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On maximizing sextics whose complements
have non-abelian fundamental groups

Hiro-o TOKUNAGA

Introduction

The purpose of this article is to study plane curves whose complement have non-abelian funda-
mental groups by using the theory of dihedral Galois coverings developed in [T1j.

Let C be a reduced plane curve. The study of = (P?\ () is originated from Zariski [Z] and
van Kampen [Ka], and has attracted many mathematicians (see [Deg], [Del], [F}, [M], {O1], [02],
(03], [O4]. etc). However. it still seems to be rather difficult 1o find plane curves whose complement
have non-abelian fundamental groups. [n particular. it is more difficult when it come to a problem
to find such irreducible curves of a given degree. Hence it is worthwhile 10 study such curves. As
Degtyarev gives a complete list in [Deg] in the case of deg ¢’ = 5. in this article, we shall focus our
astention on the following problem: -

Question 0.1. Find. C. with onlv simple singularities such that = {P*\ C) is non-abelian.
In order to state our result for Question 0.1, we shall first define the index of €

Definition 0.2. (Persson) Let C' be a curve with only simple singularities. We define the
index of C. denoied hy i((’). to be the sum of all the subindices of all its simple singularities z,
(v € {n, d. e})

By its definition, the index of a curve is non-negative. For a plane sextic curve C|, it is known
that {(C) < 19 {See [P]). Following to Persson. we shall define a maximizing sextic as follows:

Definition 0.3. fet (' be a plane sextic curve with oulv simple singularities. We call C a
maximizing sextic if the index, (). of C is equal to 1.

Now we are in position 10 slate ol main result.

Theorem 0.4. Let O be a maximizing sextic such that (i) G has at least one triple point, and
(if) C' has three or more singularities each of which is of type either ey or aye_y (k > 1). Then



7 (P*\ C) is non-abelian.

To prove Theorem 0.4, we shall study a branched covering of P? branched along C. In fact, we
shall prove

Theorem 0.5. Let C be a maximizing sextic as in Theorem 0.4. Then there exists a (Galois
covering 7 : § = P? branched along C' having the third symmetric group as its Galois group.

Since the Galois group, Gal{S/P?). of  : § — P*?
Theorem 0.4 easily follows from Theorem 0.5.

is a homomorphic image of = (P?\ C),

This article consists of four sections. In the first section, we shall recall some results in [T1],
and set up our strategy to prove Theorem 0.5. In §2, we shall consider the canonical resolution,
&, of the double covering f : W — P? branched along €. In our case, £ is an elliptic K3 surface.
Most of §2 are devoted to studying the structure of an elliptic fibration on £. In §3, we shall prove
Theorem 0.4. In §4, we shall give some examples of maximizing sextics satisfying the conditions in
Theorem 0.4.

Acknowledgement. Part of ihis work was done during the author’s visit at the Max-Planck-
Institut fiir Mathematik in Bonn. The author thank for the nstitute for its hospitality.

Notations and conventions

Throughout this article, the ground field will always be the complex number field C.
C{.X) := the rational Tunction field of X.
l.et X' be a normal variety, and let ¥ be a smootl variety. Let 7 : X' — Y be a finite morphism
from X to Y. We define the branch locus of f, which we denote by A{X/Y), as follows:

A(X/Y) = {y € Y\ (y) < degr).

For a divisor D on Y, #7!(D) denotes the set-theoretic inverse image of D, while 7*(D) denotes
the ordinary pullback. Also, SuppDD meauns the supporting set of D.

Let m: X — ¥ be an 8 covering of Y. Morphisms, 8, and 8-, and the variety D(X/Y'} always
mean those defined in §1.

Let ¥ be a finite double covering of a smooth projective surface £. The © canonical resolution”
of W always means the resolution given by Horikawa in [H].

Let S be an elliptic surface over B. We call S minimal il the {ibration is relatively minimal. [n
this paper. we always assume that au elliptic surface is minimal and has a section sg. For singular
fibers of an elliptic surface. we use the notation of Kodaira [IN]. Let %, be a singular fiber over a point
v € B. I Y, #u.iOu,s clenotes the irreducible decomposition of F,, we always assume ©, 950 = 1.
We call ©, ; the identity component of F,. We denote by T a subgroup of the Néron-Severi group,
N5(8), generated by sg. a fiber, and all the irreducible component of singular fibers not meeting
0.

Let Dy, D be divisors.



D) ~ Da: linear equivalence of divisors.

