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On Bänicä sheaves and Fano manifolds

Dedicated to tlle l11el11ory oE ConstaJltill Biil]ica

Edoardo Ballieo and Jaroslaw A. Wisniewski

Introd uction.
Reflexive sheaves are nowadays a eOlU1l10n tool to study projective varieties. In the present
paper we apply reflexive sheaves to study projeetive morphisms. Given a projective map
<p : X -+ Y and an aUlple line bundle .c on X one may consider an associated coherent
sheaf :F := c.p.J:, on Y. The knowledge of the sheaf :F allows sOlnetimes to understand
some properties of the variety X and of the map <po This is a typical way to study cyelie
coverings (or, lllore generally, finite luaps) and projective bundles. In the latter case one
may choose the bandie [, to be a relative O(l)-sheaf so that X = P(:F). A similar approach
can be applied to study equidiInensional quach'ic bundles: again, choosing [, as the relative
0(1), oue produces a projective bundle P(:F) in which X embedds as a divisor of a relative
degree two. Note that, in all the above exaluples, if X and Y are sluooth then the map
<p is flat and the resulting sheaf F is locally free. In the present paper we want to extend
the luethod also to non-flat luaps. In partieular, we will consicler varieties which arise as
projectivizations of coherent sheaves.

Dur luotivation for this study was origillally two-fold: fil'stly we wanted to under
stand the dass of varieties called by SOluluese (srnooth) serolls - they occur nattually
in his adjunction theory - and seeondly we wanted to COlllplete a dassification of Fano
manifolds of index 1', diInension 2r and b2 2:: 2 - the task which was undertaken by the
seeond nanled author of the present paper. As our understanding of the subject devel
opped we have realisecl that many other points and applications of the theory of projective
fibrations are also very interesting and cleserve proper attention. However, for the sake
of darity of the paper we refrained froln dealing with IUOst of the possible extensions of
the theory. Therefore, in the present paper we will deal mostly with coherent sheaves
whose projectivizations are smooth varieties. This dass of sheaves is related to the dass of
smooth slleaves which were studied hy Constantin Bänica in one of his late papers. Thus
we decided to nalne the dass of the sheaves studied in the present paper after Banica to
commemorate his naIne.

The paper is organised as follows: in the first two seetions we introduce some per
tinent definitions and constructions anel subsequently we exanüne their basic properties.
In particular we prove that BfiJ.lica slJeaves· of rank 2:: n (where n is the diluension of the
base) are locally free, and subsequently we discuss aversion of a eojeeture of Beltrmnetti
and Sornmese on SIlIOoth ser'olls. In Seetioll 3 we gathered allumber of examples which
illustrate S0111e aspects of the theory. Froln sectioll 4 on we deal with BiiJlicä slleaves of
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rank n - 1: first we eliscuss when they can be exteneled to locally free sheaves and examine
numerical properties of extensions. In the retnaining two sections we apply this to study
ampleness of the divisor adjoint to a Ballica slleaf and then to classify Fano manifolds of
large index which are projectivizations of non-locally free sheaves.

Acknowledgelnents. We would like to thank SFB 170 Geolnetrie und Analysis in Göttin
gen and Max-Planck-Institut für Mathematik in Bonn; parts of the present paper were
prepared at the tinle we visited these institutions. The first named author would like to
acknowledge the support froln Italian MURST and GNSAGA while the second named
author would like to acknowledge the support froul Polish grant !(BN GR,54.

Notation and aSsUlllptions. We adopt standard notation, see Hartshorne's texbook
[H1]. We will frequently identify divisors anel line bUllclles on smooth varieties. We assume
that all varieties are defined over,co111plex nUlnbers, though the definitions and some results
are also valid for varieties over an algebraically closed field.

1. Projectivization.

First, let us recall the definition of a projectivization of a coherent sheaf E over a scheme
V, see [G] anel [H1] for details.
(1.0). We start with a local description. Let A be a noetherian ring and M a finitely
generated A-uloelule. Vve will also usually asStllUe that the ring A is an integrally closed
domain, though it is not needeel for the definitions. Let B denote the symmetrie algebra
of M

B := Synt(M) = E9 S7H(M)
m~O

where smM is the nl-th syuunetl'ic product of the module M. The A-algebra B has
a natural gradation B rn = sm(M) and we define P A(M) := Proj(B). Such defined
projective scheme is a generalisation of the projective space over A. The scheme P(M)
has a natural affine covering defilled by elelnents of M: for a non-zero / E M consider

V+(/) = {q E Proj(B) : f ~ q},

the scheme V+(/) is thell iSOtllOrphic to an affine scheIne Spec(B(J)), where B(J) denotes
the zero-graclecl part of the localisation B f of B with respect to the element f. The
embedding A = SO!vI C SYln(lvJ) yields a projection lllap

p : P(A1) -r SpecA.

Gracled lnoclules over B give rise to coherent sheaves over P(M). In particular,
on P (M) there al'e invertible sheaves 0 (k) associated to graded B -lllOdnIes B (k), with
B(k)rn = Bk+rn = sm+k(M), whel'e the sub-index denotes the gradation shifted by k with
respect to the gradation of B. Note that sections of the sheaf 0 (1) are isolnorphic to the
module M.

