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Abstract. We establish (novel for desingularization algorithms)
apriori bound on the length of resolution of singularities by means
of the composites of normalizations with Nash blowings up, albeit
that only for affine binomial varieties of (essential) dimension 2 .
Contrary to a common belief the latter algorithm turn out to be
of a very small complexity (in fact polynomial).

To that end we prove a structure theorem for binomial vari-
eties and, consequently, the equivalence of the Nash algorithm to
a combinatorial algorithm that resembles Euclidean division in di-
mension ≥ 2 and, perhaps, makes Nash termination conjecture
of the Nash algorithm particularly interesting.

An explicit bound on the length of normalized Nash resolution
of a minimal surface singularity via the size of the dual graph of its
minimal desingularization is in the Appendix (by M. Spivakovsky).
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1. Introduction.

1.1. Summary. We establish isomorphisms of irreducible components
of affine binomial varieties V̂ with their toric components V and of
the étale germs of the latter with the products of their subtori and
subvarieties ŶV defined by setting nonvanishing on V coordinates to 1 .
Resulting structure theorem implies ‘no change’ in the singularities
constraining the nonvanishing coordinates to any nonsingular variety,
e. g. allowing linear combinations of two monomials as binomials.

Our proof of the equivalence of the Nash algorithm for desingulariza-
tion of binomial varieties to a combinatorial algorithm that resembles,
surprizingly, Euclidean division (in dim ≥ 2 ) is by following the
changes in the exponents of a monomial parametrization of the torus
of the toric component YV of ŶV under Nash blowings up. However,
termination of the Euclidean multidimensional algorithm predicted by
Nash conjecture seems very hard to establish even in dimension 2 .

On the other hand, when dim YV = 2 , a combinatorial version of
the composites of normalizations with Nash blowings up unexpectedly
yields a (first for desingularization algorithms and sharp) apriori bound
2 · log2 D on the length of such sequences leading to a resolution
of singularities, where D is the area of the parallelogram on the
shortest integral generators of the cone spanned by the exponents of
any monomial parametrization of the torus of YV . Moreover, every
affine chart is covered after the normalized Nash blowing up by at most
5 affine charts with at most 3 among them being singular.

1.2. Nash blow ups and normalizations: conjectures. For a re-
duced equidimensional algebraic variety X , say of dimX = n, over
an algebraically closed field K of zero characteristic (this requirement
is relaxed in Sections 2, 5) the Gauss map GX is defined off singular
points SingX of X and sends every point P ∈ RegX := X \SingX
to the tangent space TPX (to X at P ) as points of the respective
Grassmanian bundle restricted over X . (Using embeddings of affine
charts of X in KN consider the Grassmanian variety of n-dimensional
subspaces of KN . The latter naturally embeds into projective space
P(∧nKN ) by means of Plücker coordinates, i. e. the homogeneous co-
ordinates in ∧nKN .) The Nash blow up N(X) of X is the closure
of the graph of GX with the natural projection NX : N(X) → X .

Nash conjecture. The sequence of Nash blowings up starting with
any algebraic variety stabilizes resulting in a desingularization.

Over affine charts the ring of ‘regular functions’ K[N (X)] on nor-
malization NX : N (X) → X of variety X is the integral closure of
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K[X] in its field of fractions. When Z is nonsingular and X ' Z × Y
(locally) it follows that N (X) ' Z × N (Y ) (of course also only lo-
cally). Normalization separates all étale (in the completions of local
rings) irreducible components. We refer to the composites of normal-
izations with Nash blowings up as normalized Nash blowings up.

Normalized Nash conjecture. Normalized Nash blowings up
starting with any algebraic variety result in a desingularization.

So far though Nash and normalized Nash desingularizations remain
elusive in dimensions larger than one and two, respectively. Moreover,

Remark 1.1. In dimension larger than one an apriori estimate for the
length of normalized Nash desingularization is novel (as well as in any
reasonable sense for other desingularizations).

(i) If Nash blow up NX : N(X) → X is an isomorphism then X
is nonsingular, see [10] and [11].

(ii) Nash conjecture is valid when dimX = 1 and there is a simple
estimate for the length of sequences by Nash blowings up leading to a
desingularization (e. g. by means of Newton-Puiseux expansion).

(iii) M. Spivakovsky proved that the sequence of normalized Nash
blowings up terminates when dimX = 2 , see [13] and [8]. Bound
1 + log2(#Γ) on the length of normalized Nash desingularization of a
minimal surface singularity, where #Γ is the number of vertices of
the so called dual graph Γ of its minimal desingularization, appears
below in the Appendix authored by M. Spivakovsky.

1.3. Desingularization results briefly. With affine binomial vari-
eties (see e. g. [3]) defined as the closures in KN of the vanishing sets
off coordinate hyperplanes of collections of differences of pairs of mono-
mials (called binomials) Theorem 2.7 on the structure of affine binomial
varieties provides a reduction of Nash and of normalized Nash desingu-
larizations to that of essential varieties, i. e. affine toric varieties con-
taining the origin. (The singularities of the germs of an essential variety
occur in every neighbourhood of its origin, see Remark 2.13, while the
convex hulls of the exponents E ⊂ Zm of monomial parametrizations
of its dense torus do not contain the origin, see Remark 2.2. Essential
variety is nonsingular iff its ‘parametrizing exponents’ E are generated
over positive integers by a subset of size m , see Remark 2.16.)

Following the process of changes in the set E of parametrizing expo-
nents under successive Nash and normalized Nash algorithms for these
toric varieties we establish in Section 4 their respective ‘combinatorial’
versions. The combinatorial version of Nash algorithm resembles Eu-
clidean division (in dim ≥ 2 ) the termination of which so far remains
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elusive even in dimension 2 in spite of its combinatorial nature and
simple formulation. But by means of the combinatorial version of the
normalized Nash algorithm we establish in essential dimension 2 an
explicit (sharp) apriori bound (of Section 1.1) in terms of the set E
of parametrizing exponents with each branching of the algorithm be-
ing bounded by 5 and the complexity along a single branch being
polynomial in the binary size of the input.

Remark 1.2. Of course, if X consists of several irreducible com-
ponents X = ∪iXi then N(X) = ∪iN(Xi) and N(Xi) are the
irreducible components of N(X) . Also, when locally (in Zariski or
even in the étale topology), say in U , variety X is a product of a
nonsingular variety Z with a (possibly) singular one, say Y , then
N(X) over U is isomorphic to the product Z × N(Y ) of Z with
N(Y ) . Nash blow up either separates any pair of smooth local étale
irreducible components, or reduces the contact between them. (With
Ij , j = 1, 2 , being the ideals of local étale irreducible components in

the completion Ô of local ring O of the ambient manifold contact
is the largest integer l such that I1 + m̂l = I2 + m̂l , where m̂ is
the maximal ideal of Ô .) Thus the sequence of Nash blowings up
of a variety with smooth local étale irreducible components terminates
separating ‘Nash liftings’ of these components.

1.4. Singularities vis-a-vis structure of binomial varieties.
Locations guidance. In Sections 2 and 5 we state and prove The-
orem 2.7 on the structure of affine binomial (shortly AB-) varieties,

which are the Zariski closures V̂ in AN of the vanishing on the stan-
dard torus TN := ∩j{wj 6= 0} ⊂ AN collections of binomials, where
AN := Spec K[w] and K[w] is the ring of polynomials in N variables
wj with coefficients in a field K with not vanishing in K number
d specified in part C of the theorem. (For an algebraically closed field
K in Sections 2 and 5 one may replace AN by KN .) Identifying coor-

dinates z1 , . . . , zN not vanishing at any point of V̂ and morphism

π : V̂ → π(V̂ ) ↪→ AN with ′z-coordinates’ as components we refer to

varieties (π)−1(W ) for a nonsingular W ↪→ π(V̂ ) as V̂ -admissible.
As a byproduct for generalized affine binomial (shortly GAB-) varieties,

i. e. V̂ -admissible with V̂ in AB class, the singularities of the irre-
ducible components of the local étale germs are essentially ‘the same’
as those of the respective AB-variety, see Claim 2.14 . The GAB class
includes all quasi-binomial varieties, i. e. allowing as binomials any
linear combinations of pairs of monomials.
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Other consequences of Theorem 2.7 include a reduction of Nash (re-
spectively normalized Nash) desingularizations of GAB-varieties to
the respective desingularizations of irreducible binomial varieties pass-
ing through the origins of the (appropriate) ambient affine coordinate
charts as well as simple criteria of nonsingularity for all toric varieties
in terms of the exponents of monomial parametrizations of their dense
tori and, as a consequence, for blowings up of smooth affine spaces at
the ideals generated by monomials, see Criterion 2.18 and Remark 2.19.

Affine toric varieties are the closures in AN of the images - tori
φE(T

m) of the standard tori Tm ' Tm := ∩j{xj · x̃j = 1} ↪→ A2m

under monomial bijections φE : Tm → φE(T
m) ↪→ TN (with E ⊂ Zm

being the set of the exponents of the monomial components of φE ).
Toric varieties are binomial, but not necessarily normal, e. g. Whit-
ney Umbrella {x2 − z · y2 = 0} ⊂ C3 . Moreover, Nash blow-
ings up of normal varieties with open dense tori may fail to be nor-
mal, e. g. Nash blow up of surface S := φE(T2) ⊂ C3 , where
φE : (x1, x2) 7→ (x1 · x2 , x1 · x2

2 , x3
1 · x2

2) , fails to be normal in
spite that S is a normal surface. Indeed, normality of the latter is a
consequence (due to a criterion in Section 2.1 of [5] ) of the property of
the exponents E = {(1, 1) , (1, 2) , (3, 2)} ⊂ (Z+)2 of monomial map
φE to generate over Z+ all points of its integral lattice within the
(positive) cone that the respective exponents span in R2 , see Exam-
ple 6.3 for the failure of normality for N(S) . Consequently we refer
to the varieties with a dense torus as toric (as in [14] or [1]), while in
[5] they are refered to as toric only when normal.

It turns out that Nash blow up of essential variety is a finite union
of affine charts which are essential, see Claim 4.6 . The latter allows to
establish (Section 4) a ‘combinatorial bookkeeping’ of the progress in
Nash (respectively normalized Nash) sequence of blowings up for essen-
tial varieties leading to a multidimensional Euclidean division. When
dimYV = 2 we state (in Section 3) and prove (in Section 7) an apriori
bound 2 · log2D (with D from Section 1.1) on the lengths of the
sequences of normalized Nash blowings ups resulting in a desingulariza-
tion. Moreover, it turns out that if essential dimension (i. e. dimension
of essential subvariety) equals 2 the normalized Nash desingulariza-
tion, as well as separately the normalization of binomial varieties, are
of a polynomial complexity in terms of the binary size of the initial
input, see Theorem 3.1 , Corollaries 7.6 , 7.7 and Corollary 7.5. In
Section 8 we establish (local) invariance of D = Do at a point o ∈ Y
with respect to local isomorphisms that preserve hypersurfaces invari-
ant under the action of the torus of Y and contain o .
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Part 1. Arbitrary dimension.

2. Reduction to essential toric case.

We consider algebraic varieties (so called binomial) that admit (Zariski)

open coverings by ‘affine binomial’ varieties, i. e. closures V̂ in AN

of sets V ∗(f̂) := {w ∈ TN : f̂j(w) = 0 , 1 ≤ j ≤M } , where (f̂)
are the ideals in the ring K[w] of polynomials in w := (w1, . . . , wN)
with coefficients in a field K generated by binomials

f̂j := w
α̂j1

1 · · ·wα̂jN

N − w
β̂j1

1 · · ·wβ̂jN

N .(2.1)

With an exponents matrix Ê of V̂ having entries α̂ji− β̂ji we adopt

notations V̂ ∗ := V̂ ∩ TN = V ∗(f̂) = {w ∈ TN : wÊ = IM}, 0 ∈ AM is
the origin, IM := (1, . . . , 1) ∈ AM and vector (j) has the only nonzero
j-th coordinate equal to one. Finally, we split all w-coordinates into
y- , whenever {wj = 0} ∩ V̂ 6= ∅ , and z-coordinates, w = (y , z) ,
and let π : AN → AN−L be the linear map defined by z-coordinates.

Denote Id N the unit matrix of size N×N and R+ ⊂ R , Q+ ⊂ Q ,
Z+ ⊂ Z \ {0} the subsets of non negative real, rational and integral
numbers respectively. We refer to the closure in AN of the image of
a bijective monomial map φE : Tm → X∗

E := φE(T
m) ⊂ AN (with the

exponents in E ⊂ Zm ) as an affine toric variety and denote the latter
XE . For the sake of convenience we denote (A||B) the matrix with
columns of A followed by the columns of B and the matrix with
rows from the exponents set E by the same letter, i. e. φE(x) = xE ,
while both the set of columns and transpose matrix of a matrix T by
T tr (in particular π ◦ φE = φ(π(Etr))tr). We refer to ∆ ⊂ ZN with

#(∆) = rank (∆) and Span Z(∆) = Span Q(∆) ∩ ZN as a Z-basis (of
Span Q(∆)) and denote by Conv (E) ⊂ Rm the convex hull of E .

Remark 2.1. Applying ‘Gauss elimination’ let Λ , λ be square matri-
ces with entries in Z and det(Λ) = 1 = det(λ) such that matrix τ :=

Λ · Ê · λ has vanishing entries except in the upper-left corner on a ‘di-
agonal’ of length r = rank Ê (while for the successive integral entries
dq ∈ Z+ , q = 1, . . . , r , the ideals generated in Z by the q×q minors of

matrix Ê and, respectively, by d1 · ... · dq coincide, the so called Smith

normal form). Denote d(Ê) := |d1 · ... · dr| . Of course dim V̂ = N − r ,

solutions of wÊ = IM and of w̃τ = IM in TN are related by an auto-
morphism φλ of TN , d(Ê) = #((Span Q(Êtr) ∩ ZM )/Span Z(Êtr))

and V̂ ∗ has [d(Ê)] irreducible components (with [d(Ê)] := d(Ê)

or := d(Ê) · p−s ∈ Z \ (p · Z) depending on K being of charac-
teristic p = 0 or p > 0 ). Finally, if N = r then morphism
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φÊ : TN 3 w 7→ wÊ ∈ TM is a parametrization when d(Ê) = 1 , is

étale when [d(Ê)] = d(Ê) and is finite of degree d(Ê) if X∗
Ê

= X
Ê

(by exploiting that φΛ is an automorphism of TM).

Consequently the irreducible component V ∗ 3 IN of V̂ ∗ is a
torus V ∗ = X∗

E with the choices for parametrizing V ∗ exponents
E ⊂ Zn , n := N − r , such that the columns of E as a matrix should
form a Z-basis of Ker Ê ∩ ZN . (Indeed, for {w̃ ∈ TN : w̃τ = IM}
parametrizations x 7→ w̃ = xẼ are determined by the Z-bases of
Zn ↪→ ZN , implying the claim by means of the automorphism w = w̃λ

of TN and correspondence E := λ · Ẽ .) Finally,

Property A. Cosets [g] ∈ Γ := V̂ ∗/V ∗ of g ∈ V̂ ∗ list the irreducible

components g · V of V̂ , where V := V ∗ , and V̂ ∗ ⊂ Reg V̂ .

Remark 2.2. Affine toric variety XE 3 0 iff Conv (E) 63 0 . Indeed,
the ‘only if’ follows since if Conv (E) 3 0 then there are E ′ ⊂ E and
{pe ∈ Z+}e∈E ′ such that

∑
e∈E ′ pe · e = 0 , which implies that XE ⊂

{w :
∏

e∈E ′ wpe
e = 1} . ‘If’ follows by choosing η ∈ Zm ⊂ (Rm)dual

with η(e) > 0 for e ∈ E since then 0 ∈ Xη(E) ⊂ XE .

The proofs of claims of this section are in Section 5 unless included.

Claim 2.3. Torus X ∩ TN of an affine m-dimensional toric variety
X admits parametrization φE with exponents E ⊂ (Z+)m iff 0 ∈ X .

Lemma 2.4. Variable wj , is not a z-variable (equivalently is a y-

variable) for V̂ iff there is ~ξ ∈ Ker Ê ∩ (Z+ ∪{0})N with (~ξ)j > 0 .

Corollary 2.5. Exists ~ξ+ ∈ Ker Ê∩(Z+∪{0})N with (~ξ+)j > 0 iff wj

is a y-variable. Hence (0, IN−L) ∈ XE+ ⊂ V̂ for E+ := {(~ξ+)j}j ⊂ Z .

For the sake of completeness we include the following

Claim 2.6. Polynomial P ∈ K[w] vanishes on V̂ if and only if

(y1 · . . . · yL)l · P ∈ (f̂) for some l ∈ Z+ .

Theorem 2.7. For any affine binomial variety V̂ ↪→ AN

B. Variety π(V̂ ) = π(V̂ ∗) is binomial and closed in AN−L , while

V̂ ∩(AL×IN−L) = V ∗(f̂) ∩ (AL × IN−L) and has a common irreducible

toric component Y =: XEY
, EY ⊂ Zdim Y , with Ŷ := V ∩(AL×IN−L) .

C. Tori Z := X∗
EZ
↪→ V ∗ = X∗

(EY ||EZ) exist and must be closed in AN .

Morphisms π|Z : Z → π(V ) and multiplication µ : Z × Ŷ → V are
surjective, finite of degree d := d(π(E tr

Z )) with all fibres of size equal

[d] = #(Ŷ ∗/Y ∗) . Both morphisms are étale if d 6= 0 in K .

