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Yamabe Metrics and the Space of Conformal Structures

Mitsuhiro Itoh

INTRODUCTION AND MAIN THEOREMS. The aim of this article is to investigate
the following two subjects relating to conformal geometry; (1) "moduli" of Yamabe
metrics, metrics minimizing the Yamabe functional, whose existence has been
extensively studied as Yamabe problem, (2) the space of conformal structures on a

compact manifold modulo the diffeomorphism group action, especially its topology.

Two metrics are conformally equivalent when they are proportional by a positive
scalar field and then they define a conformal equivalence class, called a conformal
structure.

Riemannian metrics seem much richer as geometrical notion than conformal
structures and one might get much more geometrical implication by dealing with
Riemannian metrics than with conformal structures.

Nevertheless we can summarize significance of our study of the space of conformal
structures as follows.

There exist notion and subjects which do not depend on Riemannian metric, but
depend on conformal structure, namely, conformal invariants. For instance, the
conformal flatness, the half conformal flatness in four dimension, and Weyl conformal
curvature tensor, conformal transformations and the Hodge operator on k—forms,
k= % dim M (see for further reference [3]).

The second reason, rather sophisticated than the obvious first one, is the following.
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Consider on a Riemann surface conformal structure and complex structure. They are
different objects, but are considered through isothermal coordinates as only
distinguished forms representing the same geometrical structure. Thus the space of
complex structures on a Riemann surface is interpreted as the space of conformal
structures. Another example is the relation of half conformally flat structure via Penrose
twistor diagram to investigate complex structure on the twistor space ( [16], for more
general case see [4] ). The diffeo—gauge quotient space of conformal structures on a
manifold, that is, the quotient space modulo the diffeomorphism action will reflect in
general dimension moduli of some geometrically interesting structures which might not
come directly from Riemannian geometry.

The third reason is practical. A space of metrics satisfying some special
geometrical property can be embedded in the diffeo—gauge quotient space of conformal
structures so that one can study such a space of metrics as an embedded subspace.

The moduli of Einstein metrics on a compact manifold M , not diffeomorphic to
st gives an example of such situation, because the traceless Ricci tensor 2, Z of
" metrics g and § ={ g are given by % = Z + (n-2){ (Hes(f) + 2L g) (p. 59, [6])
so that if the metrics are both Einstein, then Hes(f) + ﬁ—f g =0 and it follows that
([14]) f must be constant and hence the moduli of Einstein metrics is embedded in the
space of conformal structures. In fact as is shown in [8] the moduli of Ricci flat metrics
on a K3 surface or a 4—torus can be identified with the moduli of zero scalar curvature,
half conformally flat conformal structures which is endowed with a finite dimensional
manifold structure (probably with singularities) and carries a natural L%—metric.

Let M be a compact, connected, oriented smooth n—manifold, n2 3 and g a

smooth metricon M.
4
fn—z . . e .
We call a conformal change g a Yamabe metric when it minimizes the

Yamabe functional Q,(f) = (4 i—:H |df} 2avg + J pf’dvg)/ (J Navg)*/N



(N= 121—11_2 ) \dVg is the volume form of g and p is the scalar curvature) within the
conformal structure [g] .

A Yamabe metric, a relevant representative metric of constant scalar curvature for
a conformal structure [g] , always exists, because the Yamabe problem was solved by
Yamabe, Trudinger, Aubin, Schoen and others ( [20], [18], [1], [17] ).

The questions which arise next to the existence problem are the following: (1) to
consider the uniqueness problem and structure problem for the "moduli" of Yamabe
metrics when the uniqueness breaks down and (2) is arbitrary constant scalar curvature
metric always a Yamabe metric?

As discussed in 1-ii) these questions relate with the Yamabe invariant, the
infimum of the Yamabe functional and for the structure problem we would like to raise
the question whether the moduli of Yamabe metrics is compact when the volume is
normalized for each conformal structure except for the standard sphere. For the
standard sphere the moduli is described in an exact way as a noncompact symmetric
space (Proposition 1.4).

This compactness question corresponds to the famous conjecture for conformal
group C([g]): C([g]) (or its identity component) is compact if and only if [g] is
not conformal to the standard sphere (Sn,g 0) , i.e., there doesrnot exist any
diffeomorphism ¢ : M — ST, ¢*go=fg, f>0.