D; = Da: algebraic equivalence of divisors,

D oZe) Do Q-algebraic equivalence of divisors.

For singularities of a plane curve, we shall use the same notation as that in [P].

§1 Preliminaries

We shall start with the definition of an 83 covering.

Definition 1.1. Let ¥ be a smooth projective variety, A normal variety, X. with a finite
morphism = : X = Y is called an S3 covering of Y if the rational function field, C(X), of X Is a
Galois extension of C(Y') having the third symmetric group, 83 = (o, 7le® = 3 = (o7)? = 1), as
its Galois group.

With the notations as above, let C{X)” be the invariant subfield of C(.X) by 7. As C{X)} 15 a
quadratic extension of C(Y"), the C{.Y)"- normalization of ¥ is a double covering of ¥". Ve denote
it by D(X/Y) and its covering morphism by 5. .V is a cyclic triple covering of D(X/Y), and we
denote its covering morphism by Jo. By the definition, 7 = 7, o 4». With these notations, we shall
give the following proposition, which is fundamental in constructing an &3 covering,

Proposition 1.2. Let Z be a smooth variety, and let f : Z — Y be a smooth finite double
covering of a smooth projective variety Y. Let ¢ be the involution on Z determined by the covering
iransformation of f. Let Dy, D2 and D3 be effective divisors on Z. Suppose that

(a) Dy is reduced, and there is no common component. between Dy and o™ Dy,

(b) Dy 4 3Ds ~ 0" Dy + 3D4.

Then there exists an 8y covering, X, of Y such that (i) D(X/Y) = Z, and (i) Dy + ¢~ Dy is the
branch locus of 3.

For a proof. see {T1].

Let €' be a maximizing sextic in Theorem 0.4. Ler f: ¥ = P be a double covering branched
along €. Since ¥ has rauional double points, we can not apply Proposition 1.2 to this case. Instead,
we shall consider the canonical resolution. &, of the double covering f : 1 — P? which makes the
following diagram commutative:

WLl
fi Lf
Pt Lox

where ¢ is a succession ol blowing-ups, and { is a linite morphistn of cdaegree 2. See [H] §2 for detail
for the canonical resotution. )

As & is smooth. we can now apply Proposition 1.2 to the donble covering f : & = £, Let €
be the proper transform of € by ¢. Then, [ is branched along ¢ and some irreducible components



of the exceptional divisor of 4. Therefore, by Proposition 1.2. in order to construct an 83 covering
branched along C, by Proposition 1.2, it is enough 1o find three effective divisors Dy, Doy and Dj
on & such that

(1) all irreducible components of ) are those of the exceptional divisor of y, which are not
contained in the ramification locus of f, and

(i1) these three divisors satisfy the two conditions in Proposition 1.2,

As it still seems to be intractable to find Dy, D and D3, we need one more step to reduce our
problem to an easier one to deal with.

By our condition on C, il has at least one triple point. We choose one of them, and denote it
by &. We call  the distinguished point. Then. by the construction of £, it is easy to see that lines
through z induce an elliptic fibration on £. Following to Persson, we shall call this fibration “the
standard fibration centered at x,” and we-denote it by ¢, : & — P! o, hasa section, sg, which
comes from an irreducible component of the exceptional divisor of the singularity f~!(z).

By our construction -of &£, all irreducible components of the exceptional divisor of u, except for
5g, are those of singular fibers. and sp is contained in the ramification locus of f. Hence every
irreducible component of Dy is that of a singular fiber not meeting sq.

Summing up these observations, we have the following:

Proposition 1.3. With the notations as above. suppose that there exist three effective divisors
Dy. Dy and D3 on £ such that

(i) Dy is reduced, and there is no common component between Dy and o Dy, where o is the
involution determined by f,

(ii) every irreducible component of D, is that of a singular fiber not meeting so,

(iii) every irreducible component of Dy is that of the exceptional divisor of p, and

(H) Dy +3Dy~a™Dy + 3D, ’

Then there exists an Sy covering of P? branched along C.

In the next section, we shall investigate the surface & in order to find the three divisors defined
as above.

§2 Study of £ and triple singularities of C

Let € be a maximizing sextic as in Theorem 0.4, and let [ : & — £ be the double covering
introcduced in §1. As C has only simnle singularities, £ is a K3 surface. e shall choose a triple
point, z, of C as the distinguished point. Let ¢z, 1 & — P' denote the standard fibration centered
at x. Let sg be a section arising from . Let M HW/{E) be the Mordell-Weil group of sections of

or & = PUwith s being the zero element. Qur first goal of this section is to prove

Proposition 2.1, A/ 1W(E) has a torsion of order 3.



