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where Xo= 2 log( ß+{N) and

(8.2)

with

, (8.3)

-2x -2 T 2 -X-Teheß= 2 e +e - e
(l+e-2x )(l+e-2T)--4e-X-Tehe

Firstly we change the variable ofthe integr'ationj we define x = X(Z;e,T) by the

equation

. (8.4) ehT-eh(X-f) _
2sh x sh - z ·

Then this funetionis given in the explicit form by the equality (8.3)j besides

(8.5)

and we have together with (5.23) (for cp(x) = rpE(X-xa) )

CD

(8.6) U(e,r,CPE) = ~CPE(e+T) + ~IW'(z) clJ~T~hECPE(X(z)-xo)dz .
, 0

Now it follows !rom (8.3)



Yamabe Metrics and the Spate of Conformal Structures

Mitsuhiro !toh

INTRODUCTION AND MAIN THEOREMS. The aim of this article is to investigate

the following two subjects relating to conformal geometry; (1) Ilmoduli ll of Yamabe

metrics, metrics minimizing the Yamabe functional, whose existence has been

extensively studied as Yamabe problem, (2) the space of conformal structures on a

compact manifold module the diffeomorphism group action, especially its topology.

Two inetrics are conformally equivalent when they are proportional by a positive

scalar field and then they define a conformal equivalence dass, called a conformal

~ po' atrueture.

Riemannian metrics seem much richer as geometrical notion than conformal

structures and one might get much more geometrical implication by dealing with

Riemannian metrics than with conformal structures.

Nevertheless we can summarize significance of our study of the space of conformal

structures aB follows.

There exist notion and subjects which do not depend on Riemannian metric, but

depend on ~onformal structure, namely, conformal invanants. For instance, the

conformal flatness, the half conformal flatness in four dimension, and Weyl conformal

curvature tensor, conformal transformations and the Hodge operator on k-forms,

k = ~ dim M (see for further reference [3]).

The second reason, rather sophisticated than the obvious first one, is the following.
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Consider on aRiemann surface conformalstructure and complex structure. They are

different objects, but are considered through isothermal coordinates as only

distinguished forms representing the same geometrical structure. ThUB the space of

complex str~ctures on aRiemann surface is interpreted aB the space of confonnal

structures. Another example is the relation of half confonnally Hat structure via Penrose

twistor diagram to investigate complex structure on the twistor space ( [16] J for more

general case see [4]). The diffeo-gauge quotient space of conformal structures on a

manifold, that is, the quotient space moduln the diffeomorphism action will reflect in

general dimension moduli of some geometrically interesting structures which might not

come directly from Riemannian geometry.

The third reason ia practical. Aspace of metrics satisfying some special

geometrical property can be embedded in the diffeo-gauge quotient space of conformal

structures so that one can study such aspace of metrics as an embedded subspace.

The moduli of Einstein metrics on a compact manifold M J not diffeomorphic to

Sn gives an example of such situation, because the traceless Ricci tensor Z, ~ of

metrics g and g= r 2g are given by ~ = Z + (n-2)r1(Hes(f) + ~f g) (p.59, [6])

so that if t4e metrics are both Einstein, then Hes(f) + ~f g = 0 and it follows that

([14]) f roust be constant and hence the moduli of Einstein metrics is embedded in the

space of conformal structures. In fact as ia shown in [8] the moduli of Ricd flat metrics

on a K3 surface or a 4-torus can be identified with the moduli of zero scalar curvature,

half confonnally flat conformal structures which is endowed with a finite dimensional

manifold structure (probably with singularitiea) and carries a natural L2-metric.

Let M be a compact, connected, oriented smooth n-manifold, n ~ 3 and g a

smooth metric on M.

4

We call a conformal change f-2g a Yamabe metric when it minimizes the

Yamabe functional Qg(f) = (4 :=~ J Idfl 2dVg + J prdVg)/(J fNdVg)2/N
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(N = ~~2 1 dVg is the volume form of g and p is the sealar eurvature) within the

confonnal strueture [g] .

A Yamabe metrie, a relevant representative marie of constant scalar eurvature for

a conformal strueture [g] ,always exists, because the Yamabe problem was solved by

Yamabe, Trudinger, Aubin, Schoen and others ([20], [18], [1], [17]).

The questions whieh arise next to the existence problem .are the following: (1) to

consider the uniqueness problem and structure problem for the "moduli" of Yamabe

metrics when the uniqueness breaks down and (2) is arbitrary constant scalar curvature

metric always a Yamabe metrie?

As discussed in l-ii) these questions relate with the Yamabe invariant, the

infimum of the Yamabe functional and for the structure problem we wou1d like to raise

the questiori whether the moduli of Yamabe metrics is compact when the volume is

normalized for each conformal structure except for the standard sphere. For the

standard sphere the moduli is deseribed in an exact way aß a noneompact symmetrie

space (Proposition 1.4).