This was solved by Obata ([15] ) for the identity component case by using
essential conformal Killing field and by Lelong—Ferrand ([13] ) for C([g]) from the
argument of quasiconformal mappings.

For question (1), particularly for the uniqueness we observe from Theorems 1.2, 1.
(see also {1]) that the moduli is unique up to positive scale factor ge——cg, ¢ > 0
for the nonpositive Yamabe invariant case (or equivalently nonpositive scalar curvature
case) and for the Einstein metric case, except for the standard sphere.

For the question (2), as shown in the remark of Theorem 1.2, any metric of
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nonpositive constant scalar curvature is always Yamabe. However, the situation is
different for positive scalar curvature case. We exhibit indeed examples of scalar
curvature positive constant Riemannian mani.fold, for instance the product of standard
spheres SP x g4 , which are even Riemannian homogeneous but not Yamabe.

To discuss the compactness of the moduli of Yamabe metrics requires entirely
analysis of the nonlinear elliptic equation describing scalar curvature and the strict
inequality on the Yamabe invariant 4, < g (Sn, [go]) .

The Sobolev space analysis together with the strict inequality on x4 which was
keystone for solving the Yamabe problem, especially the Sobolev compactly embedding

theorem, enables us to show one of our main theorem.

Theorem A. Let [g] be a conformal structure not conformal to the standard sphere.
Then the moduli of Yamabe metrics for {g] is compact, when the volume is

normalized.

Here the topology of the moduli is of course the induced topology as a topological
subspace of the ambient space, the space EBM of all smooth Riemannian metrics with
C® topology. Since for any [g] the conformal group C = C([g]) acts effectively
modulo isometries on the moduli of Yamabe metrics as explained in 1-i), the above
theorem immediately gives a proof to the conformal group conjecture, a new proof from

the viewpoint of Yamabe metrics.

Corollary B. The conformal group of a conformal structure [g] is compact if and only
if [g] is not conformal to the standard sphere.

Another application of our investigation of Yamabe metric is, as discussed in 2, on

' the topology of the diffeo—gauge quotient space of all conformal structures, the quotient
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of the space of all conformal structures divided by the diffeomorphism group
W (M) , or equivalently the quotient of the space of Riemannian metrics by the
semi—direct product group C$(M) X .@%" (M) .

The continuity of the Yamabe invariant and the convergence property of Yamabe

metrics give us the Hausdorff property. Namely,

Theorem C. Let M be a compact, connected orienied n—manifold. Then the
diffeo—gauge quotient space of conformal structures on M is Hausdorff except for the

point represented by the standard n—sphere [g 0] .

That the space is not Hausdorff at [go] stems from that the conformal group,
and hence the moduli of the Yamabe metrics is not compact.

As a direct consequence of this theorem any closed subspace of the diffeo—gauge
quotient sp.ace, for instance, the moduli of Einstein metrics except for the standard
sphere Einstein metric, turns out to be Hausdorff.

We have in particular

Corollary D. The following spaces are Hausdorff,
(i) the moduli of conformal flat structures on M and
(ii) the moduli of half conformally flat conformal structures on a compact, oriented

4—manifold.

Notice that the above Hausdorff theorem only covers the corollary for the case
[g] # standard sphere [g ol - For [g,] itself, however, the topology is also Hausdorff
at [go] , since the moduli becomes a single point from the well known theorem of

conformal geometry due to Kuiper ([11]).
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Remarks (i) The diffeo—gauge quotient space of conformal structures on M,

KWM/ 9% M)’ admits an infinite dimensional real analytic variety in which each
point has a neighborhood of the conformal group quotient of a linear subspace in
C“’(M,Endo(TM)) ([9]). For 2—dimensional (Riemann surface) case this space is just
the moduli of Riemann surfaces and then written as the discrete group quotient of a

domain in €873 ( g is the genus).

(ii) For M of even dimension the diffeo—gauge quotient space Gang),/ E«%{ M) can
be endowed with an Lz—metric at an even singular point by using harmonic forms of
degree %djm M and the generalized volume form, a volume form which preserves the

conformal invariance and the diffeo—naturality ([9]).