Also, µ|Z×(g·Y ) for g ∈ Ŷ ∗ are surjective and finite of degree d .
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Remark 2.8. Degree of µ in C. is dimµ∗(K(V )) K[Z× Ŷ ] ·S−1 , where
K(V ) is the field of rational functions on V and S := µ∗(K[V ]\{0}) .

Example 2.9. Note that µ|Z×Y : Z×Y → V need not be étale, e. g.
if V := {y2

1 = z1 · y2
2 , z1 · z2 = 1} then Y = {z1 = z2 = 1 , y1 = y2}

( Z := {z1 = y1 = y2
2 , z1 · z2 = 1} satisfies the assumptions of

Theorem 2.7 C.) and there are two étale irreducible components of V
at the points of V ∩ {y1 = y2 = 0} , while Z × Y is nonsingular,
and hence étale irreducible at every point. Nevertheless the local étale
irreducible components of an affine binomial variety V̂ are isomorphic
to the respective étale germs of Z × Y due to Theorem 2.7.

Note that µ and µ|Z×Y are finite since K[Z×Y ] ' K[t , s , s−1]

and K[Z × Ŷ ] ' K[y1 , y2 , s , s
−1]/(y2

1 − y2
2) are integral over

K[t · s2 , t · s , s2 , s−2] ' µ|∗Z×Y (K[V ]) ↪→ K[Z×Y ] and, respectively,

K[y1 · s2 , y2 · s , s2 , s−2]/(y2
1 − y2

2) ' µ|∗
Z×Ŷ

(K[V ]) ↪→ K[Z × Ŷ ] .

Remark 2.10. Identifying V ∗ with Tn via bijection φ(EY ||EZ) (the
latter valid due to assumption on EZ ⊂ Zn−m in Theorem 2.7 C.) both

properties #(Ŷ ∗/Y ∗) = d(π(E tr
Z )) and #(π|−1

Z (IN−L)) = d(π(E tr
Z ))

follow from Remark 2.1 by replacing matrix Ê by π(E tr
Z )tr . Equiv-

alently, all irreducible components of Ŷ ∗ are of the form g · Y ∗

for some g ∈ Ŷ ∗ (Property A. of Remark 2.1) and multiplication
µ|Z×Y ∗ : Z × Y ∗ → V ∗ is a bijection since φ(EY ||EZ) : Tn → V ∗ is a bi-
jection, implying first Y ∗ ∩ (π|Z)−1(IN−L) = {IN} and Z ∩ g · Y ∗ 6= ∅
for any g ∈ V ∗ , and as a consequence that points of subgroup
Γ̃ := (π|Z)−1(IN−L) ↪→ Z belong to distinct irreducible components of

Ŷ and, respectively, that every irreducible component intersects Γ̃ .
Summarizing, the distinct irreducible components of Ŷ are g · Y for
g ∈ Γ̃ and #(Γ̃) = #(Ŷ ∗/Y ∗) . (One may also determine #(Ŷ ∗/Y ∗)

by means of any exponents matrix EŶ of equations of Ŷ as [d(EŶ )]

by making use of Remark 2.1 with matrix EŶ replacing matrix Ê .

Note that V̂ = V when d(Ê) = 1 and then one may choose EŶ

having rows of Ê followed by the rows of matrix (0||Id N−L) .)

Also, since multiplication by g ∈ Γ̃ ↪→ Z is an isomorphism of
Z → Z , of V → V and of Y → g · Y surjectivity and finiteness of
µ|Z×Y implies analogous properties for each µ(Z × (g · Y )) , g ∈ Γ̃ .

Remark 2.11. Obviously π((EY )tr) = {0} . Then for any Z-basis
Ẽ tr its ‘z-coordinates’, i. e. π(Ẽ tr) , with X∗

Ẽ
= V ∗ generate over Z a

sublattice Span Z(π(Ẽ tr)) ⊂ ZN−L∩Span Q(π(Ẽ tr)) = ZN−L∩π(Ker Ê)

that depends only on V ∗ implying that d(π(Ẽ tr)) is well defined as
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an invariant of V ∗ ↪→ TN and coincides with number d(π(E tr
Z )) . Of

course ŶV := Ŷ is binomial (due to A. and B.), while YV := Y is

an irreducible component of Ŷ containing IN (toric due to A.).

Remark 2.12. The sets of exponents parametrizing the tori of Y
and V are the rows of the matrices whose columns must be Z-bases
EY of Ker Ê∩ (ZL ×0) and EV := (EY ||EZ) of Ker Ê (Remark 2.1).
Hence morphism φ(π(Etr

Z
))tr = π|Z◦φE

Z
implying (when π(V ∗) = π(V )

and Z are closed) that the properties of π|Z : Z → π(V ∗) listed
in part C. are equivalent to the analogous properties of φ(π(Etr

Z
))tr .

Of course π(E tr
Z ) is a Q-basis of π(Ker Ê) ∩ ZN−L , but (as in the

Example 2.9) it need not be a Z-basis. Respectively π|Z need not
be an isomorphism, but is only a finite map of degree d as in part
C.. Finally, the properties of µ listed in C follow from the respective
properties of π|Z by making use of the coordinatewise multiplication
action by Z on V (the missing details are in Section 5).

We refer to affine toric subvariety Y ↪→ V̂ as essential and, if
Y = V̂ to V̂ as essential variety (e. g. due to Corollary 2.5 Y is).

Remark 2.13. With π as above and a convention of identifying
AL× IN−L ' AL and 0× IN−L ' 0 variety Y is essential iff 0 ∈ Y .
Essential variety is distinguished by the property of having the origin as
its most singular point (in the sense that the singularities of any of its
germs occur in any neighbourhood of its origin). Indeed, consider the
automorphisms of Y induced by the coordinatewise multiplication
by g ∈ XE+ with XE+ from Corollary 2.5. Then for any point
P ∈ Y \ Y ∗ the germs of Y at g · P , g ∈ X∗

E+ , are isomorphic and
the origin of Y coincides with (P ·XE+) \ (P ·X∗

E+) , as claimed.

Applications of Theorem 2.7 include

Claim 2.14. The irreducible components of the local étale germs of a
GAB-variety Ṽ that occurs as the V̂ -admissible subvariety of an AB-
variety V̂ are isomorphic to the products of nonsingular germs with
respective germs of subvariety ŶV of V̂ (from Remark 2.11 , Theo-

rem 2.7 B). Hence these components are nonsingular iff ŶV is not
singular and the conclusions of Remark 1.2 and of Corollary 2.15 apply
to all GAB-varieties. Any quasi-binomial variety is in GAB class.

For Nash/normalized Nash blowings up Theorem 2.7 implies

Corollary 2.15. It follows that the ‘towers’ of Nash (as well as nor-
malized Nash) blowings up starting with varieties g · V for g ∈ Γ
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are mutually isomorphic and therefore it suffices to study the effect of
this process on a single irreducible component V to make them all
smooth. Moreover, Remark 1.2 implies that the stabilization of the se-
quence of Nash blowings up (respectively normalized Nash blowings up)
of an affine binomial variety is equivalent to the stabilization of the
respective sequence for its essential toric subvariety.

Theorem 2.7 C. also implies a criterion of nonsingularity for arbitrary
affine toric variety XẼ in terms of the exponents Ẽ ⊂ Zn of an
arbitrary monomial parametrization of the torus X∗

Ẽ
of XẼ . In the

simpler case of XẼ being an essential variety, which in terms of Ẽ
means 0 6∈ Conv (Ẽ) (Remark 2.2), the criterion is

Remark 2.16. Essential toric variety Y := XẼ is not singular iff

the exponents Ẽ ⊂ Zn of an arbitrary monomial parametrization of
the torus of Y are generated over Z+ by dim Y among them. Of
course the ‘if’ implication is obvious. For the ‘only if’ implication note
that under the nonsingularity assumption Y near 0 coincides with
a graph of an étale map-germ, say G , at 0 and, also, that Y is the
closure of the image under a monomial parametrization, say φE+ , of
the torus of Y with exponents E+ ⊂ (Z+)n (Claim 2.3 ). It follows,
by making use of the uniqueness of the Taylor series expansion of the
composite G ◦ φE+ , that map G is monomial and thus obviously
implies the conclusion of the ‘only if’ implication.

The latter criterion of nonsingularity of Y depends on the assump-
tion 0 6∈ Conv (Ẽ) , i. e. on Y being essential, as demonstrates

Example 2.17. The closure XẼ of φẼ((C
∗)4) ⊂ C6 for a monomial

map (C∗)4 3 x 7→ φẼ(x) := (x1 , x2 , x3 , x4 , x
−1
3 , x3 ·x−1

4 ) ∈ (C∗)6 is
nonsingular, 4-dimensional and its essential subvariety Y = C2×{I4} .

But Ẽ is not generated over Z+ by any subset of 4 vectors.

Curiously Theorem 2.7 C allows to derive a criterion of nonsingu-
larity for a toric variety XẼ ↪→ AN from the one for its essential
subvariety Y . To that end note that the subset of ‘y-coordinates’ for
XẼ among coordinates we , e ∈ Ẽ ⊂ Zn , on AN can be identified as

E ′ = {e : ∃η ∈ (Qn)dual , η(e) > 0 , η|Ẽ ≥ 0} ,(2.2)

due to Corollary 2.5 . As a straightforward consequence of the def-
initions the subset of ‘z-coordinates’ Ẽ \ E ′ ⊃ E ′′ := ∪l≥1El , where

subsets El \ El−1 ⊂ Ẽ \ El−1 , l ≥ 1 , are minimal with respect
to Conv (El \ El−1) ∩ Span Q(El−1) 6= ∅ , l ≥ 2 , and, respectively,

Conv (E1) ⊃ E0 := {0} . Of course then Conv (Ẽ \E ′′)∩Span Q(E ′′) = ∅
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implying that exists η ∈ (Qn)dual vanishing on set E ′′ and positive

on Ẽ \ E ′′ and then the values of η on the rows of Ẽ provide the
~ξ+ of Corollary 2.5 . Consequently, Lemma 2.4 implies

Ẽ = E ′ ∪ E ′′ .(2.3)

(The latter algorithm is single exponential, while that of identifying
E ′ in Ẽ via formula (2.2) is polynomial, cf. Section 7.2.) Finally

Criterion 2.18. Variety V := XẼ is nonsingular iff its local étale
irreducible components are nonsingular and it is étale irreducible. Due
to Theorem 2.7 C. and Remark 2.11 criterion for the étale irreducibility
of Ŷ is ( d(π(Ẽ tr)) = d(π(E tr

Z )) = 1 or) that ρ× ρ minors of matrix
E ′′ generate the unit ideal, where ρ := rank (E ′′) . Let m := n− ρ .

Then étale irreducible components of XẼ are nonsingular iff over
Z+ set E ′ ⊂ Zn is generated (mod Span Q(E ′′) ) by its m elements.

Proof. The case of E ′ = Ẽ is fully explained in Remark 2.16. Reduc-
tion to the E ′ = Ẽ case is by identifying the torus Y ∗ of the toric
component Y of V ∩(∩e∈E ′′{we = 1}) and by means of a parametriza-

tion of Y ∗ χ
↪→ T#(E ′) ↪→ TN . (Note that φE ′ = χ ◦ φẼ .) Let matrix

M be of size n × m with entries in Z and as columns a Z-basis
of the orthogonal complement to Span Q(E ′′) ⊂ Rn . Then (due to

Remark 2.1) map φM is a parametrization of φ−1

Ẽ
(Y ∗) ↪→ Tn ∼→V ∗

implying that φẼ ◦ φM is a parametrization of Y ∗ ↪→ TN . It follows
that set E ⊂ Zm of the rows of the product matrix E ′ ·M provides
the exponents of a monomial parametrization φE of χ(Y ∩TN) (since
χ ◦ φẼ ◦ φM = φE ′ ◦ φM = φE ′·M ). Of course m rows of matrix E ′

generating over Z+ all rows of E ′ modulo KerMtr = Span Q(E ′′)
exist iff exist m rows of matrix E ′ · M generating over Z+ all
rows of E ′ · M . But the former is the criterion of nonsingularity (as
stated above) for the local étale irreducible components of V and the
latter is the criterion of nonsingularity for Y , which by the special case
considered first is equivalent to Y being nonsingular and combined
with the criterion of étale irreducibility of V via Theorem 2.7 C. (as
explained above) is equivalent to variety V being nonsingular. �

Remark 2.19. For the blowing up σI : X → An with center at an
ideal I generated by monomials xe (with e ∈ E ⊂ (Zn ∩ (Q+)n) \ {0}
and a minimal {xe}e∈E , i. e. its proper subsets do not generate I ) a

criterion for nonsingularity of X in terms of set E is a consequence.
Indeed, by definition X is the closure of the graph of the monomial
map ΨE := Tn 3 x 7→ [. . . : xe : . . . ]e∈E ∈ PN , where N := #E − 1 ,
and σI is the restriction to X of projection An×PN → An . Of course



12 DIMA GRIGORIEV AND PIERRE D. MILMAN

PN is the union of affine charts Ue := PN \ {we = 0} ' AN , where
we’s, e ∈ E , are the homogeneous coordinates on PN . Consequently
X = ∪e∈EXe with each Xe := X ∩ (An × Ue) being the closure of

φEe
(Tn) in An+N , where Ee := {e′− e : e′ ∈ E}∪{(j) : 1 ≤ j ≤ n} .

Moreover, X = ∪e∈Γ
E
Xe , where ΓE ⊂ E is the set of vertexes of

the Conv (∪e∈E(e + Rn
+)) since whenever e0 ∈ E ∩ (Conv (ΓE ) + Rn

+) it
follows that there is a nonempty I0 ⊂ ΓE with {qe}e∈I0

⊂ Z+ and

ω ∈ Zn∩Qn
+ satisfying

(∏
e∈I0

(we/we0
)qe · xω

) ∣∣
Ue

0

= 1 . Consequently

chart Ue0
⊂ Ue for an e ∈ I0 ⊂ ΓE . Then X is nonsingular iff all

Xe , e ∈ ΓE , are nonsingular, and the nonsingularity Criterion 2.18 in
terms of sets Ee , e ∈ ΓE , applies. But the special case at hand provides
substantial simplifications since among exponents Ee for e ∈ ΓE

exponents corresponding to the ‘z-coordinates’ (as in the definition of
E ′′ following (2.2)) do not occur and therefore a simpler criterion of
Remark 2.16 applies, i. e. that over Z+ set Ee is generated by its
n elements. Indeed, otherwise set (Ee)

′′ 6= ∅ implying that there is
a nonempty Ie ⊂ (Ee)

′′ with
∑

~v∈Ie
q~v · ~v = 0 and {q~v}~v∈Ie

⊂ Z+ .

Then Ie ∩ {e′ − e : e′ ∈ E} 6= ∅ and so e ∈ (Conv (ΓE) + Rn
+) \ ΓE ,

contrary to our assumption.

3. A sharp apriori bound in essential dimension 2.

Let V̂ be an affine binomial variety, Ê an associated matrix and

{~δi × 0}i ∈ ZN be a Z-basis of Ker Ê ∩ (QL × 0) ⊂ QN , where

{~δi}1≤i≤m ⊂ ZL (with splittings w = (y, z) and KN = KL ⊕ KN−L

as in the previous section, while K being an algebraically closed field
of zero characteristic, cf. Section 1.2). Our main estimate is

Theorem 3.1. Complexity bound on desingularization when m = 2 .
(i) The convex hull of {((~δ1)l , (~δ2)l)}1≤l≤L does not contain 0 ∈ R2 .

(ii) Let D be the size of the coordinate of ~δ1 ∧ ~δ2 at (l) ∧ (k) ,
1 ≤ l , k ≤ L , for which the cone in R2 spanned over R+ by

((~δ1)l , (~δ2)l) and ((~δ1)k , (~δ2)k) contains all vectors ((~δ1)j , (~δ2)j) ,
1 ≤ j ≤ L . Then after at most 2 · log2D of normalized Nash blowings

up starting with variety V̂ the process stabilizes.

Remark 3.2. The first claim of the preceding theorem (for any m ) is
a consequence of Remark 2.2 (cf. Remark 4.1 below). Note that for any

integral basis { ~δi}1≤i≤m , as considered preceding Theorem 3.1, the

coordinates of ~δ1∧· · ·∧~δm in the standard basis are unique up to a sign
and can simply be found by choosing any Q-basis {~vi}1≤i≤m with the
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same Q-span as that of the {~δi}1≤i≤m , then multiplying the respective
coordinates of ~v1 ∧ · · · ∧ ~vm by their least common denominator and
subsequently dividing obtained integers by their g.c.d. . For m = 2
we may, moreover, determine the bound D of Theorem 3.1 up to a
sign by detecting which (l) ∧ (k) coordinate of the resulting sequence
of integers to take. To that end the criterion of detecting pair (l, k)
of Theorem 3.1 does not depend on the choice of a basis and can be
applied as well with a basis {~vi}1≤i≤m . In particular, it follows by
making use of Lemma 8.3 and Corollary 8.5 that integer D introduced
in Theorem 3.1 is a local invariant of V̂ at 0 .

We placed the proof of Theorem 3.1 (ii) in Section 7 and of claims
of invariance of Remark 3.2 in Section 8.

4. Reduction of Nash algorithm to a combinatorial one.

Field K here is algebraically closed and of zero characteristic.