This compaetnes8 question corresponds to the famous conjecture for confonnal

group C( [g]) : C( [g]) (or its identity component) is compact if and only if [g] is

not conformal to the standard aphere (Sn,go)' Le., there does not exist any

*diffeomorphism f/J: M ---+ Sn, ~ go = fg, f> 0 .

This was solved by Obata ([15]) for the identity component case by using

essential confonnal Killing field and by Lelong-Ferrand ([13]) for C( [g]) from the

argument of quasieonfonnal mappings.

For question (1), particularly for the uniqueneBB we observe from Theorems 1.2, 1.

(see also [1]) that the moduli is unique up to positive Beale factor g~ cg, c > 0

for the nonpositive Yamabe invariant CaBe (or equivalently nonpositive scalar curvature

case) and for the Einstein metric case, except for the standard aphere.

For the question (2), as shown in the remark of Theorem 1.2, any metrie of
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nonpositive constant scalar curvature is always Yamabe. However, the situation is

different for positive scalar curvature tase. We exhibit indeed examples of scalar

curvature positive constant Riemannian manifold, for instance the product of standard

spheres Sp.x sq , which are even lliemannian homogeneous hut not Yamabe.

To discuss the compactness of the moduli of Yamabe metrics requires entirely

analysis of the nonlinear elliptic equation describing scalar curvature and the strict

inequality on the Yamabe invariant JJ, JJ < JJ (Sn, [go]) .

The Sobolev space analysis together with the strict inequality on JJ which was

keystone for solving the Yamabe problem, especially the Sobolev compactly embedding

theorem, enables us to show one of our main theorem.

Theorem A. Let [g] be a confonnal structure not conformal to the standard sphere.

Then the moduli of Yamabe metrics for [g] is compact, when the volume is

normalized.

Here the topology of the moduli is of course the induced topology as a topological

subspace of the ambient space, the space .9t M of all smooth lliemannian metrica with

CCD topology. Since for any [g] the conformal group C = C( [g]) acts effectively

module isometries on the moduli of Yamabe metrics as explained in l--ii), the above

theorem immediately gives a proof to the confonnal gronp conjecture, a new proof from

the viewpoint of Yamabe metrics.

Corollary B. The conformal group of a conformal structure [g] is compact if and only

if [g] is not conformal to the standard aphere.

Another application of our inves~igationof Yamabe metric ia, as discussed in 2, on

the topology of the diffeo-gauge quotient space of all conformal structures, the quotient
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of the space af all conformal structures divided by the diffeomorphism group

~(M) .' or equivalently the quotient of the space of Riemannian metrics by the

semi-direct product group C~(M) t< :l'~(M) .

The continuity of the Yamabe invariant and the convergence property af Yamabe

metrics give UB the Hausdorff property. Namely,

Theorem C. Let M be a compact, connected oriented n-manifold. Then the

diffeo-gauge quotient space of conformal structures on M is Hausdorff except far the

point represented by the standard n-sphere [go] .

That the space ia not HausdorH at [go] sterns from that the conformal group,

and hence the moduli of the Yamabe metries is not compact.

As a direct consequence of this theorem any closed subspace of the diffeo-gauge

quotient space, for instance, the moduli af Einstein metrics except far the standard

sphere Einstein metric, turns out to be Hausdorff.

We have in particular

Corollary D. The following spaces are Hausdorff,

(i) the moduli of canformal Hat structures on M and

(ii) the moduli of half conformally Hat conformal structures on a compact, oriented

4-manifold.

Notice that the above Hausdorff theorem only covers the corollary for the case

[g] t standard sphere [go] . For [go] itself, however, the topology is also Hausdorff

at [go] ,since the moduli becomes a single point from the weil known theorem of

conformal geometry due to Kuiper ([11]).
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Remarks (i) The diffeo-gauge quotient space of conformal structures on M,

'6MJ/MI.!t1~M) , admits an infinite dimensional real analytie variety in whieh each

point has a neighborhood of the conformal group quotient of a linear subspace in

CCD(M,Endo(TM)) ([9]). For 2-dimensional (Riemann surface) case this space is just

the moduli"of Riemann surfaces and then written aB the discrete group quotient of a

domain in (3g-3 (g is the genus).

(ii) For M of even dimension the diffeo-gauge quotient space ~MJ/MI~~M) can

be endowed with an L2-metrie at an even singular point by ming harmonie forms of

degree ~ dim M and the generalized volume form, a volume form which preserves the

conformal invariance and the diffeo-naturality ([9]).

(iii) The moduli of conformally flat structures has from the deve10ping map a natural

map into the representat"ion space ~("l(M), SO(n,l)) .