(iii) The moduli of conformally flat structures has from the developing map a natural
map into the representat‘ion space Res(x (M), SO(n,1)) .

(iv) The moduli of half conformally flat structures has a finite dimensional real analytic
variety structure admitting the induced L2—metric ([8])-

The author would like to express his gratitude to Max—Planck~Institut fiir

Mathematik for supporting his stay in Bonn.

1. Yamabe problem and Yamabe metric

1-i) Yamabe problem. Let (M,g) be a compact, connected, oriented smooth
Riemannian n—manifold, n 2 3.

Metrics fg, where f runsin C$(M) = {positive smooth functions on M },
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conformally equivalent to g, determine a conformal structure [g] .
The Yamabe problem is then the following ( [20] ); does there exist within [g] a

scalar curvature constant metric?
4
The scalar curvatures p, 5 of g and E = fn__zg satisfy the elliptic equation

n+2
f'nii

(1.1) % =4§—:%Af+ ol ,

where A = —ViVi is the g—Laplacian.

Theorem ( [20], [18], [1], [17]). For any metric g on M there exist f € Ci(M)
and constant p satisfying (1.1). In other words the Yamabe problem is solvable for any
(M,g).

We will briefly summarize how this theorem was solved (see [12] for the survey of

the Yamabe problem).

Yamabe considered the functional

(1.2) Q0 = [43_:H |dI|2dVg+pr2dVg]/[I ]2/N ,

N
frdv
8

fe C$(M) , and observed that the Euler—Lagrange equation of (1.2) coincides with the
equation (1.1).

In fact f is a critical point of (1.2) if and only if { satisfies (1.1) with
1-2/N .

p= Qg(f)/(J deVg)
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' 4
As is easily obtained (p. 288, [1]), for a conformal change g= f"_‘zg )

Qu(¥0) = Qg(v) , w € CTM) . Then Qu(f) = Qp(1) = [ B avsy/  avy from

which we derive the value of constant scalar curvature p for the solution f of (1.1) as
above.

*

Obviously Qﬁ* (¢ )= Qg(f) for any orientation preserving diffeomorphism
4

$: M— M so that

(1.3) u(M, [g]) = w([g]) = inf{Q,(f):f € CL(M)}
is conformal and diffeomorphism invariant. We call this Yamabe invariant.

Theorem ([20], [18], [1]). The Yamabe problem can be solved for any (M,g) of
u((e]) < u(S"[g,)) ((5"g,) is the standard n—sphere).

The difficulty of solving the Yamabe problem is caused By that the value N = 121—22

is the border exponent for Sobolev embedding, that is, the continuous Sobolev
embedding Lzl)(M) C LN(M) is not compact. So to verify this theorem by passing away
by this difficulty one perturbs the Yamabe functional as

Q0= [¢25] |df|2+pr2]/[st]-§- , <N and shows that Q¥ hasa

positive smooth function f, which minimizes QZ and then that the sequence {fs} has

a subsequence uniformly converging to a positive smooth function f as s — N,

lim Qu(f;) = Qy(

Theorem. i) ([1]) I (M,g) has dimension > 6 and is not locally conformally flat,
then u([g]) < u(S" [g,]) -



i) ([17]) If (M,g) has dimension 3, 4, 5 or if (M,g) is locally conformally flat, then
#([g]) < u(S", [8,]) , provided (M,g) is not conformal to the standard sphere.

The Yamabe problem was solved by these theorems (see for reference [12], which

is an excellent survey of the Yamabe problem and references cited in [12]).

1-i) Y metric.

4
Definition 1.1. For a smooth metric g a conformal change g = fn_-zg is called

Yamabe metric for g or conformal structure [g] if § minimizes Q g(f) , namely,

QD) = u([e]) -

We see easily that if E is Yamabe, s0 is cE , ¢> 0 and remark that the scalar

curvature p of a Yamabe metric g is

~ ~ ﬁ'_l
(1.4) p = p([gl) + Vol(g) :
We consider first the uniqueness of Yamabe metric.

Theorem 1.2 ([1], [8]). Let [g] be a conformal structure of x([g]) < 0. Then, up

to scale factor Yamabe metrics are the same.