P e ——

Ve need some preparations. For the argument as below. see §4 in [MP].

Let H*(E,Z) be the integral second cohomology of £&. As & is a K3 surface, H*(E, Z) is an
even unimodular lattice. For a subgroup, J, of H%(£,Z). J* denotes its orthogonal complement
with respect to the pairing on H*(£,Z). It is known that the Néron-Severi group is a primitive
sublattice of H*(&, Z).

Let T be a subgroup of N S(E£) generated by a fiber, s and all irreducible component of singular
fibers not meeting sp. Since ' is a maximizing sextic , by [P]. p. 282. Corollary, ¢, : & — P! is an
extremal fibration, {. e. rankNS(£) = rankT = 20. Hence we have

Proposition 2.2.([MP] Proposition 4.1, {S2] Theorem 1.2)

MW Ey=THT

For a proof, see [MP) §4.

If J is an even sublattice of H?(£, Z). we denote its dual lattice by /Y. By using the pairing
on H?(&,Z), J is canonically embedded in /Y. The group JY/J is called the discriminant-form
group of J, and denoted by G;. There is a bilinear form on /¥ induced by the bilinear form on J.
and we also denote it by {.}. Thus, we can define a Q/Z-valued quadratic form ¢; on G, in the
following way:

¢s(x mod J) = %(.L:L) mod Z for z € JY.

Note that gy defines non-degenerate bilinear form on J. Let .Jy, Jo be sublattices of an even
unimodular lattice ./ such that Ji = J» and .]._,l =.J;. Then we have (7, = G y,.

Proposition 2.3. ([MP], Proposition 4.2) Let T be the subgroup NS(€) as before. Then
we have the following:

(i) There exists a subgroup H of Gt isomorphic to MV (L),

(ii) Gros = Gpa: HY = (TH)Y /T, where H: denotes ihie orthogonal complement of H with
respect to the pairing Induced by ¢q,..

(J”) C;TJ.J. = [[J'/H é((.A;T.LJ.} = ﬁ[G})/(:[[):"

For a proof. sce [MP]. Proposition 4.2.

Let # : S — B be an elliptic surface. Let & = {v &€ PUi='(s) is reducible}. Let T, be a
subgroup of T' generated by all irreducible components of 47'(x) not meeting so. Then we can
rewrite T in such a way as T = Zso @ ZF & Z,epnTy. where F s a general fiber. With this
expression, we have:

Lemma 2.4.
(.—;’j" = %le”C”T,,-

where



Gr, The type of ¢; ' {v)
{0} [.1r
Z/2Z i rnr
2732 v, s
Z/nZ lhyn>2
Z/27 x 1)27 1, nis even
Z/4Z Iy, nis odd

For a proof, see [M], p. 70.
Now we shall slightly modify Proposition 4.4 in [MP] for our purpose.

Proposition 2.5. Let ¢ : S — P! be an extremal elliptic K3 surface with a section sq. Suppose
that there exist v; € P! (i = 1,2,3) such that, for everv i, ¢~ (v;) is of type either [V, IV or
I3 (k > 1). Then there exists a non-trivial torsion element of order 3.

Proof. Suppose that there exists no torsion element of order 3. Then. by Proposition 2.2, there
is no element of order 3 in T++/T = H, where [ is a group in Proposition 2.3.

Claim 2.6. Let S3({T+4)V/T), Sa(Gr) and S3(Gper) be the 3-Sylow subgroups of T++ /T,
Gt and Gpay. respectivelv. Then, we have

Sa(TH+/T) = Sa{Gop) = S3(Gras).

Proof of Claim 2.6. There exists a natural surjective homomorphism is (T++)¥/T = Grir.
As the kernel of this homomorphism is T4+ /T, we have S3(T++/T) = S3(Gpes).

Since (T+4)Y /T C Gr, we have
Sa(Gpesr) = ."3((T'LJ‘)V/T) — S3(Gr).