(iv) The moduli of half conformally flat structures has a finite dimensional real analytic

variety structure admitting the induced L2-metric ( [8] ).

The author would like to express his gratitude to Max-Planck-Institut für

Mathematik for supporting his stay in Bonn.

1. Yamabe problem and Yamabe metric

l--i) Yama~e problem. Let (M,g) be a compact, connected, oriented smooth

Riemannian n-manifold, n ~ 3 .

Metrics fg, where f runs in C~(M) = {JX>sitive smooth functions on M},
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conformally equivalent to g, determine a conformal structure [g] .

The Yamabe problem is then the following ([20])i does there exist within [g] a

scalar curvature constant metric?

4
N N "n-2

The scalar curvatures p, p of g and g = 1 g satisfy the elliptic equation

(1.1)

n+2
N..n 2 n-1 Af fp 1-- = 4 n-2 a + p ,

where fJ. = -ViV. is the g-Laplacian.
1

Theorem ([20], [18], [1], [17]). For any metric g on M there exist fE C:(M)

and constant p satisfying (1.1). In other words the Yamabe problem is solvable for any

(M,g).

We will briefly summarize how this theorem was solved (see [12] for the survey of

the Yamabe problem).

Yamabe considered the functional

(1.2) Q (f)= [4~f Idfl 2
dV +fP(2dV ]/[f N ]2/N,g n- g g f dV

g

f E C:(M) , and observed that the Euler-Lagrange equation of (1.2) coincides with the

equation (i.l).

In fact f is a critical point of (1.2) if and only if f satisfies (1.1) with

P= Q (1)/ f N 1-2/N.
g (f dVg)
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. 4

As is easily obtained (p. 288, [1]), for a conformal change g= fl-2g ,

Qicpf) = Qg(rp) , rp E C~(M). Then Qg(f) = Qg(l) = J PdVg/(J dV
g

)2/N' from

which we derive the value of constant scalar curvature p for the solution f of (1.1) as

above.

*Obviously Q * (f/J f) = Qg(f) for any orientation preserving diffeomorphism
, g

f/J : M ---+ M so that

(1.3) Jl(M, [g]) = Jl( [g]) = inf{Qg(f);f E C~(M)}

is conformal and diffeomorphism invariant. We call thi.s Yamabe invariant.

Theorem ([20], [18], [1]). The Yamabe problem can be solved for any (M,g) of

Jl( [g] ) < Jl(Sn, [go]) ((Sn,go) is the standard n-sphere).

The difficulty of solving the Yamabe problem is caused by that the value N = ~~2

is the border exponent for Sobolev embedding, that is, the continuous Sobolev

embedding L~(M) C LN(M) is not compact. So to verify this theorem by passing away

by this difficulty one perturbs the Yamabe functional as

Q: f) = [4 =1J Idf +Ji / J{/ ' 8 < N ud howat Q: haß a

positive smooth function f which minimizes QS and then that the sequence {f} hass g s
a subsequ~ce uniformly converging to a positive smooth function fass ---+ N l

I i m Qs(fs) = Q (f) .
s-+N g g

Theorem. i) ( [1] ) If (M,g) has dimension ~ 6 and is not locally conformally flat,

then jj( [g] ) < jj(Sn, [go] ) .
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ü) ([17]) If (M,g) has dimension 3, 4, 5 or if (M,g) is locally confonnally flat, then

J.L( [g] ) < J.L(Sn, [go]) ,provided (Mtg) is not conformal to the standard sphere.

The Yamabe problem was solved by these theorems (see for reference [12], which

is an excellent survey of the Yamabe problem and references cited in [12]).

1-ii) Yamabe metric.

. 4

Definition 1.1. For a smooth metric g a conformal change g= fn-2g ia called

Yamabe metric for g or conformal structure [g] if g minimizes Qg(f) , na.mely,

Qg(f) = J.L( [g] ) .

We see easily that if g is Yamabe, so is cg, c > 0 and remark that the scalar

curvature p of a Ya.mabe metric g is

(1.4)

We consider first the uniqueness of Yamabe metric.

Theorem 1.2 ([1], [8]). Let [g] be a conformal structure of J.l( [g]) ~ 0 . Then, up

to scale factor Yamabe metrics are the same.

4

~ []Proof. Suppose g1'g2 = I gl are two Yamabe metrics of g .
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i) The case J.l = J.l( [g] ) = O. The scalar curvatures PI' P2 are zero and then from

(1.1) äi = 0 and hence f is constant.

ii) The case. J.l < O. Suppose more generally that 81' &2 are negative constant scalar

curvature metrics within [g] . Ey rescaling we mayassume Vol(gl) =Vol(g2) and

P2 ~ PI < 0 . At a point Xo E 0 where f is maximal Af = -ViVl ~ 0 . On the other

hand from (1.1)

n-l ( ) N-l (N-2)f4 n 2 ~f = P2-Pl f + PI f -1

So at Xo Pl(f
N

-
2
-1)f ~ (PI-P2)f

N
-

1 ~ 0 . Since PI-P2 ~ 0 and PI < 0

(fN-2_1)f ~ 0 at X
o

and hence f(xo) ~ 1 . Thereiore f = 1 on M since

Vol(g2) =f fNdV = f dV = Vol(gl) .
gl gl

We observe from the proof that any constant scalar curvature metric g is a

Yamabe metric provided J.l( [g]) ~ 0 .