4
Proof. Suppose g,,8, = fn__2g1 are two Yamabe metrics of [g] .
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i) The case p = p([g]) = 0. The scalar curvatures p;, p, are zero and then from
(1.1) Af =0 and hence f is constant.

ii) The case. 4 < 0. Suppose more generally that 8p» By are negative constant scalar
curvature metrics within [g] . By rescaling we may assume Vol(g,) = Vol(g,) and

Py < py <0.Atapoint x €0 where f is maximal Af= —Vivifz 0 . On the other
hand from (1.1)

—1 - -
431 At = (py—p )N L 4+ p (V201

N-2 N—-1 .
Soat x, pl(f —1){ 2 (pl_p2)f 2 0. Since PPy 20 and p <0

(fN_z—l)f <0 at x, and hence f(x,) < 1. Therefore f=1 on M since

Vol(gy) = J deVgl = J 4V, = Vollg)).

We observe from the proof that any constant scalar curvature metric g is a
Yamabe metric provided u([g]) <0.
Another case for which Yamabe metric is unique up to constant scale is the

Einstein metric case. Namely we have

Theorem 1.3. Let g be an Einstein metricon M , a compact connected, oriented
n—manifold, not conformal to the standard sphere. Then any Yamabe metric for the

metric g is constantly proportional to g .

Proof. Let g be a Yamabe metric for g, g = f2§ , > 0. Then the formula for the
traceless Ricci tensors Z, 2 (Zij = Rij - gij) is
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(1.5) %+ (o-2)f " (Bes() + LK) =2 =0

(p. 59 [6] or (3.3), [12]).

Apply the same method in the proof of Proposition 3.1, [12] to integrate

}L £1%) 2dVE = -(n-2) 5[1 (%, Hes(f) + %—ng)dVg

= {(n-2) J (2, Hes(0)dVy = (n-2) J V2% =0,

where we used (1.5) and Vnzjk = 0 since the scalar curvature of g is constant. So

2 =0,o0r ¥ is Einstein and moreover the positive scalar field f satisfies the Hessian
equations Hes(f) + %Kf - §=0.But { must be constant since the equations have
nontrivial solutions only when (M,g) is isometric to (Sn,go) (see {14]).So0 g= c2E ,
¢ > 0 constant, that is, g is a Yamabe metric and there are no Yamabe metrics other

than g up-to constant factor.

Relative to the uniqueness problem for Yamabe metric of x> 0 one can exhibit a
conformal structure possessing plenty of Yamabe metrics. The standard n—sphere

(Sn,go) , the exceptional case of Theorem 1.3, has indeed many Yamabe metrics. The

2/n

Yamabe invariant is u([g 0]) = n(n—l)c.)11

(@, is the volume of (Sn,go) ) and

Yamabe metrics for [g ] are characterized as

Proposition 1.4 (Th. 3.2, [12]). Yamabe metrics of (ST, [go]) are exactly constant

multiple of g_ and pull back metrics of by conformal transformations.
.0 8o
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So, from this proposition the "moduli" of Yamabe metrics, more precisely, the
g,—component of the moduli is parametrized as RT x SO(n+1,1)/SO(n +1) since the
identity component of the group of orientation preserving conformal transformations of
(s [g ol) is SO(n+1,1) and the identity component of the isometry group is
SO(n+1) . The right factor SO(n+1,1)/ SO(n+1) is a noncompact symmetric space,
}E[n"'1 , a hyperbolic space.

Given a conformal structure [g] we define the moduli of volume normalized

Yamabe metrics;
J#4([g]) = {Yamabe metrics g in [g], Vol(g) = Vol(g) } .

Pull back metric of E under an orientation preserving diffeomorphism
$: M — M yields a Yamabe metric in [aﬁ*g] , since the Yamabe functional is
diffeomorphism invariant so that ¢* : YA ([g]) — #4(i81), 8, = ¢*g , gives
rise to an isomorphsim.

When ¢: M —— M preserves a conformal structure [g] ,i.e., ¢*g ={g,
f€ Ci(M)’, % induces the action ¢* on YA4([g]).