4.1. Gauss map and Nash blow up of an essential subvariety.

Let {~δi × 0}1≤i≤m ⊂ ZN , where ~δi := (δ1i, . . . , δLi) , generate the

integral lattice of Ker Ê ∩ (QL × 0) ⊂ QN over Z and denote

E := {~∆j}1≤j≤L ⊂ Zm , where each ~∆j := (δj1, . . . , δjm) . Then

(φE)j(x) :=
∏

1≤i≤m

x
δji

i , 1 ≤ j ≤ L; (φE)s ≡ 1, L < s ≤ N ,(4.1)

are components of isomorphism φE : (K∗)m → Y ∗ := Y ∩(K∗)N ↪→ KL

of tori ( φ := φE in this section). The closure Y ↪→ KL of Y ∗ contains
0 ∈ KL (Corollary 2.5) and one may choose δji ∈ Z+ (Claim 2.3).

Remark 4.1. Map (φ|(R+ \{0})m : (R+ \ {0})m → Y ∩ (R+ \ {0})N

and, therefore, also its tangent (at Im ∈ Rm ) map

(Rm)dual 3 h 7→ (h(~∆1), ..., h(~∆L)) × 0 ∈ Ker Ê ∩ (RL × {0})
are isomorphisms. Hence due to the choice of vector ~ξ+ from Corol-
lary 2.5 there is a functional h+ ∈ (Qm)dual such that each h+(~∆j) =

(~ξ+)j > 0 . Hence Rm ⊃ Conv (E) 63 0 . We refer to E ⊂ Zm with the
latter property as essential. It enables recording of the process of Nash
(and/or normalized Nash) blow ups as a ‘combinatorial’ algorithm.

To ‘control’ the closure of torus Y ∗ we prove in Section 5

Lemma 4.2. One can ‘reach’ all points P ∈ Y \ (K∗)N by means of
g ·X∗

E+ ↪→ Y ∗ with g ∈ Y ∗ , i. e. {P} = g · (XE+ \X∗
E+) , where the

exponents set E+ = {(~ξ)j}1≤j≤N ⊂ Z for ~ξ ∈ Ker Ê ∩ ((Z+)L ×{0})
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and coordinates (~ξ)j of ~ξ are in Z+ or equal to zero depending on
the respective coordinate of P being equal to zero or not.

Remark 4.3. Limits and criteria of being an essential variety. When-
ever there are exponents δji < 0 map φ would not extend to all
of Km and even if all δji > 0 , as in Claim 2.3 , map φ : Km →
Y ↪→ KL may not be surjective. Nevertheless one may reach all
points P ∈ Y \ (K∗)N by means of g · X∗

E+ ↪→ Y ∗ with g ∈ Y ∗

(and ~ξ ), as in the preceding Lemma 4.2. As in Remark 4.1 we may
pick a functional h ∈ (Qm)dual ∩ Zm and q ∈ Z+ such that each

h(~∆j) = q · (~ξ)j ∈ Z+ ∪ {0} with E+ = {(~ξ)j}j ⊂ Z . Of course

replacing ~ξ by q · ~ξ (and set E+ = h(E) by q · E+) preserves the
outcome {P} = g · (Xh(E) \X∗

h(E)) of Lemma 4.2 . Note that given an

h ∈ (Qm)dual ∩ Zm set Xh(E) \X∗
h(E) 6= ∅ iff h(~∆j) ≥ 0 for all j .

In particular, by identifying KL with KL × IN−L ↪→ KN and by
making use of Corollary 2.5 and Remark 2.2 , it follows that the origin
of KL is in Y . Equivalently, there is an h+ ∈ (Qm)dual such that

for 1 ≤ j ≤ L values h+(~∆j) = (~ξ+)j > 0 , which is also equivalent

to E := {~∆j}1≤j≤L ⊂ Zm being essential, i. e. Conv (E) 63 0 . This
property is proved in Claim 4.6 to be hereditary for an appropriate
choice of affine charts covering Nash blow up of Y .

Remark 4.4. Gauss map in local coordinates. Consider the composite
of the Gauss map GY of Y on Y ∗ with a monomial parametriza-

tion (4.1) of Y ∗ and identify GY (φ(x)) ∈ Gm(KL) ↪→ KP(L

m)−1 ,
where the latter is the embedding of the Grassmanian Gm(KL) of
the m-dimensional subspaces of KL by means of Plücker coordi-
nates, with the image Tφ(x)Y of TxKm ' Km by the tangent
map to φ at x ∈ (K∗)m . The homogeneous (Plücker) coordinates
w̃ = [ ... : w̃J : ... ] of GY (φ(x)) = Im ∂φ

∂x
(x) are the subdetermi-

nants detJ(Jφ)(x) of the m × m size submatrices of the jacobian
matrix Jφ(x) of map y = φ(x) and are listed by the choices of
J = {j1, . . . , jm} ⊂ {1, . . . , L} of m distinct rows of the L×m ma-

trix Jφ , i. e. w̃J = detJ(Jφ(x)) = detJ(δ)·x
P

j∈J
~∆j/(x1·...·xm) , where

detJ(δ) are the respective subdeterminants of the exponents matrix δ
in (4.1) . Denote S := S(E) := {J : detJ(δ) 6= 0} and L∗ := #S − 1

(notation S(E) is justified since dimQ Span Q{~∆j}j∈J = m iff

detJ(δ) 6= 0 ). Let KPL∗

:=
⋂

{J :detJ (δ)=0}{w̃J = 0} ↪→ KP(L

m)−1 .

Then GY ◦ φ(x) ∈ KPL∗

for all x ∈ (K∗)m . Moreover, then
GY ◦ φ : (K∗)m → ∩J∈S{w̃J 6= 0} =: T .
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Of course each WJ := {w̃J 6= 0} ' KL∗

and via this isomorphism T
identifies with (K∗)L∗ ⊂ KL∗

. In abuse of notation let then W∗
J denote

T ↪→ WJ . Similarly, denote UJ := KL × WJ , U∗
J := (K∗)L × W∗

J

and also N(Y )J := N(Y ) ∩ UJ , N(Y )∗J := N(Y ) ∩ U∗
J . Of course

N(Y )∗J0
= ∩J∈SN(Y )J for any J0 ∈ S . For the sake of convenience

we replace coordinates w̃J by wJ := (detJ(δ))−1 · w̃J .

Remark 4.5. Essential affine charts of N(Y ) . Then U ∗
J ↪→ UJ is

isomorphic to (K∗)L+L∗

↪→ KL+L∗

and affine toric variety N(Y )J

is the closure of the image N(Y )∗J of torus (K∗)m ⊂ Km under an
algebraic group monomorphism x 7→ ψ(x) := (φ(x) , GY ◦ φ(x)) .

For J ∈ S let ~∆J :=
∑

j∈J
~∆j . Explicit formula of Remark 4.4 for

the Gauss map monomorphism ψ (in the affine coordinates of chart
UJ0 , for J0 ∈ S ) is the monomial map φEJ0

whose exponents set is

EJ0 := {~∆j}1≤j≤L ∪ {~∆J − ~∆J0}J∈S\{J0} .
Remark 4.3 implies that for any J0 ∈ S one may reach all points

P̃ ∈ N(Y )J0 \N(Y )∗J0
by means of g ·X∗

h(EJ0
) ↪→ Y ∗ with g ∈ Y ∗ ,

i. e. {P} = g · (Xh(EJ0
) \ X∗

h(EJ0
)) , where h ∈ (Qm)dual ∩ Zm , and

that h(EJ0) ⊂ Z+ ∪ {0} since Xh(EJ0
) \ X∗

h(EJ0
) 6= ∅ . Moreover,

affine chart N(Y )J0 contains the origin of UJ0 ' KL+L∗

, i. e. is

essential, iff there is h̃ ∈ (Qm)dual such that h̃(EJ0) ⊂ Z+ and is
equivalent (Lemma 2.4) to all coordinates on UJ0 being ‘y-variables’
for N(Y )J0 . Equivalently (Remark 4.3 ) Conv (EJ0) 63 0 .

Claim 4.6. Assuming 0 ∈ Y = XE ↪→ KL ' KL × IN−L it follows
that N(Y ) = ∪J∈S′N(Y )J , where S ′ is the subset of all J ∈ S such
that affine charts N(Y )J are essential.

Proof. Due to Remarks 2.2 , 4.3 our assumption is Conv (E) 63 0 . Let

cone C̃ := {h ∈ (Rm)dual : h|E ≥ 0} and, likewise, for every J ∈ S
let C̃J := {h ∈ C̃ : h|EJ

≥ 0} . Then h+ from Remark 4.3 is in

the interior of cone C̃ (in particular dimR C̃ = m ). We refer to
h = (h1, . . . , hm) ∈ (Rm)dual with dimQ Span Q{h1, . . . , hm} = m as

an irrational point of (Rm)dual . For any irrational h ∈ C̃ there is

(and unique) J ∈ S such that h is in the interior of C̃J . Therefore
dimR C̃J = m iff Conv (C̃J) 63 0 , while the latter is equivalent to

J ∈ S ′ implying C̃ = ∪J∈S′ C̃J .
Consider any J0 ∈ S . Torus N(Y )∗J0

coincides with the image
ψ((K∗)m) ⊂ ∩J∈S′N(Y )J . Let P ∈ N(Y )J0 \ N(Y )∗J0

. Then, as in

Remark 4.3 , there are g ∈ N(Y )∗J0
and h ∈ (Qm)dual ∩Zm such that

{P} = g · (Xh(EJ0
) \X∗

h(EJ0
)) Moreover, values h(~∆j) , 1 ≤ j ≤ L , and
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of all h(~∆J − ~∆J0) , J ∈ S \{J0} , are positive or vanish depending on
the respective coordinate of P being equal to zero or not (Lemma 4.2).
Thus h ∈ C̃ = ∪J∈S′ C̃J and, therefore, there exists J1 ∈ S ′ such that
h ∈ C̃J1 . As a consequence h(~∆J0) = h(~∆J1) . It follows that the
ratio wJ0/wJ1 of the homogeneous coordinates is identically one on
X∗

h(EJ0
) and is constant and coincides with the ratio wJ0(g)/wJ1(g)

on g ·X∗
h(EJ0

) . Hence P ∈ N(Y )J1 \N(Y )∗J1
, as required. �

In the next two sections we summarize our ‘translation’ of Nash and
of normalized Nash blowings up into respective combinatorial versions
in terms of the smallest (in every reasonable sense) subsets of generators
for additive semigroups Z+(E) generated by finite sets E ⊂ Zm with
Conv (E) 63 0 and for Q+(E)Z := Span Z(E) ∩ Span Q+(E) \ {0} .

For an additive semigroup without zero, say G+ , we introduce a
notion of the set Ext(G+) of all Z+-extremal points of G+ , i. e. of
all g ∈ G+ such that g 6= g1 + g2 for any g1 , g2 ∈ G+ .

Let ∇(J) := Conv (J∪{0}) and int(∇(J)) := the interior of ∇(J) .

Remark 4.7. Assume that set E ⊂ Zm is finite and essential.
(i) Obviously set Ext(Z+(E)) is finite and generates Z+(E) , while

for Q+(E)Z a similar claim is a consequence of Gordon’s lemma (Prop.1

in 1.2 [5] ) since Span Q+(E) coincides with the dual cone (C̃)dual

of its own dual cone C̃ and Q+(E)Z is the set of its integral points
(meaning points in Span Z(E) ).

(ii) Note that E ′ = Ext(Q+(E)Z) implies, by making use of (i), that
Z+(E ′) = Q+(E)Z ⊂ Span Q+(E) = Span Q+(E ′) . Hence Q+(E ′)Z =
Q+(E)Z and therefore E ′ = Ext(Q+(E ′)Z) .

(iii) Assume E = Ext(Q+(E)Z) and J ∈ S ′ (with notations from
Claim 4.6). Then int(∇(J)) ∩ Q+(E)Z = ∅ . Indeed, if otherwise and
~a ∈ int(∇(J)) ∩ Q+(E)Z let us choose an irrational h ∈ C̃ , as in

Claim 4.6, such that h(~∆J) = minJ ′∈S h(~∆J ′) and let j0 ∈ J be

such that h(~∆j0) = maxj∈J h(~∆j) . Then, to begin with, ~a 6∈ E ,

since otherwise collection J0 := (J ∪ {~a}) \ {~∆j0} is in S , but

h(~∆J0) < h(~∆J) . Then ~a ∈ Z+(E) , due to assumption on E , and

therefore there is a vector ~b ∈ E such that J1 := (J ∪ {~b}) \ {~∆j0} is

in S , but h(~∆J1) < h(~∆J) (since if ~a ∈ ~b+ Z+(E) then inequalities

h(~∆j0) > h(~a) > h(~b) hold), contrary to the choice of h .

4.2. Multidimensional Euclidean division as a bookkeeping. In
this section we complete translation of the process of Nash blowings
up into a combinatorial tree-like branching algorithm on finite essential
subsets of Zm . To that end we choose {(δ1i, . . . , δLi)}1≤i≤m ⊂ ZL
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as in ( 4.1). The input of this algorithm is collection Ext(Z+(E)) ,

where E = {~∆j = (δj1, . . . , δjm)}1≤j≤L is the essential collection (see
Remark 4.3 ) of exponents of a monomial parametrization of torus Y ∗

of an essential variety Y , we may assume that E = Ext(Z+(E)) .
In notations of Claim 4.6 the record of changes (derived in sec-

tion 4.1) in the collections of exponents parametrizing the tori of the
essential charts of Nash blowings up starting with variety Y is the

Multidimensional Euclidean algorithm on essential collections:
with S = S(E) being the set of all m-tuples of linearly independent

vectors in a finite essential (input) collection E = {~∆j}j ⊂ Zm we

augment set E to a collection EJ by adjoining set {~∆J ′ − ~∆J}J 6=J ′∈S

provided that J ∈ S ′ := {J ∈ S : EJ is essential }. Finite essential
set NJ(E) := Ext(Z+(EJ)) generates semigroup Z+(EJ) and is the
output of an algorithm branching according to the choices of J ∈ S ′ .

A branch of this algorithm terminates at a node with an associated to
the node collection E = {~aj}j ⊂ Zm whenever #(E) = m .

Remark 4.8. Note that differences ~∆J ′ − ~∆J with #(J ′ \ J) = 1
generate over Z+ all other differences in collections EJ , i. e. it
suffices to include in EJ only them. Indeed, matrix (aji)j∈J ′ , i∈J

transforming basis J of Qm into basis J ′ is not degenerate implying
existence of a bijection J ′ 3 j 7→ i = i(j) ∈ J with all aj i(j) 6= 0 and
~∆J ′ − ~∆J =

∑
j∈J ′(~∆j − ~∆i(j)) =

∑
j∈J ′(~∆J∪j\i(j) − ~∆J) , as required.

Nash desingularization of essential affine toric subvariety Y of an
affine binomial variety V̂ leads to a Nash desingularization of V̂
by making use of Property A., Theorem 2.7 C. and of Remark 1.2 .
Variety Y ′ resulting from a sequence of Nash blowings up of Y
is a union of its essential affine charts Y ′ ∩ U ′ ↪→ U ′ ' KL′

due to
Claim 4.6 . Every affine chart Y ′∩U ′ corresponds to a node of a branch
of our combinatorial ‘bookkeeping’ algorithm. With {~aj}1≤j≤L′ ⊂ Zm

being the essential collection associated with the latter node it follows
that the essential affine toric variety Y ′ ∩ U ′ corresponding to the
node admits a monomial parametrization of its torus by (K∗)m in
coordinates y′j , 1 ≤ j ≤ L′ , on U ′ as follows: y′j = (Φ)j(x) :=

x~aj , 1 ≤ j ≤ L′ . We finally show the equivalence of stabilization
of the sequence of Nash blowings up of Y to the termination of our
combinatorial algorithm

Claim 4.9. A branch B of the multidimensional analogue of Euclidean
division algorithm terminates iff the essential affine chart Y ′ ∩ U ′

corresponding to the terminal node of B is nonsingular.
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Proof. Say E ′ = {~aj}1≤j≤k is the collection corresponding to a node
of branch B and Y ′ ∩ U ′ ↪→ U ′ ' KL′

is the corresponding essential
affine chart. Then exponents of monomial parametrization y ′j = x~aj ,

1 ≤ j ≤ L′ , of torus (Y ′ ∩U ′)∗ = (Y ′ ∩U ′)∩ (K∗)L′

include collection
E ′ and, moreover, are in Z+(E ′) , i. e. can be expressed as nonnegative
integral linear combinations ~aj =

∑
1≤l≤k njl · ~al , k + 1 ≤ j ≤ L′ .

Therefore, if branch terminates, i. e. collection E ′ associated with
its terminal node is of size m , then Y ′ ∩ U ′ is nonsingular being the
graph of map y′j = (y′1)

nj1 · ... · (y′m)njm , m + 1 ≤ j ≤ L′ .
Conversely, as in Remark 2.16, if Y ′∩U ′ is nonsingular at the origin

of U ′ , it follows that it is a graph of an étale map-germ G at the origin
over a coordinate subspace Km ⊂ KL′

. Since the closure Y ′ ∩ U ′ of
torus (Y ′∩U ′)∗ contains the origin 0 of U ′ ' KL′

Claim 2.3 implies
that there is a monomial parametrization y′j = x~ωj , 1 ≤ j ≤ L′ , of
(Y ′ ∩ U ′)∗ with {~ωj}1≤j≤L′ ⊂ Zm

+ . Then (uniqueness of Taylor series
expansion of the composite of G with the components of parametriza-
tion y′jl

= x~ωjl , 1 ≤ l ≤ m , associated with the aforementioned
coordinate subspace Km implies that) map-germ G is monomial.
We may conclude now that vectors ~aj , 1 ≤ j ≤ L′ , are generated
over Z+ by their subset (of size m ) corresponding to the coordinate
subspace Km of the previous sentence. �

Remark 4.10. The proof of Claim 4.9 shows that essential toric variety
is nonsingular iff it is nonsingular at the origin.