The above local definition of P allows us to define projectivization for any coherent
sheaf E: If SyntE := EBm>O sm E is the symInetric algebra of sections of coherent sheaf E
over anormal variety V tlien we define

P(&) := Projv(SymE).

2



The inclusion Ov ::: 8°& -r SY7n& yielcls the projection 1l10rphisIIl P : P(&) -r V. We
will always assume that the nlorphisIll p is surjective, 01' equivalently, that the support of
& coincides with V. The local definition of 0(1) gives rise to a globally defined invertible
sheaf and thus over P(&) there exisits an illvertible sheaf Op(t)(1) such that p*O(1) = &.

In the present section we want to understand SOlne basie properties of this eonstrue
tion. The first one is about irredueibility.

Lemma 1.1. IfP(&) is an integral scheme tllen & is torsion-free.

Proof. The assertion is loeal. Not.e that 0(1) is loeally free of rank 1 on an integral scheme
and therefore it has no torsions. Consequently &, being loeally the space of seetions of
O( 1), is torsion-free.

The eonverse of the above leuuna is not true, see the exaIIlple (3.2).

Therefore, froln now on we will assulne that all the sheaves whose projeetivizations
we will consider are torsion free.

Leluma 1.2. (cf. [H2, 1.7]) Let & be a torsion-free sheaf over a 110nnal variety Y and
let p : P (&) -r Y be the projec tivizati011 of &. Assllllle tbat P (E) is a nonnal variety and
no Weil divisor in P(E) is cOl1tracted to a subvariety of Y of codinlensioll ;::: 2. Tllen the
sheaf E is reflexive.

Proof. We claim that the sheaf [, is nOrInal (in the sense of [aSS, II ,1] 01' [H2]). This is
because any section of E over open subset U \ D of Y, where D is of codimension ~ 2,
is associated to a seetion of 0(1) over p-1(U \ D). This, however, extends uniquely over
p-l (U) because P(&) is nOrInal and p-1 (D) is of codiluension ;::: 2 (c.f. [H2, 1.6]).

The above arguIllent works for any projective surjection cp : X -r Y of normal varieties.
If cp contracts no Weil divisor on X to a codirnension ;::: 2 subset of Y then a push-forward
cp*:F of any reflexive sheaf :F on X is reflexive on Y, see {H2, 1.7]. This is used in the
following

Lemma 1.3. Let E be a reflexive slleafover a nonnal variety Y satisfying tlle assulnptions
of the previous lelllllla. Tllen

Proof. Note that the isomorphisIll is true if [, is locally free (oue cau use relative Euler
sequence to prove it). The sheaf 1-{on-,,(np (E)/Yl O( -1)) is reflexive as a dual on anormal
variety. Then, siIuilarly as above we prove that its push-forward is reflexive as weIl. Thus
we have isomorphisIll of the two reflexive sheaves defined outside of a codimension 2 subset
of Y. Therefore the sheaves are iSOI110rphic.

We will lleed the following

Lemma 1.4. Let (A, m) be a regular ioeal ring Wllicll js an algebra over its residue field
k = Alm. ASSUlJle tlIat M is an A-lnodule whicll is not free aJld which COllIes from an
exact sequence
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Let us write s(1) = (so, ,sr) Wllere Si E m C A. Tben P A(M) is regular iE and only if
tbe classes of elelllents So, ,Sr are k-lillearly independent in 1n/m2 •

Proof. The ideal of P(M) in PA = Proj(A[to , ,trD is generated by an element L: Siti.
Therefore, in an affine subset Uo = SpecA[t~, , t~] (where t~ = ti/tO) its equation is
So + L: sit~ = o. Thus, P(M) is Slllooth at t~ = = t~ = 0 if and only if So is non-zero in
m/m2. The above arglunent can be repeated for any k-linear transfonnation of coordinates
in m/m2 which proves that So, . .. ,Sr are linearly independent in m/m2 •

2. Bänicä sheaves, first properties.

In one of his last papers [B], Constantin Bänicä considered a special dass of reflexive
sheaves.

Definition 2.0". A reflexive sIleaf E of rank r over a slnootll variety V is called slnooth if
&xtq(E,O) = 0 for q :2: 2 and Ext l (E, 0) = 011/(tI, . .. ,tr+l) for sonle cJloice (tl, . .. ,tn )

of regular parallleter systelll at a point v of singularity oE E.

Slnooth sheaves are convenient for studying subvarieties of smooth varieties, see also
[R2], [BC] and [RH].

In the present paper we will deal with another special dass of coherent sheaves over
normal varieties. As it will be seen this dass is a generalisation of the oue studied by
Bänicä and therefore we naIne these sheaves after hirn.

Deftnit ion 2.1. A colleren t slleaEE ofrrulk r :2: 2 over a nOTlllnl variety Y is ca1led Biinica
sheaf if its projectivization is a SlllOOtll variety.

The assuillption on sl1100thness of the projectivization is very strong as the following
lemma shows.