If we let I() be the group of orientation preserving g—isometries
{$p M —M; ¢*'§ =g}, then I(g) is the isotropy subgroup at g in #A4([g]) for
the action of the conformal group C([g]) = {¢: M — M; ¢*E =1g, ¢ is
orientation preserving} so that C([g] )/I(E) is embedded in A4 ([g]) -

The following is easily obtained.

Proposition 1.5. If a conformal structure [g] has the unique Yamabe metric § up to
constant scale factor, then C([g]) = I(g) .



-13 —

We will now prove the compactness theorem, Theorem A by showing the following

convergence theorem

Theorem 1.6. Let g be a smooth metric with x4 = g([g]) < By = ,u(Sn,[go]) :
Assume {g;} is a sequence of volume normalized Yamabe metrics of [g] . Then {g}

has a subsequence converging uniformly to a Yamabe metric of [g] .

Proof. From {g;} we have asequence {f;} of positive smooth functions by
8 = f?—zg . Each f, is a solution of the equation
_ . N-1 _ 40—l

and LN—norm is ”fi"N =1 because of normalized volume.

It suffices to show that {fi} has a subsequence which uniformly converges to a
positive smooth function satisfying (1.6).

We first claim that L*—norm of fi is uniformly bounded, ”fi“r < C for some
r > N . We apply word by word the argument in the proof of Proposition 4.4, [12].

Choose &6 > 0. Multiply (1.6) by {}+26 and integrate over M . Then

J[ {a < df, (1+26)2%48 > + o220} av .

[ N426
= J‘ £ 2%V, .

If we set L f}+6 , then this can be written as
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1+26 2 2 N-2 2
1.7 aldw.]“ = pwif., “—pw)) .
(1.7) | (148)? |dw, | J{( i 5 )

Apply the Sobolev inequality due to Aubin which holds universally for all compact
manifolds (see Theorem 2.3 in [12]) and have that for any € > 0 thereis C_>0,
depending onlyon M, g and €

”Willlzq < (1+6)z—oj |dwi|2 + CGJW?

2
1 2 N-2
<o G Vil

2
+ Cé”"illg

2
<o) (e w1, R

2
+ C;"Willg

2
= (1+¢€) %ﬁ; ||Wi||12q + Cé"“’i"g :

In the last inequality we used the Holder inequality for dual indices (-1;-, Ng?) . So,
2
1+6 2 2
(1.8) . (1A1+¢€) ('1_2%*_'_ '{:_0) ”Wi”N < C;”Wi" )

from which ||wi||lgI < C||wi||§ for a constant C > 0, independent of i, because of the
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assumption- E <1.
Ho

. 2 . . -
Smce. ||wi||§ = J ? = Jf?+26 = “f1”2igg , by applying again the Holder
inequality for dual indices (N/, 126 R), R=N/ (N—2-26) for sufficiently small

< ||f ||2+26 = 1. Therefore

é > 0 we have the L —norm ||w ||2

”wi”N = [J fN(1+6)] = ||f "N( 14 6) is uniformly bounded from above.

Now {f} is uniformly bounded in L (M), r=N(14+6), 6> 0 so that from
the regularity theorem, Theorem 4.1 in [12] they are bounded uniformly also in the
Holder space C2’a(M) and then they have a subsequence converging in C2-norm to 2
function f€ C2(M) which satisfies (1.6).

By applying the regularity theorem again the limit f is smooth, f € C®(M), and
it is strictly positive since ||fl|N = lim||fi||N =1 (this strictly positivity is proved also
from Lemma 6 in [1]).

By applying the argument in the proof of Proposition 2.2 in 2 without difficulty
one can prove that the quotient space C([g]) /I( g) is for any Yamabe metric g of
# < py closed in the moduli JA4([g]) so that C([g] )/I(g) and hence C([g]) is

compact. So Corollary B is verified.

With respect to the structure problem of the moduli of Yamabe metrics we would

like to present the following

Orbit Conjecture. Every connected component of the moduli of volume normalized

Yamabe metrics can be written as a quotient space of the conformal group C([g]) .

Evidently the moduli ## of the standard sphere is from Proposition 1.4 a
quotient space of C( [go]) ,and both  %4([g]) and C([g]) are compact from
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Theorem A‘and Corollary B when [g] is not the standard sphere.

