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Introduction

Zeta- functions can be attached as certain Euler products to various objects such as
diophantine equations,representations of Galois groups, modular forms etc. Deep inter-
relations between these objects discovered in last decades are based on identities for the
corresponding zeta functions. They all presumably fit into a general concept of Lang-
lands L- functions associated with automorphic representations of a reductive group G
over a number field F. From this point of view the study of arithmetic properties of
these zeta functions is becoming especially important.

The theory of non-Archimedean zeta-functions originates in the work of Kubota
and Leopoldt {Ku-Le] containing p-adic interpolation of the special values of Riemann
zeta-function ((s) at negative integers. Their construction turned out to by equivalent
to classical Kummer congruences for the Bernoulli numbers and was used by Iwasawa
[Iw] for the description of class groups of cyclotomic fields. Since then the class of
functions admitting p-adic analogues has gradually extended. The theory of modular
symbols (due to Mazur and Manin, sece [Manl]-[Man5|, [Maz-SD]) provided a non-
Archimedean construction of functions, which correspond to the case of the group G =
GL; over F = Q. Several authors (including Deligne, Ribet, N.M.Katz, Kuréanov
and others, see [De-Ri], [Kal]-[Ka3], [Kur¢l] -[Kuré3], {Shoj, [V1], [V2]) investigated
this problem for the case G = GL; and GL, over totally real fields and fields of CM-
type. But the case of more general reductive groups remained unclear until the mid-
eighties although important complex analytic properties of the Langlands L-functions
had been proved. In recent years a general approach to consruction of non-Archimedean
L-functions associated with various classes of automorphic forms was developed, in
particular, for the case of symplectic groups of even degree over F' = Q and the group
G = GL,; x GL; over a totally real field F.

In this paper we consider the case of the group G = GLz x GLg over a totally real
field F', and we use the Rankin-Selberg method for obtaining both complex-valued and
p-adic distributions as certain integrals involving cusp forms and Eisenstein series.

The first chapter contains an exposition of some basic properties of p-adic analytic
functions, p-adic measures and their Mellin transforms (see [[{02]).

In the second chapter we construct non-Archimedean convolutions of two Hilbert
modular forms of different (scalar) weight. The exposition here is provided with some
basic facts about Hilbert modular forms. Now let p be a prime number and S a finite
set of primes containing p. We briefly discuss convolutions of Hilbert modular forms
and their S -adic analogues; they correspond to the case of the group G = GL; x GL.
over a totally real field F' and have the following form

L(s,f,g) = > _C(n,f)C(n,g)N(n)~*,

where f, g are Hilbert automorphic forms of ‘holomorphic type’ over F', C(n,f),C(n, g)
their normalized Fourier coeflicients (enumerated by integral ideals n of the ring of
integers Op C F). We consider the functions f, g as being defined on the adelized group
Ga = GLz2(AF) ,where Ap the ring of adéles of F' and we assume that f is a primitive
cusp form of the scalar weight & > 2 of ¢onductor ¢(f) C Op with the charachter
1 and g a primitive cusp form of weight / < & of conductor ¢(g) with the character
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w, (PY,w:Af — C* being Hecke characters of finite order). The non-Archimedean
construction is based on the algebraicity properties of the special values of the function
L(s,f,g) at the points s = 1, -+, k—1 up to some constant involving the Petersson inner
product (f, f) of the automorphic form f [Shi6]. Our theorem about non-Archimedean
interpolation is equivalent to certain generalized Kummer congruences for these special
values. We need some more notations for the precise formulation of the result. Let
¥*,w* be the ideal group characters of I associated with ¥,w and let

Lispo)= 3 #*(p N~ = [] (1-9 e @ENE) )"

n+c¢=0p p+e=0p

be the correspoding Hecke L-function with ¢ = ¢(f)c(g). We now define the normalized
zeta function

U(s,f,8) = 7n(8)Lc(2s + 2 — k — I, yw)L(s,f,g)
where n = [F': Q] is the degree of F,
7(s) = (2m) 72T (s)" (s + 1 = 1)

being the gamma-factor. Then the function ¥(s,f,g) admits a holomorphic analytic

continuation over the whole comlex plane and satisfies certain functional equation [Jaj.
Put Q(f) = (f, f)s), then the number

Tl +r,f,g)
(2m)"(0=DQ(f)

is algebraic for all integers » with the condition 0 <r <k —-1-1.
For the non-Archimedean construction we introduce the S-adic completion

Os=[J(oroz)= [[ O»
ges Ple€S
of the ring Op. Put
Sp={p|p divides g€ S}

and let Galg = Gal(F(S)/F) be the Galois group of the maximal extension of F' un-
ramified outside S and oo.
We take in this case the p-adic analytic Lie group

r)C"s = Holnconl‘in(GalSa C:)

consisting of all continuouos p-adic characters of the Galois group Galg as a set on which
our non-Archimedean L-functions will be defined. Elements of finite order ¥ € Xs can
be obviously identified with such Hecke characters of finite order, whose conductors are
divisible only by prime divisors belonging to Sp, via the decomposition

class field theory —-=X i
X:AF — Gals - Q" 5 C.
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Let us denote by the same letter x both Hecke characters and the corresponding
elements of X's. There is a natural homomorphism

N-: Gals — Gal(Q(S)/Q) > z% = [] 2,

qeS

defined by the restriction of Galois automorphisms from F(S) to Q(S), and we denote
by N z, composition of this homomorphism with the natural projection [] . Z; -~ Z;
and the inclusion Z5 C CJ.

Again our essential assumption is that that the cusp form f is p-ordinary, i.e. for
the fixed embedding Q — C, and for all p | p there exists such a root a(p) of Hecke
p-polynomial of f that | i,(a(p) |[,= 1. We then fix such roots a(p) and extend the
definition of a(m) to all integral ideals m C Op by multiplicativity.

Theorem (On non-Archimedean convolutions of Hilbert modular forms)

Under the above notations and asumptions there exists a bounded Cp-analytic function
Vs : Xs — C, uniquely defined by the condition: for each Hecke character of finite
order x € X&°™ holds the following equality holds:

T(x)*N m'=t (L f, gP(%)) ]
a(m)?  (=2m)O-If) £) ]

Xs(x) = ip | DHuw(m)

where D is the discriminant of F', 7(x) being the Gauss sum of x, and g#(x) the cusp
form obtained from g by complex conjugation of its Fourier coefficients and by twisting
it then with the character x.

This result is also valid for the special values ¥({ 4+ r,f,g) with r = 1,---k = [, if
we replace x € X's by x Nz, € As.

Recently this construction was extended by Mi Ving Quang (Moscow University)
to the non-p-ordinary,i.e. supersingular case, when | ip(a(p)} |p< 1 for all p | p (at
least when F' = Q).In this situation the functions ¥ g are also uniquely defined by the
condition that they have only a prescribed logarithmic growth on A's.

To conclude with, we note that the Rankin-Selberg method was remarkably gener-
alized by Rallis and Piatetskii-Shapiro [Ra-PSh] to other classical groups, and we hope
that our p-adic construction can also be generalized to the corresponding automorphic
L-functions.
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Chapter 1. Non-Archimedean analytic functions, measures and distri-
butions.

In this chapter we give an exposition of some standard facts from the theory of con-
tinuous and analytic functions over a non-archimeadian local field. We start by recalling
the definitions and notations concerning p-adic and S-adic numbers. Then we discuss
the theory of continuous p-adic functions and their p-adic interpolation, and also the ba-
sic properties of p-adic analytic functions. In §3 we introduce distributions and measures
and give a general criterion for the existence of a non-Archimedean measure with given
values of integrals of functions belonging to certain dense family (“generalized Kum-
mer congruences”). The next §4 is devoted to a description of the algebra of bounded
measures in terms of their non-Archimedean Mellin transforms (Iwasawa isomorphism).
The chapter is completed with an exposition of a general construction of measures, at-
tached to rather arbitrary Euler products. This construction provides a generalization
of measures first introduced by Yu.l.Manin [Mand], B.Mazur and H.P.F.Swinnerton—
Dyer [Maz-SD). Our construction [Pa5], [Pa9] was already successesfully used in several
problems concerning the p-adic analytic continuation of Dirichlet series [Ar], [Co-Sch],

[Sch).

§1. p—adic numbers and the Tate fleld

1.1. Let p be a prime number, Q,, the field of p-adic numbers, i.e. the completion
of the feld of rational numbers Q with respect to the p-adic metric, given by the p-adic

valuation
|“p: Q= Rzo = {z € Rl > 0}

la/bly = p"r=rne, {0, =0,

where ord,a is the highest power of p dividing the integer a. The function |-}, is
multiplicative, since
ord,(zy) = ord,x + ord,y, (1.1)

and satisfies the non-Archimedean property
|2 +ylp < max(|zlp, [ylp). (1.2)

If K is a finite algebraic extension of Q,, then K is generated over Q, by a primitive
element o € K, so that « is a root of an irreducible polynimial of degree d = [I{ : Q,} ,

flz) = ¢+ g1zt M+ ag € Q,lz).

The valuation |- |, admits a unique extention to &' defined by

1Bly = (IWi/q, (B)p)'4, (1.3)

where A K/Q,(B) € Qp is the algebraic norm of an element f € K. The formula (1.3)
defines a unique extension of |- |, to the algebraic closure Q, of Qp, which satisfies (1.2)
(see[Kol]). The fuction ord, is then also extended to Q, by ord,e = log, |a|,. The
formula (1.3) implies that ord, '™ is an additive subgroup in 32, hence ord, K* = 12
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for a certain positive integer e dividing d which is called the index of ramification of the
extension K/Q,.
Put
O ={ze K||z|, £1} Mk ={z € K||z|, <1} (1.4)

then My is the maximal ideal in Oy and the residue field Ok /M| is a finite extension
of degree f of F, and there is the relation d = e- f, in which f is called the inertial
degree of the extension. For each ¢ € Oy its Teichmuiller representative is defined by

w(z) = nli—.ngo 2"

, w(z)=a(mod M), (1.5)

and satisfies the equation
2!
w(z)” =w(z).

The map w provides a homomorphism of the group of invertible elements

0}:» = O]{\ﬂfff\-' = {.’B e

:1:|1, = 1}

of Ok onto the group of roots of unity of degree p/ — 1 in K, denoted by Hps -1, and
the isomorphism
(OI\’/MI\')X —* Hpr—1 C O;: (16)

For example, if e = 1 then the extension K is called unramified. In that case f = d
and the Teichmiiller representatives generate I over Q,, therefore

K =Q,1'Y), N=p!-1.

On the other hand, if e = d then the extension K is called totally ramified. For example,
if ¢ is a primitive root of unity of degree p”, then Q,(¢) is totally ramified of degree
d=p" —p"! and we have that

. 1
d,(( - 1) = ————.
o1 P(C ) pn ___pn-—l

(1.7)
1.2. For a field ' with the non-Archimedean valuation |- |, let us define

Do(r)=Do(r; K) = {z € K||z —a|, <1}, (1.8)

Do(r7)=Do(r"; K) = {z € ||z —a|, <7} (1.9)

(“closed” and “open” discs of the radius r with the center at the point a € I{, r > 0).
Then we have that Dy(r) = D,(r) for any b € D.(r) and Dy(r™) = Dy(r~) for any
b € Dq(r™). Note that in topological sense both discs (1.8) and (1.9) are open and
closed subsets of the topological field L.