By Proposition 2.3 (iii) aud 3 fH(T+1/T} = i(4). Therefore, we have

53(6'7-;;) = ‘J';(G[‘)

Now we shall go back 10 prove Proposition 2.5.
Since ¥ : § = P! is extremal, we have rankT = 20. As rankH (S, Z) = 22, rankTt = 2,

This implies that Gp. is isomorphic to Z/n 2§ Z/n+Z as an abeban group. Hence the number of
generators of S3(Sp+) is less than 2. On the other hand. by Claim 2.6, S3(Gpxa) is generated by
three or more elements. But, by Proposition 2.3 (i). this is impossible.

By Proposition 2.5, in order to show Proposition 2.1, iy is enough to show the following:

Proposition 2.7. Let ¢, : & — P! be as before. Then 2, has three singular fibers F; = o7 ' (v;)

(e; € DY i = 1.2.3) each of which is of txpe cither iV IV or 3 (b > 1).



Before we go on to prove Proposition 2.7. we shall prove the following lemma.

Lemma 2.8. Let ¢, : & = P! be as before. Let iy ,,...1r . be lines which meet C at £ with

muitiplicities > 4. Let [, ; (i = 1,...,s) be the proper transforms of l,; (i = 1,....s) by q: £ — PZ,
respectively. Then f~l.; is irreducible for every 1.

Proof. [t is easy 1o see that all irreducible componeni of f" !_“-'s are those of singular fibers not
meeting sg. On the other hand. by the construction of £, 18 — s of the 19 irreducible components
of the exceptional divisor of pr : & — W are also those of singular fibers not meeting sp. As £ is
an elliptic K3 surface. the number of irreducible component of singular fibers not meeting sp is at
most 18. Hence f*1,; is irreducible for every i.

Proof of Proposition 2.7. By the construction of ¢, : & — P*. the singular fibers of ¢, are
determined by the singularities of C' and the position of lines connecting x and singularities of €
(see [M] pp. 38-39).

Let 21, 2o and 3 be ihe three singular points described in Theorem 0.4, There are two cases:

i) the triple point z is in {x, £2, 23}, or

it} the triple point x is not in {x, x2, w3}.

In the case 1). we can apply Propaosition IV 2.2 in [M] 10 obtain the desired result.

In the case ii), we may assume that £ = &; = ;. The singular fibers corresponding to x» and
x5 are of type either [V, IV or [ (b > 1}. We shall now look into the singular fiber arising from
zy. Let I, be the line meeting C at @, with muitiplicity 4. and let I, be the proper transform of
I, by ¢ : & — P Then we have -

Claim 2.9. [, meets C at two distinct points other than .

Proof of Claim 2.9. If {;, meets  at one point other than z;. by looking into the canonical
resolution, we can easily see that f*{; consists of two irreducible components. This contradicis to
Lemma 2.8.

By Claim 2.9, the following claim is straightforward.

Claim 2.10. The singular fiber arising from &, is of type 5.

By Claim 2.10, the singular fiber arising from ) is of type /5. Hence we have the desired resnlt
for the case i) as above.

Now we know that Af V(&) has a torsion of order 3.
Proposition 2.11. Every singular fiber of & is of type either IV, V" or [,, (n > 1).

This is immediate by [S1] Remark 1.10 or [M] Chapter VI §2.

By Proposition 2.11, we can determine sypes ol tripte points on €.



Proposition 2.12. Let C be a maximizing sextic as in Theorem 0.4. Then every triple point
of C is either d4, ds or e5.

Proof. Choose z. arbitrary triple point of ¢\ as the distinguished point, and let ¢, : & = P!
be the standard fibration centered at z. Let f~!(z} be the rational double point on ¥ lying over
£. Then f~'(z) is of type either D, (n > 4} or £, (n =6.7.8). Let £ be the exceptional divisor
arising from f~!(x). From the construction of £. the section sy of ¢, : & — P! is an irreducible
component of £. For each type of f~!{z), the location of the irreducible component corresponding
to sg is illustrated as follows (The vertex. &, corresponds to the section):

{[Figure 1)

All irreducible component of £ other than the section component are those of singular fibers of
ey & = Pl Hence if x is of type either d, (n # 4.5,7), e7 or eg, then @, has a singular fiber of
type either 7y or /11" by Figure L. This contradicts to Proposition 2.11. We shall next look into
the case of x = d7. Let [ be a line which meets the singular branch of d7 with multiplicity either 4
or 3 (Note that the case of multiplicity 3 does not occur). Let I, be the proper transform of I, by
g: L= P2, By Lemma 2.8. f'[-r 15 an irreducible component of a singuiar fiber, F, arising from
d7. The type of F depends on the intersection multiplicity between {, and the singular branch of

d7 as follows:

Muitiplicity | 4 5
Typeof £ | I 1 /V"

By Proposition 2.11, F is ol type [V, In this case. however, by looking into the canonical resolution,
we can show that f*{, consisis of two irreducible components. This contradicts to Lemma 2.8.