Moreover from Theorems 1.2, 1.3 the moduli consists only of a single point for any
conformal structure either of 4 < 0 or represented by an Einstein metric.

Remark that a similar discussion appears in [2] on the moduli of Einstein Kihler
metrics.

We are able to ask a condition relative to eigenvalue of the Laplacian for the

moduli to admit a continuous parameter.

Proposition 1.7. Let g be a Yamabe metric of u(fg]) > 0. Assume there exist
Yamabe metrics g, in [g] with an effective parameter t, |t]| < €, g =8,

Vol(g,) = Vol(g) . Then p/n—1 is the eigenvalue of the Laplacian A g

4
Proof. For the metrics g = f‘t;zg the scalar curvature Py is constant, given by
2 1
Py = u([g]) - Vol(gt)N which is equal to p , the scalar curvature of g .

Differentiate the equation at t = 0 with respect to t , pfrf_l =al

f + pft , from
d d :

. d B

which Ag[aﬂ t=0—55r [aﬂ o [a%] o=

g

This proposition shows us that the "tangent" space of the moduli of Yamabe
metrics is represented in the eigenspace of the Laplacian for the eigenvalue 1'121' .
The following is a necessary, but useful condition for a metric g to be Yamabe,

whose proof appeared in Th. 11, [1].

Proposition 1.8 ([1}). The first eigenvalue A, of the Yamabe metric Laplacian

satisfies A; 2 ﬁéf.
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So, if 'Al > Eéf , then from these propositions the moduli of Yamabe metrics is

discrete near g .

Remarks (i) From Proposition 1.8 the upper bound of the Yamabe invariant is
#([8]) £ (n-1)A; -Vol(g)1_2/ N (for a lower bound of u([g]) refer to [10]).

(ii) Moreover the standard sphere is characterized in terms of Finstein Yamabe metric
of u([g]) > 0 asfollows. Let (M,g) be a Yamabe metric of u([g]) > 0 which is
Einstein and satisfies A, = p/n—1. Then (M,g) is, when rescaled, isometric to the
standard sphere ( [14], and also p. 180, [5]).

(iii) It is concluded by using Proposition 1.8 that the product of the standard metrics on
the product of spheres SPxS%, p,q> 2, p > q+1, is not Yamabe even it is a
homogeneous metric of positive scalar curvature. In fact from G, [5]

Al(prsq) = min{Al(Sp), Al(Sq)} = q . On the other hand the scalar curvature p of

P q
.. 1 2 1 2
the product metricis p = E Rgi) + 2 jo) = p(p—1)+q(g-1) ( Rgi) and jo) are
i=1 j=1
the Ricci curvature tensors of SP , sd , respectively) and hence

p_+(iL-f —q = p(p—q-1)/ (p+q-1) > 0 so that the product metric is pot a Yamabe

metric.

The product metric g on SPxSP is an Einstein metric and hence from Theorem

1.3 a Yamabe metric unique for the conformal structure [g] .

1-ii) The continuity of Yamabe metrics.
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Finally we state the continuity property of Yamabe metric which will be used for

the topology of the diffeo—gauge quotient space of conformal structures.

Theorem 1.9 Let {7} be a sequence of smooth conformal structures and {g;} a
sequence of volume normalized Yamabe metrics g, representing 7; . Assume {g.}
converges to a smooth metric g in C%—norm. Then g is a Yamabe metric for a

conformal structure 7, the limit of % of Yamabe invariant g = lim p(')'i) )
i

We need for the proof the continuity of the Yamabe invariant ([10]): Let {h.}
be a sequence of smooth metrics of scalar curvature p; - If hi converges to h in
% norm and p; to p, the scalar curvature of h in Co—norm, then

lim p([h,] ) = p([h]) . We omit the proof which is obviously shown.

gi(l) = J’ Pidvgi/ ( J dVgi)2/ N Ghich goes to

Qg(l) = J pdVg/ (J dVg)zl N as i — o . On the other hand, since the scalar

For each Yamabe metric g Q

curvature of g, converges to the scalar curvature of g, from the continuity of Yamabe

invariant Qgi(l) = p(7) — #([gl) - So u([g]) = Qg(l) which means that g isa

Yamabe metric for [g] of Yamabe invariant Lim (1) .
1

The following is a convergence theorem of Yamabe metrics, a slightly general than

Theorem 1.6.