Another case for which Yamabe metric is unique up to constant scale is the

Einstein metric case. Namely we have

Theorem 1.3. Let g be an Einstein metric on M, a compact connected, oriented

n-manifold, not conformal to the standard sphere. Then any Yamabe metric for the

metric g is constantly proportional to g.

Proof. Let g be a Yamabe metric for g, g = rg , f> 0 . Then the formula for the

traceless Ricci tensors Z, ~ (Z.. = R.. - e. 2:..) is
IJ IJ n VIJ
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(1.5)

(p. 59 [6] or (3.3), [12]).

Apply the same method in the prooI oI Proposition 3.1, [12] to integrate

= --(n-2) f (~, ttes(f))dVg= (n-2) f Vk~jkfj = 0 ,

where we used (1.5) and Vn~jk = 0 since the scalar curvature of g ia constant. So

~ = 0 ,or g is Einstein and moreover the positive sca.lar field I satisfies the Hessian

equations ttes(f) + ~ äf · g= 0 . But f must be constant since the equations have

nontrivial s~lutions oo1y when (M,g) ia isometrie to (Sn,go) (see [14]) . So g = c2g J

e > 0 constant J that is, g is a Yamabe metric and there are no Yamabe metrics other

than g up· to eonstant factor.

Relative to the uniqueness problem for Yamabe metrie of J.l > 0 one eau exhibit a

conformal strueture possessing plenty of Yamabe metrics. The standard n-ßphere

(Sn,go) , the exeeptional ease oI Theorem 1.3J has indeed many Yamabe metries. The

Yamabe invariant is J.l( [go]) = n(n_1)",2/n ('" is the volume of (Sn,g ) ) and. n n 0

Yamabe metrics for [go] are eharacterized as

Proposition 1.4 (Th. 3.2 J [12]). Yamabe metrics of (SnJ [go]) are exaetly eonstant

multiple of .8
0

and pull baek metries of go by eonformal transformations.
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So, hom this proposition the "moduli fl of Yamabe metrics, more precisely, the

go-component of the moduli is parametrized as IR+ )( SO(n+1,1)/SO(n+1) , since the

identity component of the group of orientation preserving conformal transformations of

(Sn, [go]) ia SO(n+1,1) and the identity component of the isometry group is

SO(n+1) . !he right factor SO(n+1,1)/SO(n+l) ia a noncompact symmetrie space,

Hn+ 1 , a hyperbolic space.

Given a conformal atructure [g] we define the moduli of volume normalized

Yamabe metrics;

!I.Jt( [g]) = {Yamabe metrics g in [g] , VOI(g) = Vol(g) } .

Pul! back metric of gunder an orientatiQn preserving diffeomorphism

*f/J : M ----t M yields a Yamabe metric in [t/J g] , since the Yamabe functional is

* *diffeomorphism invariant so that t/J : j.Jt ( [g] )~ j~ ( [gI])' g1 = t/J g , gives

rise to an iS()I~orphsim.

*When f/J: M~ M preserves a conformal structure [g] , Le., t/J g = fg ,
, *

fEe~(M), t/J induces the action 1P on j.Jt ( [g]) .

If we let I(g) be the group of orientation preserving g-isometries

*{f/J : M ----t Mi 1/J g= g} , then I(g) is the isotropy subgroup at g in JI.it( [g]) for

the action of the conformal group C( [g]) = {t/J : M~ Mi t/J*g = rg , f/J is

orientation preserving} so that C( [g] )/I(g) is embedded in 1I.Jt( [g]) .

The following is easily obtained.

N

Proposition 1.5. If a conformaI structure [g] has the unique Yamabe metric g up to

constant scale facto!, then C( [g] ) = I(g) .
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We will now prove the compactness theorem, Theorem A by showing the following

convergence theorem

Theorem 1.6. Let g be a smooth metric with p = p( [g]} < Po = J.'(Sn, [go]} .

Assume {~} is a sequence of volume normalized Yamabe metrica of [g] . Then {8j}

has a subsequence converging unifonnly to a Yamabe metric of [g] .

ErQQf. From {~} we have a sequence {fi} of positive smooth functions by

e:. = f~-2g '. Each f. ia a solution of the equation
~ ·11

(1.6)
N-l n-laäf. + pf. = p,f. ,a = 4 =--n' ,

1 1 1 n-",

and LN-norm is IIfiHN = 1 because of normalized volume.