Lemma 2.2. IE & is a BäJlicä silenE tbell it is reflexive alld nloreover tlle lnap p : P(&) -t
Y is an elemelltary, 01' extrelllal ray contractioll. Furtllerlllore Op(E)(1) is p-ample and
generates PicX over PicY so that we have a sequence

o-t PicY ---1 PicP(E) -t Z[O(l)] -+ O.

Moreover every Weil divisor on Y is Cartier alld, in particular, Y is Gorellstein.

Pro 0 f. First, note that since P (E) is irreelucible, E is torsion-free (1.1). To prove that p
is an elementary contraction note that every fiber of p over a point y E Y is a projective
space P(&y ® k(y)) (where k(Y) denotes the residue fielel). Taking a line in a generic fiber
and deforming it, we 0 btain a non-trivial curve in a special fiber, too (actually a line) ,
therefore all curves contracted are nUlllerically proportional, hence p is an extremal ray
contraction in the sense of Mari theory aud consequently: 0(1) is p-an1ple. Moreover there
is an exact sequence

o-+ PicV -t PicP(E) --+ Z[O(I)] -+ O.

The sequence is exact even at the last place because 0(1) has intersection 1 with a line
in the fiber. If a prilne Weil divisor in P(E) is contracted to a proper subset of Y then it
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has trivial intersection with curves contracted by p and thus it is a puH-back of a Cartier
divisor from Y. Now the reflexivi ty of E follows because of lemlua (1. 2). The last assertion
of the leluma foHows sinlilarly: the inverse inul.ge of a Weil divisor from Y is Cartier on X
and has interseetion 0 with eurves contracted by p and thus it is a puH-back of a Cartier
divisor from Y.

(2.3). Olle motivation to study Bänicä sheaves comes from SDlooth serollswhich are defined
by SOffiluese as follows: A pair (X, J:..) consisting of a smooth variety X and an ample line
bundle L is called aseroll if there exists a Iuorphisln p : X --t Y onto anormal variety
Y of smaller diluension such t.hat J(\( 0 L ®( d im X - d im Y + I) is a pull-back of an ampIe lille
bundle from Y.

A smooth scroIl is over a general point a projective bundle, this follows from I<odaira
vanishing and I<obayashi-Ochiai charaeterisation of the projeetive space. Obviously, pro
jeetive bundles anel, more generally, projectizations of coherent sheaves are exanlples of
smooth serolls. Conversly, if all fibers of the Illap p are of the same dimension then the
seroll is a projeetive bundle, [FI, 2.12] and [I]. We have also examples of scrolls which do
not belong to any of these two classesj their fibers may be Grassman varieties of large
dinlension with respeet to the diIllension of a general fiber, see the example (3.2). If we
assunle that the sIuooth scroll is a projectivization of a sheaf, the diIllension of special
fibers ean not jump so Inuch:

Lemma 2.4. Let P{E) --t Y be a projeetivization oE a rank-r BiiJliea slleaE. Let F be a
nber oE dimension> r - 1. Tllell dinl,F ::; dimY"

Proof. Let II "" p r - I C F ~ p k be a speeialization of a general fiber. We have then a
sequenee of nonnal bundles

o-+ !'"rn/F ~ O{l)k-r+I -+ Nn/p(E) -+ N(F/p(E))ln ---t O.

Since Nn/p(E) IS a speeialization of a trivial bundle it has a trivial total ehern dass,
therefore

Consequently,

n +l' - 1 - k = 1'ank{NF/P(E)) 2:: dimII = r - 1

and the inequality follows.

On the other hand, if we assullle that the jUIUP of the diluension of fibers in ascroll
is smaIl then we ean apply Theorel11 4.1 frolu [AW] to get the following

Proposition 2.5. Let (X, L) be a slnootll seroll. Assul11e that for any fiber F of the map
p : X --t Y it llolds dimF ~ dinl,X - di,nY. Tllen Y is smootll alld X = P(P*L) (so that
P*L is a Bäniea sheaf Moreover, if dimX 2:: 2dimY tllen p is a projeetive bundle.

For sluooth SCl"olls which are projeetivization of sheaves there holds a eonjeeture of
Beltrametti alld SOlluuese; naluely we have
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Theorem 2.6. Let & be a BiiJIiCii sheaf of rank r over a nonnal variety Y. If r ~ dimY
then Y is SIllootb and E is locally free. If r = dimY - 1 tllen Y is smootll.

Proof. The first part follows imUIediately frolll Lelnlna 2.4 and Fujita's result [F, 2.12J.
Then, the second part follows then froln 2.5.

Using the above Proposition 2.5 and Reulark 4.12 frolll [AWJ we get the following

Lenlma 2.7. Let E be a Biinicii slleaf of rank r over a nonnal variety Y. If r ~ dimY - 1
01', if for any point y E Y, dirrq.Ey 0 k(y) ::; l' + 1, tilen Y is sInootll and locally E is a
quotient of a trivial sbeaf by a rank-l subslleaf, tbat is, we have a sequence

o--+ Oy,y --+ O~;yl --+ Ey --+ O.

If we now eOlllbine leuuuata (1.4) and (2.7) we get the following

Corollary 2.8. Any SIlIOOtl] slleaf (in tlle sense of Bänica) is a Biinicii sbeaf. If a Bänicii
sbeaf t over a nonnal variety Y satifies tlle cOlldition

for any y E Y : dimkty 0 k(y) ::; rankt + 1

tben it is sInootll.