4.3. Effect of normalization. Normalization N (Y ) of essential
affine variety Y adjoins as regular functions on N (Y ) all mono-
mials M in coordinates yj , 1 ≤ j ≤ L , on KL whenever Md

for some d ∈ Z+ coincides on Y with another monomial M′ in
yj’s with non negative integral exponents (see Section 2.1 in [5]). Since

torus Y ∗ is parametrized by monomials yj = x
~∆j , 1 ≤ j ≤ L ,

normalization translates into a combinatorial algorithm:
augment an essential input set E = {~∆j}j ⊂ Zm to a semigroup
Q+(E)Z generated by its finite essential subset N (E) := Ext(Q+(E)Z)
(Remark 4.7 (i)) - the output of combinatorial normalization.

Of course a sequence of composites of normalized Nash blowings up
followed by normalization coincides with normalization followed by the
sequence of Nash blowings up composed with normalizations. For the
convenience of exposition (and reflecting the latter) essential collection

N (E) , with E = {~∆j}1≤j≤L from (4.1), is the initial input for
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normalized multidimensional Euclidean division algorithm:
whose input for each step is an essential collection E = N (E) and
essential collections N (NJ(E)) for J ∈ S(E ′) are the output.

The latter records a sequence of normalized Nash blow ups (followed
by normalization) of an essential toric variety Y . By definition a
branch of this tree-like algorithm terminates at a node with an essential
collection E provided that the size of E is m .

The proof of Claim 4.9 applies to show that a branch B̃ of normal-
ized multidimensional Euclidean division terminates iff the essential
chart corresponding to the terminal node of B̃ is nonsingular. Since
normalization separates all local étale irreducible components (and due
to Property A., Theorem 2.7 C. and Remark 1.2 ) the lengths of the
normalized Nash desingularization of the essential subvariety Y of an
affine binomial variety V̂ and that of V̂ coincide.

5. Structure of binomial varieties, proofs.

We consider affine binomial varieties V̂ := V ∗(f̂) in AN determined

by a set f̂ := {f̂j}1≤j≤M of binomials from (2.1).

Remark 5.1. Let r := rank Ê , n := N − r . Denote by E = {Eji} a

matrix of size r×N with rows being a basis over Z of (Ê)tr(QM )∩ZN .
Then ideal generated in Z by r× r minors of matrix E is the unit
ideal, i. e. d(KerE) = 1 (Remark 2.1), which is equivalent to

(Z) {ξ ∈ RN : Eξ ∈ Zr} = KerE ∩ RN + ZN ⊂ RN .

Let αji := max{Eji , 0} , βji := −min{Eji , 0} and denote
V ∗(f) := {w ∈ TN : fj(w) = 0 , 1 ≤ j ≤ r} , where binomials

fj := w
αj1

1 · · ·wαjN

N − w
βj1

1 · · ·wβjN

N .(5.1)

Both V ∗(f) ⊂ V ∗(f̂) are subgroups of TN (and V ∗(f̂) ⊂ Reg V̂ ).

Since KerE = Ker Ê the sets of exponents parametrizing V ∗ and
V ∗(f) coincide (Remark 2.1) and V = V ∗(f) .

Remark 5.2. In the special case that K = C let us introduce sub-
groups G := {w ∈ V̂ ∗ : |w| = 1}, where |w| ∈ RN is a point with
coordinates being the absolute values |wj| of coordinates of w ∈ CN ,
and G0 := {w = exp(2π

√
−1 · h) : h ∈ RN , Eh = 0} , where

exp((h1, . . . , hN)) := (eh1 , . . . , ehN ) , of V̂ ∗ . Then property ( Z ) of
matrix E implies that G0 = G ∩ V ∗(f) and Γ ' G/G0 (since

g := w · |w|−1 ∈ G and |w| ∈ V ∗(f) whenever w ∈ V ∗(f̂) ). Map
ξ 7→ exp(2π

√
−1 · ξ) provides a bijection onto Γ of an additive group
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Γ∗ := {ξ ∈ RN : Ê(ξ) ∈ ZM}/(ZN + KerE) and Γ∗ is finite (since

for any choice of a basis { ~hj}1≤j≤r of Ê(RN) ∩ ZM over Z there is

a choice of {~ξj}j ⊂ QN with each ~hj = Ê(~ξj) ).

We will make use of the following

Claim 5.3. Assume P ∈ V̂ \ V ∗(f̂) and that upon splitting all vari-
ables wj , 1 ≤ j ≤ N , into w = (u, v) the u-coordinates of P
vanish while b := v(P) ∈ TN ′′

. Then there are point a ∈ TN ′

, where

N ′ := N −N ′′ , and ~ξ ∈ (Z+)N ′ × {0} such that g ·X∗
E+ ↪→ V ∗(f̂) ,

where g := (a, b) ∈ TN and E+ := {(~ξ)j}1≤j≤N ⊂ Z .
In particular, point {P} = (g ·XE+) \

(
g ·X∗

E+

)
.

Proof. Let X ↪→ V̂ be an irreducible curve with P ∈ X Then
normalization N (X) of X is a nonsingular curve and morphism
NX : N (X) → X is finite and surjective. Let point Q ∈ (NX)−1(P) .

Since N (X) at Q is nonsingular it follows that the completion Ô
(in Krull topology) of the local ring O ↪→ Ô of N (X) at Q is the
ring F[[t]] of the formal power series expansions in one variable, say
t , with coefficients in the residue field F of O (hence [F : K] <∞ ).

Denote by γj(t) ∈ F[[t]] the pull back (NX)∗(wj|X) ∈ O ↪→ Ô of
the restriction wj|X of the wj-coordinate to X . It follows that

γ(t)Ê = IM in F[[t]]M and that w(P) = (0, b) = γ(0) . Let for
each j , 1 ≤ j ≤ N ′ , the initial form of γj(t) to be in(γj) =
aj · tξj , aj ∈ F∗ and ξj ∈ Z+ . Then a := (a1, . . . , aN ′) ∈ (F∗)N ′

and ~ξ := (ξ1, . . . , ξN ′, 0, . . . , 0) ∈ ZN satisfy X∗
E+ ↪→ V ∗(f̂) and

(a, b)Ê = IM , i. e. are as required. �

Corollary 5.4. Claim 5.3 implies (a) equality Ŷ = V ∗(f̂) ∩ (AL × IN−L)
of Theorem 2.7 B., (b) Lemma 4.2 and (c) Lemma 2.4 :

Proof. Indeed, starting with a proof of (a) and applying Claim 5.3

to a point P ∈ Ŷ := V̂ ∩ (AL × IN−L) it follows that there are

g ∈ V ∗(f̂) and ~ξ ∈ ZN with coordinates in Z+ or vanishing
depending on the respective coordinate of P vanishing or not such

that g and ~ξ satisfy the conclusions of Claim 5.3 and thus imply

that P ∈ V ∗(f̂) ∩ (AL × IN−L) , as required.
Moreover, items (b) and (c) follow by applying the proof of (a) with

an appropriate choice of point P . �

Remark 5.5. Equality Ker Ê = KerE and Lemma 2.4 imply that the
splitting of variables w into y and z-variables for variety V̂ ⊂ AN

and for the irreducible component V 3 IN of V̂ coincide.
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Let matrices (Ω̂ Ξ̂) := Ê and (Ω Ξ) := E with the columns

of Ω̂ and Ω corresponding to y and, respectively, the columns of
Ξ̂ and Ξ to z -variables. Claim following implies that π(V ) is a
closed binomial variety and completes the proof of Theorem 2.7 B.
(using Property A. of Remark 2.1)

Claim 5.6. π(V ∗(f̂)) = π(V̂ ) , is closed in AN−L and is binomial.

Proof. Let matrix T of size M ′ ×M , M ′ := M − rank (Ω̂) , have as

rows a basis over Z of Ker (Ω̂)tr ∩ ZM . Then KerH = π(Ker Ê)

for H := T · Ξ̂ . Moreover

Lemma 5.7. π(V ∗(f̂)) = {z ∈ TN−L : zH = IM ′} .

Proof. Matrix T admits (cf. Remark 5.1) a right inverse matrix L
with entries in Z , i. e. T ·L = Id M ′ . Therefore T ·(Id M −L·T ) = 0 ,
(Ker T ) ∩ (Im L · T ) = {0} , Im L = Im L · T . Hence QM =
Im (Id M − L · T ) ⊕ Im L · T implies Im (Id M − L · T ) = Ker T =

Im Ω̂ . Of course there are square matrices Λ and λ with entries in
Z , det(Λ) = 1 = det(λ) and such that matrix τ := Λ · Ω̂ · λ has a
diagonal upper left corner of size M ′×M ′ and zero entries otherwise.
Then Im τ = Im Λ · Ω̂ = Im θ , where θ := Λ · (Id M − L · T ) ,
implying for any v ∈ TM existence of y∗ ∈ TL with yτ

∗ = vθ , which

for v := zΞ̂ with zH = IM ′ and y := y−λ
∗ implies y−Ω̂ = zΞ̂ , i. e. if

zH = IM ′ then z ∈ π(V ∗(f̂)) , while the converse is obvious. �

In other words π(V ∗(f̂)) is the vanishing set of binomials and H is

a matrix associated with variety Ŵ = π(V ∗(f̂)) for which all variables

are the ‘z-variables’ (follows using ~ξ+ of Corollary 2.5). Therefore

π(V ∗(f̂)) is a closed binomial variety and coincides with π(V̂ ) . �

Corollary 5.8. It follows that π(V ) = π(V ∗(f)) = π(V ∗) ↪→ TN−L

is a torus (Remark 2.1) closed in AN−L and, being nonsingular, is a

connected component of π(V̂ ) .

Next we prove Theorem 2.7 C.

Proof. We start by showing the claim of existence in part C.. Namely,
following the arguments of Criterion 2.18 let V ∗ = X∗

Ẽ
and split the

exponents of set Ẽ ⊂ Zn into subsets E ′ and E ′′ according to the
splitting of all coordinates w on AN into y and z-coordinates. Let

matrix M̃ complete matrix M of Criterion 2.18 to a square size

matrix with entries in Z and det(M̃) = 1 by attaching matrix M
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of size n×(n−m) as the last n−m columns. Then, respectively, the

columns of matrices EY := Ẽ ·M and EV := Ẽ · M̃ form Z-bases of
KerE ∩ (ZL ×{0}) and KerE ∩ZN implying that Y ∗ = X∗

EY
↪→ TN

and X∗
Ẽ

= X∗
EV

. Moreover, letting EZ := Ẽ ·M it follows that EZ is

a Z-basis and that as the set of exponents EV = (EY ||EZ) , as required.
We next prove that torus Z∗ := X∗

EZ
is closed in AN . Applying

projection π to columns of matrices EV and EZ it follows that
Span Z(π(E tr

V )) = Span Z(π(E tr
Z )) implying dimQ(Span Q(π(E tr

Z ))) =
dimQ(Span Q(E tr

V ))−dimQ(Span Q(E tr
Y )) = dimQ(Span Q(E tr

Z )) , although
π(E tr

Z ) is not necessarily a Z-basis of Span Q(E tr
Z ) as Example 2.17

demonstrates. Inclusion π(Z) ⊂ π(V ) ⊂ TN−L (Corollary 5.8) im-

plies that all ‘z-variables’ for V̂ are the ‘z-variables’ for Z and
then the criterion of the iterative construction preceding (2.3) implies
that all wj , 1 ≤ j ≤ N , variables are the ‘z-variables’ for Z , i. e.
TN ⊃ Z = Z , as required.

Properties of morphism π|Z : Z → π(V ) follow (Remark 2.12) from
the analogous properties of φ(π(Etr

Z
))tr : Tn−m → π(V ) . Surjectivity

of the latter is a consequence of Corollary 5.8, while the properties of
morphism π|Z being finite of degree d = d((π(E tr

Z ))tr) with the size

of all fibres equal [d] = #(Ŷ ∗/Y ∗) (cf. Remark 2.10) and the property
of being étale if d 6= 0 in K follow from Remark 2.1 by replacing
matrix Ê by (π(E tr

Z ))tr .

Next we establish the properties of µ : Z × Ŷ → V and of µ|Z×Y

listed in Theorem 2.7 C.. Surjectivity and the quasifiniteness of both
with all fibres of µ of the same size [d] as those of morphism π|Z are
straightforward consequences of the surjectivity of π|Z : Z → π(V ) as

a group homomorphism and of the definition of Ŷ := V ∩(AL×IN−L) .
Besides morphism µ being étale (which we prove at the very end)

it remains to show that both µ and µ|Z×Y are finite morphisms of
the same degree d as π|Z . The proof is similar to the calculation
in the special case of Example 2.9 and so we carry it only in the case
of morphism µ . Indeed, since Z ↪→ AN is isomorphic to a closed
torus Tn−m ↪→ A2·(n−m) the ring of regular functions on Z is K[Z] '
K[s1 , . . . , sn−m , s−1

1 , . . . , s−1
n−m], while K[Z × Ŷ ] ' (K[Z])[y]/I ,

where I is the ideal in (K[Z])[y] generated by equations defining

Ŷ in AL . Splitting the exponents e ∈ EZ of parametrization
Tn−m 3 s→ φEZ

(s) ∈ Z of Z according to the y and z-coordinates,

say φ∗
EZ

(yj) = se′j , 1 ≤ j ≤ L , and φ∗
EZ

(zi) = se′′i , 1 ≤ i ≤ N − L ,
where s = (s1 , . . . , sn−m) , it follows that

K[Z] ' K[se′1 , . . . , se′
L , se′′1 , . . . , se′′

N−L] ,
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K[π(Z)] ' K[se′′1 , . . . , se′′
N−L ] and

µ∗(K[V ]) ' K[π(Z)][y1 · se′1 , . . . , yL · se′L]/I ↪→ (K[Z])[y]/I .

(Recall that π(Z) = π(V ) and (π|V )∗ : K[π(Z)] ↪→ K[V ] .) Then

K[Z×Ŷ ] is integral over µ∗(K[V ]) since K[Z] is integral over K[π(Z)]

(the finiteness of π|Z ) and each element s−e′j ∈ K[Z] , 1 ≤ j ≤ L .
Next, degree of π|Z is d means that dimF K[Z] · S̃−1 = d , where

S̃ := K(π(Z)) \ {0} and F := K(π(Z)) . Note that K[Z] · S̃−1 '
F[se′1 , . . . , se′

L] and µ∗(K[V ]) · S̃−1 ' F[y1 · se′1 , . . . , yL · se′
L]/I .

Also (yj · se′j ) ∈ µ∗(K[V ]) , yj ∈ K[Z × Ŷ ] , 1 ≤ j ≤ L and el-

ement yj ∈ (yj · se′j) · K[Z] ⊂ (yj · se′j ) · K[Z] · S̃−1 ⊂ K[Z × Ŷ ] · S̃−1 .

Then K[Z] · S̃−1 ⊗K(π(Z)) K(V ) ' K[Z × Ŷ ] · S−1 , implying that

dimµ∗(K(V )) K[Z× Ŷ ] ·S−1 = dimK(π(Z)) K[Z] · S̃−1 = d , cf. Remark 2.8 .
Finally, the property of morphism µ to be étale is a consequence

of the analogous property for π|Z : Z → π(V ) . In a special case of
K = C the étale inverse (πZ,a)

−1 is an analytic map of π(Z) to Z (of
a neighbourhood in the classical topology of π(a) to that of a). Then
the étale inverse (µ̂(a,b))

−1 of µ as an analytic map germ (at (a, b) ) is

Vµ(a,b) 3 v 7→ ((πZ,a)
−1(π(v)) × [(πZ,a)

−1(π(v))]−1 · v) ∈ (Z × Ŷ )(a,b) ,

where [g]−1 : v → [g]−1 · v is the action of g := (πZ,a)
−1(π(v)) ∈ Z

on V and Vµ(a,b) , (Z × Ŷ )(a,b) are the germs as analytic sets at the

respective points µ(a, b) ∈ V , a ∈ Z and b ∈ Ŷ . In the general case
we exploit the calculations of the previous two paragraphs.

Indeed, we must show that for any prime ideal p ∈ Spec (K[Z× Ŷ ])
and q := p ∩ µ∗(K[V ]) ∈ Spec (µ∗(K[V ])) the respective localizations
at p and q followed by the completions in the Krull topologies leads to
isomorphic rings. (Since π|Z is étale the analogous procedure starting
with prime ideals p̃ := p ∩ K[Z] and q̃ := q ∩ K[π(Z)] leads to the

same ring, say Ô .) It suffices to show that adjoining (K[Z] \ p̃)−1 to

K[Z× Ŷ ] and (K[π(Z)]\ q̃)−1 to µ∗(K[V ]) followed by the completions
in the Krull topologies induced by the powers of the ideals generated by
p̃ and q̃ in the respective rings leads to isomorphic rings (even prior
to localizing at the full p and q followed the respective completions).
But the partial localizations followed by the respective completions of
the previous sentence transform rings µ∗(K[V ]) ↪→ K[Z × Ŷ ] into the

pair of rings Ô[y1 · se′1 , . . . , yL · se′
L ]/I ↪→ Ô[y]/I , which are of

course isomorphic since each element s−e′j ∈ K[Z] ↪→ Ô , 1 ≤ j ≤ L .
This completes the proof of Theorem 2.7 C. . �

We now prove (in the respective order) Claims 2.14 , 2.3 and 2.6 .
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Proof. Claim 2.14 . Binomial variety π(V̂ ) = π(V̂ ∗) ⊂ TN−L , hence
is nonsingular and, consequently, its irreducible components are disjoint
and smooth. To prove the first statement of Claim 2.14 it suffices (due
to property A. of Remark 2.1) to consider a nonsingular subvariety W

of component π(V ) and a respective subvariety Ṽ of V , obtained by
restricting the original z-variables (due to Remark 5.5) to a nonsingular
subvariety W . Similarly, let Z̃ ↪→ Z be obtained by restricting z-
variables to W . Then Z̃ is nonsingular (due to the étale property

of µ , Theorem 2.7 C.) and, moreover, morphisms π|Z̃ : Z̃ →W and

of coordinatewise multiplication µ : Z̃ × ŶV → Ṽ are surjective étale
morphisms and π|Z̃ is finite (again due to Theorem 2.7 C.), which
imply the first half of Claim 2.14 .