It suffices to show that {fi} has a subsequence which uniformly converges to a

positive smooth function satisfying (1.6).

We first claim that Lr-norm of fi is uniformly bounded, IIfillr ~ C for same

r > N . We apply ward by ward the argument in the proof of Proposition 4.4, [12].

Choose 6 > 0 . Multiply (1.6) by f~+26 and integrate over M. Then
1

If we set wi = f}+ 6 , then this can be written as



(1.7)
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_1...;.-+_26""'R'2 ral dw·1 2 = r (p, w~ f~-2 - p w~) .
(1+ 6) iI 1 if 1 1 1

Apply the Sobolev inequality due to Aubin which holds universally for all compact

manifolds (see Theorem 2.3 in [12]) and have that for any f > 0 there is Cf> 0 I

depending only on M, g and f

In the last inequality we used the Hölder inequality for dual indices (~, NN2) . So,

(1.8)

from which IIwill~ ~ cllwill~ for a constant C > 0 , independent of i I because of the
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assumption' ~ < 1 .
Po

Since Ilwill~ = Jw~ = J~+26 = IIfill~t~~, by applying again the Hölder

inequality for dual indices (N/2+ 2O', R), R =N/(N-2-2O') for sufficiently small

6 > 0 we have the L2-norm IIwill~ ~ IIfill~+26 = 1 . Therefore

IhliN = [J f~(l+6f/N = IIfill~H+6) is uniformly bounded from above.

Now {fi} ia uniformly bounded in Lr(M), r = N(1+6), 6' > 0 so that from

the regularity theorem, Theorem 4.1 in [12] they are bounded uniformly also in the

Bälder space C2,o(M) and then they have a subsequence converging in C2-norm to a

function fE C2(M) which satisfies (1.6).

By applyjng the regularity theorem again the limit f is smooth, f E Coo(M) , and

it ia strictly positive since IlfilN = limllfillN = 1 (this atrictly positivity is proved also

from Lemma 6 in [1]).

By applyjng the argument in the proof of Proposition 2.2 in 2 without difficulty

one can prove that the quotient space C( [g] )/I(g) is for any Yamabe metric g of

# < #0 cIosed in the moduli p.At( [g]) so that C( [g] )/I(g) and hence C( [g]) is

compact. So Corollary B ia verified.

With respect to the atructure problem of the moduli of Yamabe metrics we would

like to present the following

Orbit Coniecture. Every connected component of the moduli of volume normalized

Yamabe metrics can be written as a quotient space of the conformal group C( [g]) .

Evidently the moduli j.At of the standard aphere is from Proposition 1.4 a

quotient space of C( [go]) , and both p...K( [g]) and C( [g]) are compact from
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Theorem A'and Corollary B when [g] is not the standard aphere.

Moreover from Theorems 1.2, 1.3 the moduli consists only of a single JX>int for any

confonnal structure either oI p. ~ 0 or represented by an Einstein metric.

Remark that a similar discussion appears in [2] on the moduli of Einstein Kähler

metrics.

We are able to ask a condition relative to eigenvalue of the Laplacian for the

moduli to admit a continuous parameter.

Proposition 1.7. Let g be a Yamabe metric of p.( [g]) > 0 . Assume there exist

Yamabe metrics ~ in [g] with an effective parameter t, Itl < f , go = g ,

Vol(~) = Vol(g) . Then p/n-1 is the eigenvalue of the Laplacian ~g'

the scalar curvature Pt is constant, given by

which ia equal to P, the scalar curvature of g .

N-1
Differentiate the equation at t = 0 with respect to t, pf t = a l:1gfg + pft J from

which ~ [Ml = r& [Ml for [Ml ;= 0 .
g {j t=O t"j t=O tj t=o

4
~Proof. For the metrics ~ = 1t g

2
N-1

Pt = p.( [g]) · Vol(~)

This proposition shows us that the "tangent ll space of the moduli of Yamabe

metrics is represented in the eigenspace of the Laplacian for the eigenvalue nPI .

The following is a necessary, but useful condition for a metric g to be Yamabe,

whose proof appeared in Th. 11, [1].

Proposition 1.8 ([1]). The first eigenvalue ~1 of the Yamabe metric Laplacian

satisfies ~ ~ ~ TIPI .
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So, if .Al > n~l ' then !rom these propositions the moduli of Yamabe metrics is

discrete near g.

Remarks (i) From Proposition 1.8 the upper bound of the Yamabe invariant ia

p.( [g] ) ~ (n-l)A
I

· VOl(g)1-2/N (for a lower bound of fJ( [g]) refer to [10]).