The important property of the field Q, and of its finite extensions is that they are
locally compact, so that the discs (1.8) and (1.9) are compact. The disc

Z, = Do(1;Q,) = {z € Q| [s| < 1)
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is a compact topological ring (the ring of p-adic integers), which is isomorphic to the
projective limit of residue rings Z/p"Z,, with respect to the homomorphisms of reduction
modulo p"™:

2, = limZ/p"2,,

3

Analogously, we have that
Ok =1lim Oy /M,

and
Z) =lim(Z/p"Z,)", Of = lim(Ox/Mf)*

(the projective limit of groups).
1.3. The structure of the multiplicative group Q' and K. Put v =1 for
p>2and v =1 for p =2, and define

U=U, ={z € |z = 1lmodp”}. (1.10)

Then there is an isomorphism U 5 Z,, of the multiplicative group U, and of the additive
group Z, which is provided by combining the natural homomorphism

U S imU/UP"

and by special isomorphisms
apn  UJUP" 5 Z/pZ,
given by
apn((14+p™)*) =amodp” (a € Z). (1.11)

one easily checks that (1.11) is well definied and gives the desired isomorphism. There-
fore, the group U is a topological cyclic group, and 14 p™ can be taken as its generator.
There are the following decompositions

Q, =p?xZ), L} =(Z/p*Z)* xU. (1.12)
Analogously, if [I{ : Q,] = d, then
K* =72 x OF, OF =2 (O /Mg)" x Uk,

where 7 1s a generator of the principial ideal My = 7O (i.e. any element 7 € K
with ord,m =1/e),

The structure of the group Uy is then described as a direct product of d copies of the
additive group Z, and a finite group consisting of all p-primary roots of unity contained
in I (see [Ca-F], [Kol]).
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1.4. The S-adic numbers. Let S be a finite set of prime numbers.For a positive
integer M denote by S(M) its support, i.e. the set of all prime numbers dividing M.
Let us consider the projective limit

Zs= lim Z/MZ,

M,S(M)YCS

which is taken over all positive integers M with the condition S(M) C S with respect to
the homomorphisms of reduction. then it follows from the Chinese Remainder Theorem

([Sel), [Weil]) that
Zs = H Z,.

gES

Qs=[]Q, M=]]«

geES qeES

Put

1.5. The Tate field. For the purposes of analysis it is convenient to embed Q,
into a bigger field, which is already complete both in the topological and in algebraic
sense. This field is constructed as completion C, = ap of an algebraic closure Gp of
Q, with respect to its single valuation with the condition |p|, = %. The proof of the

fact C, is algebraically closed is not difficult and is based on the I{rasner’s lemma (see
[Kol], [Ko2], [Wal]).
We will use the notations

O, ={z € Gyl z], <1}, M, ={z€Cyl[z|, <1} (1.13)

Note that the O, and M, are no longer compact , and therefore the field C, is not
locally compact. We also have that

Op/M, =F, (1.14)
is the algebraic closure of F,,.

§2. Continuous and analytic functions overe a non-Archimedean field

2.1. Let I be a closed subfield of the Tate field C,. For a subset W C K we
consider continuous functions f : W — C,. The standard examples of continuous
functions are provided by polynomials, by rational functions (at points, where they are
finite), and also by locally constant functions. If W is compact then for any continuous
function f : W — C, and for any ¢ > 0 there exists a polynomial h(z) € Cp[z], such
that

[f(z)— h(2)|, <€ for allz € W.

If f(W) C L for a closed subfield L of C, then h(z) can be chosen so that k(z) € L[z]
(see [Ko2}, [Wal]).

Interesting examples of continuous p-adic functions are provided by interpolation
of functions, defined on certain subsets , such as W = Z or N with K = Q,.
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Let f be any function on non-positive integers with values in Q, or in some (com-
plete) Q,-Banach space. In order to continue f(z) to all x € Z, we can use the
interpolation polynomials

(:c) _ae=1)--(z-n+1)

7 n!

Then we have that (i) is a polynomial of degree n of z, and for z € Z,z > 0 we get a
binomial coefficient. If z € Z, then 2 is close (in p-adic topology) to a positive integer,
hence the value of (I} is also close to an integer, therefore (7) € Z,.

The classical theorem of Mahler says that any continuous function f : Z, — Q,
can be written in the form (see [Wa], p.99):

=3 (%), (2)

n=_

with a, — 0 (p-adically) for n — co. For a function f(z) defined for £ € Z, = > 0 one

can write formally
T
=3 (%),

n=0

where the coefficients can be found from the following system of linear equations

=3 an(2),

m=0

that 1s "

ay, = -1 m—f(n?')f D,

> ()

The series for f(z) is always reduced to a finite sum forall x € Z, = > 0. If @,, — 0 then
this series 1s convergent for all z € Z,. As was noticed above, the inverse statement
is also valid (“Mahler’s criterion”). If convergence of a, to zero is so fast that the
series defining the coefficients of the z-expansion of f(z) also converge, then f(z) can
be continued to an analytical function, see 2.2 below. Unfortunately, for an arbitrary
sequence a, with a, — 0 the attempt to use (2.1) for continuation of f(z) out of the
subset Z, of C, may fail. However, in the sequel we mostly consider analytic functions,
for which such a continuation is provided by summation of the series defining this
function.

2.2. Analytic functions and power series. (see [Ko2], p.13). The well known
criterion of convergence of a series 3 .o ¢n is that the partial sums 3 5, <ps @n are
small for large N, M with M > N. In view of the non-Archimedean property (1.2) in C,
this occures if and only if |a,| — 0 or ordy,a, — oo for n — 00, Therefore convergence
of the power series } ;2 anz” depends only on ||, but not on the precise value of z,
hence there is no “conditional convergence” in this case. Thus, for any power series
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Y >0 @nz™ we can define its radius of convergence r such that only one of the following

holds:

o0
Z apz” converges <<= x € Do(r7) (2.2)
n=0
oo
Z apx™ converges <= € Do(r) - (2.3)

An example of the first alternative is Y07 z", where (2.2) is satisfied with r = 1, and
an example for the second is
Syt

n=0

here the condition (2.3) is satisfied also with » = 1.
The important examples of analytic functions are exp(z) and log(z), which are
given as the power series

)n+1

exp(x Z—-n’- log(l—i—m)—z( ! z",

and we have that
exp(z) converges on Do(p'l/(”_l)_), r=p V-1, (2.5)

log(1 + =) converges on Dg(17), r = 1. (2.6)

(see [Ko2], [B-Saf]), so that exp(z) converges in a disc smaller than the unit disc, and
log(1 + z) has better convergence that exp(z).
Since the identity

log(zy) = log(z) + log(y) (2.7)

holds as a formal power series identity, it follows that (2.7) holds in C, as long as
lz -1, <1, and |y—1[, <1

. in particular, since | — 1], < 1 for ¢ any p”-root of unity, we can obviously to apply
(2.7) to conclude that log( = 0. Also we have that for all 2 € Do(p~2/®P~1~) the
following identities hold

exp(log(l + 2)) =1+ 2, log(exp(z)) = z,

which are deduced from the corresponding properties of the formal series and can be
used for establishing isomorphisms beween certain additive and multiplicative subgroups
in C; and C}’,‘: for U = Dy (p*7;Q,) with v as in 1.6 there are the isomorphisms

exp:p"t"Z, 5 ue” (2.8)

where n > 0.



12

2.3. Theorem (on analyticity of interpolation series). Let r < p~ /=1 <1 and

f(z)= ian (:,) (2.1)

n=0

be a series with the condition |a,|, < Mp" for some M > 0. Then f(z) is expresible as a
certain power series whose radius of convergence is not less than R = (rp*/?=1)"1 > 1
(see {Wa], p.53).

As an example consider the function (a)® which is defined for a € Z, by means
of the decomposition a = w(a){a) where w(a) is the Teichmiiller representative of « for
p > 2 and w(ae) = *1 for p = 2 with w(a) = a(mod 4), and the exponentiation is given
by the binomial formula

@ =@+ =27 =3 (7t -2 (29)

T
n=0

Since |[{a) —1|, £ p¥ we may put in the above theorem » = p™" and get that the function
{a)® is a power series in z with the radius of convergence not less than p¥=1/(P=1 > 1,
and the following equality holds:

o0
T
(a)) = -1)" 2.
exp(etoa(a)) = > () o) =1 (210)
because both parts of of (2.10) are analytic in = and coincide for z € N.

2.4. Newton polygons (see [Ko2], p.21). The Newton polygon My for a power

series
o

f@) = awe™ € Gyl
n=1
is defined as the convex hull of the points (n,ord,a,) (where we agree to take ord,0 =
It is not hard to prove the following

Proposition. If a segment of My has slope A and horizontal length N (ie., it extends
from (n,ordpay,) to (n+ N, AN +ordya,) then f has precisely N roots r, with ord,a, =
—A (counting multiplicity).

The following thorem is the p-adic analog of the Weierstrass Preparation Theorem
(see [Ko2], p.21)
2.5. Theorem. Let

f(q,): apa™ + - € C,,[[a:]], G :,é 0

be a power series which converges on Do(p*; C,). let (N,ord,an) be the right endpoint
of the last segment of My with slope < A, if this N is infinite. Otherwise, there will be a
last infinitely long segment of slope A and only finitely many points (n,ordya,) on that
segment. In that case let N be the last such n. Then there exists a unique polynomial
h(z) of the form

bmﬂ)m + bm+]$m+1 NS bNﬂ?N
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with b, = a,, and a unique power series g(x) which converges and is non zero on
Dy(p*; C,) such that
h{z)
f(z) =

&) =5

In addition My coincides with My as far as the point (N, ord,an).

Corollary. A power series which converges everywhere and has no zeroes is a
constant.

A simple proof of the Weierstrass Preparation Theorem for power series of the type

on Do(p*; C,).

o0

f@)=_ ana" € Op[la]]

n=1

is based on a generalization of the Euclid algorithin (see [Man1]).
2.6. There exits another definition of the Newton polygon (see {Ko2], {[V1]) of a

series
0

f(z)=)_ ans" € Cylle]]
n=1

Instead of the points (n,ord,a,) let us look at the lines I, : y = nz + ord,a, with slope
n and y-intercept [, . Then .I\fo is defined as the graph of the function miny, l,(z).The
z-coordinate of the points of intersection of the I,, which appear in M 1 give ord, of the
zeroes, and the difference between the slopes n of the successive [, which appear in M I
give the number of zeroes with given ord,.

The first obvious consequence of consideration for this type of Newton polygon is

that a function
o0

f(@) =) ana” € Cylfz])

n=1

is bounded in the open disc Do(17; C,,) if and only if all the coefficients a,, are uniformly
bounded.

§3. Distributions, measures, and the abstract Kummer congruences

3.1. Distributions. Let us consider a commutative associative ring R , an R-
module A and a profinite (i.e. compact and totally disconnected) topological space Y.
Then Y is a projective limit of finite sets:

Y=lmY; (m;:YioY;, ijel i2y) (3.1)

where I is a (partially ordered) inductive set and for : > j, ¢,7 € I there are surjective
homomorphisms 7; ; : ¥; — Y; with the condition m;j o mjx = mi for ¢ 2 j > k.
The inductivity of I means that for any 7,7 € I there exist £ € I with the condition
k > i,k > j. By the universal property we have that for each ¢« € I a unique map
7 1 Y — Y; is defined, which satisfies the property =;; o m; = 7; (for each 2,5 € I)

Let Step(Y, R) be the R-module consisting of all R-valued locally constant functions
¢:Y - R.
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Definition. A distribution on Y with values in a R-module A is a R-linear homo-
morphism

o Step(Y, R) — A. (3.2)
For ¢ € Step(Y, R) we use the notations

M@=LW#=£%WM%

each distribution g can be defined by a system of functions p;;Y; — A, satisfying to
the following finite-additivity condition

W)= 3 4%) ey, ze). (3.3)

:BE‘."I"»-".l(y)
In order to get such a system 1t suffices to put
W) = pliz) €A (zely),

where §; ; is the characteristic function of the inverse image 77! (2) C Y with respect
to the natural projection ¥ — Y;. For an arbitrary function ¢;: ¥; - Rand ¢ > j we
define the functions

pi=pjomj, p=yp;0m;,p€Step(Y,R), @i:Y; 3Y; >R

A convenient criterion for the fact that the system of functions u(? : Y; — A
satisfies the finite additivity condition (3.3) (and hence is associated to a distribution)
is given by the following condition: for all j € I, and ¢; : Y; — R the values of the
sums

w(@) = 1) = 3 piln)u(y) i independent of i
¥i€Y; (3.4)
for all large enough 1 > j,

When using (3.4), it suffices to check the condition (3.4) for some “basic” systems of
functions. For example, if ¥ = G = lim — G; is a profinite abelian group, and R is a
domain containing all roots of unity of the order dividing the order of ¥ (“supernatural
number”) then it is sufficient to check the condition (3.4) for all characters of finite order
X : G — R, since their R® Q -linear span coincides with the whole ring Step(Y, R® Q)
by the orthogonality properties for characters of a finite group [KKa3], [Maz-SD].