3. Examples.

The simplest eXaInples of seroUs are projeetive bundles. In particular, if the base Y is
smooth then aIlY locally free sheaf is a Biillicii sbeaf. Also, if a locally free sheaf F over a
smooth Y is spanned by global sections then a general seetion S of :F will yield a Bänicii
sheaf as a quotient:

o-+ O~F --+ E --+ O.

The singular set of t eoincides with the zero loeus of the section s. The Ioeal condition on
the sheaf t to be BiiJlica slleaf is described in Lemlna (1.4).

More generally, .we can consider al'bitrary morphisms of vector bundies over smooth
ba.."le

Lemma 3.1. (cf. [B, Thn1. 2]) Le t :F aJlcl 9 be locally free sheaves over a smooth varie ty
Y of rank fand 9, respectively. ASSUl1le that f ~ 9 + 2 and t}le slleaf 1-lom(Q, F) is
spanned by global sections. Tllell, for a gelleric (f E H o1n(Q, F) we 1Iave an exact sequece

O--+9~:F--+[-+O

wit}l t}le quotient E beillg BiiJlicii slleaf oE rank f - 9.

Proof. We have a natural isolllorphisIll (see [H1, II.5])

H omp(F)(p*9, 0(1)) ~ H omy(9, F).

The zero locus of a seetion

a E H on!(p*9, 0 (1)) = HO (P (F), p. Q. (1))
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coincides with the projectivization of the cokernel E of the map (j : 9 -+ :F embedded into
P(:F) by the nlap assoeiateel to the epinl0rphism :F -+ E. Therefore the lemma follows
from Bertini theoren1.

Not all seroUs arise as the projeetivizations of sheaves.

Example 3.2. COl1sieler the Grassmann variety G(2, n) of linear planes of a given linear
space W of dinlel1sion n. Over G(2, 11) we have the universal quotient bUDdle Q whose
projectivization is a flag variety

F(l, 2, n) = {(x, l) E pn-l X G(2, n) : x E l}

with a projeetiol1 onto pn-l. The projeet.ion has a natural strueture of pn-2-bundle.
Now take a bundle Q ffi 0, its projeetivization q : P(Q ffi 0) -+ G(2, n) maps onto pn,
p : P( QEBO) -+ pn so that all fibers but one are isomorphie to pn-2. The exeeptional fiber
(eall it Fo) is associated to the 0-factor of the bUl1dle q and it is isomorphie to G(2, n),
so that it is of eliIuel1sion 2(n - 2). One checks easily that the variety has a structure
of a sluooth scroll, however it is not a projectivization of a sheaf as the special fiber is
not a projeetive space (for n ~ 4). Let us consieler the sheaf:F := P.q*OC(2,n)(1) where
00(2,n)(1) is the positive generator of PicG(2, n). The sheaf :F is locally free outside
one point where it has a fiber isomorphic to A2W. It is not hard to check that it is
reflexive though its projectivization is a reducible variety consisting of two components:
the dominant one which is the original scroIl anel the special fiber P(A2W), the fiber Fo
elubedded in P(A2W) via Plücker elubeelding.

If we allow the projectivization have SOHle singularities, even luild ones, SOHle of the
statements fronl the previous sectioll are not true (e.g. 2.4).
Example 3.3. (Sol1uuese [S, 3.3.3]) Take a snl00th surface Sand blow it up ß : S' -+ S
at a point sES. Let E elenote the exceptional divisor. Let L be a puH-back to S'
of an ample lil1e bunelle frOll1 S. Vve luay asStllUe (possibly replacing L by its power)
that L C9 O( - E) is alupie anel spanneel on S'. Over S' we consider a projective bundle
p' : P (L EB (L C9 0 (- E) )) -+ S'. The 0 (1)-sheaf on the projectivization is clearly nef and
aIuple outside the inverse image of E. The unique curve with which the O(1)-sheaf has
trivial intersection is the section of the projective bundle over E (a smooth rational curve)
associated to the spli ttil1g 0 ffi O( 1) -+ O. The sll100th rational curve is easily seen to have
normal bundle OPl (-1) ffi OPl (-1) and it ean be eontracted to an isolated singular point
by the morphisll1 cOI11ing frol11 the evaluation of O( 1) (sil1ee the bundle L ffi (L 12' O( - E)) is
spanned). The singularity is Gorenstein since the canonieal bundle on the projectivization
has interseetion 0 with the eontraeted eurve. By V let us eall the resulting 3-fold obtained
by contraeting the seetion to a point. The 3-fold V maps onto Sand the map makes V a
seroll. There exists a. unique exeeptional fiber of the scroll which is iS0l110rphic to p2 and
whieh contains the singular point. On the other hand, the threefold V can be described as
a projectivization of a sheaf E := (ß 0 p') •0 (1), and it is not harcl to see that the sil1gularity
of E at the point s is of t.he type 0 ffi J/J' where J8 is the ideal of the point s.