(ii) Moreover the standard sphere is characterized in terms of Einstein Yamabe metric

of p.( [g]) > 0 as follows. Let (M,g) be a Yamabe metric of p,( [g]) > 0 which is

Einstein and satisfies Al = p/n-l . Then (M,g) is, when rescaled, isometrie to the

standard sphere ( [14] , and also p. 180, [5]).

(ili) It is eoncluded by using Proposition 1.8 that the produet of the standard metries on

the produet of apheres SpxSq , p,q ~ 2, P > q+1 , is not Yamabe even it is a

homogeneons metrie of positive scalar eurvature. In fact !rom G , [5]

A1(SpxSq) = min{Al(SP), A1(sq)} = q. On the other hand the scalar eurvature p of

p q

the produet metrie is p = \ R~~) + \ R(~) = p(p-l)+q(q-l) (R~~) and R(~) are
L 11 L JJ 11 JJ

i=l j=l

the Rieci eurvature tensors of sP J sq , respectively) and henee

p+~-l- q = p(p-q-l)/(p+q-l) > 0 so that the product metric is not a Yamabe

metrie.

The produet metrie g on SPxSP ia an Einatein metrie and henee from Theorem

1.3 a Yamabe metrie unique for the conformal strueture [g] .

l-iii) The continuity of Yamabe metrics.
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Finally we atate the continuity property of Yamabe metric which will be used for

the topology of the diffeo-gauge quotient space of conformal atructures.

Theorem 1.9 Let {1i} be a sequence of smooth conformal siructures and {~} a

sequence of volume normalized Yamabe metrics ~ representing ii' Assurne {~}

converges to a smooth metric g in C2-norm. Then g ia a Yamabe metric for a

conformal structure "(, the limit of 1· , of Yamabe invariant jJ = lim jJ(1') .
1 i 1

We need for the proof the continuity of the Yamabe invariant ([10]): Let {h.}
1

be a sequence of amooth metries of scalar curvature Pi . If hi converges to h in

CO-norm and Pi to P, the scalar curvature of h in CO-norm, then

lim jJ( [hi]) = jJ( [h]) . We omit the proof which is obviously shown.

For each Yamabe metric E. Q (1) = f p.dV /( f dV )2/N which goes to
. U]~ l~ ~

Qg(1) = f pdVgl(f dVg)2/N as i ---i lD • On the other hand, since the scalar

curvature of ~ eonverges to the sealar curvature of g, !rom the continuity of Yamabe

invariant Q~(1) = jJ(1i) ----J ,u( [g]) . So jJ( [g]) = Qg(l) which means that g is a

Yamabe meirie for [g] of Yamabe invariant tim jJ(1') .
. 1
1

The following is a eonvergence theorem of Yamabe metrics, a slightly general than

Theorem 1.6.

Theorem 1.10. Let {h.} be a sequenee of smooth metries of Yamabe invariant
1

,u. < jJ = jJ(Sn, [g ]) . Assume {h.} has a subsequence converging to a smooth
100 1

metric h ~f jJ < jJo in C2-norm. Then any sequenee {~} consisting of volume

normalized Yamabe metrics, ~ = f~-2hi ,for [hi] has a subsequence whieh
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converges to a Yamabe metric g = fN-2h for [h] .

To prove this theorem we slightly modify the compactness argument in the proof

of Theorem 1.6 by dealing the equation (aAi + Pi)fi = I'l~-l simultaneously. Since

metrics hi are uniformly convergent in C2-sense, there exists an € > 0 from Theorem

1.9 such that J.li < I' + € < 1'0 for sufficiently large i. Moreover, einte the constant

C € in the inequality (Th. 2.3, [12]) depends on a metric in CO-sense. C ~ in (1.8) is

uniformly bounded from above. So, together with the uniform boundedness of LN-norm

of fi every part of the argument of the proof of Theorem 1.6 works and the theorem is

verified.

2. The tOJ>QIQgy of diffeo-gauge Quotient space.

2-i) For a compact, connected, oriented smooth n-manifold M, n ~ 3 , we denote by

~(M) the group of orientation preserving diffeomorphisIDs t/J: M ---+ M and by

~(M) {1/1 E~~ (M)j , is isotopic to idM } .

Herr ,: M ---+ M is isotopic to the identity transformation idM when there is

a path {'t} in ..0~(M), 0 5 t 51, '0 = , and '1 = idM .

~(M) is as a group finitely generated by diffeomorphisms which are generated

as transformations of M by smooth vector fields. !i'#(M) is the connected

component group of ~~(M) and the quotient group ~~(M)/~#(M) is the

group of isotopic equivalence classes, called the mapping class group and also called the

Teichmüller modular group for lliemann surface case.

For a' conformal structure [g] every ,E~ (M) defines by pull back

* *another conformal structure [t/J g] which we write as , [g] .