Example: Bernoulli distributions (see [La3]). Let A is a positive integer ,
f +Z — C is a periodic function with the period M (ie. f(z + M) = f(z), f:
Z/MZ — C). The generalized Bernoulli number (sce [Lel], [Safl]) By s is defined as k!
times the coefficient by ¢* in the expansion in ¢ of the rational quotient

& fla)ter
Z eMt -1 ?

a=0
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that is,
] M-1
By s f(a)teat
1Y R A i 3.5)
2= s (
Py k! e 1
consider the profinite ring

Y =2Zs =LmZ/MZ, (S(M)CS)

M
the projective limit being taken over the set of all positive integers A with support S(M)
in a fixed finite set S of prime numbers. The the periodic function f : Z/MZ — C with

S(M) C S can be considered as an element of Step(Y, C). We claim that there exists a
distribution Ej : Step(Y,C) — C which is uniquely defined by the condition

Eu(f) = Br; for all f € Step(Y,C). (3.6)

In order to prove the existence of this distribution we use the above criterion (3.4) and
check that for every f € Step(Y, C) the right hand side in (3.6) (i.e. By ) is independent
of the choice of a period M of the function f. It folows easily directly from the definition
(3.5) ; however we give here a different proof which is based on an interpretation of the
numbers By 5 as certain special values of L-functions.

For the function f: Z/MZ — C let

L{s, f) = Zf(n)n_"
n=}

be the corresponding L- series which is absolutely convergent for all s with Re(s) > 1
and admits an analytic continuation over all s € C. For this series we have that

L1k f)= -2 (3.7)

For example, if f = 1 is the constant function with the period M = 1 then we have that

Bk m&k_ t

T 1 T 1!
k = k! et —1

C1-k)=-

By being the Bernoulli number. The formula (3.7) is established by means of the contour
integral discovered by Riemann (see [Lad], ch.XXI). This formula apparently implies the
desired independence of By ¢ on the choice of M. We note also that if ¥ C C is an
arbitrary subfield, and f(Y) C I\’ then we have from the formula (3.5) that By y € K
hence the distribution E}, is a I-valued distribution on Y.

3.2. Measures. Let R be a topological ring , and C(Y, R) be the topological
module of all R-valued functions on ¥

Definition. A measure on Y with values in the topological R-module A is a
continuous homomorphism of R-modules

p:CY,R)— A
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The restriction of u to the R-submodule Step(Y, R) C C(Y, R) defines a distribution
which we denote by the same letter u, and the measure g is uniquely determined by
the corresponding distribution since the R-submodule Step(Y, R) is dense in C(Y, R).
The last statement expresses the well known fact about the uniformal continuity of a
continuous function on a compact topological space.

Now we consider any closed subring It of the Tate field C,, R C C,, and let A be
a complete R- module with topology given by a norm |- |4 on A compatible with the
norm |- |, on C, so that the following conditions are satisfied:

for ¢ € A the equality |z]4 = 0 is equivalent to z = 0,

fora€e R, z€ A |az|a = |a|p|z]a,

forallz,y € A |7+ y|a < max(|z|a, |y]a)
Then the fact that a distribution (a system of functions u{¥ : Y; — A) gives rise to a
A-valued measure on Y is equivalent to the condition that the system u() is bounded,
i.e. for some constant B > 0 and for all : € I, 2 € Y; the following uniform estimate

holds: ‘
[ (z)|4 < B. (3.8)

This criterion is an easy consequence of the non-Archimedean property

|$ + yIA S HIRX(l:E‘A) |y|"4)

of the norm |- |4 (see [Mand}, [V1]).

In particular if A = R = O, = {2 € C,| |z|, <1} is the subring of integers in the
Tate field C, then the set of Op-valued distributions on Y coincides with O,-valued
measures {in fact, both sets are R-algebras with multiplication defined by convolution,
see §4).

Below we give some meaningful examples based on the following important criterion
of existence of a measure with given properties.

3.3. Proposition (The abstract Kummer congruences) (see [Ka3], p.258).
Let {fi} be a family of continuous functions f; € C(Y,0,) in the ring C(Y,0,) of all
continuous functions on the compact totally disconnected group Y with values in the
ring of integers O, of C, such that C,-linear span of {f;} is dense in C(Y,C,) . Let also
{ai} be any family of elements a; € O,. Then the existence of an O, -valued measure
i on'Y with the property

fidp = ai
)n’

is equivalent to the validity of the following congruences: for an arbitrary choice of
elements b; € C, almost all of which vanish

> bifiy) €p"0, forallyeY = ) bia; € p"0,. (3.9)
Remark. Since C, -measures are characterized as bounded C,-valued distribu-

tions, every Cp-measure on Y becomes a O,-valued measure after multiplication by
some non-zero constant.
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The proof of proposition 3.3. The nessecity is obvious since
Z bia; = / (p" Op — valued function )dp =
. %
1

p" f (Op — valued function )du € p"O,.
Y

In order to prove the sufficiency we need to construct a measure p from the numbers
a;. For a function f € C(Y,0,) and a positive integer n there exist elements b; € C,
such that only a finite number of b; does not vanish, and

~ ST hifi €pC(Y,0,)

according to the density of the C, span of {f;}in C(Y,C,). By the assumption (3.9)
the value 3~ a;b; belongs to O, and is well defined modulo p™ (i.e. does not depend on
the choice of b;). Following N.M.Katz [Ka3], we denote this value by “ f,, f du modp™".
Then we have that the limit procedure

/fdp.: lim “/ fdp modp™ €lim O, /p"0, = O,,
Y = Jy n

provides the measure p.
3.4. The S-adic Mazur measure. Let ¢ > 1 be a positive integer coprime to

M, =]«
qES

with S being a fixed set of prime numbers. Using the criterion 3.3 we show that the
Q-valued distribution defined by the formula

E{(f) = Eu(f) = <"Ex(fe), fo(z) = f(ex), (3.10)

turns out to be a measure where Ex(f) are defined in 3.1, f € Step(Y,Q) and the
field Q is considered as a subfield in C,. Define the generalized Bernoulli polynomials

By (X):
M=1 te(a-l- )t

ZB“‘”(.\' i Z A& == (3.11)
k=0
and the generalized sums of powers
M-1
Skp(M) =Y fla)d.
a=0

Then the definition (3.11

S

formally implies that

(B (M) — B (0)] = Skei, s(M), (3.12)

ol
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and also we see that

k
k - .
BMx)=%" (i)B,-,fX*-' =Bij+kBi-1 s X + -+ By s X* (3.13)

=0
The last identity can be rewritten symbolically as
By j(X) = (By + X)*.

The equality (3.12) enabels us to calculate the (generalized) sums of powers in terms
of the (generalized) Bernoulli numbers. In particular this equality implies that the

Bernoulli numbers By s can be obtained by the following p -adic limit procedure ([La3],
Chapter XIII):

. 1 n C e

By s = ,,1‘_.“30 M Sk r(Mp™) (p~— adic limit), (3.14)
where f is a Cp-valued function on ¥ = Zs. Indeed, replacing M in (3.12) be Mp™ with
growing n and let D be the common denominator of all coefficients of the polynomial
B(M)(X’) That we have from (3.13) that

%[B{_{‘}P (M) ~ B{MP(0)] = Broy p(Mp" )mod—p n. (3.15)
Then the proof of (3.14) finishes by division of (3.15) by Mp" and by application of the
formula (3.12).

Now we can directly show that the distributions E} defined by (3.10) are in fact
bounded measures. If we use (3.9) and take as a family {f;} the set of all functions
from Step(Y,O,). Let {b;} be such family of elements b; € C, that for all y € ¥ the

congruence

Z bifiy) = O(modp™). (3.16)

holds. Put f = E.‘ b; fi and without loss of generality assume that the number n is large
enough so that for all ¢ with with b; :,é 0 the congruence

By, s Sk, (Mp™)ymod p™ (3.17)

Iu‘ n
is valid in accordance with (3.14). Then we see that

Mp™ =1

By ;= (.Mp")“l Z Z b,-f,-(a)ak modp” (3.18)

f a=0

hence we get by the definition (3.10):

E{(f)=Biys~c"Byy =

Mp -t 3.19
(Mp™)~! Z Y bilfi(a)d® - fi(ac)(ac)*) mod p™. (3:19)

a=0
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Let
a. € {0,1,--, Mp"} a,=acmodMp"

then the map a  a. is well defined and it acts as a permutation of the set
{0, L., Ad’pn}
hence (3.19) is equivalent to the congruence

k Mp™—1

c — k — ny—1 (G.C) . k
E(f) = B,y — c¢* By 5, = (Mp") Z i ; bifi(a)a®. (3.20)
The assumption (3.16) now formally implies that Ef(f) = O0modp” completing the
proof of the abstract {ummer congruences and the construction of measures Ef.
Remark. The formula (3.20) also implies that for all f € C(Y,C,) the following
hold

E{(f) = kEf(z;7'f) (3.21)

where z, : Y — C, € C(Y,C,) is the composition of the projection Y — Z, and the
embedding Z, — C,,.
Indeed if we put a, = ac + Mp"t for some t € Z then we see that

af — (ac)* = (ac+ Mp"t)* = (ac)* = kMp"t(ac)*™! mod(Mp™)?,
and we get that in (3.20)

= (ac)* _

k= Iaf-‘_
pr = k{ac) (mod.f'vfp )-

The last congruence is equivalent to saying that the abstract Kummer congruences
(3.9) are satisfied for all functions of the type :c;;"1 fi and for the measure Ef with
fi € Step(Y, C,) establishing the identity (3.21).

§4. Iwasawa algebra and the non-Archimedean Mellin transform

4.1. The set of arguments for the non-Archimedean zeta functions. In the
classical case the set on which zeta functions are defined is the set of complex numbers C
which can be equally interpreted as the set of all continuous characters (more precisely,
quasicharacters) via the following isomorphism:

cS Homeomin(RY,C*); s (y—y°). (4.1)

The construction which associates to a function h(y) on RX with certain growth con-
ditions for y — oo and y — 0 the integral

Ly(s) = / )y’ &

Ry
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{which probably converges not for all values of s) is called the Mellin transform. For
example, if ((s) = 3_o-, n~* be the Riemann zeta function, then the function ((s)I'(s)
is the Mellin transform of the function h(y) =1/(1 —e7¥):

¢(s)T'(s) = -/000 3 _16 Y % (4.2)

so that the integral and the series are absolutely convergent for Re(s) > 1. For an
arbitrary function of the type

with z = 2 4+ iy € £ in the upper half plane ) and with the growth condition a(n) =
O(n®) (¢ > 0) on its Fourier coefficients, the zeta function

Lis, f) = i a(n)n™?,

coincides essentially with the Mellin transform of f(z), that is

D) o pe [ ey
merle = [ st (43)

Both sides of the equality (4.3) converge absolutely for Re(s) > 1+ ¢. The identities
(4.2) and (4.3) are immediately deduced from the well known integral representation
for the gamma -function

oo
I'(s) = / e"Vy’—= dy (4.4)
0 y' i

where iyﬂ is a measure on the group R which is invariant under the group translations
(Haar measure). The integral (4.4) is absolutely convergent for Re(s) > 0 and it can
be interpreted as the integral of the product of an additive character y — e~V of the
group R restricted to R_’f_, and the multiplicative character y — y* with respect to
the Haar measure on the group RJ.