[n ihe rest of this section, we shall look into singular fibers artsing from the distinguished triple
point.

Proposition 2.13.

| « | Singular fibers
d4 fota, 1
(I;’, [-_:. ].1

25 [l';

Proof. In the case of @ = eq, this is nothing but Claim 2.10. We shall go on to the cases of

r=rdy, ds.

8



¢ = dyq. There exist three lines, I ; ( = 1. 2. 3). which meet ¢ at x with multiplicities > 4.
Let I, ; be the proper transform of !_N by ¢ : & — P? for each /. Then. by Lemma 2.8, f'l-“- is
irreductble for every i. Suppose that f7I.¢ is an irreducible component of a singular fiber, Fj, for
each .

Claim 2.14. For everv i. I is a singular fiber of type .

Proof of Claim 2.14. [or each i, [, ; is a tangent line to one of three irreducible branches of
dq of order 2, 3 or 4. By performing the canonical resolution. we have the following singular fibers
for each case.

The order of tangency | 2 | 3 4
Singular fiber o | 11| IV

By Proposition 2.11, the middle case does not occur. For the right case, {1, ; has two irreducible
component. This contradicts to LLemma 2.8.

Our statement for the case z = d; follows from Claim 2.1:4. We shall go on to the remaining
case.

& = ds. There are two lines Iy y and [ » which meet € at & with multiplicities > 4; /; | is a
rangent line at = of the smooth branch of ds and /. » 1s the cuspidal tangent line of the singular
branch of ds. Let F; (i = 1,2) denote singular fibers which contain f*/,; (i = 1,2). respectiveiy.
By the same argument as in the case & = d4, F) is of type [:. For Fa, by performing the canonical
resolution. we can show that it is of tvpe [, (n > 4). In the case of n > 5. I;.5 consists of two
irreducible components. This contradicts to Lemma.2.3. Hence 5 is of type [,

§3 Proof of Theorem 0.5.

The goal of this section is to find three effective divisors Dy, D and Dy on & sauisfying the
conditions in Proposition 1.3. I[n this section, we shall show that the existence of a 3-torsion in
MW(E) implies the existence of Dy, D» and Dy on ¢

Let s denote a'section corresponding to a A-torsion in A W (&), Then. by (82]. (8.2), we have

5~Q %0+ 2F — the contribution terms arising from singular fibers. (%)

By Proposition 2.11. every singular fiber of 5, : & — P! is either [V ..7V" or I, (n > 1). For each
case. the contribution term is as follows:

V. 20+ ;a'o1 G
v ~O| + = O': + 203+ 04+ '—G' Ty + (T 04 (3.2)
[”: lll—k\@l_*__’{n A\@ +"":-“‘”_Ai®k

; MOH.] KN Fo,,_,,(-),,_,- =0 @ (1 < [”]] (3.3)

1

where & is the covering transformation of f : & — X, and we label irrecdncible components as below.
Also. we assume that 5 hits ©) au [V and 7V, and @ a1,



{Figure 2)

We shall rewrite these explicit formulas for the contribution terms in the following way:
For a singular fiber of type 11/,

1 1
;;(T'Ol —q@l-f-@l. (3.‘?)
For a singular fiber of type /",

5014070 — 107(@1+070y)
+ 46701420, 4203+ 6,. (3.5)

For a singular fiber of type [, we shall first look into at which component s hits. Let T be the
subgroup of NS(&) as before By Proposition 2.2, 3s € 7. Since the denominator of the coefﬁcient

of O, u—é— by (3.3), 2% € Z. This implies 3|n, as 0 < k < n—1. Put n = 3. Then, as & E Z, we
may assume that k = 5. ( If & = 2b, we shall label the irreducible components in another dlrectlon )
As 07O, = Oq_s, (1 £ & < [§]), we can now rewrite (3.3) in the following way:

For a singular fiber of type /3, with b even,

ket (moda | 5570k — 10k + (28] + 1) 04 + 515704 )
+2 k=2 (mod 3) {3 ek—L&'ek‘l'(Q[ ]+1)0 +([§-}+1)&‘6k}
+ sto {mod 3) (:}@k + gcr ") + 59%;5) . (381