Theorem 1.10. Let {h;} be a sequence of smooth metrics of Yamabe invariant
B < By = u(S% g 0]) - Assume {h,} has a subsequence converging to a smooth
metric h of B < p, in C%—norm. Then any sequence {g;} consisting of volume

normalized Yamabe metrics, g, = flf_zhi , for [hi] has a subsequence which
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converges to a Yamabe metric g = N2 for [h] .

To pr'ove this theorem we slightly modify the compactness argument in the proof
of Theorem 1.6 by dealing the equation (a; + p)f; = pif?_l simultaneously. Since
metrics hi are uniformly convergent in C2—sense, there exists an € > 0 from Theorem
1.9 such that B < pte<p for sufficiently large i . Moreover, since the constant
C, in the inequality (Th. 2.3, [12]) depends on a metric in Co—sense. C_ in (1.8)is
uniformly bounded from above. So, together with the uniform boundedness of LN—norm
of fi every part of the argument of the proof of Theorem 1.6 works and the theorem is

verified.

2. The topology of diffeo—gauge quotient space.

2—i) For a compact, connected, oriented smooth n—manifold M, n 2 3, we denote by
M (M) the group of orientation preserving diffeomorphisms % : M — M and by
DogP(M) {$ € D" (M); ¢ is isotopic to idyy } .

Herr ¢ : M — M is isotopic to the identity transformation idM when there is
apath {9,} in T/t (M), 0<t<1, ¢y=¢ and 9, =idy.

W(M) is as a group finitely generated by diffeomorphisms which are generated
as transformations of M by smooth vector fields. Q«#(M) is the connected
component group of 9%’" (M) and the quotient group .@% M)/ & «#(M) is the
group of isotopic equivalence classes, called the mapping class group and also called the
Teichmiiller modular group for Riemann surface case.

For a conformal structure [g] every ¢ € W (M) defines by pull back
another conformal structure [¢*g] which we write as g&* (e] -

The conformal groups C([g]) and C%([g]) for [g] are defined in
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W (M), Q%o (M) as subgroups consisting of ¢ fixing [g] .

Since. 9«%*' (M) acts on the space ®angy; of all smooth conformal structures
[g] on M, we obtain as the quotient the space Uaa/M/ P, ‘%“_(M) of
diffeomorphism equivalence classes 7 , represented by 7 = [g] . We call this quotient
space the diffeo—gauge quotient space of conformal structures, since diffeomorphisms
behave like gauge transformations in the Yang—Mills gauge theory.

bangy1l & ‘%‘F(M) is a fibred space over another diffeo—gauge quotient space

Similarly we define the diffeo—gauge quotient space of smooth Riemannian metrics
™ Aml g (M) Ftm! 2P (M)

Notice that the projections have a "canonical section" over subspaces where the

moduli of Yamabe metrics consists of a single point.

2—ii) The Hausdorff property

The space ﬁ’alyM/ W(M) has the quotient topology induced from the

projection = . Since the following diagram commutes

.

TM ~ “TM
! gty —E— Gongyl a4t M) |

the topology of #ang),/ P, ‘%*_(M) comes originally from the naturally defined
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topology of 2V

Theorem 2.1 (Theorem C in the introduction). The subspace {7 u(7) < u(S", [g,])}
of the space  ¥aonf) 1/ 5 #(M) (or of #ang)/ Q#(M) ) has the Hausdorff

property.

For the proof we need the Sobolev space completion of spaces of metrics and of
diffeomorphisms.

Consider the product space F = MxM . We follow the argument of Ebin ( [7]).
Sections of F —— M are considered as maps of M into M so that
cl(M,M) = {Cl-maps: M — M} is identified with Cl(F) = {Cl-sections of
F — M} ‘where the topology of Cl—maps (sections) are the uniform convergence
topology up to the first derivative.

Define cldiffeomorphisms as Gl @+ = {¥ € Cl(M,M); ¢—1 € CI(M,M) , ¢ is
orientation preserving} . ctot is open in Cl(M,M) .