In the theory of non-archimeadian functions the group RX is replaced by the group
Z 35 ( the group of units of the S- adic completion of the ring of integers Z) and the field

C is replaced by the Tate field C, = 6], (the completion of an algebraic closure of Q,).
The set, on which p-adic zeta functions are defined, is the p-adic analytic Lie group

Xs =Hom(Z3,C)) = X(Z3), (4.5)
where
Z; = @qESZ:'J

and the symbol
X(G) = Homeontin (G, C:) (4.6)

denote the functor of all p-adic characters of a topological group G (see[V1]).
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4.2.The analytic structure on Xg. Let us consider in more detail the structure
of the topological group Xg. Define

Up = {z € Z)}|z = 1(modp*)}

where v = 1 or v = 2 according as p > 2 or p = 2. Then we have the natural
decomposition
Xs = X((2/p*2)* x [] 2)) x X(U,). (4.7)
9¥Fp

The analytic structure on X(U,) is defined by the following isomorphism (which is
equivalent to a special choice of a local parameter):

¢: X(U,) S T={zeC)||t—1], <1},

where ¢(z) = z(1 + p*), 1 + p¥ being a topological generator of the multiplicative
group U, = Z,. Arbitrary character y € Xg can be uniquely represented in the form
X = Xo * X1 where o is trivial on the component U,, and x; is trivial on the other
component
(z/pzy x [ 2y
a7p

The character g is called the tame component, and y,; the wild component of the char-
acter x. We denote by the symbol x(,) the wild character which is uniquely determined
by the condition

xaoy(1+p") =t

witht € C,, [t], < 1.
In some cases it is convenient to use another local coordinate s which is analogous
to the classical argument s of the Dirichlet series:

Op 3 s = X((1+p")%) = (1 +p")** = exp(aslog(l +p")).

The character y(* is defined only for such s for which the series exp is p-adically
convergent. In this domain of values of the argument we have that ¢t = (1 4+ p¥)* — 1.
But, for example, for (1 + t)”" = 1 there is certainly no such value of s, so that the
s-coordinate parametrizes a smaller neighborhood of the trivial character then the -
coordinate (which cover all wild characters) (see [Man4], [Man6)).

Recall that an analytic function F' : T' — C, is defined as the sum of a series of
the type Y icg ai(t — 1) (a; € C,), which is assumed to be absolutely convergent for
all t € T. The notion of an analytic function is then obviously extended to the whole
group X g by means of the group translations. The function

Ft) =) aft—1)

i=0

is bounded on T iff all its coefficients a; are universally bounded. This last fact can
be easily deduced for example from the basic properties of the Newton polygon of the
series F(t) (see [Ko2], [V1], [V2]). If we apply to such series the Weierstrass preparation
theorem ([Kol], [La3], [Manl] and 2.5) we see that in this case the function F' has only
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a finite number of zeroes on T (if it is not identicaly zero). In particular, consider the
torsion subgroup X" C Xg. This subgroup is discrete in Xg in its elements y € X"
can be obviously identified with primitive Dirichlet characters y mod M such that the
support S(x) = S(M) of the conducter of x is contained in the fixed finite set S. This
identification is provided by a fixed embedding

. —_X
ip: Q Hc;‘

if we note that each such character y € X¥™ can be factorized through some finite
factor group (Z/MZ)*:

_X

x: 2% = (2/MZ)* - Q& X,
and the smallest such number A coincides with the conductor of x € X§'.

The symbol z, will denote the composition of the natural projection Z7 — Z;
and of the natural embedding Z) — CJ, so that z, € Xs and all integers k can be
considered as the characters :c;;' sy ykl

Consider a bounded C,-analytic function F on Xg. The above statement about
zeroes of bounded C,-analytic functions implies now that the function F is uniquely
defined by its values F(xox), where yg is a fixed character and x runs through all
elements x € X" with possible exclusion of a finite number of such characters in
each analyticity component of the decomposition (4.7). This condition is satisfied, for
example, by the set of characters y € X¥™ with the S-complete conductor (i.e. such
that S(x) = §), and even for the smaller set of characters which is obtained by imposing
the additional assumption that the character x? is not trivial (see [Mand], [Man6], [V1]).

4.3. The non-Archimedean Mellin transform. Let p be a (bounded) C,-
valuedmeasure on Z3. Then the non-archimediian Mellin transform of the measure
is defined by

L) =)= [ adu (s €Xs) (48)

§

and defines a bounded C,-analytic function
L,:Xs— C,. (4.9)

Indeed, the boundeness of the function L, is obvious since all characters z € Xg take
values in O, and g also is bounded. The analyticity of this function expresses a general
property of the integral (4.8), namely, the analytic dependence of it on the parameter
z € X5. However, we give below a pure algebraic proof of this fact which is based on a
description of the Iwasawa algebra. This description will also imply that every bounded
C,-analytic function on Xg is the Mellin transform of a certain measure .

4.4. The Iwasawa algebra (see [La3], chapter XII). Let O be a closed subring in
Op = {2 € Cy|lz|, <1}, G =lim-- G; (i € I) a profinite group. Then the canonical

. i . . . .
homomorphism G; < G; induces a homomorphism of the corresponding group rings

O[G;] — O|G;]
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. Then the completed group ring O[[G]] is defined as the projective limit
OlfGl) =lm O[[G:])] (iel)

Let us consider also the set Distr (G, O) of all O-valued distributions on G which itself is
an O-module and a ring with respect to multiplication given by the convolution, which
defined in terms of families of functions

w i G O
(see the previous section) as follows:

(h*xm2)O) = > w)e () (1, v € Gi) (4.10)
Yy=yiy2

Recall also that the O-valued distributions are identified with O-valued measures. Now
we are going identify the O-algebras O[[G]] and Distr (G, O). In the case when G = Z,
the algebra O[[G]] is called the Iwasawa algebra.
4.5.Theorem. (a) Under the notation of 4.4 there is the canonical isomorphism
of O-algebras
Distr (G,0) = O[[G)); (4.11)

(b) f G = Z, then there is an isomorphism
O[[G]) = O[X]), (412)

where O[[X]] is the ring of formal power series in X over O. The isomorphism (4.12)
depends on a choice of the topological generator of the group G = Z,,.

4.6. Formulas for coefficients of power series. We noticed above that the
theorem 4.5 would imply a description of C,-analytic bounded functions on X5 in
terms of measures. Indeed, such functions are given on analyticity components of the
decomposition (4.7) as certain power series with p-adicaly bounded coefficients, that is
, power series, whose coefficients belong to O, after multiplication by some non-zero
constant from CJ. Formulas for the coefficients of such series can be also deduced
from the proof of the theorem. However, we give a more direct computation of these
coefficients in terms of the correspondling measures. Let us consider the component aU,
of the set Z3 where

a € (2/p*2)* x [] 2,
q#p
and let p.(2) = p(azx) be the corresponding measure on U, defined by the restriction
of pu on the subset al, C Zg. Consider the isomorphism U, & Z,, given by

y=7" (v € Zy, yeUp)

with some choice of the generator vy of U, (for example, we can take ¥ = 1 + p*). Let
¢y be the corresponding measure on Z,. Then this measure is uniquely determined by
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]z ,, (T) A (2) = a;, | (4.13)

with the interpolation polynomials (f), since the C,-span of the family

(O ecaen

is dense in C(Z,, O,) according to Mahler’s interpolation theorem for continuous func-
tions on Z, (see [Mah]). Then it follows from the basic properties of the interpolation
polynomials that

values of the integrals

Z b; (T) = 0(mod p") (for all 2 € Z,) = b; = 0(mod p").

We can now apply the abstract Kummer congruences (see 3.3), which imply that for
arbitrary choice of numbers a; € O, there exist a measure with the property (4.13).

On the other hand we state that the Mellin transform L,, of the measure y, is
given by the power series Fq(t) with coefficients as in (4.13), that is

fU : X0 (y) dp(ay) = i ( /z ,, (f) dpy(z))(t - 1)° (4.14)

1=0

for all wild characters of the form x(q), x(0(7) =1, |t — 1]p < 1. It suffices to show that
(4.14) is valid for all characters of the type y — y™, where m is a positive integer. In
order to do this we use the binomial expansion

= -0y =3 () -y,

1
1=0

from which follows that

fy"‘d.u(ay)=/ " dpg(z) =

P ZP
o0

>(f

=0 2,

(5) dsstanam -y,

establishing (4.14).

4.7. Example. The S-adic Mazur measure and the non- Archimedean
Kubota — Leopoldt zeta function (see [La3], [Ku-Le], [Le2], [Wa]). Let us consider
first a positive integer ¢ € Z5 NZ, ¢ > 1 coprime to all prime numbers in S. Then for
each complex number s € C there exists a complex distribution ¢ on Gg = Z5 which
uniquely determined by the following

ws(x) = (1= x7'(e)e™ 7" ) Late (=3, X), (4.15)
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where Mo =[] s ( see 3.1). Moreover, the right hand side of (4.15) is holomorphic

for all s € C including s = —1. If s is an integer and s > 0 then according to criterion
(3.4) the right-hand side of (4.15) belongs to the field
Qx)CcQ*cQ

generated by the values of the character yx, and we get a distribution with values in
Q. If we now apply to (4.15) the fixed embedding i, : Q — C, we get a Cp-valued
distribution u(® = i,(u§) which turns out to be an O,-measure in view of 3.3, and the
following equality holds '

#(xap) = (17 (1),
which connects the special values of the Dirichlet L-functions at different non-positive
points. The function

Lzy=(1-c'2(c) ) ' Lyo(z) (z € Xs) (4.16)

is uniquely defined and is holomorphic on X with the exception of a simple pole at
the point z = z, € X and is called the non-Archimedean zeta-function of Kubota~
Leopoldt. The corresponding measure 149 will be called the S-adic Mazur measure.

§5. Complex valued distributions, associated with Euler products

5.1. In this section we give a general construction of distributions, attached to
rather arbitrary Euler products. This construction provides a generalization of measures
first introduced by Yu.I.Manin [Man4], B.Mazur and H.P.F.Swinnerton-Dyer [Maz-
SD]. Our construction [PaJ], [Pa9] was already successfully used in several problems
concerning the p-adic analytic continuation of Dirichlet series [Ar], [Co-Sch], [Sch].

