50

for
0<~iEi;),.(i=1,2), CE(JF, bEl>., ~2+mO=(JF'

Now proposition 5.2 and theoreln 2.2 are directly deduced from the abstract !{ummer
congruences (see [!(a3], p.258 ,01' 3.3 of chapter 1) which provide a criterion of boundness
of C p -valued distributions.

Let {fd be a family of continuous functions fi E C(Y, (Jp) in the ring C(Y,Op)
of all continuous functions on the compact totally disconnected group Y = X; with
values in the ring of integers (Jp of C p such that the Cp-linear span of {fd is dense in
C(Y, C p ) . Let also {aiJ be a f8Juily of elements ai E Op' Then the existence of an Op
-valued nleasure J.L on Y with the property

i fid/l = ai

is equivalent to the validity of the following congruences: for an arbitrary choice of
elements bi E Cp allnost all of which vanish,

2: bifi(Y) E p»Op for al1 y E Y ==> 2: biai E p»Op.
i i

In our si tuation we take as a fanlily {fi} the family of functions of the type XN x;
with s as in proposition 5.2 and with X E ){1ors being Hecke charactersj this family
obviously has the dense Cp-linear span. For any finite number of Hecke characters
X E x~ors we choose such m and a sufficiently large integer m' that each of these
characters is defined modulo m and the fonnula (4.15) is valid for the values of the
distributions [L'+r,m(X). The proof is then cOlupleted by application of the congnlences
(5.13).
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