Pick 8 > n+2(2 121- + 1) and define Q% = .@%(M) =clgtn BY(F)
where HS(F) = LE(F) is the space of Lg—eections of F, {sections ¢ of F;
”“5”2,5 <w}. .@% is a topological group under the mappiﬁg composition.

Notice that from a Sobolev lemma thereis ¢ > 0 for le‘—norm such taht
ID%(x)| $cltlly yy | for k>n/2 (s0 BY(F)C cl(F) ) and
”f1f2"2,k < C”f1“2,k"f2"2,k for k 2 n+2.

The action HSTL(F) x B8(S4(T M)) — B3(S%(T M)); (#h) —— ¢ b is
continuous.’

The following proposition is not directly needed, but is useful for the proof of
Theorem 2.1.

Propogition 2.2. ‘%M,s/ Q%/: 41 18 Hausdorff. Here ‘%M,s is the space of metrics on
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M of finite 'Lg—norm.

It suffices to show from the following Hausdorff criterion that the map

*
u: .@%_‘_1 x RM,S_’ R’M,s x ‘%M,s; (#,8) — (g,¢ g) has the closed image.

Lemma ([19]). Let G be a topological group acting continuously on a topological
space X and Z the set of all orbits: Z = X/G . The quotient topology on Z is
Hausdorff if and only if the image of the map: G x X — X x X ; (a,x) — (x,a-x)

is closed.

Proof of Proposition 2.2 Let {g;}, {g; } be sequences of metrics in R, g
*
Suppose y&igi = g; for an gﬁi € %: +1 and the sequences have limit g, g’
in &g - It is not hard to show that ¢, is uniformly bounded in H8+1(F) since the

¥,
second derivatives 78}-0_;5 of 9, are represented by the Christoffel symbols of 8 » g;

and the first derivatives E}' . So {¢i} has a subsequence converging to ¢ in

HB+1(F) and hence from the Sobolev lemma ¢ € CI(M,M) :
. 8+1 8,a2/m” 8/a2/m* . .
Since H " *(F) x H'(S“(T M)) — H*(S“(T M)) is continuous,
* *

g’ =limg! = (lim ¢) (limg) = ¢ g.So ¢ has maximal rank at everypoint and the
sign of the determinant det ¢ is positive since det g’ (#(x)) = (det ;5)2(1) - det g(x)
and ¢ is a limit of orientation preserving diffeomorphisms.

Since the degree of ¢ is one and the mapping degree theorem applies, ¢ is
bijective and ¢ € C' @ and hence g€ C' @t N BT F) = 24T | S0 Im(u)

is closed.
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Remark. The group E% +1 is the connected component group of M: 1 So the
space Ror -/ o is also Hausdorff.
M/ 25g? 1

To verify theorem 2.1 we suppose that {7i} and {7;} are sequences in

Y cofos * .

S’WM,B ={7€ S’WM,S; u(y) < ‘“o} satisfying 7‘i' =97, %€ %4_1 and
N ;- Y :
having limits 7y, 7’ in g‘”’/M,s .

For each i 7 and 7; have representatives in %M. the Yamabe metrics of
unit volume g and g} .

Si ;6* is Yamabe in 7! , we ha ¢* =12’ for a positive

ince ¢.g; is Yamabein 7, ,we have ¢.g =1, “g. for a positiv
2 .
Ls—functlon fi .

We now show that sequences {g;} , {g;} have subsequences converging to
Yamabe metrics g and g’ which project onto 7 and 7’ and whose Yamabe
invariant ig less than Ky -

In fact the sequence {7} admits a sequence {h,} in &, ¢ converging to h
in Lg—norm and projecting onto {7} so that from Theorem 1.10 the sequence {g;}
of Yamabe metrics has a subsequence which converges to a Yamabe metric g. The
Yamabe invariant u < Ky from Theorem 1.9. {g; } has also a subsequence converging
to a Yamabe metric g’ of x < By -

_ *
The intermediate sequence {f1:I 2g; = ¢,8;} has also a subsequence which

fN _2 /

converges 10 g’ , same as the previous case, so that {¢.} has a converging

subsequence and hence the image of the map

%_H x Q’WM g ss’aa/M g X s’aa/M g is closed.
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