Next we show that a quasi-binomial variety, say X̃ , is a special
case of the preceding construction. Without loss of generality we may
assume that quasi-binomial equations defining X̃ are the linear combi-
nations of two monomials with the first coefficients being equal 1 . We
start by replacing the ‘second’ coefficients of quasi-binomial equations
(one per each) by minus a variable, say −cj , introducing simultane-
ously another variable c̃j and a binomial equation cj · c̃j = 1 . We
thus construct a binomial variety, say X , with all of the just intro-
duced new variables being among the ‘z-variables’ for X . Obviously
it suffices to show that the intersection W of the projection π(X)
(of binomial variety X to the affine subspace of its z-variables) with
the specialization of variables cj (according to their values in the

quasi-binomial equations defining variety X̃ ) is nonsingular, thus re-
ducing to a special case of the construction of the previous paragraph.
Due to Theorem 2.7 B. π(X) = π(X∗) and is a closed binomial
variety (implying that W is a quasi-binomial variety). Obviously
π(X) = π(X∗) ⊂ TN−L implies W = W ∗ := W ∩ TN−L ⊂ RegW
(the latter follows by making use of the algebraic group structure of
TN−L similarly to the ‘Gauss elimination’ argument of Remark 2.1 and
from the analogous claim V̂ ∗ ⊂ Reg V̂ of Remark 2.1), as required. �

Proof. Claim 2.3 . The ‘only if’ implication is obvious. Assume that
0 ∈ X . It follows that there are no z-coordinates and Corollary 2.5 im-

plies existence of ~ξ+ ∈ KerE∩(ZN
+ ) . Say m := dimX = N−rankE .

To construct a monomial parametrization of the torus of X with pos-
itive integral exponents E = { ~∆j}1≤j≤N ⊂ Zm it suffices to find a

Z-basis {~δi}1≤i≤m of KerE ∩ ZN with positive coordinates, as in
Remark 2.1. Construction of the latter provides lemma below. �
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Lemma 5.9. For any matrix E of size M ×N with entries in Q

and m := N − rankE the following properties are equivalent:
(i) there is ~v ∈ KerE ∩ (ZN

+ ) ;

(ii) there is a Q-basis {~δi}1≤i≤m ⊂ ZN
+ of KerE ∩ QN ;

(iii) there is a Z-basis {~δi}1≤i≤m of KerE ∩ ZN with all posi-

tive coordinates (equivalently, there exists a Q-basis {~δi}i ⊂ ZN
+ of

KerE ∩QN such that I = Z , where I = I(~δ1 ∧ · · · ∧~δm) is the ideal

generated in Z by all coordinates of ~δ1 ∧ · · · ∧ ~δm in the standard
basis {(j1) ∧ · · · ∧ (jm)}1≤j1<···<jm≤N ).

Remark 5.10. Due to a theorem of Gordan [2] (communicated to us
by Dima Pasechnik) property (i) is equivalent to (Im E tr)∩QN

+ = {0} .

Proof. Our proof is based on a simple linear algebra. To prove (i)
implies (ii) it suffices to choose any basis {~vi}i ⊂ ZN of KerE ∩QN

with ~v1 := ~v and then letting ~δ1 := ~v and ~δi := t · ~v + ~vi , i > 1 ,
(ii) follows for a sufficiently large t ∈ Z+ .

The remaining implication “(iii) follows from (ii)” is slightly harder.

Starting with a Q-basis {~δi}1≤i≤m ⊂ ZN
+ of KerE ∩ QN let s ∈ Z+

be the generator of ideal I , i. e. (s · Z) = I . If s = 1 we are done.

Otherwise, we modify basis {~δi}1≤i≤m reducing the size of s , which
would suffice. Pick a prime factor p of s . Denote field Z/(p ·Z) by

Fp . Now our collection of vectors {~δi}1≤i≤m considered modulo ideal

(p·Z) in (Fp)
N is linearly dependent, i. e.

∑
1≤i≤m λi·~δi = 0 in (Fp)

N

for a collection of coefficients {λi}1≤i≤m ⊂ (Fp)
m\{0} . Choose λ̃i ∈ Z

so that λi = λ̃i (mod p) and 0 ≤ λ̃i < p , 1 ≤ i ≤ m . Then λ̃i0 6= 0

for some i0 , 1 ≤ i0 ≤ m , and ~δ0 := (1/p) · ∑1≤i≤m λ̃i · ~δi ∈ ZN
+ .

It follows that all coordinates of the modified Q-basis of KerE ∩QN

obtained by replacing vector ~δi0 of {~δi}1≤i≤m by vector ~δ0 are positive

integers and that I(~δ1∧· · ·∧~δi0−1∧~δ0∧~δi0+1∧· · ·∧~δm) = λ̃i0 ·(s/p) ·Z .

Due to the choice of {λ̃i}1≤i≤m in Zm the size of λ̃i0 ·(s/p) is smaller
than the size of s , which suffices. �

Remark 5.11. Complexity of construction of a basis satisfying prop-
erty (iii) of the algorithm ‘(ii) implies (iii)’ is polynomial in the maxima

of the absolute values of the coordinates of ~δ1 ∧ · · · ∧ ~δm in the stan-
dard basis for the initial Q-basis {~δi}1≤i≤m , i. e. is exponential in

the binary size of the input (unlike construction of a basis {~δj}1≤j≤m

of (ii) which is a typical problem of linear programming and carries a
polynomial cost in the binary size of the input). Of course we do not
need the output with property (iii) for the algorithms of this article.
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Proof. Claim 2.6 . The ‘if’ implication is obvious. We first prove
the ‘only if’ implication in the case that there are no y-coordinates,
i. e. we must show that in this case (f̂) is a radical ideal when

V̂ = V̂ ∩TN = V ∗(f̂) . Of course V ∗(f̂) ⊂ Reg V̂ (as we have explained
in Remark 2.1). Therefore, assuming that polynomial P ∈ K[w]

vanishes on V̂ it follows that polynomial P belongs to the ideals
Im generated by ideal (f̂) in the local rings Om of the localizations
of the polynomial ring K[w] at its maximal ideals m . The result
follows by the standard ‘partition of unity’ argument of commutative
algebra. (Indeed, for every m there is a polynomial Qm ∈ K[w] with

Qm /∈ m such that Qm · P ∈ (f̂) . Since the ideal generated by all
Qm in K[w] is not in any maximal ideal m of K[w] it follows that it
coincides with K[w] and therefore there is a finite linear combination∑

k hk ·Qmk
= 1 , for an appropriate choice of polynomials hk ∈ K[w] ,

commonly refered to as a partition of unity. Expressing inclusions
Qmk

· P ∈ (f̂) as equalities Qmk
· P =

∑
j Gmk,j · f̂j it follows that

P =
∑

k hk ·Qmk
· P =

∑
j(

∑
k hk ·Gmk,j) · f̂j .)

Finally, we reduce to the previously considered special case. Let
v := (v1, . . . , vL) and gi := yi · vi − 1 denote auxiliary variables

and polynomials. Of course V̂ ∩ {(y, z) ∈ AN : y1 · ... · yL 6= 0} =

V ∗(f̂) (by definition of the y-variables). Therefore assumption that

P ∈ K[w] vanishes on V̂ (and equivalently on V ∗(f̂) ) implies that

polynomial P ∈ K[w] ⊂ K[w, v] vanishes on V ∗(f̂ , g) ⊂ AN+L .
Obviously all (w, v) variables for the collection F of binomials

{f̂j}j ∪{gi}i are, as we refer to them, the ‘z-variables’. Therefore the
case we considered first implies that polynomial P (w) is in the ideal
generated by polynomials from F in the ring K[w, v] . Substitution
of vj = 1/yj , 1 ≤ j ≤ L , in the equality expressing the inclusion of
the previous sentence, followed by ‘clearing’ the denominators, i. e. (in
our setting) by multiplying by a sufficiently high power of y1 · ... · yL ,
completes the proof. �

Part 2. Essential dimension = 2 .

6. Termination of normalized Euclidean division: dim= 2.

Conjecture 6.1. Tree T associated with the multidimensional Eu-
clidean algorithm is finite for any initial data.
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By König’s lemma the latter is equivalent to the property that the
algorithm terminates along every branch of tree T . In dimension > 2
‘normalized’ version of 6.1 is the following

Conjecture 6.2. Tree T associated with the normalized multidimen-
sional Euclidean algorithm is finite for any initial data.

We start with an example from Introduction of a normal toric surface
in C3 whose Nash blow up is not normal

Example 6.3. With φ : (x1, x2) 7→ (x1 · x2 , x1 · x2
2 , x

3
1 · x2

2) let

S := φ(T2) ⊂ C3 . Exponents E := {(1, 1) , (1, 2) , (3, 2)} ⊂ Z2 gener-
ate over Z+ integral points Z2∩Span Q+(E) of cone Span Q+(E) ⊂ Q2

spanned by E , because det((3, 2) , (1, 1)) = 1 = det((1, 1) , (1, 2)) im-
plies that cones Span Q+({(3, 2) , (1, 1)}) and Span Q+({(1, 1) , (1, 2)})
are, respectively, generated by pairs of vectors (3, 2) , (1, 1) and
(1, 1) , (1, 2) and because the union of these two cones is exactly
the cone generated by E . Then due to a criterion of Section 2.1
in [5] it follows that surface S is normal. Next, with reference to
Section 4.2 there are exactly two elements in the set S(E)′ , namely:
J1 = {(1, 1) ; (1, 2)} and J2 = {(1, 1) ; (3, 2)} , - and the Nash blow up
N(S) of S is covered by two respective affine charts N(S)Jj

, j = 1, 2 ,
as explained in Claim 4.6 . (In the remainder we make use of nota-
tions of Remark 4.5 .) It turns out N(S)J1 ⊂ C5 is not normal, i. e.
collection of exponents EJ1 of monomial parametrization

ψ : (x1, x2) 7→ (x1 · x2 , x1 · x2
2 , x

3
1 · x2

2 , x
2
1 · x2 , x

2
1)

of torus N(S)∗J1
does not generate Z2 ∩ Span Q+(EJ1) over Z+ ,

because obviously point (1, 0) ∈ Z2 ∩ Span Q+(EJ1) \ Z+(EJ1) , but
(1, 0) 6∈ Z+(E ∪ {(2, 1) , (2, 0)}) , implying N(S) is not normal.
(Note, that ψ3(x) = ψ1(x) · ψ4(x) , i. e. exponent (3, 2) is generated
over Z+ by ‘others’, illustrating passage from EJ to Ext(Z+(EJ))
in the combinatorial algorithm recording Nash blowing up.)

Consider a node τ of a tree T associated with normalized multidi-
mensional Euclidean division for initial essential collection N (E) with
E from Remark 4.1 . Let Cτ ⊂ Z2 denote the associated with node
τ essential collection. In abuse of notation we will not indicate the de-
pendence of Sτ := S(Cτ ) and S ′

τ := S(Cτ )
′ on τ (for S(E) and S ′

see Remark 4.4 and Claim 4.6). Note that int(∇(J)) ∩ Span Z(Cτ ) =
int(∇(J)) ∩ Q+(Cτ )Z for J ∈ Sτ and that J ∈ S ′

τ implies that
int(∇(J)) ∩ Q+(Cτ )Z = ∅ , see Remark 4.7 (ii) , (iii) . Of course
Span Z(Cτ ) = Span Z(E) for any node τ . We may assume that
Zm = Span Z(E) , otherwise we ‘rescale’ replacing the latter span by
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Zm . Finally, we refer to the initial node τ0 of T as its root and to
the collection of ‘immediate descendants’ of τ in T as child nodes of
τ - terms commonly used in the ‘theory of trees’.

6.1. An apriori bound in (essential) dimension m = 2 on
the length of desingularization by normalized Nash blow ups.
Below we assume that m = 2 , nodes τ0 and τ are not terminal and
with node τ associate an integer V(τ) := 2 × the area of Conv (Cτ ) .

We refer to vectors {~∆ji
}i=1,2 ⊂ E := {~∆j}1≤j≤L ⊂ Z2 minimal on

the intersection of E with two extremal rays of the cone generated by
E over R+ as the extremal vectors of E . Of course extremal vectors
of the input N (E) for the normalized 2-dimensional Euclidean
division are the same vectors. Integer D of Theorem 3.1 (ii) equals

| det(~∆j1 , ~∆j2)| . In abuse of notation we will not distinguish in this
section between the subsets J ∈ Sτ of indices of vectors in collections
Cτ and the sets of the respective vectors themselves. Let b1, , b2 ∈ Cτ

be the extremal vectors of Cτ . Denote D(τ) := | det(b1 , b2)| and
pick a 2-tuple J := {uj}j=1,2 ∈ S ′ . In other words J corresponds to
a child node τ of τ and determines the branching of T at node τ .
Of course Cτ = Ext(Q+(Cτ )Z) .

Every J ∈ S ′ is a frame, i. e. is a collection of linearly independent
vectors, and moreover is a minimal frame of Cτ . By minimal we
mean that for an irrational functional h positive on the convex hull
of collection Cτ ⊂ Z2 the value of h(~∆J) , where ~∆J := u1 + u2 ,

is smaller than the value of h(~∆J ′) for any other choice of J ′ ∈ S .
This property of frames J ∈ S ′ does not depend on the choice of
irrational h being positive on the convex hulls of collections Cτ ⊂ Z2 ,
corresponding to τ and provides a bijective correspondence between
the minimal frames of Cτ and the child nodes τ of τ , cf. Claim 4.6 .
We identify in explicit geometric terms sets involved in the proof below
of an apriori bound Theorem 3.1 (ii) in the following

Claim 6.4. Generators Ext(Q+(E)Z) of any subset E ⊂ Z2 with
Conv (E) 63 0 and Span Z(E) = Z2 are the integral points of bounded
edges Γ of K := Conv (Q+(E)Z) . For any node τ of tree T

D(τ) − V(τ) = #(Cτ ) − 1(6.1)

Proof. Inclusion of the integral points of bounded edges Γ of K in
Ext(Q+(E)Z) is obvious. To show the opposite inclusion we pick any
pair J of adjacent integral points {u1 , u2} on any bounded edge Γ
of K . Then the only integral points of triangle ∇(u1 , u2) are its ver-
tices. Therefore the only integral points in the parallelogramm P (J)
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spanned by vectors u1 , u2 are its extremal points, which implies (by
tiling of R2 by translations of P (J) ) that Span Z(J) = Z2 . Conse-
quently Z2 ∩ Span Q+(J) \ {0} = Z+(J) and Span Q+(J) ∩ E = J ,
which is equivalent to 1 = | det(u1 , u2)| = 2 · area(∇(u1 , u2)) for
any pair of adjacent integral points u1 , u2 of any bounded edge Γ
of Conv (Q+(E)Z) implying (6.1) for any node τ . Also the remain-
der of the claim (“the opposite inclusion”) follows by making use of
Span Q+(E) = ∪JSpan Q+(J) , where the union is over pairs J of the
adjacent integral points of the bounded edges of K . �

Remark 6.5. Any J = {u1 , u2} ∈ S(E)′ must lie on a bounded edge
Γ of Conv (Q+(E)Z) . Moreover, frame J is a minimal frame iff
u1 , u2 ∈ Γ are adjacent integral points of edge Γ and at least one
of them is a vertex of Γ , since J ∈ S(E)′ iff dim C̃J = 2 (see proof
of Claim 4.6). Of course | det(u1 , u2)| = 1 for any pair {u1 , u2}
of adjacent integral points on a bounded edge of Conv (Q+(E)Z) is
a byproduct of the proof of Claim 6.4 above. Moreover, the converse
also holds. Namely, let u1, . . . , uk ∈ Q+(E)Z be such that u1 , uk

are extremal vectors of E . Assume that | det(ui , ui+1)| = 1 , 1 ≤
i < k , and that | det(ui , uj)| ≥ 2 whenever i ≥ j + 2 . Then
Ext(Q+(E)Z) = {u1, . . . , uk} and points ui , ui+1 , 1 ≤ i < k , are
the adjacent integral points on a bounded edge of Conv (Q+(E)Z) .

Of course V(τ) = 0 for a terminal node τ and if node τ is not
terminal but V(τ) = 0 , then there are exactly two child nodes of node
τ and both are terminal due to a simple argument of the case 2a of the
proof in Section 6.2 of the following weak version of Theorem 3.1 (ii)

Theorem 6.6. Assume τ is not terminal. With every step of nor-
malized 2-dimensional Euclidean algorithm integer V(τ) decreases,
i. e. V(τ) > V(τ ) .

Corollary 6.7. Normalized 2-dimensional Euclidean algorithm ter-
minates after at most V(τ0) + 1 ≤ D(τ0) − 1 steps.

We derive Theorem 3.1 (ii) as a consequence of the following

Theorem 6.8. Assume τ is not terminal. It follows that either
V(τ) < V(τ)/2 or V(τ ) ≤ V(τ )/2 < V(τ)/2 .

Of course Theorem 3.1 (ii) follows, namely

Corollary 6.9. Normalized 2-dimensional Euclidean algorithm ter-
minates after at most 2 · log2(V(τ0) + 2) ≤ 2 · log2D(τ0) steps.