5.2. Let S be a fixed finite set of prime numbers and

oo
Dis) = Z ann™® (s, a, € C) (5.1)
n=1
be a Dirichlet series with the following multiplicativity property of its coefficients a,:
o0
D(s)=[[Fo(a™)™ D aun™, . (5.2)
9€S (n5)m1

where the condition (n, 5) = 1 means that n is not divisible by any prime number from
the set S, and F,(X) are polynomials with the constant term equal to 1:

Mg

Fy(X)=1+) Ag X', (5.3)

i=1

We assume also that the series (5.1) is absolutely convergent in some right half plane
Re(s) > 1+ ¢ (c € R). This assumption is satisfied in most cases, for example, when
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the coefficients a, satisfy the estimate |a,| = O(n¢). For a Dirichlet character x :
(Z/MZ)* — C* modulo M > 1 the twisted Dirichlet series is defined by

oo

D(s,x) = Z x(n)a,n™°. (5.4)

n=1

For all s € C such that the series (5.1) is absolutely convergent and z € Q let us define
the function P, : Q — C by the equality

[ o]

P,(z) = Z e(nx)a,n™" e(z) = exp(2miz) (5.5)

n=1

Using the functions (5.5) we construct distributions p, on the compact group Z3
such that for every primitive Dirichlet charactder y viewed as a homomorphism x :
Z3 — C* the value of the series D(5,Y) at s with Re(s) > 1 + ¢ is expressed in a
canonical way in terms of the integral

[ xain ™ 5 x@u(a+ ()

I3 a mod A
(a,5)wt

Let for every ¢ € S, a(g) denote a fixed root of the inverse polynomial

my
XMF(XT) = XM Y Ay X

=1

(that is, an inverse root of Fy(X)). Suppose that a(q) # 0 for every ¢ € S, and extend
by multiplicativity the definition of numbers a(n) to all positive integers whose support

is contained in S:
a(m) = [] al@™" (S(a) C S).
q€S

Let us define an auxiliary polynomial

mg—1
Hy(X)=14 ) By X' (5.6)
i=1
by means of the relation
Fy(X) = (1= a(q)X) Hy(X), (5.7)
which imply the identities
Byi== 3 Agalg)™ (i=1,mg=1) (58)

J=i+1
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for the coefficients of the polynomial (5.6). Let us also 1ntroduce the following finite

Euler product
Y BS(npn~t =[] Hya™*), (5.9)
S(n)CS g€S

in which the coefficients BS(n) are given by means of (5.8), namely,

BS(n) = [[ BS(™™) (S(n) € S),
geS
with .
S, iy _ | Bqi, fori<mg
B(q') = {0, otherwise. (5.10)

Now we state the main result of the section.

5.3. Theorem. (a) For any choice of the inverse roots a(q) # 0 ,(¢ € S and for
any s from the convergency region of the series (5.1) there exists a distribution p, = 1, o
on Z35 whose values on open compact subsets of the type a + (M) C Z}§ are given by
the following

g1 an
o+ (M) = oo > B R (5.11)

so that the sum in (5.11) is finite and the numbers B®(n) are defined by (5.10).
(b) For any primitive Dirichlet character x viewed as a function x : Zg — C* the
following equality holds

[oxdu= TI @ -x(@a@™a™)Hx@a™)x
Zs 9E€S\S(x)
a -1

(Cx)

(5.12)

G(x)D(s,X),

with

Gx= 3 x(a)ecg;)

amod C,,

being the Gauss sum, C, the conductor, and S()) the support of the conductor of x.
5.4. The following proof of this theorem differs from that given in [Pan5] and is
based on the compatibility criterion (3.4). We check that the sum

Z x(a)ps(a + (M)), (5.13)

a mod M

{a.5)m1
does not depend on the choice of a positive integer A with the condition C,|M,S(M) =
S. This will be provided by a calculation which also implies that (5.13) coincides with
the right hand side of (5.12) (and therefore is independent of M).
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5.5.Lemma. For an arbitrary positive integer n and C,|M put

Ganm = Z x(a)e(an/M).
a mod Af
(a,5)=1

then the following holds

M -1 dn v dn
Guan0) = 7600 5wt x5 (3705 * (e )

X d|(M/Cy)

in which p denotes the Mébius function, 6(x) = lor 0 according as x € Z or not, and

we assume that the character x is primitive modulo C,,.
The proof of the lemma is deduced from the well known property of the Mobius

function:
1, ifn=1,
;“(d) = {o, if 1,1,

Consequently, G, a takes the following form:

> w(d)x(a)e(an/M) =

d|(a, M)
a mod M
Z#(d) Z x(day)e(dain/M) =
a|M a1 mod M/d
Z#(d)dulx(d) Z x(a1)e(dayn/M) =
d|M ai mod Af
dn

Z p(d)yd™ x(d)é (-————/ ) Z x(a1)e(dayn, M, )},

di(‘M/Cx) (]u/c\) ay mod Af

since x(a;) depend only on a; mod C,,, and
e(aydn/M) = e((a1/C, )(dn/(M/C\))).

In the above equality we changed the order of summation , then we replaced the index
of summation a by da; and extended the system of residue classes aq mod AM/d to
a; mod M. Now we transform the summation into that one modulo C,. It remains to
use the well known property of Gauss sums (see, for example, [Shil], lemma 3.63):

Gnc(x) =X(n) G(x),

establishing the lemma.
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5.6. In order to deduce the theorem, we now transform (5.13), taking into account
the definition (5.11) and lemma 5.5:

M1 . S
(M) Z X(G)ZBS(n)n Za"lc(T)"q -

a mod M ny
{a,M)=1

Ms_l § : 2 : S —8 —a

'a'(-m 2 B (n)n ap, Ny Gnnl,ﬂ4(X)‘_“
LG’(‘()E E B3(n)n"%a,, n7*x
a(M)Cy, 7 & o m

x > E%‘QW(u«‘fi}’éb)f((ﬁ}}’é‘.\.))-

a|(M/Cy)

(5.14)

From the last formula we see that non-vanishing terms in the sum over n and n; must
satisfy the condition (M/C,d)lnn;. Let us now split ny into two factors n; = nj - n{
so that S(n}) C S, and (n{,S) = 1. Then

and ’

since (ny, M) = 1. According to (5.2) one has

S a0 = [[ Fula™)™ (5.16)

S(n))CS g€S

. Now we use the definition of the finite Euler product (5.9) and of the polynomials
H,(X) which we rewrite here in the form

Y B~ [ Fy(a™) ™ = [](1 - al)g™) "

¢gES qES
Consequently,
Z BS(n)n~° Z apny = Z ap,n2~*
n S(n))CS S(n2)CS
and for S(ng) C S we have that
a(ng) = Y BS(n)an. (5.17)

nz=n-nj
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Keeping in mind (5.15) and (5.15a) we transform (5.14) to the following

TR WY T Eda) ¥ e

n d|(M/Cy) (n;',3)=1
s AR] L Py U
* 2 B o) (area)* (aiea)

Now we transform (5.18) with help of the relation (5.17), taking into account that
non-zero summands can only occur for such ny = nn} which are divisible by M/(C,d),
i.d. we put ng = (M/C\d)ns, S(ns) C S. We also note that by the definition of our
Dirichlet series we have

> B¥m)an (nn)) ™ =D(s,x) [] F(x(9)a™).

n,n} FES\S(x)

(5.18)

Therefore (5.18) transforms to the following:
M?

(M)C G(/\ H FQ(Y(Q)Q_Q)X
g€S\S(x)
d) M MN\"?
Z #( X(d) Z x113)a(n3 )(ng) -
X
dI(M/C ) S(ns)CS
(C)G(Y)D(s,A) I[I Fux(e)a™*)x
X gES\S(x)
x Y ) x(da@™ DY X(ns)a(ng)ng .
dl(M/Cy) S(ns)CS

The proof of the theorem is accomplished by noting that

Yo @ x(@a(d) = [ (Q=x(@9)ale) e,

di(M/C,) g€S\S(x)

> X(ng)a(nang® = ] (1 -%(@alg)g™*)" =
S(na)CS gES\S(x)

[ F&@e )" Hy(x(a)a™).

g€S\S5(x)

5.7. Concluding remarks. This construction admits a generalization [Pa7] to
the case of rather general Euler products over prime ideals in algebraic number fields.
These Euler products have the form

D(s) =Y aaN(n)™* HF,,(N P~

where n runs over the set of integral ideals, and p over the set of prime ideals of the
ring of integers Oy of a number field I, with A’(n) denoting the adsolute norm of an
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ideal n, and F, € C[X] being polynomials with the condition Fp(0) = 1. In [Pa7] we
constructed certain canonical distributions, which provide integral representations for
special values of Dirichlet series of the type

D(s,x) = 3 x(w)anh (n) ™,

where x denote a Hecke character of finite order, whose conductor consists only of prime
ideals beloning to a fixed finite set S of non-Archimedean places of I{. The main result
of [PaT7] provides a generalization of theorem 4.2 of the ealier work of Yu.l.Manin [Man6).

However, in the construction of non-Archimedean convolutions of Hilbert modular
forms given below in chapter 2, we give another approach to local distributions, which
is quite different of that given above and is applicable only to certain Dirichlet series
(namely, to convolutions of Rankin type).
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Chapter 2. Non-Archimedean convolutions of Hilbert modular forms

§0. Introduction

0.1. Now let p be a prime number and S a finite set of primes containing p. In this
chapter we discuss convolutions of Hilbert modular forms and construct their S -adic
analogues; they correspond to certain automorphic forms on the group G = GL; x GL,
over a totally real field F and reduced to zeta functions of the form

L(s,f,g) = »_ C(n,f)C(n,g)N (n)™° (0.1),

where f, g are Hilbert automorphic forms of “holomorphic type” over F', with
C(n,f) ,C(n,g) being their normalized Fourier coeflicients ( enumerated by integral
ideals n of the ring of integers Op C F). We consider the functions f, g as being
defined on the adelized group G4 = GLy(Ar), where A is the ring of adeles of F
and we assume that f is a primitive cusp form of scalar weight & > 2 and of conductor
¢(f) C OF with the charachter ¢ and g a primitive cusp form of weight ! < % and of
conductor ¢(g) with the character w, (¥,w: AfF — C* being Hecke characters of finite
order) . The non-Archimedean construction is based on the algebraicity properties of
the special values of the function L(s,f,g) at the points s = [,---,k — 1 up to some
constant involving the Petersson inner product (f, f) of the automorphic form f [Shi6].
Our theorem about non-Archimedean interpolation is equivalent to certain generalized
Kummer congruences for these special values.

0.2. We need some more notations for the precise formulation of the result (in a
simplified form). Let ¥*,w* be the ideal group characters of F' associated with 3,w and
let

L(s,gw)= > " mNm)™ = [ Q-4 "ENE)™)" (02)
nt+c=0F p+¢=0F

be the correspoding Hecke L-function with ¢ = ¢(f)c(g). We now define the normalized
zeta function

U(s,f,8) = vn(s)Le(28+2 — k— I, 4Yw)L(s,f,g)
where n = [F : Q] is the degree of F),
7(s) = (27)"D()"T(s + 1 = 1)

being the gamma-factor. Then the function ¥(s,f, g) admits a holomorphic analytic
continuation over the whole comlex plane and satisfies certain functional equation [Ja),

[Shi6]. Put Q(f) = (f, f)), then the number

‘P(l + T? f’ g)
@ri)"1-DQ(f)

1s algebraic for all integers r with 0 <r <k -1-1 (0.3)

For the non-Archimedean construction we introduce the S-adic completion

0s = [[©©r 82, = [] O

g€S plgeS
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of the ring Of. Put
Sp={p|p divides ¢ € S}

and let Gals = Gal(F(S)/F) be the Galois group of the maximal abelian extension of
F unramified outside S and oco.
The non-Archimedean L-functions will be defined on the p-adic analytic Lie group

Xg = Homcoutin(G&lS$ C;)

consisting of all continuouos p-adic characters of the Galois group Galg with C, being
the Tate field. Elements of finite order x € A's can be obviously identified with those
Hecke characters of finite order whose conductors are divisible only by prime divisors
belonging to Sg, via the decomposition
X : A?- class ﬁﬂtheory Galg — -Q—x :'_5 c:
Let us denote by the same letter y both Hecke characters and the corresponding
elements of X's. There is a natural homomorphism

N : Galg — Gal(Q(5)/Q) = Z¥ = [[ 2}, (0.4)

gES

defined by the restriction of Galois automorphisms from F(S) to Q(S), and we denote by
Nz, the composition of this homomorphism with the natural projection [] . Z; — 75
and the inclusion Z; C CJ

Our essential assumption is that that the cusp form f is p-ordinary, i.e. for the fixed
embedding Q — C, and for all p | p there exists such a root a(p) of Hecke p-polynomial
of f that | i,(a(p)) [,= 1. We then fix such roots a(p) and extend the definition of
a(m) to all integral ideals m C Op by multiplicativity.