In the present paper we will also deal with Fano manifolels arising as projectivization
of sheaves. We have:
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Leluma 3.4. Let E. /Je a Biillica slleaf over a uonl1al variety Y. Assullle that a singular
set of E. is of dinleusiou ::; 1 or p(Y) = 1. IfP(E.) is a Fano 111anifold tllen -I(y is anlple,
tllat is, Y is a Goreusteiu Fano variety.

Proof. The argument is sitl1ilar as in the proof of [W, 4.3], COlnpare also with [SW, 1.6]
and [KMM]. We are only to prove that

p* (-](y) = (-[(P(e») + Op(E)( -rankE.) +p* (-detE.)

has positive intersection with any extrelllal rational curve C in P(E.) not contracted by p.
We claim that the curve C Iuay be chosen so that p(C) is not contained in the singular
locus of E.. Indeed, if it were, then the whole locHs of the ray R+ [C] would be cOl1tracted by
p to a set of dill1ension 1, thus aU fibers of the contraction of the ray would be of dimension
1, henee the locus would be a divisor, [W1, 1.1]. This, however, contradiets the fact that
p contracts no Weil divisors to set of codiIllCl1sion ~ 2. Onee the eurve C is assumed not
to be in the singular lOCHS of thc 111ap p we conclude as in [SW, 1.6], 01' as in [KMM].

Example 3.5. The assumption on the singular set of E. is indespencible. Let

Then - [(y = 41] where 1] denotes the relative O(1) of the projectivization over p 2 • The
line bundle 1] is spanned hut not alllple, so Y is not Fano. The morphisln associated to 1771

contracts to a point the unique section of Y -t p 2 assoeiated to the O-factor, eaU this set
Z. Let H be the pullback of the hyperplane from p2 to Y. The line bundle asociated to
1] - H is spanned off Z by three sections. Thus we have a ulorphisul O~3 -+ OY(77 - H)
which yields a sequence

o --+ Oy( -1] + H) -+ CJ~3 -+ E. -+ 0

with a rank-2 sheaf E. which is free outside Z. The variety P(E.) is the eoincidence variety
of divisors froID the linear systcln 11] - Hf and each oue of the divisors is isomorphie to
P(O:~ EB Op2( -1)). Therefore P(E.) is Sll1ooth. Moreover

Therefore P(E.) is a SIlIOOth Fano variety.
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4. Extensions to locally free sheaves, neflless

We want to find conditions to realise globally the projectivization of a Bänicii sheaf as a
divisor in a projective bundle. For SiUlplicity we introeluce the following definition.

Definition 4.0. We say tlutt a collerent slleaf E over a nonnal variety Y extends to a
loca1iy free sbeaf F if tllere exists a sequence of OY-lnodules

o-+ 0 ~ :F ----1 E -+ O.

In other words, E is obtainecl by dividing F by a non-zero section s. The singular
locus of E coincides with the zero locus of $. Alternatively, P(E) is a divisor in P(.:F) from
the linear systelu IOp(F) ( 1) I·

In the present section we will also discuss numerical properties of coherent sheaves.
Let us recall that a sheaf E is alupie (resp. nef) if 0(1) is alupie (resp. nef) on P{E); this
makes sense also if we multiply E by a Q-divisor.

For a coherent sheaf E by E.* we will denote its dual sheaf 1-lom{E, 0).

Lemma 4.1. Let E. be a Biinicii slleaf ofrank n - lover a smooth projective variety Y of
dimension n. If H 2 (Y, E.*) = 0 tllen E. extellds to a localy free slleaf; in particuiar E. ® [,-m

extends for [, an runple line bundle alld 711, » O.

Proof. Because of (2.7) we know that the extension exists locally. To prove the existence
of a global extension consider the spectral sequence relating local Ext and global Ext.
Then we have the following exact sequence

(4.1.1) BI (Y, 1-lom(E., 0)) -T Ext~,.(E,0) --t HO(y, Ext l (E, 0)) --t H 2 (y, 1-lom(c, 0)).

The support of E.xt l (E., 0) consists of isolated points of singularity of c. For any such
point y, cxtl (E., O)y ~ Oy and the unit represents the extension to a free module. Thus
the vanishing of H2 (Y, E*) yields the exist.ence of an extension in Ext l (E., 0) to a locally
free sheaf.

Therefore, frequently we will be interestecl in the vanishing of the latter tenn in the
sequence (4.1.1). To this end we have.

Lenllna 4.2. Let E. be a Biinicii sileaf of rank n - lover a slnootll projective variety
Y of dünension n. ASSUllle tllat I:. is an aIl1ple line bundle on Y and let HEl [, I be a
Slllooth divisor Wllic11 eIües not Jneet tlle singular set of C. If, for k ~ 1 and i = 1, 2
Hi(H, (E.* ® [,k)IH) = 0 tllen E extends.

Proof. The vanishing of H2 (Y, E..) follows froln the vanishing of cohonlology on H which,
beause of the divisorial sequence for H, iInplies that

für k 2:: O.

On the other hand, the non-vftllishing of H 2 (y, c* ® .c k
) for k « 0 can be used to

estimate cn(E), that is, the nUIuber of singular points of C. The following lemma was
suggested to us by Adrian Langer WhOIll we owe our thanks for fincling amistake in a
previous version of this paper.
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Lemnla 4.2.1. Let [ be a Bänicä sllenE oE rank n - lover a slnooth projective variety
Y of dimension n anel let L be an mnple line bundle over Y. Tllen, for k » 0, we bave
H 2 (y, [* ® .e- k

) = cn(E).