Claim 6.10. For any node τ 6= τ0 collection Cτ contains at most
6 vectors. Moreover, Conv(Q+(Cτ )Z) contains at most 3 bounded
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edges. If there are at least 2 bounded edges then no edge can have
more than 4 integral points. If there are just 3 bounded edges then
the middle edge among them has exactly two integral points and no edge
can have more than 3 integral points. Finally, at most 3 child nodes
of τ can be nonterminal.

We begin with a proof of a weaker bound of Theorem 6.6. The proofs
of Theorem 6.8 and Claim 6.10 we placed in Section 7.

6.2. Proof of Theorem 6.6 .

Proof. Fix an irrational h and by reindexing arrange that h(b1) <

h(b2) . Let b′1 , b
′
2 ∈ Cτ be the extremal vectors of Cτ and b̃′1 , b̃

′
2 ∈

NJ(Cτ ) be the minimal vectors in the intersection of NJ(Cτ) with two
extremal rays of the cone generated by NJ(Cτ ) over R+ . Of course
the latter cone does not change under ‘normalization’, i. e. coincides
with the cone generated by Cτ over R+ , see Section 4.3 . In particular,
it follows that (after an appropriate choice of indices) extremal vectors

b̃′1 , b̃
′
2 preceding normalization are proportional to the extremal vectors

b′1 , b
′
2 with coefficients from Z+ .

Remark 6.11. Node τ is terminal iff | det(b1 , b2)| = 1 iff
#(Cτ ) = 2 iff {b1 , b2} is a minimal frame in Cτ . To establish
the only nonobvious implication (i. e. that the last property implies
the first) it suffices to apply Claim 6.4 . The latter reference and node
τ not being terminal also imply that if J 6⊂ int∇(b1 , b2) then
#({b1 , b2}∩J) = 1 and b2 6∈ J (otherwise h(b1) < min h|J < h(b2)
contrary to the choice of the irrational functional h ∈ C̃J ).

Plan : Our proof of decrease of V(τ) splits into several cases identified
below. First we consider the case that J ⊂ int∇(b1 , b2) and otherwise
b1 ∈ J , b2 6∈ J (due to Remark 6.11) and, also, b1 ∈ {b′1 , b′2} follows
by making use of Span Q+(J) ∩ Cτ = J established in Claim 6.4 , cf
Figures 1 , 2 and 3 . Say b′1 = b1 and u1 = b1 . The remaining
cases are split according to either u2 6∈ int∇(b1 , b2) (and then τ is
terminal contrary to our assumption) or otherwise and then according
to #(Cτ ) = 3 (when #(Cτ ) = 2 node is terminal) or #(Cτ ) ≥ 4 .
We show that in the latter case #(Z2 ∩ Γ) > 2 for the bounded
edge Γ ⊃ J of Conv (Q+(Cτ )Z) implies that node τ must be
terminal, which is contrary to our assumption. In the previous case of
u2 ∈ int∇(b1 , b2) and #(Cτ ) = 3 the arguments of our proof differ
depending on D(τ) being even or odd : if D(τ) = 2k − 1 is odd
then it turns out that Cτ = {b1 , u2 , b2 − (k − 1) · u2 , b2 − b1}
and V(τ) − V(τ) = 1 , on the other hand if D(τ) = 2k is even then
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Cτ = {b1 , u2 , (b2−b1)/2} and V(τ)−V(τ ) = V(τ)/2+1 . In each of
the cases (with nodes τ and τ not being terminal) we establish that
(after ‘normalization’) integer V(τ) decreases. We now start with

1. Points u1 , u2 in the interior of ∇(b1 , b2) .

0

h
b1

b’2

b’1

a b 2

a(1)

u1
u2

=(2)

~

~

Figure 1. Cτ = { b1 , a(1) , u1 , u2 , b2 } .

Then after one step of 2-dimensional Euclidean division (and prior to

normalization) each extremal vector b̃′l = a(l) − ujl
for appropriate

points a(l) ∈ Cτ∩ (int(∇(b1 , b2)) ∪ {b1 , b2}) , l = 1 , 2 , jl ∈
{1 , 2} , and after one step of normalized 2-dimensional Euclidean
algorithm extremal vectors b′1 , b

′
2 are proportional to their respective

counterparts b̃′1 , b̃
′
2 with positive coefficients majorated by 1 , so

that D(τ) ≤ | det(b̃′1 , b̃
′
2)| . Denote by H and AH the convex hull

of {a(1) , a(2) , uj1 , uj2} and its area. Of course the areas of triangles
∇(b1 , b2) and ∇(b′1 , b

′
2) are D(τ)/2 and, respectively, D(τ)/2 .

Then claimed inequality follows from

V(τ ) < D(τ) ≤ | det(b̃′1 , b̃
′
2)| = 2 · AH ≤ V(τ) .

Remark 6.12. In the proofs of Theorem 6.8 and Claim 6.10 we will
distinguish between the following subcases of case 1.

1a Minimal frame {u1 , u2} ⊂ Γ is not the set of all integral
points of a bounded edge Γ of Conv(Q+(Cτ )Z) .

Then, due to Remark 6.5 , we may assume that u2 is an endpoint
of Γ and that points u1 , u2 are adjacent integral points of Γ . Then
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there is also an integral point a(1) in Γ adjacent to u1 and of
course a(1) − u1 = u1 − u2 . Also, there is a bounded edge Γ′ 3 u2

of Conv(Q+(Cτ )Z) and an integral point, say a(2) ∈ Γ′ , adjacent
to u2 . Then u1 + a(2) = l · u2 for an integer l ≥ 3 since due to
Remark 6.5 det(u1 + a(2) , u2) = 0 and det(u1 , u1 + a(2)) ≥ 3 . We
will refer to subcases of 1a with integer l being even or odd as 1a+
and, respectively, 1a– .

1b {u1 , u2} = Z2∩Γ for a bounded edge Γ of Conv(Q+(Cτ )Z) .

Then there are bounded edges Γi 3 ui , i = 1 , 2 , of Conv(Q+(Cτ )Z)
distinct from edge Γ . Say a(i) ∈ Γi are the integral points adjacent
to ui , i = 1 , 2 . Once again due to Remark 6.5 there are integers
l1 , l2 ≥ 3 such that u2 + a(1) = l1 · u1 , u1 + a(2) = l2 · u2 . We refer
to subcases of 1b with l1 , l2 being even or both odd as 1b++ and,
respectively, 1b– – . Otherwise it is subcase 1b+ – .

If case 1 does not hold then

2. Extremal vector b1 ∈ {u1 , u2} .

Since τ is not terminal b2 6∈ J = {u1 , u2} and b1 ∈ {b′1 , b′2} (see

‘Plan’). Set both b′1 = b1 , u1 = b1 , i. e. b′1 = b̃′1 = b1 = u1 for the
remainder of the proof. Case 2. we split into several starting with

2a. Assume u2 6∈ int∇(b1 , b2) .

Then, with reference to Claim 6.4 , u2 is in the open edge (b1 , b2)
(i. .e. excluding endpoints b1 , b2 ) of triangle ∇(b1 , b2) and therefore

Cτ ⊂ [b1 , b2] := (b1 , b2) ∪ {b1 , b2} . Then b̃
′

2 = a− u2 6= 0 for the

adjacent to u2 point a ∈ Cτ ∩ [u2 , b2] implying b′2 = b̃
′

2 = u2 −u1 .
Hence, with reference to Claim 6.4 , | det(b′1 , b

′
2)| = | det(u1 , u2)| = 1

and τ is terminal (Remark 6.11 ).

In the remaining subcases of case 2 u2 ∈ int∇(b1 , b2) and the
assumptions of the next one imply that τ is terminal.

2b. Assume u2 ∈ int∇(b1 , b2) , #(Cτ ) ≥ 4 and #(Z2∩Γ) > 2
for the bounded edge Γ ⊃ J of Conv (Q+(Cτ )Z) .

Then, with reference to Claim 6.4 , b̃
′

2 = a− u2 6= 0 for the adjacent
to u2 point a ∈ Cτ ∩ Γ \ {u1} implying (as in the previous case)

that b′2 = b̃
′

2 = u2 − u1 , that | det(b′1 , b
′
2)| = | det(u1 , u2)| = 1 and,

finally, that τ is a terminal node, contrary to initial assumption.
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2c. Assume u2 ∈ int∇(b1 , b2) , #(Cτ ) ≥ 4 and #(Z2∩Γ) = 2
for the bounded edge Γ ⊃ J of Conv (Q+(Cτ )Z) .

a

0

b

b’ = b  = u

u

~b’ = a − u

2

2

2 1

1        1       1

Figure 2. The area of Conv (Cτ \ {u2}) ≥ 1 .

Then Z2 ∩Γ = J , #(Cτ \J) ≥ 2 and, with reference to Remark 6.5 ,
there is a bounded edge Γ′ 3 u2 of Conv (Q+(Cτ )Z) distinct from

Γ and an integral point a ∈ Γ′ adjacent to u2 with b̃′2 = a − u1 .
Therefore integer V(τ)−2 · area(u1+∇(u2−u1 , a−u1)) > 0 implying

| det(b̃′1 , b̃
′
2)| = 2+2 · area(u1 +∇(u2−u1 , a−u1)) ≤ 2+(V(τ)−1) .

Combining with (6.1) and Remark 6.11 proves inequality V(τ ) < V(τ) ,
as required:

2 + V(τ) ≤ D(τ) ≤ | det(b̃′1 , b̃
′
2)| ≤ 1 + V(τ) .

Remark 6.13. With a from case 2c above and again due to Re-
mark 6.5 (similarly to the argument in Remark 6.12 1a) there is an
integer l ≥ 3 with u1 + a = l · u2 . In the proofs of Theorem 6.8 and
Claim 6.10 we will refer to subcases of case 2c with integer l being
even or odd as 2c+ and, respectively, as 2c– .
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2d. Assume u2 ∈ int∇(b1 , b2) and #(Cτ ) = 3 .

*

*

*

*

*

*

*

*

*

*e

b

b b’ ’

0 0

b’ = b = u1          1       1

2

2 2

u u
2

2

. . .

.
..

b2b2

~

= 2b~’’ 1−2

= b − b2        1 = b − b2        1

case:  e = k u

e

. 2

a = 2

*

b

Pictures with k = 5 .

In both cases  k > 1 .

.
.

.

*

*

*

b’ = b = u1          1       1

case:  e = 2
.

*

*

*

*

(k − 1/2)  u

− (k − 1) .u2

Figure 3. D(τ) = 2k or 2k − 1 ⇒ #Cτ = 3 or 4 respectively.

Let e be the point of intersection of edge (b1 , b2) with ray R+ ·u2 ,
say λ·u2 = e , λ > 0 . Due to Claim 6.4 ∇(b1 , b2)∩Z2\{0 , b1 , b2} ⊂
Z+ ·u2 and | det(b2 , u2)| = 1 = | det(u2 , b1)| implying b̃′2 = b2 − b1
and that the areas of triangles ∇(b2 , e) and ∇(b1 , e) coincide.
Hence e = (b1 + b2)/2 and, also, λ = | det(e , b1)| = D(τ)/2 . The
arguments in the remainder depend on D(τ) being even or odd and
accordingly we split case 2d into the following two subcases.

2d+ Assume D(τ) is even and let k := D(τ)/2 .

Then b′2 = b̃′2/2 since {(b2 − b1)/2} = Z2 ∩ (0 , b̃′2) . Therefore
| det((b2 − b1)/2 , u2)| = |(det(b2 , u2) + det(u2 , b1))/2| = 1 implies
that Cτ = {b1 , u2 , (b2 − b1)/2} (Remark 6.5).

Remark 6.14. Claim 6.10 in case 2d+ is a consequence.

Finally, with reference to (6.1), it follows that

V(τ ) + 2 = D(τ) = | det(b1 , (b2 − b1)/2)| = D(τ)/2 = (V(τ) + 2)/2

implying that V(τ) − V(τ) = V(τ)/2 + 1 , as required.

Remark 6.15. Of course Theorem 6.8 in case 2d+ follows.

2d– Assume D(τ) is odd and let k := (D(τ) + 1)/2 .

Then there are no integral points on edge (b1 , b2) (as well as on

‘interval’ (0 , b̃′2) ) implying that b′2 = b̃′2 = b2 − b1 . Denote point
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a := b2 − (k− 1) · u2 = (u2 + b′2)/2 . Then, since | det(b′2 , u2)| = 2 , it
follows that | det(b′2 , a)| = | det(a , u2)| = 1 . Now, with reference to
Remark 6.5 it follows that Cτ = {b1 , u2 , b2 − (k− 1) · u2 , b2 − b1} .

Remark 6.16. Therefore Claim 6.10 in case 2d– follows.

The latter formula for Cτ and (6.1) imply that

V(τ ) + 3 = D(τ) = | det(b′1 , b
′
2)| = D(τ) = V(τ) + 2 .

Therefore V(τ)−V(τ ) = 1 , which completes the proof of Theorem 6.6.
�

7. Sharp apriori bound and polynomial complexity. Proofs.

7.1. Proofs of Theorem 6.8 and Claim 6.10. Following the nota-
tion for the splitting into cases introduced in the course of the proof of
Theorem 6.6 and starting with 1a+ we establish both results separately
in each (exluding the cases already covered by Remarks 6.14 , 6.15 , 6.16
and cases 2a and 2b, when τ is terminal).

Under the assumptions of case 1a+ and due to Remark 6.5

Cτ = { u1 − u2 , u2 , a(2) − ku2 = (a(2) − u1)/2 }
(unless k − 1 = | det(u1 − u2 , (a(2) − u1)/2)| = 1 which implies that

Cτ = { u1 − u2 , (a(2) − u1)/2 }
and, due to Remark 6.11 , that τ is terminal). The latter proves
Claim 6.10 in case 1a+ . Moreover, then also

V(τ) = | det(u1 − u2 , (a(2) − u1)/2)| − 2 =

k − 3 < k − 1 = | det(u1 − u2 , a(2) − u2)|/2 < V(τ)/2

(unless k = 2 and τ is terminal, as we showed above), which
establishes Theorem 6.8 in case 1a+ .

Under the assumptions of case 1a– and due to Remark 6.5 it follows
that

Cτ = { u1 − u2 , u2 , a(2) − (k − 1)u2 , a(2) − u1 }
with points u2 , a(2) − (k − 1)u2 , a(2) − u1 lying on a bounded edge
of Conv(Q+(Cτ )Z) and a(2) − (k−1)u2 = (u2 +(a(2) −u1))/2 (unless
2k − 3 = | det(u1 − u2 , a(2) − u1)| = 1 which implies that

Cτ = { u1 − u2 , a(2) − u1 }
and, due to Remark 6.11 , that τ is terminal). This proves Claim 6.10
in case 1a– . Then

V(τ) = | det(u1 − u2 , a(2) − u1)| − 3 = 2k − 6 < 2k − 3 =
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| det(a(1) − u2 , a(2) − u2)|/2 ≤ V(τ)/2

(unless k = 2 and τ is terminal, as proved above), which establishes
Theorem 6.8 in case 1a– .

Under the assumptions of case 1b++ and due to Remark 6.5

Cτ = { a(1)−k1·u1 = (a(1)−u2)/2 , u1 , u2 , a(2)−k2·u2 = (a(2)−u1)/2 }
(unless | det(a(1) − u2 , a(2) − u1)| = 4 in which case

Cτ = { (a(1) − u2)/2 , (a(2) − u1)/2 }
and, due to Remark 6.11 , that τ is terminal). This proves Claim 6.10
in case 1b++ . Then

V(τ) = | det((a(1) − u2)/2 , (a(2) − u1)/2)| − 3 <

| det(a(1) − u2 , a(2) − u1)|/4 ≤ V(τ)

(unless | det(a(1) − u2 , a(2) − u1)| = 4 and τ is terminal, as we
proved), which establishes Theorem 6.8 in case 1b++ .

Under the assumptions of case 1b+– and due to Remark 6.5

Cτ = { a(1)−u2 , a(1)−(k1−1)·u1 , u1 , u2 , a(2)−(k2−1)·u2 =
a(2) − u1

2
}

with the first three points a(1) − u2 , a(1) − (k1 − 1) · u1 , u1 lying
on a bounded edge of Conv(Q+(Cτ )Z) and a(1) − (k1 − 1) · u1 =
(a(1)−u2 +u1)/2 (unless | det(a(1) −u2 , a(2) −u1)| = 2 in which case

Cτ = { a(1) − u2 , (a(2) − u1)/2}
and, due to Remark 6.11 , that τ is terminal). This proves Claim 6.10
in case 1b+– . Then

V(τ ) = | det(a(1) − u2 , (a(2) − u1)/2)| − 4 <

| det(a(1) − u2 , a(2) − u1)|/2 ≤ V(τ)/2

(once again unless | det(a(1) − u2 , a(2) − u1)| = 2 and, consequently,
τ is terminal), which establishes Theorem 6.8 in case 1b+– .