0.3. Theorem (On non-Archimedean convolutions of Hilbert modular forms)
Under the above notations and assumptions there exists a bounded Cp-analytic function
Vs : Xs = C, uniquely defined by the condition: for each Hecke character of finite
order x € X" the following equality holds

, TN WL E, gP(R))
Us(x) = ip | DFw*(m) \a.(m)z (—2mi)"(-D{(f, f>]’

where D is the discriminant of F', 7()x) being the Gauss sum of x, and gf(x) the cusp
form obtained from g by complex conjugation of its Fourier coefficients and by twisting
it then with the character y.

0.4. This result is also valid for the special values (I +r f, g) withr =1,--- k~1
if we replace x € A's by x Nz} € A's (see the Main theorem in §2).

Recently this construction was extended by Mi Ving Quang (Moscow University)
to the non-p-ordinary, i.e. supersingular case, when | i,(a(p) |,< 1 for all p | p (at
least when F' = Q). In this situation the functions ¥ g are also uniquely defined by the
condition that they have only a prescribed logarithmic growth on X’s.

0.5. Content of the chapter. We recall in §1 some basic facts about Hilbert
modular forms and their Fourier coeflicients. The precise formulation of the main result

b}
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of the chapter is given in §2. The most important element of our construction is the
complex valued distributions fz, on the Galois group Galg introduced in §3. We establish
algebraicity properties of these distributions in §4 by means of the Rankin-Shimura
integral representation for s = {,.-+ k — 1. After application of the fixed embedding
p . Q < C, these values become p-adic numbers and define p-adic measures on Xs
; then the function ¥g of the Main theorem is built as the non-Archimedean Mellin
transform of the p-adic measure ¢,(ji;).

Notations
Let the symbols

OpF, I, Fa, F:, 0C Op, Dp =N(D)

denote, respectively, the maximal order (ring of integers), the group of fractional ideals,
the ring of adeles, the group of ideles, the different and the discriminant of the totally
real field F' of degree n over Q. Let £ = X, U Ly denote the set of places (i.e.
classes of normalized valuations) of F' where o, = {o07,::+,00,} are archimedean
places, &y = {p = p, C OF} finite (non-Archimedean ) places , so that if | - |, be the
corresponding normalized valuations then the product formula hplds

[[lz}y = 1 (zeF*, veD).

The archimedean places are induced by the real embeddings of F:z — z(*) € R (v =
1,---,n). An element z € F* is called totally positive (z > 0) if one has z(*) > 0 for
all v and let F' denote the multiplicative group of all totally positive elements of F'.
We put also F, = F®Q R = R" C Fa, and let = Op @2 Q C Fa be the subring of
finite adeles where Op is the profinite completion of the ring Op (with respect to all its
ideals). Then Fa = F EBF and for an adele ¢ = (2, ),ex We write T = T4 + 2o where
Too € Foo, Zg € F. On the other hand there is the decomposition FJ = F% x Fx
and we often use the convenient though slitly ambiguous notation y = yeo - yo with
Yoo € F iy, Yo € FX. For the idele y € FY let the syrnbol 7 € I denote the fractional
ideal associated with y so that one has yOp = yOOp

§1. Hilbert modular forms

1.1. The group. We consider here the group GL,(F") as the group Gq of all
Q-rational points of a Q -subgroup G C GLa,. Then the adelization Gao = G(A) can
be identified with the product

GLQ(FA) > (oo X Ga,

where

Goo = GLg(Fuo) = GLo(R)", Gg = GLy(F).

The subgroup
G 2 GLF(R)" C Goo
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consists of all elements

a:(al,--',an)a av:(auﬁu>’

Tv by

such that for all v = 1,---,n one has deta, > 0. Every element a € GZ, acts on the
product " of the n copies of the upper half plane by the formula

a(zlﬁ T !z") = (al(zl)'l e 1aﬂ(‘z“))1

where

a’v(zu) = (auzu + bu)/(cyzu +d,.

For z = (21, --,2z,) we put {z} = z; + -+ + z, and ep(z) = e({z}), with e(z) =
exp(2niz). Let i = (¢,---,7i) € H”, then

{a € GLla(i) = i} /RS = SO(2)"

is a maximal compact subgroup in G, /RY. For @ € G, , an integer k and an arbitrary
function f : ™ — C we use the notation

(flea)(z) = N(cz + )% fla(2))NV det(a)*/?,

with A(2)¥ = zf ... 25, Let ¢ C OF be an integral ideal, ¢, = cO,, its p- part, 0, = 20,
the local different. We will use the open subgroups W = W, C G defined by

W =GE x [[W(p),

P
Wip) = (1)
{(22’) € GL(Fp)|b € D;I,c € Vpcp, a,d € Op,ad—bc € O;‘}.
Let h = |6'T_;"| be the number of ideal classes of F' (in the narrow sense),
Clp = I/{(z)x € F}},
and let us choose the ideles tq,---,ts so that £y C Op form a complete system of

representatives for 51;, (tx)oo = land {y +mg = Op (A =1,---,h, mg = qusp q).

0ty
approximation theorem”):

Put z, = (1 ¢ ) then there is the following decomposition into a disjoint union (“the

Ga = U,\GQ(E,\I’V = UAGQm:\"T'V, (1.2)

-1
5t o

—_
where = _( b 1

) , ¢ denotes the involution given by

(o) = (&)

(see [Shi6], p.647).
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1.2. Definition of Hilbert automorphic forms of weight k and level ¢ C Op
with a Hecke character 3 of finite order. We call a function f : G4 — C* a Hilbert
automorphic form of weight k and level ¢ C Op with a Hecke character # if the following
conditions (1.3) - (1.5) are satisfied:

for all x € G4 one has f(saz) = ¢(s)f(z)

x (1.3)
for s € Fy(the center of Ga),a € Gq.

If we denote by ¥y : (Op/c)* — CX the c- part of the character ¢ and then extend the

definition of ¥ over W by
ab
L ((c d)) = tho(a.modc),

( ac being the c-part of a) then for all € G and for w € W, with wo = 1 we have
that

fla w) = b (). (14)
Ifw=w(8) = (w1(61), -, w,(6)) with

wy(8,) = (cosﬂy --smﬁ,,) ,

sinf, cosé,

then we have that

f(zw(6)) = f(z)e ™Y (2 € Ga). (1.5)

An automorphic form f is called cusp form if

/ f((lt)g) dt =0 for all g € Ga. (1.6)
FalF 01

The vector space My(c,¥) of Hilbert automorphic forms of holomorphic type is
then defined as the set of functions satisfying (1.3) - (1.5) and the following holomorphy
condition (1.7): for each 2 € Ga with zo, = 1 there exist a holmorphic function

gz : H™ — C such that for all y = ('c’ 3) € G, we have that

flzy) = (9Ie0)() (1.7)

(in case F' = Q it is also assumed that the functions g, are holomorphic at the cusps).
The property (1.7) enables us to describe more explicitely the automorphic forms f €
M(c,¥) in terms of Hilbert modular forms of §". For this purpose we put fy = 9o

— t7to
where z,* = [ "

A 1) , then fy(z) € My(Tx, 1)) for the congruence subgroup

Ty= F,\(C) C G+,
Ty=z\Wz'NGq =

b . .
{(Zd) e GElbedyo™!, cetydc,a,d € O, ad—bce O;S}.
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This means that for all 4 € T'y(¢) the following condition (1.8) is satisfied,

fliy =9(n)fx and fa(z) = aa(er(é2), (1.8)
£

where 0 < £ € ) ore £ = 0 in the sum over ¢ (see [Shi6] for a more detailed discussion of
such expansions). The map f — (fy,--- fi) provides an isomorophism of vector spaces

M(c,) E @AMi(Ta, %)

Put
— ax()N(Er) %%, if the ideal m = €57 is integral;
e 1) { 0, otherwise. (1.9)
There is a Fourier expansion of the following type
yr . ! .
F(E3) = T Cln N Per(Cieolx(ca) (1.10)

0LEF (=0

where xp : FA/F — C* is a fixed additive character with the condition xp(re) =
er(Zo) (see [Shi6], p. 650).

Let Si(c,%) C M(c,%) be the subspace of cusp forms and f € Si(c,) then
ay(0)=0forall A=1,--- h.

1.3. Hecke operators (see [Miy|, [Shil], [Shif] ) are introduced by means of
double cosets of the type WyW for y from the semigroup

Yo =Gan(G x [TYe(p)),

where
b

The Hecke algebra H. consists of all formal finite sums of the type Y ¢, WyW
with y € Y;, ¢, € C and with the multiplication defined in the standard way by means
of the decomposition of double cosets into a disjoint union of a finite number of left
cosets. By definition T¢(m) is an element of the ring M, which is the sum of all different

cosets of the type WyW with y € Y, such that da@) = m. Let
T! = N(m)*=2/2T (m) (1.12)

be the normalized Hecke operator, whose action on the Fourier coefficients of an auto-
morphic form (of the holomorphic type) f € My(c,%) is given by the standard formula

C(m, f|T{(m) = Z Pp* ()N (a)"1C(a " mn, f) (1.13)
m+n=a

If f € Mg(c,%) is an eigenfunction of all Hecke operators T;(m) with f|,T/(m) = A(m)f
then we have that C(m, f) = A(m)C(Op, ). If we normalize the form f by the condition
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C(Or, f) = 1 then there is the following expansion into an Euler product for the L-
function of the form f:

L(s,f)= ) _C(n, N (n)™* = AN (n)™* =

1.14
[T = Co, N ()™ + b ()N (p)F 2] .
p

For such a form f all the numbers C(n, f) are algebraic integers.
1.4. The Petersson inner product is defined for f = (fi1, -+, fa) € Si(c, %)
and g = (g1, ,98) € Mg(c,9) by the equality

NOIA

h
(Eghe=3 / RN )" du(2), (1.15)
A=1 r

where .
du(z) = H y, 2 dz, dy,
v=1
is a GL, -invariant measure on H™.
If f € My(c,9) and |1 T{(m) = A(m)f for all m with m + ¢ = Qp then
A(m) = $* ()X,
Y (m){f[eTa(m), g)e = (£, glsTa(m))e.

let q be an integral ideal and f € M (c,v). Let us define the operators f|q, f|U(q)
by their action on the Fourier coefficients:

(1.16)

C(m,flq) = C(q~'m, £), C(m,fU(q)) = C(qm,£). (1.17)

Here is given an explicit description of these operators in terms of the action of double
cosets: for a finite idele ¢ € F with § = ¢

(f)e) = N (1)) (115)
: lv
(AU @)) =X @ T s (o0 ) (119)
veEOFr/q
We define also an involution J, by the formula
(£|Je)(z) = (det(z) ™) f(zbo) with by = (CO é) € G’a,ég = c0?, (1.20)

then f|J. € My(c,vp™1). If f is a primitive form (in the sense of Miyake [Miy]) of
conductor ¢ then the following hold

flJ. = A(D)f?, |A(f)] =1, C(m,f?) = C(m, f). (1.21)
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It follows from the definitions (1.18)-(1.20) that
£|Jme = N (m)¥/2(£]J)|m. (1.22)

1.5. Gauss sums and the twist operator. Let y be a Hecke character of finite
order with a conductor m and x(ze) = sign(2ee)” for r = (r1, -+ ,rs) € (Z/2Z)" (the
parity of x ) and let x* be the corresponding character of the group of fractional ideals
prime to m. Put x*(a) = 0 for those a which are not coprime to m and define the Gauss
sum by

T(x) = z sign(z)"x*{((z)md)ep(z). (1.23)
zem=12-1/0-1
Then |7(x)|? = N(m).