The conformal groups C( [g]) aod Co( [g]) for [g] are defined in
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~(M) ~ ~(M) as subgroups consisting of ,fixing [g] .

Since 9'~(M) acts on the space ~~M of a1l smooth conformalstructures

[g] on M, we obtain as the quotient the space '6~M/~~(M) of

diffeomorphism equivalence classes "1, represented by "1 = [g] . We call this quotient

space the diffeo-gauge quotient spate of conformal structures, since diffeomorphisms

behave like gauge transformations in the Yang-Mills gauge theory.

~~MI9'~(M) is a fibred space over another diffeo-gauge quotient space

'f!~M/~(M) with fihre .0~/ ~(M) .

Similarly we define the diffeo-gauge quotient space of smooth Riemannian metrics

on M f fltMI ~~(M) and flt M/ 9'#(M) with projections

7:: fltMI~(M) ---i ~~MIIi'~(M) and

11": !AMI .i#(M) ---i 'R~MI9'#(M) .

Notice that the projections have a "canonical section" over subspaces where the

moduli of Yamabe metrics consists of a single point.

2-ii) The Hausdorff property

The spate ~~M/~(M) has the quotient topology induced from the

projection 'K'. Since the following diagram commutes

flt M ------+1 ~~M

1 1
d hY(M) r I 'f!~M/ .0~(M) ,

the topology of ~~MI9'~(M) comes originally from the naturally defined
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topology of ~M .

Theorem 2.1 (Theorem C in the introduction). The subspace {7j p(1) < Jl(Sn, [go])}

ofthe space ~~M/9J~(M) (or of ~~M/~(M) ) has the Hausdorff

property.

Fer the proof we need the Sobolev space completien ef spates of metries and ef

diffeomerphisms.

Consider the product space F = M)(M . We follow the argument of Ebin ([7]).

Sections of F --+ M are considered as maps ef M into M so that

Cl(M,M) = {Cl-maps: M --+ M} is identified with Cl(F) = {Cl-fiections of

F --+ M} 'where the topology of Cl-maps (sections) are the uniform convergence

topology up to the first derivative.

Defin~ Cl-diffeomorphisms as Cl.!t'+ = {, E Cl(M,M)j 16-1 E Cl(M,M), t/J is

orientation preserving} . Cl.!t'+ is open in Cl(M,M).

Pick s > n+2(~ ~ + 1) and define 9J~ = ~(M) = Cl .9'+ n HS(F)

where HS(F) = L;(F) ia the space of L~-fiections of F , {sec~ions 1/1 of F j

11 t/J11 2 s < Q) } • 9J~ is a topological group nnder the mapping composition.,
Notice that from a Sobolev lemma there is c > 0 for L~-norm such taht

IDaf(x) I ~ cllfIl 2,k+ Ial for k > nf2 (so HS(F) ( C1(F) ) and

IIflf2112 k ~ cllfl l1 2 kllf2112 k for k ~ n+2 ., "
The action Hs+l(F) )( Hs(S2(T*M)) --+ Hs(S2(T*M)); ("h)~ tjJ*h is

continnous..

The following proposition is not direcUy needed, but is useful for the proof of

Theorem 2.1.

Proposition 2.2. .5t M,s/9J~+1 is Hausdorff. Here .5t M,s is the space of metrics on
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. 2
M of finite Ls-norm.

It suffices to show !rom the following HausdorH criterion that the map

u : 9)#;+1 )( .ge M s --t .ge M s)( .ge M s; ("g)~ (g,,,*g) has the closed image.
I I ,

Lemma ([19]). Let G be a topological group acting continuously on a topological

space X and Z the set of all orbits: Z =X/G . The quotient topology on Z is

Hausdorff if and only if the image of ihe map: G)( X --t X )( X; (a,x)~ (x,a· x)

is closed.

Proof of Proposition 2.2 Let {~}, {g j} be sequences of metrics in .ge M 8 .
I

Suppose t/J;~ = gj for an ~i E~+1 and the sequences have limit gig'

in se M,s .It is not hard to show that ~i is uniformly bounded in RHl(F) since the

t? t/J.
secud deriva iv Sb of Vi are reuresented by the Chri to cl s m of ~, gj

8x.
and the first derivatives _1 . So {;.} has a subsequence converging to tP in

Ox& 1 .

Hs+1(F) and hence from the Sobolev lemma ,E C1(M,M) .

Since HS+l(F) )( H8(S2(T*M)) --t HS(S2(T*M)) is continuous,

* *g' =lim g j = (tim 'i) (!im ~) = t/J g . So f/J has maximal rank at everypoint and the

sign of the determinant det t/J is positive since det g' (~x)) = (det ,)2(x) · det g(x)

and 1/1 is a limit of orientation preserving diffeomorphisms.