Proof. We have a global duality [Hl, 111.7.6]:

Ext~(E ®.e k
, Gy) ~ Hu-i(y, [®.e k ® !(y)*

and the latter tenn vauishes for k » 0 and i < n. Therefore the spectral sequence relating
Ext and Ext converges to a trivial oue. This yields that HO(y, [xtl ([ @ LA:, Oy)) 
H 2 (y, E* ® .e- k

) (c.f. 4.1.1) and we are done.

Making similar argulnent as is the proof of 4.2 we get the following

Corollary 4.2.2. Let [ be a BiilJica slleaf of rank n - 1 over a smootb projective variety
Y of diInension n. Asslune tllat .e is an runple line bundle on Y and let H EI .e I be a
slnootll divisor Wllic1l does not Ineet tlle singular set of [. IE, for any k E Z allel i = 1, 2
tbe groups Hi(H, (E* @ .ek)lH) vanisll tllen E is locally free.

We will need also the following version of the leInInata 4.1 and 4.2 for arbitrary sheaves
with isolated singularities.

Letnma 4.3. Let E be colleren t sllenf wi th isolated singulari ties over a slnootb variety Y,
dirnY ~ 3. Let.e be an mllple line bundle over Y and let H EI .e I be a smooth divisor
which does not 111eet tlle singular points of E. Tben:
(a) if E extends to a locally free sbeaf tllen E 0 .e-1 extends as well,
(b) iE E @ .e-1 extends to a locally Eree slIeaE and H2 (Y, [*) = 0 tllen also [ extellds to a

locally free slleaf

Proof. Consider a divisorial sequence associated to H E 11:1:

o ---+ 0 -+ L ---+ .eH --+ O.

The morphisIn 0 --+ .e fronl this sequence yields a cOlnmutative diagrarn with exact rows
and columns conling froln ll1ultiplying by a section defining H:

Ext~([, 0) -+ HO(y, Ext l ([,0)) --+ H2 (y, [*)

~ ~ ~

Ext~ (E, 1:) --+ HO(y, Ext l ([,1:)) --+ H2 (Y, [* @ .e)

On the other hand we know that

so that, because the singularities of [ are isolated and H does not meet them, the vertical
11lap in the center is an isolnorphislu. Therefore an extension in Ext l ([,0) which gives

10



a Ioeally free sheaf will be luapped by the Ieft-hancl-side vertieal map to an extension in
Ext l (E,.c) whieh produees a loeally free sheaf, too. This proves (i). To get (ii) we make a
similar aguillent, but this tinle applying vanishing of H 2 (Y, E*) to lift a loeal exension to
a global oue.

Now we want to COlllpare alnpleness and nefness of a rank r Bällicä sheaf E with
the same properties of a locally free sheaf :F in whose projectivization E is embedded.
Therefore, let us assulne that E extenels to :F, that is, we have the sequenee 4.0. Obviously,
if E is nef then also :F is nef. As fo1' the mnpleness we have the following.

Lemma 4.4. Let [ allel F be collerent slleaves on a SlIlootll variety Y satisEying tbe
above assuillptions. ASSlllIle IJlOreOVer tllat Cl Y - elF is nef and tllat S is ample. Then
Op(F)(l) is selnimnple, tllftt is IOp(.1")(rn)I is base point free for m »0. Tbe exceptional
set E oE tlle 111orpllisll1 given hy IOp(F)(m)l, m » 0, iE llon-empty, contains all sections
Y :) G --+ P(Fc) associated to a splitting

of the sequence (4.0) over any c10sed G c Y of positive diInension. Moreover p maps E
finite-to-olle into Y \ singE.

Proof. The line bundle Op(.1")(l) is nef ancl big. Since j(P(:F) = O(-r - 1) 0 p*(Ky +
detF), it follows that Op(.1")(1n) 0 j(PlF) is nef ancl big for m »0. Therefore, by the

I(awamat 0.-Shokurov contractioll theoreUl OP(.1") (711) is senüanlpIe. The morphism defined
by IOp(:F)(m)1 is birational anel its exceptional set eloes not lueet P(E) c P(F) (because the
divisor P(E) c P(:F) has positive intersection with any curve Ineeting it). If the sequence
(4.0) splits over 0. positive-dimensional set G c Y then, clearly, the unique section of F
over G is containeel in E. Anel clearly p(E) n sing(E) = p(E n P(E)) = 0.

CoroIIary 4.5. In the above situation, if G c Y is not contained in p(E) tllen

We will also neeel the followillg.

Lemma 4.6. Let [ be an alnple reflexive slleaf on a nonnal variety Y. Assulne tbat same
twist oE E extends to a locally Eree slleaE so tlutt we llave a sequence

O~c..---+F---+E---+O

witll F locally free and c.. a line bundle. Let C c Y be a rational curve wbich is not
contained in tlle singular locus oE S. Tllen

C.detE ~ 7'ankE + nUln!;er of singular points oE E on C.