Caft L3y

For a singular fiber of type f3; with b odd.

k=1 {mod 3) { 56" O — —C-);\ + (2{%] + 1) O + [%]5'-9‘\'}
+ 5 kes (mod3) 13Ok ~ 35Ok + (2[5]+ 1) O + ([§]+ 1) 504}
+3 k=0 (mod 3) (%‘:@*"'3‘7 ). (3.6.2)

Now by these formulas, it is easy to see that we can rewrite (x) in the form of
Dy —a" Dy = 3{D3g — Da)

such that

(1) Dy is reduced; every irreducible component is that of singular fibers not meeting sg,

(11} D1 and ¢* D have uo cominui cotmponent. andd

{iii) both D and Dy arc effective.

As £ is simply connected, we can replace = by ~ in the ahove equivalence.

Now it only remains to show that every irreducible component of [ is that the exceptional
divisor of y.

et © be an arbitrary irreducible component of Dy. Since @ 15 an irreducible component of a
singular fiber not being the identity component., [ o (@) is either a point or a line meeting C' at

)



2 with multiplicity > 4. We shall show that the latter does not occur. Suppose that fo u(9) is
such a line. If © = e; then by Lemma 2.8, © is an irreducible component, @3, of a singular fiber
of type f5. By (3.6). @3 does not appear in D). Hence, this case does not occur. [f & = dy, ds,
by Proposition 2.11, @ is an irreducible component of a singular fiber of type either /5 or I;. As
the contribution terms arise from only singular fibers of tyvpe fV. [V or {4 {h > 1), this case also
does not occur.

Thus, the three effective divisors Dy, D» aud D3 satisfy the conditions in Proposition 1.3.

84 Examples

In this section, we shall give several examples of maximizing sextics which satisfy the conditions
in Theorem 0.4. For this purpose, we shall use the same method as that in §2, [T2]. Namely,
let ¥ : S = P! be an elliptic K3 surface with a section sg. and let o denote the involution on S
determined by the inversion morphism of the group law on $. Then the quotient surface S/(s} is a
smooth rational surface. S/(o) is not minimal in general. \We shall consider when S/{c) is blown
down to P?. Namely, we shall consider the “inverse™ process of the canonical resolution (See [B]
and [N} for detail).

Let ¢ : S — P! be an extremal elliptic K3 surface, Then. by the proof of Proposition 2.11, we
have the following:

Proposition 4.1. Let & : S — P! be an extremal elliptic K3 surface with a section sy. Suppose
that ¥ : S — P! satisfies one of the three conditions as follows:

(i) There exists a singular fiber of type Ig.

(ii} There exist two singular fibers: one is of type [2 and the other is of tyvpe I4.

(1i1) There exist three singular fibers of type Is.

Then there exists a maximizing sextic, . with a triple point © such that ¢ : 5 - P! is the
standard fibration centered at x.

By Proposition 4.1. we can give several examples. We shall summarize them as follows:

Singularities of ¢ | Singular fibers of £
1 5, €8, 5. (3 15.11"", “.’"_.]‘_)
2 | €n, ax, a0, aa, an, ao | ls. l5, I3, [3, I3, I3
3 g, U1}, Un Is. Ia. I3, [y, L), 1)
q 2R R, Uy, 9 Arl»;. 19, [,1. [3‘ 11, 1'1
5 25, tig, a2, da, d) .’,3. [[., 1’3. /3. [3, [1
) €, U5, (0q, u, s fﬁ. Jrr;, ]3. [:}. [3, fl
7 (15. tg, a», gy, Ua I4. [;:, [9, [3, ['3 [;;
8 £5, U5, A3, (2, (1a, 1) [.‘,, {a. 1.1. ]3‘. /3. l"_:
G Cq. (M5, (05, Uy Is. Io. 0o, 14, 1y, )
10 n’5, Uds, A5, (2, (12 ['_z, 1.1. Ir,, Ir,, [3, ]3
il dg, s, ag, us Io lo by s, Is, 1a
12 r/.;. adyy, (Mg, U f-_:, [-_;. f'_-. 11’_:, /3: 1;;




For the existence of elliptic K3 surfaces as above. see [P] for the first one and [MP] for the rest.
\We can easily show that C is irreducible for the first seven cases in the table.
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Impossible configurations of 7, fibers on
semi-stable elliptic surfaces

Hiro-o TOKUNAGA !