Since the degree of 1/1 is one and the mapping degree theorem applies, t/J ia

bijective and ,-1 E Cl 9)+ and hence ,E Cl 9J+ n Hs+1(F) = 9J#;+1 . So Im(u)

is closed.
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Remark. The group .El'~+1 is the connected component group of~+1 . So the

space .9E M si GL·/j) is also Hausdarff.
, ~s+l

Ta verify theorem 2.1 we suppose that {7i} and {7i} aie sequences in

~~~,S = {r E ~~M,sj p( r) < po} sB.tisfying ri = ~; ri' ~i E~+l and

having limits 7, 7' in '6~~ s .,
For each i 7i and 7i have representatives in .9E Mathe Yamabe metries of,

unit valume ~ and gi .
* * ..N-2, ..

Sinee 'i~ is Yamabe in 1i ,we have 'i~ = t-i' gi for a posItIve

L;-function fi .

We now show that sequences {gi}' {gi} have subsequences converging to

Yamabe metrics g and g' whieh project onto 7 and 7' and whose Yamabe

invariant is less than IL •. "'0

In fact the sequence {7'} admits a sequence {h.} in 9l M s converging to h
I I,

in L;-norm and projeeting onto {7i} so that from Theorem 1.10 the sequence {~}

of Yamabe metries has a subsequence which converges to a Yamabe metric g. The

Yamabe invariant JJ < JJo !rom Theorem 1.9. {gi} has also a subsequence converging

to a Yamabe metrie g' of JJ < JJo .

The intermediate sequence {f~-2gi = ,;~} has also a subsequence which

converges to fN-2g, ,same as the previous ease, 80 that {'i} has a eonverging

subsequence and hence the image of the map

~+1 x. ~~M,s ---i t4'~MJs x ~anlM,s ia closed.



-24-

REFERENCES

[1] T. Aubin, Equations differentielles non lineaires et probleme de Yamabe

eoneernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296.

[2] S. Bando, T. Mabuehi, Uniqueness of Einstein Kähler metries modulo

connected group aetions, Advanced Studies in Pure Math., 10 (1987), 11-40.

[3] R.J. Baston, M.a. Eastwood, Invariant operators, Twistors in Mathematies

and Physies, ed. T.N. Bailey and R.J. Baston, London Math. Soc. Leet. Note

156, Cambridge Univ. Press 1990, 129-163.

[4] L. Berard-Bergery, T. Oehiai, On some generalizations of the eonstruetion of

. twistor spaees, Global Riemannian geometry, 00. T.J. Willmore and N.J.

Hitchin, Ellis Horwood limited, 1984.

[5] M. Berger, P. Gauduehon, E. Mazet, Le spectre d'une vanete riemannienne,

Lecture Notes in Math., 194 Springer, Berlin, 1971.

[6] A. Besse, Einstein manifolds, Springer 1987.

[7] D.a. Ebin, The manifold of Riemannian metries, Proceeding of Symp. in Pure

Math. A.M.S. 15 (1970) 11-40.

[8] M. Hoh, Moduli of half conformally flat structures, submitted, Math. Ann.

[9] M. !toh, Torelli type map and the canonieal volume form in conformal

geometry, preparation.

[10] O. Kobayashi, Scalar curvature of ametrie with unit volume, Math. Ann., 279

(1987) 253-265.

[11] N. Kuiper, On eonformally flat spaces in the large, Ann. Math., 50 (1949)

916-924.



-26-

[12] J.M. Lee, T.H. Parker, The Yamabe problem, Bull. A.M.S. 17 (1987) 37-91.

[13] J. Lelong-Ferrand, Transformations conformes et quasieomormes des varü~tes

. riemanniennes, C.R. Aead. Sei. Paris, 269 (1969) Serie A, 583-586.

[14] M. Obata, Certain eonditions for a Riemannian manifold to be isometrie with

a sphere, 14 (1962) 333-340.

[15] M. Obata, The conjectures on eonformal transformations of Riemannian

manifolds, J. Diff. Geom., 6 (1971) 247-258.

[16] R. Penrose, Nonlinear gravitons and eurved twistor theoryJ General Relativity

and Gravitation, 7 (1976) 31-52.

[17] R. Schoen, Conformal deformation of a Riemannian metric to eonstant scalar

. eurvature, J. Diff. Geom., 20 (1984) 479-495.

[18] N. Trudinger, Remarks coneerning the conformal deformation of Riemannian

structures on compaet manifolds, Ann. Scuola Norm. Sup. Pisa, 22 (1968)

265-274.

[19] V.S. Varadarajan, Lie groupsJ Lie algebras, and their representations, Prentice

Hall, 1974.

[20] H. Yamabe, On a deformation of Riemannian structures on eompaet

manifolds, Osaka Math. J. 12 (1960) 21-37.