Proof. First, let us note that, in the above situation,

11



where r is the rank of E anel]J : P(E) -:-+ Y is the projeetion. Indeecl, the formula is eorrect
for projeetive bunclles and is preservecl for divisors in theIn whieh llleet the eyde p-l (C) at
the expeeted dinlension. The eyde p-l (C) consists of "vertical" components over singular
points (each being a projective space) anel of the cloluinant cOlllponent over C which is a
projective bundle with a fibre pr-I. FrOIn the dassification of bundles over pI it follows
that the latter COIupOnent brings to the intersection at least rand therefore the inequality
follows.

5. Adjunction.

In the present section we C0111pare the cleternlinant, 01' the first Chern dass of a Biinicii
sheaf with the canonical slleaf of the variety over which the sheaf is defined. In case of
locally free sheaves the question was consiclerecl in [YZ], [F2] and [ABW].

Theorem 5.1. Let E /Je a Biinicii slleaf of rank r over a SlllOOth variety Y oE dimension
n = r + 1 2:: 3. Asslune that E is alllple illld llloreover tllat it is not locally free. Then
(1) ](Y + Cl E is neE un1ess Y "" pu anel E is a quotient of a decolJlposab1e slleaf:

o-; 0 -+ O(l)ffin ---+ E ---+ O.

(2) if](Y + Cl E is nef then it is also big un1ess
(2.1) Y is Fano and ](y + clE = 0,01'
(2.2) Y ha..r;; a st1'ucture oE a p1'ojective hUlld1e 7r : Y -t B over a slllootb curve B and

E fits illto a sequence

o-t 0 -+ 7r*Q00y(1) -+ E -+ 0

w1lere Q is a rank-n vector bundle over B and CJy(l) a line bund1e whose restric
tion to any fiber oE7r is 0(1);

(3) iE K y + Cl [ is neE illld big tllen it is also alnp1e un1ess tllere exists abirational map
7r : Y -t Y' supported by ](y + Cl E OlltO a SlllOoth variety Y' w1licb b1aws-down
disjoint exceptiona1 divisors Ei ~ pU-I, such t11at Ei n singE = 0. On Y' there exists
all alllple Biillica slleaE E' sud] tlutt E ~ 7r* E' C9 Oy (- L: Ei) alld ](Y' + Cl [' is aJnple.

Renlark The case (2.1) of the theorenl will be discussed thoroughly in the subsequent
section. In pal'ticular, it will be ShOWll that Y is either a projective space 01' a sIuooth
quadric.

Proof of the theorem. If ](Y + Cl E is not nef, then accol'ding to the cone theorem of
Mari, there exists an extrelual ray of Y which has negative intersection with this divisor.
The length of the ray is at least n so that its locus coincieles with Y, see [I, 0.4] 01' [Wl,
1.1]. Therefore there exists a rational eurve froll1 the ray Ineeting the singular locus of E.
Because of (4.6), these curves have intersection at least n + 1 with -](y. Consequently, by
an arglunent on defonuation of curves passing throllgh a point (see e.g. [W1]), PicY = Z
and we COlupute easily that ](y = (11 + 1)(!(y + detE) anel therefare by a theorem of
I<obayashi-Ochiai Y ~ PU. The restrietion of E to a generic hyperplane H C pn is
an ample vector bundle and Cl (EH) = n + 1, therefore we see that EH "" Tpn-I 01'
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EH f'V 0(2) EB O(I)ffi(n-I), t.he latter possiblit.y ruled out because of 4.2.2. In the former
case, we use 4.2 to produce an extension of E to a locally free sheaf :F; the only possible
non-trivial extension on H leads to a deeonlposable bundle 0 H (1 )ffin so the bundle F is
deeolnposable as well (see e.g. [OSS]).

For the remaining cases the arguluent is Sillli laI'. Assullle first, that [(y + eIE is nef
but not aIl1ple. Therefore there exists a ray of Y having intersection 0 with the divisor.
The length of the ray is at least n - 1, [Wl, 1.1]. If the eontraction of the ray is birational
then it is actually divisorial and the ray has to have length n - 1. In this ease, however,
the exceptionallocus can not 111eet the singular locus of E because then we would find out
(4.6) that the length is aetua11y 12 whieh eontradicts [I, 0.4]. Consequently, E is a vector
bundle in a neighbourhood of E and the argulllents from [ABW, 2.4] apply to eonclude the
description of the blow-down 1110rphislll and the sheaf E as in the ease (3) of the theorem.

If the contraction of the ray in question is of fiber type then a fiber containing a
singular point of E has to be a divisor (again, since - [(y .C :2:: n for any rational curve
passing through the singular point). Thus the contraetion is either to a point (which is
the ease of (2.1)) 01' onto a Slllooth curve B. In the latter case we consider fibers which do
not contain singularities of E and as in [ABW, 2.2] we p1'ove that the fibe1's are projective
spaees. Siluilarly, we eonclude that Y has a structure of a scroll P(Q) -+ B over the
curve and E restricted to a general fiber F of the contraction is isomorphie to Tpn-l. To
conlplete the description of E we choose a Slllooth divisor HeX which is a hyperplane in
each fiber of the scroll anel which does not 111eet the singular set of E; the restriction of E
to any fiber of H -+ B is then Tpn-2 EB 0(1). After twisting E by a puH-back of a negative
line bundle from B it will satisfy assstlIllptions of (4.2) on H, so that it will extend to a
vector bundle F. The description of :F follows now easily, since its restrietion to a general
fiber has to be isolllorphic to (9 ( 1)u •

To eonclude the theorell1 note that the Iod of extrelual rays can not meet (beeause
we would have a curve contracted by both contractions) and therefore the description of
the adjoint lllorphislll is as in (2) of the theorenl.
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6. Fano manifolds of nliddle index.