Abstract

Let ¢ : S = P! be a semi-stable elliptic surface with a section. In this note, we shall
consider configurations of I, fibers of , and give a criterion for impossible configurations.

Introduction

Let ¢ : S = C be a semi-stable elliptic surface over a curve C with a section sq, i.e., all singular
fibers are of I, type (see [K] for notations for singular fibers). In this note, we shall consider a
question as follows:

Question. Let ny,...,n, be given positive integers. Does there exist any semi-stable elliptic
surface ¢ : § = C with singular fibers I,,, ..., I, 7

It is known that Y ;_, n, is divisible by 12 if such a semi-stable elliptic surface exists. In the
cases that S i_, n; = 12 or 24 and C' = P!, this question is solved completely by Miranda and
Persson in [MP], [P].

Our result on this question is as follows:

Theorem 0.1. Let ny, ..., n, be positive integers with 24| 3 [_, n;. Suppose that there exists a
prime, p, satisfying properties as follows:

(i) p divides r — 3 or more of n;’s.

(ii) If we rearrange n; s in such a way that p fn; (1 <i<t)andp|n; (t+1<i<r) then
2 Eﬁ:x n; + ;_'?7 Z:::-H n; > Z:::H n; (resp. 2 Z§=1 ni > Z::zt-{-l n;) forp > 3 (resp. p=2).

Then there exists no semi-stable elliptic surface ¢ : S — P! with singular fibers J SO

r

By applying Theorem 0.1 to the case that ¢ : § — C is an elliptic K3 surface, we obtain many
impossible configurations I, fibers on elliptic K3 surfaces. In fact, by Theorem 0.1, we can easily
check that 87 of the 135 cases listed in Corollary 3.3, Propositions 3.4, 3.5 and 3.6 in [MP] are
impossible.

Let MW (S) denote the Mordell-Weil group of sections of ¢ : § = C. To prove Theorem 0.1,
we shall look into existence of p-torsions in MW (S). We shall first prove

Proposition 0.2. Let p be a fixed prime and let ¢ : § = C be a semi-stable elliptic surface
with a section sg. We shall put singular fibers, I,,,...,In. (n; > 1), of ¢ in such a way that

1 AMS subject classification: Primary: 14J27; secondary: 14H52
Key words: semi-stable elliptic surface, p-torsion of the Movdell-Weil group



pAni i=1,.,)andpln; (i = t+1,..,r). IF255_ n + T Dz M > Yisggy M (resp.
2 Z:zl ni > 30,4 M), then MW (S) has no torsion of order p(p > 3) (resp. order 2).

Remark (i) In the case of p = 3, the inequality in the conditions of Proposition 0.2 is

t
3 o mi > Ef-:m .

(i1) The inequality in the conditions of Proposition 0.2 is sharp for p = 2, 3. In fact, there exist
rational elliptic surfaces, 57 and Sz, as below (¢f. [P]):

Singular fibers  Torsion
S1 sy I3, Ia, I, Iy Z/27Z
Sy I3, I3, I3, I, I, Z/3Z.

We shall next show that a criterion for existence of p-torsion, which is a generalization of the
Length Criterion (Proposition 4.4, [MP]).

Proposition 0.3. Let p be a prime. Let ¢ : S — P' be a semi-stable elliptic surface with a
section so having singular fibers I, ,...,1,. If 24]_;_, n; and p divides r — 3 or more of n;’s, then
there exists a non-trivial p-torsion element in MW(5). 4

By Propositions 0.2 and 0.3, we easily obtain Theorem 0.1. -@

Acknowledgement. Part of this work was done during the author’s stay at the Max-Planck-
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§1 Proof of Proposition 0.2

We shall start with a basic fact as below:

Lemma 1.1. Let ¢ : S — C be a semi-stable elliptic surface as in Proposition 0.2. Let x(Os)
be the holomorphic Euler characteristic of S. Then, 12x(Og) = 571_, ni.

This is an easy corollary from Theorem 12.2 in {K].

Let » : S — C be a semi-stable elliptic surface as in Proposition 0.2. Let T be a subgroup of
the Néron-Severi group of S generated by sp and the irreducible components of fibers of p : § = C

by T. Also, we shall always assume that irreducible components, @;i) (0 <j<ni—1),of the [y,
fiber are labeled in such a way that 68)95') = eﬁ”@é"’ = @f,"lleg"’ = 1, and that Ggi) meets
the section s9. Under these circumstances, we have the following:

Lemma 1.2. Let ¢ : § — C be an elliptic surface as above, Suppose that there exists a torsion

element of order p in MW (S), and let s denote the corresponding section. If s meets E)fii) at the
I, singular fiber, then j =0 for (1 <j <t), and j=0mod i for (t+1< 7<),

Proof. By the formula (8.2) in [S), we have
s~Q o+ (sso + x(Og))F ~ the contribution terms form the singular fibers.



where F denotes a class of a fiber of ¢ : S — C and ~Q denotes Q-linear equivalence of divisors.