For an arbitrary element f € My(c,) there an exist an automorphic form f(x) €
Mi(em? 1px?) which is uniquely defined by the condition C{n,f(x)) = x*(n)C(n,f)
for all n with n + m = Op. If a cusp form f € &i(c,) is primitive of conductor ¢ and
¢ + m = Op, then the conductor of f(x) is equal to cm? and the “pseudo-eigenvalue”
of the involution J 3 on f is given by the well known formula

A(E(X)) = P (m)x* () (x)* N (m)~TA(f) (1.24)
(see [Shi6], p.664)

§2. Description of the non-Archimedean Rankin convolution of Hilbert
automorphic forms

2.1. As in the Introduction, let f € Si(c(f),¥), ¢ € Si(c(g),w) be the primitive
cusp forms of (scalar) weights & and ! of the conductors ¢(f), ¢(g) with the Hecke
characters of finite order ¥ and w such that k¥ > ! and ¢(z) = signM(z)*, w(z) =
signNV(z)! for z € FX. For an integral ideal a denote by S(a) its support:

S(ay={p | p divides a},

and put S(f) = S(¢(f)), S(g) = S(c(g)) and S(x) = S(m) for a Hecke character of
conductor m.
We assume that

SFrNS(f)y=5rNS(g)=S(H)nS(g) =0, (2.1)
C(c(f), 1) - C(c(g)8) # 0, (2.2)
l2,(C(a,f))|p =1 for all q € SF. (2.3)

Put ¢ = ¢(f)c(g). For q € Sr we denote by the symbol a(q) such root of the Hecke
polynomial
X2 - C(qa f)*X + ¢*(q)N(q)k_la

that |i5(a(q))], = 1 and let o' be the other root of the polynomial. Then it follows
from the property (1.16) that the numbers '

a(q) = ¥*(q)e(q), &'(q) = ¥*(q)a’(q)
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coincide with the roots of the complex conjugate polynomial
X2 - Cq, D)X +¢*(q) "W (q)*!

for all q such that q + c(f) = Op.
Similarly, if

X? - C(q,8)X +w (N ()™ = (X - B(a))(X - B'(a))
then for q with q + ¢(g) = OF the numbers

A(a) = w*(a)B(a), A'(q) =w*(9)B'(a)
coincide with the roots of the polynomial
X? ~Cla,g)X +w*(a) "' N ().

Let us extend the definition of the numbers a{n), a'(n), B(n), f'(n) to all integral ideals
by multiplicativity. As in the introduction we denote by the same letter y both Hecke
characters and the corresponding elements of X's and recall that

N : Gals — Gal(Q(5)/Q) = Z§ = [] Z

qES

is a natural homomorphism defined by the restriction of Galois automorphisms from
F(S) to Q(S),s0 that Nz, is the composition of this homomorphism with the natural
projection [[ ZJ — Z) and the inclusion Z; C CJ. Put

E) = (£, f) (e

2.2, Theorem. Under the assumptions (2.1) - (2.3) and notations as above there
exists a bounded C,-analytic function ¥s : X's -~ C, which is uniquely determined by
the condition: for each Hecke character of finite order x € X&™ with S(x) C SF of
conductor m = ¢(x) and for each integers r = 0,1,---k — 1 — 1 the value ¥s(x Nz})is
given by the image under the fixed embedding i, of the algebraic number

T(X)PN T2 = Y1 4 r £, 2?(%))

_1\-r 2r+2lwz m
(-1)""D} () = (—2m2)=0Q(f)

A(r, x), (2.4)

where

A(7', X) =

[[ -Gra™B@NM (@)1= (x"a™B) @M (a))x (2.5)
q€Sr\S(x)
X (1= (¢ B (@M ()7 = (T B @A (@)1,

Drp is the discriminant of F, 7(x) being the Gauss sum of x, and g(x) the cusp form
obtained from g by complex conjugation of its Fourier coefficients and by twisting it
then with the character x (see §1).
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§3. Distributions on the Galois group Galg

3.1.The function ¥g(z,f,g) of theorem 2.2 is constructed by means of the theory
of non-Archimedean integration ([Man6], [[Kol], [Ko2], [V1]). Let O, be the subring
of integral elements in the Tate field C,, Op, = {z € C, | |z|, <1} and C(Gals, C,)
denote the ring of all continuous p-adic functions on Gals. Then O, -measure on Gals
is an arbitrary Op-linear map p : C(Gals, Cp) — O, which is denoted also as

f - fdu.
Galg
We note that
Xg = HOlncomin(Gals, C:) C C(Gals, CP)'

Therefore for an arbitrary O, -measure p we have that the function

L,:Xs— 0O, (L“'—"/ xdp for x € Xs)

alg

which is called the non-Archimedean Mellin transform of the measure u. The function
L, is bounded and analytic on the p-adic analytic Lie group A's. If we fix a character
Xo € Xs then we get that the values of the type L,(xox) with x € X" uniquely
determine the function L, (see [V1], [Man@], [I{a3]). The analytic structure on X is
defined by means of the class field theory. Namely, let m be an integral ideal, I{m) be
the group of fractional ideals coprime to m,

P(m) = {(a) | a € F{'} a = 1(mod*m),
H(m) = I(m)/ P(m)

the ideal class group (in the narrow sense) of conductor m. Then if F(m}/F is the
maximal abelian extension of F' unramified outside primes dividing m and infinity then
the Artin symbol provides an isomorphism:

H(m) S Gal(F(m)/ F), & — (250,

and we get
F(S) =UnF(m), Galg =lmH(m) (S(m)C Sr).
There is the following exact sequence

1 - Galy - Galg — Galf — 1

where Gal] = Gal(F(8))/ F)) = Clp, F(®) being the maximal abelian extension of F
ramified only over oo,

Galg = Gal(F(S)/F(9)) = OF /(clos(OX)),
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where clos(OF ) denotes the closure of the group of all totally positive units OF in the
group
0f = H(O[:’ ®Z,)*.
geSsS

There is the natural canonical C,-analytic structure on the group
Honlcontlin((oF & Zp)x, C;,()

so that this group is a C,-analytic Lie group which is n-dimensional over C,. We extend
this structure onto the whole group X’s by translations (see [Man6], [V1]).

3.2.We construct a measure p = u(f,g) on the group Gals for which the value
L,(xNz}) is given by the formula (2.4) and set ¥s(z) = L,(z). In order to construct
we use the theory of distributions. Recall that for an abelian group A then a distribution
p on Galg is a finite additive family of functions

#={un} pm: Hm)— A

so that the compatibility condition

Yo pal(e) = pe,(v) (3.1)

z=ymod* m,

holds for all m; with m;|m. If 4 = O, then pu defines an Op-measure. We call a C,-
distribution a bounded measure if ap is a Op -measure for some a € C)'. Now let A

be a vector space over Q" (the maximal abelian extension of Q ) and ur : H(m) —» A
be an arbitrary family of functions. For a character y : H(m;) — Q** and for m;jm
we define xm as the composition of the natural projection H(m) — H(m;) (modm,)
and x and put

pn(Xn) = D> Xn(T)in(z).

z€H(m)
Then the compatibility condition (3.1) is equivalent to the fact that
pm(Xm) 18 independent on the choice of m with my|m. (3.2)

Using this compatibility criterion we construct u(f, g) as a distribution defined by
means of a certain family of functions

fram : H(m) — Q.

3.3. Proposition. For every s € C there exists a complex valued distribution
{fts,m}, which is uniquely determined by the condition

. _ N (2PN (m')* =D G(s, fo|e(g), g(Xm )| Jemr)
Aom(xm) = a(m) (—2ri)"0=D - Q(f)

(3.3)
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where m, m' are arbitrary ideals with the condition mpe(x)|m, ¢(x)?mZ|m’,

fo= Y M(a)a'(a)fla,

ulmo

with M(a) being the Mobius function (of the ideals) so that this definition of fy is
equivalent to the identity

L(s,fo) = [ (1 = o' ()N (9)7")L(s,f).

qimo

3.4. The proof of the proposition is carried out by means of the compatibility
criterion (3.2) according to which it suffices to check that the right hand side of (3.3) is
independent of m and of m'. First of all g(xm) = g(Xm,) is independent of m because
of the property S(nig) = S(m) = Sr and

L(s,glxm)) = D x(m)C(n, gV (n)™* = L(s,gmo(x)).

n+mg=0p

On the other hand, the formula (1.22) implies the identity: for m’ = mc¢(x)?m,; we
have that

g(xm)Vem = N(mye(£))7? (o () e(g)mae(x2) M1 ¢(F). (34)
Put
D AMN ()7, (3.5),
ZB(II)N(II)“’ = L(Sigmo(X)IJC(g)mgt(x)2)i (36)
Then (1.17) and (1.21) imply the equalities
A(ne(fymy) = a(c(f)my)A(n) = C(c(f), fa(my)A(n), (3.7)
B(nc(g)) = C(c(g), g)x" " (c(g))B(n), (3.8)

Taking into account that m;c(f) + c¢(g) = Op we obtain from (3.4), (3.7), (3.8) the
following equality

L(S,folc(g),g(,\'mo)l-]m') =
N (mye(£))? Y~ A(ne(g)™)B(nm e(£)™ WV (n)™* =

N (myie(£))'72 3™ A(nmye(£) B(nmy e(g))N (nmye(f)e(g)) ™" = (3.9)

w(f, g)a(m1)x"‘](c(g)) ) ,
N ()N (m,)e=(/2) L(s, £, 9(xmo )| Ve(g) ()2 m3)

with the constant

K(f,8) = N(<(£))/2C(c(£), )C(c(8), 8)
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which is not zero due to the assumption (2.2). It now follows from (3.9) and from the
definition (0.2) that the following identity holds

c02)? a—(1/2)
A (s, () 9 ) =

N 281 % -1 ’
”(fag)Dl%a (C(X):(oc)(x)m);)(zqg)) "I'(SaanQ(Xmo)”c(s)t(x)’mg)

(3.10)

that is the terms with m’ cancel and we see that i, m(xm) is independent of m and of
m' proving the proposition.

Next we will use the property (1.24) of the twist operator in order to get a more
explicit expression for the right hand side of (3.3) which is essential for the formula (2.4)
in the theorem 2.2.

3.5. Proposition.Under the notations and assurnptions as above the following
equality holds

(s, fo, 9(Xmo )| Je(g)e(x)2m2) = (3.11)
a(mg)? N (mo) "> A(s — 1, \)A(g(x)) ¥ (s, £, 8°(x ")),
with
A(s—1,x)=
II -GN (@) )1 - (x*a™8) (N (4)* )%

9€5p,\S(x)
x (1= (x" "B @N(0)™)(1 — (x" BN (9)7)
defined by (2.5) and with the twisted root number

A(8(X)) = w* (cOOX"(<(8)7(x)* N (c(x))) " Alg)

given by (1.24).