Under the assumptions of case 1b– – and due to Remark 6.5

Cτ = { a(1)−u2 , a(1)−(k1−1)·u1 , u1 , u2 , a(2)−(k2−1)·u2 , a(2)−u1 }
with the first three points a(1)−u2 , a := a(1)−(k1−1)·u1 , u1 lying on
a bounded edge of Conv(Q+(Cτ )Z) and a = (a(1)−u2 +u1)/2 as well
as all of the last three points u2 , b := a(2)−(k2−1)·u2 , a(2)−u1 lying
on one bounded edge of Conv(Q+(Cτ)Z) and b = (u2 + a(2) − u1)/2
(unless | det(a(1) − u2 , a(2) − u1)| = 1 in which case

Cτ = { a(1) − u2 , a(2) − u1}
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and, due to Remark 6.11, that τ is terminal). Therefore

V(τ) = | det(a(1) − u2 , a(2) − u1)| − 5 ≤ V(τ) − 5

(unless | det(a(1) − u2 , a(2) − u1)| = 1 and τ is terminal, as we
proved) and Claim 6.10 is proved in case 1b– – . It remains to prove
Theorem 6.8 (passing from node τ to τ ), but we will need to examine
several options in choosing minimal frames J ′ = {u′1 , u′2} of Cτ

associated with the child node τ of τ (unlike in the previously
considered cases).

To begin with we assume that u1 , u2 are the endpoints of a bounded
edge Γ of Conv(Q+(Cτ )Z) .

A choice of J ′ = {u1 , u2} is an option (see Remark 6.5). Then

V(τ ) < | det((a(1) − u2 + u1)/2 − u2 , (a(2) − u1 + u2)/2 − u1)| <
| det(a(1) − 2 · u2 , a(2) − 2 · u1)|/2 ≤ V(τ )/2 ,

which establishes Theorem 6.8 in this subcase of case 1b– –.
With the same assumption on {u1 , u2} another possibility for the

choice of a minimal frame J ′ of Cτ is u′1 = (a(1)−u2+u1)/2 , u
′
2 = u1 .

Then, with reference to 1a (passing from node τ to node τ ),

V(τ ) < | det((a(1) − u2 + u1)/2 − u1 , (a(1) − u2 + u1)/2 − u2)| =

| det(a(1) − 2 · u2 , u2 − u1)|/2 < V(τ )/2 ,

implying Theorem 6.8 in this subcase.
Once again with the same assumption on {u1 , u2} and for the

choice of J ′ := {u′1 = a(1) − u2 , u
′
2 = (a(1) − u2 + u1)/2} it follows

with reference to case 2b (passing from node τ to τ ) that node τ
is terminal. With the same assumption on {u1 , u2} the remaining
options for a choice of a minimal frame J ′ and, consequently, of a child
node τ are either J ′ := {(u2+a(2)−u1)/2 , a(2)−u1} , which is similar
to the case just considered, or J ′ := {u2 , (u2 +a(2)−u1)/2} , which is
similar to the case considered in the previous paragraph. Consequently,
in these cases Theorem 6.8 follows by means of analogous arguments.

To complete the proof of Theorem 6.8 in the case 1b– – it remains to
consider the case when u1 , u2 are not the end points of one bounded
edge of K := Conv(Q+(Cτ )Z) and then, following the constrains
established in the first paragraph of case 1b– –, there are at most 2
bounded edges of K . In the case that there is exactly one bounded
edge Γ of K there are, due to Remark 6.5 , exactly two possible
choices of minimal frames {u′1 , u′2} of Cτ both leading to case
2a (passing from node τ to node τ ) and therefore V(τ ) = 0
establishing Theorem 6.8 in this case. In the case that there are exactly
two bounded edges of K it follows by making use of Remark 6.5
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that there are exactly 4 possible choices of minimal frames J ′ :=
{u′1 , u′2} of Cτ . We distiguish these choices only by the property of
the intersection of the two edges being in J ′ or not. The latter case
is the case 2b (passing from node τ to node τ ) and, consequently,
implies that node τ is terminal establishing Theorem 6.8 in this case.
In the former case we are in the setting of case 1a (but passing from
node τ to node τ ). Inequalities on the values of V(·) proved in
both subcases of 1a applied in our setting imply the second alternative
of Theorem 6.8 in this last subcase of 1b– –, as required

The remaining cases to consider are 2c+ , 2c– and 2d–.

Under the assumptions of case 2c+ and due to Remark 6.5

Cτ = { u1 , u2 , a− k · u2 = (a− u1)/2 } ,
which proves Claim 6.10 in case 2c+. Then

V(τ ) = | det(u1 , (a− u1)/2)| − 2 = k − 2 < (l − 1)/2 =

(| det(u1 − u2, a− u2)| + 1)/2 ≤ V(τ)/2 ,

which establishes Theorem 6.8 in case 2c+.
Under the assumptions of case 2c– and due to Remark 6.5

Cτ = { u1 , u2 , a− (k − 1) · u2 , a− u1 }
with points u2 , a− (k − 1) · u2 , a− u1 lying on a bounded edge of
Conv(Q+(Cτ )Z) and a− (k − 1) · u2 = (u2 + a− u1)/2 . This proves
Claim 6.10 in case 2c–.

To establish Theorem 6.8 in the latter case we, once again, will ex-
amine options for choosing of minimal frames J ′ := { u′1 , u′2 } in Cτ

and, consequently, corresponding child nodes τ of node τ (with the
exception of the case that k = 2 when Conv(Q+(Cτ )Z) has a single
bounded edge with four integral points from Cτ implying that we are
in the case 2a for node τ and therefore node τ is terminal).

There are three options for the choice of a minimal frame J ′ .

The first choice is u′1 = u1 , u
′
2 = u2 . For an integer l1 ≥ 3 vector

u1 + (a− (k − 1) · u2) = l1 · u2 . If l1 is even then with the reference
to case 2c+ V(τ ) < V(τ )/2 . If l1 = 2 · k1 − 1 is odd then the
passage from τ to τ is similar to the considered above in case 2c–
(of the passage from τ to τ ), hence with reference to Remark 6.5
(and assuming k 6= 2 )

Cτ = { u1 , u2 , a− (k− 1) · u2 − (k1 − 1) · u2 , a− (k− 1) · u2 − u1 }
with points u2 , a−(k−1)·u2−(k1−1)·u2 , a−(k−1)·u2−u1 lying on
a bounded edge of Conv(Q+(Cτ )Z) and a−(k−1) ·u2−(k1−1) ·u2 =
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(u2 + a− (k − 1) · u2 − u1)/2 . Consequently

V(τ ) + 1 = | det(u1 , a− (k − 1) · u2 − u1)| − 2 = l1 − 2 =

| det(u1−u2 , a−(k−1) ·u2−u1)| =
| det(u1 − u2 , a− 2 · u1)|

2
=

V(τ)

2
and Theorem 6.8 follows in this subcase of 2c– .

Another option for the choice of J ′ is u′1 = a− (k − 1) · u2 , u
′
2 =

a − u1 which leads to case 2b (of node τ ) and therefore it follows
that V(τ ) = 0 , which once again suffices. The final option for the
choice of J ′ is u′1 = u2 , u

′
2 = a− (k − 1) · u2 and leads to case 1a

(of node τ ) for which in both of its subcases we derived the required
to establish Theorem 6.8 inequality V(τ ) < V(τ )/2 .

This completes the proof of Claim 6.10 , but to complete the proof of
Theorem 6.8 it remains to consider case 2d– (Remark 6.16 takes care
of Claim 6.10 in this case). Under the assumptions of case 2d–

Cτ = {b1 , u2 , b2 − (k − 1) · u2 , b2 − b1}
with points u2 , b2 − (k − 1) · u2 , b2 − b1 lying on a bounded edge
of Conv(Q+(Cτ )Z) and b2 − (k− 1) · u2 = (u2 + b2 − b1)/2 , which is
the setting of case 2c– implying its conclusion V(τ) ≤ V(τ )/2 , which
fully completes the proofs of both Claim 6.10 and Theorem 6.8 . 2

Example 7.1. Example below demonstrates that the bound of Theo-
rem 3.1 (ii) (and of Corollary 6.9) is sharp. In notations of case 2d+
consider u1 , u2 , b2 ∈ Z2 with | det(u1 , u2)| = | det(u2 , b2)| = 1
and u1 + b2 = 2l · u2 for an integer l > 0 , e. g. say u1 = (−1, 1) ,

u2 = (0, 1) , b
(l)
2 := (1 , 2l−1) . Then V(τ0) = 2l−2 . With a choice of

{u1 , u2} as a minimal frame and following the arguments of case 2d+

Cτ0 = {u1 , u2 , b
(l−1)
2 } with b

(l−1)
2 = b

(l)
2 −2l−1·u2 = (b

(l)
2 −u1)/2 . Then

V(τ0) = 2l−1−2 . Therefore in this example normalized 2-dimensional
Euclidean algorithm terminates after l = log2D(τ0) steps.

7.2. Complexity issues. We have constructed an algorithm by means
of Lemma 2.4 (via linear programming) and subsequently in section 4.1,

whose input is the exponents matrix Ê (from (2.1)) and the output

is an essential collection E = {~∆j}1≤j≤L of the exponent vectors
of a monomial parametrization of (4.1). Complexity of the designed
algorithm is polynomial in the binary size of the input relying on the
following two subroutines, namely:

(i) The first one by means of linear programming [12] separates vari-
ables wj on KN into two groups of z-variables and y-variables.
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(ii) The second ([4]) yields a Z-basis {(~δ1i , . . . , ~δLi) × 0}1≤i≤m

of the integral lattice in Ker Ê ∩ (QL × {0}) ⊂ QN and vectors from

collection E by formulae ~∆j = (δj1 , . . . , δjm) for each j .

Combination of the latter two subroutines results in an algorithm
whose input being an exponents matrix of an affine binomial vari-
ety V̂ ⊂ KN provides exponents ~∆j ∈ Zm , 1 ≤ j ≤ L , of a

monomial parametrization Tm → Y ∩ TN ↪→ V̂ ∩ (TL × IN−L) of

torus of the essential toric subvariety Y ↪→ V̂ , defined by formulae

yj = x
~∆j , 1 ≤ j ≤ L . As explained in Corollary 2.15 normal-

ized Nash desingularization of variety Y implies normalized Nash
desingularization of the same length of variety V̂ . We also observe
that Criterion 2.18 invokes just subroutins (i),(ii) and thereby one can
verify nonsingularity of an affine binomial variety within polynomial
complexity.

When m = 2 the sequence of normalizations followed by Nash blow-
ings up stabilizes, as is proved in this section, and provides normalized
Nash desingularization of Y . This process is recorded by means of
a combinatorial algorithm on the exponents of monomial parametriza-
tions of the dense tori of the successive composites of the normalized
Nash blowings up starting with the normalization of the essential toric
variety Y and followed by the normalized 2-dimensional Euclidean
algorithm (described in section 4.3 and in great detail here).

Complexity of both procedures is estimated below in terms of the
number D that appears in our Abstract (see for the normalized
Euclidean algorithm Remark 7.2 and for the normalizing algorithm
Corollary 7.5). Consequently, the complexity of the normalized Nash
desingularizatiom of Y is polynomial in the binary size of the input
(i. e. of the exponents of binomial equations defining an affine binomial
variety whose essential toric subvariety is of dimension m ≤ 2 ).

Remark 7.2. After each step of the normalized 2-dimensional Eu-
clidean algorithm the maximal binary size of points of the input (set
E = N (E) ⊂ Z2 of the algorithm in Section 4.3 ) increases at most by
an additive constant. Since the length of any branch of the algorithm
is bounded by 2 · log2D (Theorem 3.1 (ii)) and log2D is polynomial
in the binary size of the initial input (combining the bounds for the
subroutines considered above), it follows that the complexity of a single
step of the algorithm as well as the complexity along a single branch
are polynomial in the binary size of the initial input.

7.3. Polynomial complexity of normalization. Finally we estab-
lish a polynomial complexity bound for constructing normalization
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N (E) starting with an initial essential collection E ⊂ Z2 . Let
K := Conv(Q+(E)Z) have k bounded edges with l1 , . . . , lk
integral points, respectively. We denote these points by

v1,1 , v1,2 , . . . , v1,l1 := v2,1 , v2,2 , . . . , v2,l2 := v3,1 , v3,2 , . . . , vk,lk ,

where each pair of the consecutive points consists of the adjacent inte-
gral points, say A , B , on the boundary of K with det(A , B) = −1
(cf. Remark 6.5) and points vi,1 , vi,2 , . . . , vi,li lie on the i-th
bounded edge with vi,1 , vi,li being its endpoints.

Denote vi := vi,2 − vi,1 = · · · = vi,li − vi,li−1 . Then

Remark 7.3. Point vi,li is a common vertex of two bounded edges
of K whenever vi,li + vi 6∈ K . Moreover, then vi+1,2 = B(s) :=
vi+1,1 + vi + s · vi+1,1 for s = λ := det(vi , vi+1) ∈ Z+ , implying
that λ is the smallest integer with B(λ) ∈ Q+(E) . (Because if
B(s) = vi+1,1 + t · vi+1 for some t , s ∈ R then t = det(B , vi+1,1) =
det(vi , vi+1,1) = 1 and 1 + s = det(vi , B) = 1 + det(vi , vi+1) .)
Finally D = − det(v1,1 , vk,lk) .

Proposition 7.4. l1 · · · li ≤ | det(v1,1 , vi,li)| , 1 ≤ i ≤ k .

Proof. By induction on i . The base of induction l1 = | det(v1,1 , v1,l1)|
is a consequence of Remark 6.5. For v ∈ R2 let h(v) be the distance
from v to the line SpanR(v1,1) . Then the inductive hypothesis is

2 · ||v1,1|| · h(vi,li) = | det(v1,1 , vi,li)| ≥ l1 . . . li

(Note that h(vi+1,2−vi,li) = h(vi+1,2)−h(vi,li) .) With λ ≥ 1 it follows

h((vi,li + vi) + λ · vi,li) > h((λ+ 1) · vi,li) ≥ 2 · h(vi,li) ,

implying | det(v1,1 , vi+1,2)| ≥ 2·| det(v1,1 , vi,li)| . Similarly, for j ≥ 2 ,
h(vi+1,j) = h(vi,li + (j − 1) · vi+1) = h(vi,li) + (j − 1) · h(vi+1,2 − vi,li) >
j ·h(vi,li) , implying | det(v1,1 , vi+1,j)| > j ·| det(v1,1 , vi,li| > j ·l1 · · · li
and for j = li+1 the inductive step of the proof. �

Corollary 7.5. The number k of edges of K does not exceed log2 D .

Next we describe (in dimension m = 2 ) in a greater detail the
normalization algorithm of Section 4.3 , whose input is E ⊂ Zm with
Conv (E) 63 0 and the output N (E) := Ext(Q+(E)Z) ⊂ Zm . To
carry out subsequently the normalized Euclidean algorithm with the
initial input N (E) with E of the previous sentence it suffices to
indicate on the i -th bounded edge of K the endpoints vi,1 , vi,li

and, also, point vi,2 , which then yields vi = vi,2 − vi,1 and vi,li−1 =
vi,li − vi . The normalized Euclidean algorithm then starts by choosing
a minimal frame J ∈ S(N (E))′ , which are (Remark 6.5) of the form
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J = {vi,1 , vi,2} or J = {vi,li−1 , vi,li} with 1 ≤ i ≤ k , and the
output of its first step for the choice of J is N (NJ(N (E))) .

The normalization algorithm first finds by means of linear program-
ming v′1,1 , v′ ∈ E such that Q+(E) = Q+(v′1,1 , v′) and then
(by dividing the coordinates of the points by their greatest common
divisors) the minimal integral non-zero points v1,1 , v on the corre-
sponding rays Q+(v′1,1) , Q+(v′) , i. e. the outcome is v = vk,lk of
the first paragraph of this subsection.

We execute the normalizing algorithm by recursion on i starting
with points v1,1 , v . For the base of recursion of the algorithm
we first find (by means of the integer programming on the plane) an
integral point v′1,2 ∈ Q+(E) such that | det(v1,1 , v

′
1,2)| = 1 and

then set v1,2 := v′1,2 + λ · v1,1 for the minimal integer λ such that
v′1,2+λ·v1,1 ∈ Q+(E) , cf. Remark 7.3. Next, once again by means of the
integer programming, we construct v1,l1 := v1,1 + (l1 − 1) · (v1,2 − v1,1)
for the largest integer l1 such that v1,l1 ∈ Q+(E) . Of course the
integral points of the edge of K passing through v1,1 , v1,2 are points
v1,j = v1,1 + (j − 1) · (v1,2 − v1,1) ∈ Q+(E) , 1 ≤ j ≤ l1 .

Assuming point vi,li , and vector vi for an i ≥ 1 being constructed
we set (applying the integer programming) vi+1,2 := (λ+ 1) · vi,li + vi

for the smallest integer λ such that (λ+ 1) · vi,li + vi ∈ Q+(E) (and
resulting with λ ≥ 1 ), cf Remark 7.3 . Therefore vi+1 = vi+1,2 − vi,li

and then (again applying the integer programming and) following our
algorithm we set vi+1,li+1

:= vi,li + (li+1 − 1) · vi+1 for the largest
li+1 such that vi+1,li+1

∈ Q+(E) . Once again the integral points of
the edge of K passing through vi+1,1 , vi+1,2 are points vi+1,j =
vi+1,1 + (j − 1) · vi+1 ∈ Q+(E) , 1 ≤ j ≤ li+1 , which completes the
recursive step and the description of the normalizing algorithm.

Points vi,1 , vi,2 , vi,li−1 , vi,li provided by the algorithm lie in
triangle ∇(v1,1 , vk,lk) implying that the binary sizes of these points
are polynomial in the binary sizes of the input data. Now Corollary 7.5
combined with Remark 7.2 imply that the complexity of the algorithm
of normalization is polynomial, as well as that of the normalized 2-
dimensional Euclidean division algorithm.

Corollary 7.6. Complexity of the normalized 2-dimensional Euclidean
division algorithm along a single branch (or equivalently of the nor-
malized Nash desingularization of affine binomial varieties of essential
dimension m ≤ 2 ) is polynomial in the binary size of the input.