Since s is a p-torsion, by Theorem 1.3 in [S], ps € T. Hence, in the above equivalence, the
denominators of the coeffictents of the irreducible components appearing in the contribution terms

are either 1 or p. Suppose that s meets @gi) at the I,,; singular fiber. Then, by (8.16) in [S], the
coefficient of G)g‘) in the contribution terms is mli Since ps € T', we have p (1:11-’-) =p—Lj€el
This implies j =0fori=1, .. tand]:Omod Lfori=t+1,.

Now we shall prove Proposition 0.2 for p : odd prime. By Lemma 1.2, we may assume that s

meets Gg) at the I;, fibers (i = 1,...{) and @E:'_)k‘,/ at the Iy, fibers (i =t +1,...,7, 0 < k; < p.
Let {, } denote Shioda’s pairing defined in [S]. Then, by 'I' heorem 8.6 in [S], we have

(,5) = 2x(0a) +2s05— ) - (n;- mki)

L b
] r
= 2)((05) + 2805 — ]—)'2- Z 11,'1.:,'(]) — k;)
i=t+1
-1 <
> 2x( p4 5 ;.
p i=t+1

Hence, by Lemma 1.1, we have

(s, s)>—(22n + = Z n; — Z m).

i=1 i=t+1 i=tf1

Therefore, our assumption implies (s, 8) > 0. On the other hand, as s is a torsion element, we have
(s,s) = 0 by Theorem 8.4 in [S]. This is a contradiction. In the case of p = 2, in the same way as

above, we have
.

(s, s) 6Zn, Z .

i=1 i_H-l

With the same argument as in the cases of p > 3, we have the desired result.

§2 Proof of Proposition 0.3

We need settings to prove Proposition 0.3.

Lemma 2.1. Let ¢ : S = P! be an elliptic surface with a section sg. If ¢ : § — P! has at
least one singular fiber, then H(S, Z) =0

Proof. By our assumption, 5,(S) = 0 and y(Og) > 0. Hence, H,(S, Z) is a finite abelian
group. Suppose that H'(S, Z) has a non-trivial element of order m > 1. Then, there exists an
étale covering 7 : S = S. Since sp = P!, 7"sg has m irreducible components each of which is



isomorphic to P'. Hence, S also has an elliptic fibration ¢ : § — P!. Let F and F, denote
fibers of ¢ and ¢, respectively. By the canonical bundle [ormula, we have K5 =~ (x(Os) — 2)F
and Kz =~ (x(Og) — 2)F1. Since 7 is étale, Kg = m Ng and x(Oz) = myx(0Os). Hence, as
m* F =2 dF;, where d is a divisor of m, we have d(x(Os) — 2))F\ = (mx(Qs) - 2)F;. Thus, we have
((m = d)x(Os) +2d — 2)F; = 0. This holds if m = d = 1, or x(Os) = 0 and d = 1. Both of two
cases, however, are impossible.

Lemma 2.2, Let ¢ : 5 — P! be an elliptic surface as in Proposition 0.3. Then, H?*(S,Z) is an
even unimodular integral lattice.

Proof. By Lemma 2.1, H%(S,Z) is torsion-free. Hence, by Poincaré duality, H2(S, Z) is a
unimodular lattice. We shall prove that it i1s even. Let wy = —Kgs mod 2 and us be the second
Stiefel-Whitney class of S and the second Wu class of S, respectively. Then, by [HFK], p. 43, we
have

o? = uga = =K ga mod 2

for arbitrary o € H*(S, Z). By our assumption and the canonical bundle formula, Kg = 0 mod 2.
Therefore, H%(S, Z) is an even unimodular integral lattice.

With Lemma 2.1 and Theorem 3.1 in [S], we just repeat the argument in §4 in [MP] by replacing
the assumption 3 i, n; = 24 by 3 i, n; = 12x(Os). Then we can easily check that Proposition
4.4 in [MP] is generalized to Proposition 0.3.
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