3.6. In order to prove the proposition we simply input (3.11) into the definition
(3.3):

fra,m(xXm) = &(f, g)A(g)A(s — |, X) DF' x
wH(eENTO?N (G~ (s, f,g7(x ™)) (3.12)
ac(x))? (=271)n(=-DQ(f)

Now we see from the algebraicity property (0.3) that the values jij4, m(y) belong to Q
for all y € H(m). Put

w(y, £, 8) = 4 (u(y)/A(g)~(t, g)), (3.13)

In this way we have obtained a C, -valued distribution on the Galois group Gals which
satisfy the equality (2.4) with r = 0. The p - adic boundness of the distribution, which
is equivalent to certain generalized I{ummer congruences for the numbers

U(s, f,8°(x7Y)
(—2m0)"0-DQ(F)’
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is established in §5 below.
§4. The integral representation of Rankin - Shimura

4.1. We start by recalling the definition of Eisenstein series in the Hilbert modular
case. Let a,b be arbitrary fractional ideals , n a Hecke character of finite order modulo
an integral ideal ¢ C OF such that n*((z)) = signV (z)™ for z = lmod™e¢, z € Op. Put
(for Re(s) > 2 —m)

Kum(z,850,b;n) =
> signA (d)™ o (db TNV (cz + d) "™ N (cz + d)| 72, (4.1)
¢,d

Li(z,s,0,b;n) =
3 signA ()™ n*(ca TN (cz + d) "™ W (cz + d)| 7, (4.2)
c,d

the summation in (4.1) and (4.2) being taken over a system of representatives (c,d) of
equivalence classes with respect to the O - equivalence relation for non-zero elements
in a x b given by (¢,d) ~ (uc,ud) with u € Of. The series (4.1) and (4.2) can be
extended to function on the adelized group G4 as in §1 so that

Kn(s;a,8;0)a = N(E2) T DN (y) K (z,8;1204, b; 1), (4.3)
Ln(s;0,b;9)a = N(E2) "™ BN () Lin(2, 55 0, b5 107 ). (4.4)

The functions (4.1)-(4.4) admit analytic continuation over the whole complex plane
with respect to the parameter s € C |, and under the assumption of the primitivity of 5
modulo ¢ the following functional equation holds (see [Shi6], p.672):

Am(l -—m- S)I{m(l —m—s;q, b; 77) =
T(r))}\f(babt)m+2’_l An(s)Ln(s;a,be;7),

with the I' - factor Ap(s) = #7"*I'(s + m)". If q is an integral ideal then the action of -
the involution J; on (4.3) and (4.4) is easily calculated by the definition (1.20) and is
given by the formula

(4.5)

Km(s;a,b;)|Jq = (-1)""N(q0*)7* (™D L, (s; b, a7 n). (4.6)
4.2. The integral representation. Put
F = fyle(g) € Sr(emo, ¥), G = g(Xme)|Jem' € Si{em’,w™1x~2
Then the following integral representation of Rankin type holds (see [Shi6), (4.32)):
U(s, F,G) = D}ﬂf‘(s +1-0"r""(F? V(s —k+ 1)), (4.7)

where
V() =G - Kp_i(s;em’, Op;pw ™ x™2).
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More precisely

h
U(s,F,G) = DY’ T(s + 1 = I)"x~ " Zj\r({/\)aﬂ—(wf)/zx
A=1 (48)

X / F2(2)Ga(2) Kx—i(z,s — k + 1620, Op;pw ™ x "HN (y)°™! da dy.
Ta(cm)\Hn
4.2, Application of the trace operator. The method by which the right hand

side of (4.7) can be explicitly calculated is based on an application of the trace operator
(as in [Man-Pa], [Pa3], [Pa9}, {Ar]) which is described below. Let R be a system of

representatives of the right cosets Wen/\Wen,, then the trace V[Trm; is defined by the
equality: forz € Go,h € R

(VITrim ) (@) = > p(h™)V(z h). (4.9)

hen
Then the scalar product in the right hand side of (4.7) takes the form:
(FP V(s =k + Dem = (F?, V(s =k + DT Yemo- (4.10)

The explicit formula for the action of the trace on the Fourier expansions is provided
by the equality:

VTS = N (' my ) =DV T U mg ) emo, (4.11)

which is deduced by the special choice of a system of representatives for Wen\Wen,,

namely
_ 1 0 r -1
R= {(cmovl) (veOp/m'm, )}

where cmyg is an idele such that émp = cmg , and from the definitions (1.19), (1.20) of
the operators U(m'mgy ') and J¢. If we now use (4.10) and (4.11) then the identity (4.7)
transforms to

U(s, F,G) = DY’ (s + 1 = )"z N (m'my 1)1~ (+/D

' vim (4.12)
e (FP’V (5 -k 4+ ].)IU(ITI m; )Jcmo)tmoy

where

V'(s) =V(s$)|Jem = (—I)Mg(,\'mo)(ﬁ'k_;(s; Cm',OF;¢w_1X_2IJ¢m0) =

(=1 N (em'2?) =MD L1 _i(s; OF, Op; o™ x72)
according to the formula (4.6).
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4.3. Normalized Eisenstein series. Let us define the normalized Eisenstein
series for all integers m and r with the condition m >0, m 4+r > 0 by

2" DY (m + )"

Em,r(’]) = (__41r)rn(_2ﬂ-i)mn

Lm+2r(—r;0p,0p;n). (413)

Then the integral representation takes the form
(s, F,G) = (1) A (m'my )~ /DN (cm'p?)~(o—k+)—(k=0/2
X 2n7rn(k—l) (Fp’ [g(xmo)E;-—m,m-l—r—l(¢w—lx—2)“U(m'm0_1)J‘mo)fmo

withs=Il+rm=k—-1-2r,r=0,---,k =1 —1. This formula provides us also with
the integral representation for the values of the distributions (3.3): for s =l +r,m =
k—=1-2r (r=0,---,k=1-1) mp |m | m' we have that

(4.14)

ﬁa,m(X) =

2, 18(Xm0) B s (B0 XU (07 Termg) e 415
,Yf(m,)(Fs[g(X ) , +1(;;’(f) XU (m'mg ") ) ’ ( )

where
y(m') = 2™ (m') TNV (mo ) /DTN (o) (RO

Q) = (£, ) ()- (410)

§5. Integrality properties and congruences for the distributions

5.1. In order to prove the theorem 2.2 we first show that the distributions (3.3) for
s=0,1,.-+,k—I-1 are bounded and then we prove a certain p-adic congruence involving
their values on Dirichlet characters for different s (“generalized Kummer congruences”)
equivalent to the existence of the p-adic analytic function from the theorem 2.2. The
proof is based on the integral representation (4.15).

5.2. Proposition. (a) Under the assumotions and notation as in theorem 2.2
for eachr =0,1,---,k —1—1 the C,-valued distribution 7,(fi;4, on the group Galg is
bounded.

(b) the following p-adic equality holds

SN @ diy(fu) = (-1)™ SN dip(fitsr)- (5.1)

Gals Gals

5.3. In the prove we use the function

V:(X) = HO! (g(Xmo )E;— k+f+‘1r,k—l—1—r(¢""’_]X_z))’ (52)

which is obtained by applying the holomorphic projection operator to the Hilbert au-
tomorphic type, which for r 3£ 0 is not of the holomorphic type. This operator can be
described in a very similar way as in the one-dimentional case (see [Shi6], [St1], [St2]);
the necessary growth conditions are obviously satisfied due to the fact that g(xm,) is a
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cusp form so that the function (5.2) is a cusp form from Si(cm’,+). Then the equality
(4.15) takes the form

ﬁl+1‘.m(X) = 7;.2((“;)') (Fp’ Vr*(X)IU(m’mgl)‘]tmo)‘mo‘ (53)

The functions (5.2) apparently satisfy the same compatibility condition as the values
furr,m(x) and define a distribution on Galg with values in the spaces of Hilbert au-
tomorphic forms of holomorphic type of weight k with the character 1 whose level is
growing with the growing conductor m of the character x.

5.4. Fourier coefficients of the function V*(x). Let us consider Fourier
expansions of all functions V*(x)a(z) (for A =1,---, k) on the Hilbert upper half plane
H™ which describe the automorphic form V;*(x),

VoA = )0 v(E mx)aer(€z). (54)
0KEET

The coefficients v(£,r, x)a obviously also define a distribution on Galg and they admit
a fairly explicit calculation. If, for example, r = k — [ — 1, then the function V"_,_, (x)
is itself of holomorphic type and

Vil i21(X) = mo(X)Ef—io(w™'x™?),
Bmo(X)a(2) = z ba(E)x* (€15 Der(€2), (5.5)
£

where the summation over € is taken with 0 € £ € {5, £ + m = Op, and
ba(§) = N(I0)PC (83, 8)

(see 1.9). Due to Klingen [K11], [K12] we know the Fourier expansion of the holomorphic
Eisenstein series

2-7D 1/*T(m)
(=2m)m
A(m;n)a + Z ( z n*EN (D)™ er(€2)

OKEELS {=be
cECE bEF,

NED™ B o()a(z) = Ln(2,0;0p,i519) =

(5.6)

for m > 1, 7mode is a Hecke character of finite order with the condition n((z)) =
signV(z)™ for ¢ = 1 mod™e, A(M;7) is some constant, which is explicitly given as a
certain special value of,the Hecke L-function associated with n. In the general case the
function Ej, (n) admits a certain Fourier expansion in er(£z) in terms of the Whit-
taker functions (or confluent hypergeometric functions, [Fe], [Shil0]) and the Fourier
expansion is then obtained by use of a certain integral formula as in [St1], {St2], or
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with help of the Shimura differential operators (as in [Shi6]). As a result we get for
r =0, -,k —1—1 the following identity:

NEN)T0(€, 1, X0 = Xao (615 OA(A'(r) () + N (E)ua(§)+

- - 5.7

Y XGOS (T TN () TR (51
£=£61+€2 Eambe
cE€EOp bETy

here A'(0)(n) = A(k — L), A'(r) = Ofor r > 0 with & is totally positive (i = 1,2)
and the second sum is extended over all decompositions of £, into product of principial
ideals & with the condition ¢ € Op,b € ) and u,(£) is an integral hnear combination
of the numbers x4, (€751 )bA(€) and of values of the Hecke character (éw™'x~?)* (which
are certain roots of unity).

Let us consider the linear functional

(Fp’ ¢]J‘mo)fmo
Q(f)

on the linear space Si(cmg, ). It folloxE from the Atkin-Lehner theory (in the form
of Miyake [Miy]) that £ is defined over Q i.e. for a finite number of ideals m; and for
some fixed algebraic numbers I(m;) € Q we have that

L£(®) = Z C(m;, ®)I(m,), (5.9)

L:®

(5.8)

so that the distributions ji;4, can be written in the form

Brtrm(X) = (M )L(8pm (X)), (5.10)

with
Bro(x) = V(0)|U(m'mg ") (5.11)

and the constant y(m') given by (4.16). Now we see from (5.9) that the properties (a)
and (b) of the proposition 5.2 are equivalent to the corresponding statements about the
Fourier coefficients v(£,, x)a for € = 0 (mod m'm;'{,). Indeed, we see that in this case
the Fourier coefficients in (5.9} are expressed according to (1.9) in terms of the numbers
v(€, 7, x)x as follows:

_ v(€,7,X)x, if the fractional ideal ££;' = nm/my!
NENC(, @4 (x)) = is not integral, :
0, otherwise.
(5.12)
Therefore the explicit expression (5.7) implies the following congruences
w6 =(=DT Y Y XETHTIN(ETHT) X
{=61+& :eé%::éf,\ (513)

x (™) ENV(O T (modN (m'mg ™)),
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for
0K &EEL (i=12), ceOp bely &+mg=0p.

Now proposition 5.2 and theorem 2.2 are directly deduced from the abstract Kummer
congruences (see [[{a3], p.258 , or 3.3 of chapter 1) which provide a criterion of boundness
of C, -valued distributions. -

Let {fi} be a family of continuous functions f; € C(Y,O,) in the ring C(Y,0,)
of all continuous functions on the compact totally disconnected group ¥ = X with
values in the ring of integers O, of C, such that the C,-linear span of {f;} is dense in
C(Y,C,) . Let also {a;} be a family of elements a; € O,. Then the existence of an O,
-valued measure p on Y with the property

/Yf;d,u,=a.-

is equivalent to the validity of the following congruences: for an arbitrary choice of
elements b; € C, almost all of which vanish,

Z bifi(y) €p"0, forallyeY = ) bia; €p"0,.

In our situation we take as a family {f;} the family of functions of the type xNz:;
with s as in proposition 5.2 and with ¥ € X} being Hecke characters; this family
obviously has the dense C,-linear span. For any finite number of Hecke characters
x € X¥™ we choose such m and a sufficiently large integer m' that each of these
characters is defined modulo m and the formula (4.15) is valid for the values of the
distributions firyrm(x). The proof is then completed by application of the congruences
(5.13).
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