Finally, Corollary 7.5 combined with Claim 6.10 imply
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Corollary 7.7. The tree T (of Section 6) associated with the nor-
malized 2-dimensional Euclidean algorithm applied to normalization
N (E) ⊂ Z2 of E ⊂ Z2 with Conv (E) 63 0 contains less than
O(D2·log2 3 · logD) < O(D3.2) nodes.

We conclude this Section with two examples. The first one shows
that the bounded edges of K can contain more than D/2 integral
points, while the normalization algorithm of this section should not
(and does not as we have described it) produce too many integral points
on the edges, in order to proceed within the polynomial complexity (in
fact it would construct at most four points on each edge).

Example 7.8. Let v1,1 := (1 , 2) , v2,l2 := (l2 , 1) . Obviously
D = 2 · l2 − 1 . Then K has just two bounded edges, the first of
which contains two integral points (1 , 2) , (1 , 1) , while the second
of which contains l2 integral points (i , 1) , 1 ≤ i ≤ l2 .

The second example demonstrates the sharpness of the bound in
Corollary 7.5.

Example 7.9. Denote Φ1 := Φ2 := 1 and by Φi the i-th Fibonacci
number. Set v1,1 := (Φ2 , Φ1) , vk,2 := (Φ2k+2 , Φ2k+1) . Then K has
k bounded edges, i-th among them contains just two integral points
(being its endpoints) (Φ2i , Φ2i−1) , (Φ2i+2 , Φ2i+1) .

8. Invariance of termination bounds.

This section is entirely devoted to the issue of the invariance of the
integer D introduced in Sections 3 and 6 in terms of which the termina-
tion and complexity bounds are expressed (though has no evident bear-
ing on the problem of termination of neither normalized multidimen-
sional Euclidean division nor of its geometric counterpart for m > 2 ).
Considered in both sections in the case of dimension m = 2 and asso-
ciated with a monomial parametrization Tm 3 x 7→ y = φE(x) ∈ Y ∗

(with components yj = (φE)j(x) := x
~∆j ) of the torus Y ∗ of an es-

sential toric subvariety Y of a binomial variety V̂ ⊂ AN number D
is expressed in terms of the exponents E = {~∆j}1≤j≤L ⊂ Zm of map
φE as the area of a parallelogram generated by the extremal vectors,
i. e. the least points of Span Z(E) on the (two) extremal rays of the
cone spanned over R+ by the exponents in E , see Section 6 .

Due to Theorem 2.7 , Corollary 2.5 and Claim 2.3 we may, as well,
assume all exponents to be strictly positive, i. e. that E ⊂ Zm

+ .
Also, we may assume without loss of generality that Span Z(E) = Zm .
Recall that Y is ‘essential’ means that Y 3 0 and is equivalent to
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Conv (Z+(E)) 63 0 , Sections 2 and 4 . By extremal vectors for any
m we (similarly) mean the subset Ext(E) ⊂ Ext(Q+(E)Z) , where
Q+(E)Z = Span Z(E)∩Span Q+(E)\{0} , of all minimal in size points of
Ext(Q+(E)Z) on the extremal rays of cone Span Q+(E) and ‘normality’
property of Y is equivalent in terms of exponents E to Z+(E) =
Q+(E)Z and (by construction) is valid for normalized algorithms (Nash
and/or 2-dimensional Euclidean) of Section 6 for which termination is
proved. We may also (without loss of generality) assume that E =
Ext(Q+(E)Z) since the ‘left out’ exponents (and corresponding affine
coordinates) are in Z+(Ext(Q+(E)Z)) (and, respectively, coincide on
Y with monomials in the coordinates corresponding to elements in
Ext(Q+(E)Z) ). Number D admits a natural extension for an arbitrary
m in terms of set E as the smallest D = D(E) ∈ Z+ such that

D · ~∆j ∈ Z+(Ext(E)) for all ~∆j ∈ E .
Next we restate the definition of denominator D(E) as a local invari-

ant of Y (as well as of any of the isomorphic irreducible components

of V̂ , say of V ) at any point o ∈ Y . Invariance we consider is
with respect to the germs at o of local étale isomorphisms preserving
coordinate hyperplanes that contain o . We restrict variety X := Y
(or respectively X := V ) to affine charts Uo obtained by exclusion
of all coordinate hyperplanes off o , which we refer to as the origin
(recall, Section 2 and Remark 5.5 , that ‘y-variables’ of varieties Y , V

and even of V̂ coincide). To be precise charts Uo are constructed
by introducing a ‘double’ z̃j of every affine coordinate zj := wj with

wj(o) 6= 0 , say j = 1, ..., L̃ , and

Uo := {(z, z̃) ∈ A2L̃ : zj · z̃j = 1 , 1 ≤ j ≤ L̃} × ALo ↪→ ALo+2L̃ ,

with y-variables of variety X being the remaining Lo variables induced
by the original y-coordinates with yj(o) = 0 .

Then, according to Theorem 2.7 and Remark 2.12 , the germ Xo of
variety X at o is isomorphic to a product of a germ Za of a nonsingular
subvariety Z at a ∈ Z with a germ at b ∈ (π|X)−1(I2L̃) =: Ŷ

of a union Ŷ of, possibly several, mutually isomorphic subvarieties
(including the germ Yb at b of the essential toric subvariety of
X) and o = µ(a, b) . Moreover, germ Za is ‘étale identified’ with

π(Za) = π(Xo) ↪→ A2L̃ for projections π : ALo+2L̃ → A2L̃ , whose
components are the z-coordinates (Theorem 2.7 C).

Therefore (using Krull completion) morphisms Oπ(Xo) ↪→ Ôπ(Xo)
∼→ÔZa

and (π|Xo
)∗ : Oπ(Xo) ↪→ OXo

allow to consider the following base

change Ro := (OXo
⊗Oπ(Xo)

ÔZa
) ⊗ÔZa

F , where F is the field of
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fractions of ÔZa
. Morphism µ : Za × Ŷb → Xo is étale and π|Xo

◦µ
coincides with π|Za

: Za × Ŷb 3 (u× v) 7→ π|Za
(u) ∈ π|Za

(Za) , while

Za × Yb is an irreducible component of Za × Ŷb and is a product of
germs at a , b of torus Z and, respectively, of the essential toric
subvariety of X . Consequently, the base change above corresponds
(via étale morphism µ ) to a base change of Za× Ŷb and is isomorphic

to a very simple base change X̃b of Ŷb via −⊗K F . Thus Ro is the
local ring of a germ at b (= 0 ∈ ALo) of variety X̃ obtained from

Ŷ by means of the base change via −⊗K F and the germ at b of the
base change Ỹ of Y via −⊗K F is an essential toric variety and a
component of X̃ , cf. Ch.1 [7]. We use these constructions below.

By attaching subscript o indicating the dependence on the new
origin o ∈ X we will assume below that all notations (and as-
sumptions) of the second paragraph of this section (including of the
sets of exponents Eo associated with essential subvariety Y of
X ↪→ Uo and of the extremal vectors Ext(Eo) ⊂ Eo , as well as
of the numbers mo := dimYo and Do := D(Eo) are associated
with toric variety X ↪→ Uo . By reindexing yj’s we may assume
that Ext(Eo) = {yj}1≤j≤L′

o
. In abuse of notation we will write below

j ∈ Ext(Eo) instead of yj ∈ Ext(Eo) .
For the sake of invariance we must consider notions allowing to define

denominator D(Eo) in the respective local ring OX,o (i.e. with X
being the ‘original’ variety Y and/or V from the first paragraph
of this section), while in OX,o its ‘defining equations’ are no longer
binomial, i. e. binomials do not generate the ideal of relations between
local parameters (even though we include among the latter all affine
coordinates yj with yj(o) = 0 , which we do since we examine the
invariance with respect to the germs of local isomorphisms preserving
all germs of sets {yj = 0} ). To overcome this problem we consider a

base change (as above) passing to a germ X̃b of binomial variety X̃
(defined over field F ) and its local ring Ro , whose maximal ideal
mo is generated by the classes yj in Ro of all affine coordinates yj

with yj(o) = 0 . Of course, collection (of ‘parameters’) Par(Ro) :=
{yj}1≤j≤Lo

⊂ mo induces a set that spans mo/m
2
o over field F .

Remark 8.1. Sets Ext(Par(Ro)) ⊂ Par(Ro) can be defined in terms
of collection Par(Ro) ⊂ Ro as follows: j ∈ Ext(Par(Ro)) iff
(i) yp

i = yq
j , (p, q) ∈ Z2

+ , i 6= j , implies p < q , and
(ii) yj is not in the integral closure in Ro of the subring of Ro

generated by yi’s such that yp
i 6= yq

j for any (p, q) ∈ Z2
+ .
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Note that ring Ro is the integral closure of its subring R ↪→ Ro

generated by yj’s with j ∈ Ext(Par(Ro)) (using Section 2.1 of [5] ).
We may therefore introduce in terms of collection Par(Ro) the small-
est positive integer D = D(Par(Ro)) such that for all j , yD

j ∈ R .
Obviously, the value of denominator D of Par(Ro) coincides with

Do = D(Eo), where Eo is the collection of exponents {~∆j}j of any mono-
mial map φEo

(including with nonpositive exponents) parametrizing
torus Y ∗ of the essential subvariety Y of X , i. e. D(Eo) is a local
invariant due to the definition of D = D(Eo) being stated entirely in
terms of collection Par(Ro) .

Remark 8.2. With reference to Section 4.3 normalization N (Y ) of
Y ⊂ AL is a toric variety in AL′

whose torus N (Y )∗ := N (Y )∩TL′

is parametrized by a map φE ′ : Tm 3 x 7→ y = φE ′(x) ∈ N (Y )∗ with

components yj = (φE ′)j(x) := x
~∆j , and the collection of exponents,

say E ′ := {~∆j}1≤j≤L′ ⊂ Span Z(E) ∩ Span Q+(E) ⊂ Zm
+ , augmenting

set E = {~∆j}1≤j≤L so that Z+(E ′) = Span Z(E) ∩ Span Q+(E) \ {0} .
It follows that Z+(E ′) = Span Z(E ′) ∩ Span Q+(E ′) \ {0} . In short,
all assumptions of the lemma following (except on the size of Ext(E)
when m > 2 ) are satisfied for Y replaced by its normalization
N (Y ) . Of course elements of Ext(E ′) and of Ext(E) span the same
extremal rays with the extremal vectors of Ext(E ′) being (equal or)
shorter than their respective counterparts in Ext(E) .

For a matrix M of size m×m with entries in Z let den (M) ∈ Z+

denote the least d ∈ Z+ with the entries of d ·M−1 being integers.
Obviously, entries of matrix d · M−1 generate a unit ideal in Z

and if also m = 2 and the entries of M have no common divisor
then den (M) = | det(M)| . Recall that a matrix whose columns are
elements of collection E ⊂ Zm we denote by the same letter E .

Lemma 8.3. If Span Z(E) = Zm , Zm ∩ Span Q+(E) \ {0} = Z+(E)
and #(Ext(E)) = m it follows that D(E) = den (Ext(E)) .

Remark 8.4. Of course, if #(Ext(E)) = m and D(E) = 1 affine
variety Y being of dimension m must be nonsingular. Also, if m = 2 ,
then obviously #(Ext(E)) = m and D(E) = | det(Ext(E))| .

Proof. Inclusion den (Ext(E)) ∈ D(E)·Z is a simple consequence of the
definitions. It therefore suffices to show that for any prime number p
and s ∈ Z+ it follows from den (Ext(E)) ∈ ps ·Z that D(E) ∈ ps ·Z .

Let M := den (Ext(E)) · Ext(E)−1 . Then there is a column ~λ of
matrix M with a nonvanishing mod p entry and modifying the

latter column to ~λ′ := ~λ+ ps · t · Im with a sufficiently large positive
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t ∈ Z+ so as to make all entries of ~λ′ positive it follows that ~λ′ 6= 0

(mod p) . Therefore vector Ext(E) · ~λ′ ∈ (ps ·Zm)∩ Span Q+(E) \ {0} .
It follows that D(E) ∈ ps · Z , as required. �

Corollary 8.5. Denominator D(E) of essential subvariety of a bino-

mial variety V̂ is the bound D appearing in our abstract for m = 2
(and is a local integral invariant of V̂ ).

9. Appendix: Length bound 1 + log2(#Γ) on normalized

Nash resolution with Γ dual graph of the minimal one

of a minimal surface singularity - by M. Spivakovsky.

Let (S, ξ) be a normal surface singularity and π : X → S its minimal
desingularization.

Definition 9.1. The set π−1(ξ) ⊂ X is called the exceptional divi-
sor of the resolution of singularities π.

The exceptional divisor is a curve on X, which may, in general,

be reducible. Let π−1(ξ) =
n⋃

i=1

Ei be its decomposition into irreducible

components. Two basic combinatorial invariants are usually associated
to the singularity (S, ξ): the dual graph and the intersection matrix.
The dual graph has vertices {xi}1≤i≤n, one for each irreducible ex-
ceptional curve Ei; two vertices xi and xj are connected by an arc if
and only if Ei ∩Ej 6= ∅. The intersection matrix is the n×n matrix
(Ei.Ej). Since (S, ξ) is normal, Zariski’s main theorem implies that
the exceptional divisor, and hence also the dual graph, are connected.
By a well-known theorem of Mumford and Grauert, the intersection
matrix (Ei.Ej) is negative definite.

Remark 9.1. We note the following consequences of the Mumford–
Grauert theorem:

(1) We have E2
i < 0 for all i ∈ {1, . . . , n}.

(2) Take an index i ∈ {1, . . . , n} and assume that Ei
∼= P1. Then

E2
i ≤ −2. Indeed, if we had E2

i = −1 then such an exceptional
curve could be contracted to a non-singular point by Casteln-
uovo’s criterion, which would contradict the minimality of the
desingularization π.

(3) There exists a cycle of the form

(9.1) Z =

n∑

i=1

miEi,

such that all the mi are strictly positive integers and Z.Ei ≤ 0
for all i ∈ {1, . . . , n}.
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Among all the cycles Z satisfying (9.1), we can choose one which
is componentwise minimal. Such a cycle is uniquely determined by
the intersection matrix; it is called the fundamental cycle of the
singularity (S, ξ).

Definition 9.2. The singularity (S, ξ) is called minimal if Ei
∼= P1 for

all i ∈ {1, . . . , n}, the intersections Ei ∩ Ej are transverse (whenever
Ei ∩ Ej 6= ∅), the dual graph of (S, ξ) is simply connected and the
fundamental cycle Z is reduced (that is, mi = 1 for all i ∈ {1, . . . , n}).

For more information on minimal singularities, we refer the reader
to the article [9] by Janos Kollar where they were originally defined.

Definition 9.3. The singularity (S, ξ) is a cyclic quotient if each
exceptional curve Ei intersects at most two other exceptional curves.

It follows easily from the definitions and Remark 9.1 (2) that every
cyclic quotient singularity is minimal. The cyclic quotient singularities
are precisely the toric ones among normal surface singularities (that is,
they are precisely those normal surface singularities which can be de-
fined by a binomial ideal in the ambient space). As the name suggests,
they are also characterized by the fact that they can be obtained as
quotients of a non-singular point by the action of a finite cyclic group.

Let (S, ξ) be a minimal singularity. For a graph Γ, the notation #Γ
will stand for the number of vertices of Γ. For example, if Γ is the dual
graph of ξ, we have #Γ = n.

Theorem 9.2. ([13], Lemma 2.5, p. 442) Let σ : S ′ → S denote the
normalized Nash blowing up of S, let ξ ′ be a singular point of S ′ and
Γ′ its dual graph. Then (S ′, ξ′) is also a minimal singularity and

(9.2) #Γ′ ≤ n

2
.

This bound is sharp in the sense that there are many examples for
which equality holds in (9.2).

The simplest example of equality in (9.2) is the following. Let (S, ξ)
be the An singularity with n even. This is the singularity defined in the
three dimensional space by the equation xy− zn+1. It can be obtained
as the quotient of the two-dimensional space with coordinates (u, v) by
the cyclic group action (u, v) → (ζu, ζ−1v), where ζ is the n-th root of
unity. The dual graph of this singularity consists of n vertices, arranged
in a straight line. The intersection matrix is given by

E2
i = −2, i ∈ {1, . . . , n};(9.3)

Ei.Ei+1 = 1 for i ∈ {1, . . . , n− 1}(9.4)

Ei.Ej = 0 for all the other choices of i, j ∈ {1, . . . , n}.(9.5)



Nash desingularization as an Euclidean division : polynomial complexity 49

As is shown in [6], the normalized Nash blowing S ′ up of (S, ξ) has two
singular points ξ1, ξ2 of multipliciy three, and the dual graph of each
of the singularities (S ′, ξ1), (S ′, ξ2) has n

2
vertices.

Corollary 9.3. The singularity (S, ξ) is resolved after at most [log2 n]+
1 normalized Nash blowings up.

Proof of the Corollary: Let l = [log2 n]+1. Consider the sequence

Sl
σl→ Sl−1

σl−1→ . . .
σ2→ S1

σ1→ S

of normalized Nash blowing up. We claim that Sl is non-singular. To
see this, we will assume that Sl contains a singular point ξl and deduce
a contradiction. Let ξi denote the image of ξl in Si, 0 ≤ i ≤ l (we adopt
the convention that S0 = S and ξ0 = ξ). Let ni denote the number of
vertices in the dual graph of ξi. Since ξl is assumed to be singular, we
have nl ≥ 1. By Theorem 9.2 and descending induction on i, we obtain
ni ≥ 2l−i so, in particular, n ≥ 2l, that is, l ≤ log2 n. This contradicts
the definition of l. 2
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