In the present section we want to cOll1plete the classification of Fano 111anifolds of index r
and dill1ension 21' with second Betti nUluber b2 ;::: 2. Let us reeall that a smooth projective
variety X is ealleel Fano if its anti-canonical divisor -[(x is ample. The index of the Fano
variety is equal to the largest integer r for which - K x =rH, for some alnple divisor H.
Such varieties with projective anel quadric bundle structure were studied in [PSW2] and
[W2], respectively. Ta conlplete their classification one has to deal with these whieh are
non-equidimensional scrolls [W2, Theorelll I].

(6.0). Dur set-up is as follows: X is a Fano luanifold of index r alld dimension 2r ~ 6,
and it is a projectivizat,ion of a non-locally free Biillicii slleaf E over a smooth variety Y of
dimension r+1. The project.ion)( -+ Y we will denote by p; we may choose E := p. (O(H)),
so that the line bunclle associatecl to H is Op(&)(l). The variety X admits also another
non-trivial map (a contraction) with connected fibers <p : X -+ Z onto anormal variety Z.
In [W2, Tlull. I] it was proveel that aH fihers of<p are of elinlcnsion ~ r anel thus, because
of [AW, Thm. 4.1], Z is S11100th anel one of the possibilities occurs:

(i) dimZ = r + 1 and<.p : X -+ Z is a projectivization of a non-locally free sheaf;
(ii) dimZ = 2r and <p : X -+ Z is a hlow-clown of a smooth divisor E in X to a snlooth

subvariety T c Z, dimT = r - 1;
(iii) dimZ = rand <.p : X -+ Z is a quadric bundle;
(iv) dimZ = r + 1 anel <p : X -+ Z is a projective bunclle.

(6.1). Fano 111anifolcls with projective bUlldles were studied in [PSW2]; from the classifica
tion obtained in that paper it follows that the last possibility (iv) ean not oeeur. Quadrie
bunclles were stuclieel in [W2] anel it had turned out that two of the quadric bundles ob
tained there have also a structure of projectivization of non-locally free sheaf:
(a) a divisor of bidegree (1,1) in the product pr X Qr+l,
(b) a divisor of bidegree (1,2) in the product pr X pr+l.

iFro111 now on we asStll11e that we are either in ease (i) 01' (ii), whieh we will eall fibre
and divisorial case, respectively.

Dur arguments are similar to those frol11 [PSW2]: we will use "big fibers" of the map
<p, that is fibers of dilnension r. We know that they are isonlorphic to pr ancl the restrietion
of H to each of thenl is 0(1), see [AW, 4.1]. First we will deal with the ease when <p is
divisorial.

Lelnnla 6.2. (cf. [PSW2 (7.2)]) ASSllllle tlult 'P is dvisorial. TlJen tlJe restriction ofO(E)
to a fiber ofp is iS011l0rphic to 0(1).

Proof. Assulne the cont.rary. Let us take a general fiber F of p such that E restrieted to
the fiber is a hypersluface of degree > 1. Let us take a Ene in F which is not contained in
FnE; choose two points Xl =f. X2 such that Xl, X2 E Fn E. Let Gi:= <p-l(<p(xd). We
claim that there exists a eurve C C Y, p(F) E C, such that:
(*) for a general c· E C: #(p-I(C) n (GI U G2 )) ~ 2

Incleecl, note fil's t that dim (Gd = rand p luaps Gi outo a divisor in Y. Therefore, if
<p (X)) =j:. <.p( X2) we take a curve in p(G)) n ]J(G2 ) 3 p(F). If GI = G2 we consider a eurve
in a set {y : #(p-l(y) n Gd ~ 2} 3 p(F) whieh again is of positive clinlension.
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Now over a generic c E C we choose a line L c in p-l (c) such that L c is not contained in
E and L c meets Cl U O2 at at least two points. This way we can construct a ruled surface
over the normalisation of C which is luapped via 'P to a two-di111ensional variety and which
contains a curve (ar curves) contracted to point (01' points) such that it contradicts the
following:

Sublemma. Let 1T : S = P(E) --+ C be a (geolnetrically) ruled sluface (a Pl-bulldle) over
a smootll curve C. Assulne tllat tllere exists a lnap 'P : S --+ pN such tllat tlle iJnage oE r.p
is oE dimension 2 alld r.p cOlltracts a curve Co C S to a zero-dinlensiollal set. Then Co is a
ullique section oE tr SUdl that cg < O.

Proof. First, we dainl that the curve Co is irreducible. Indeed, if Cl and C2 were two
irreducible cOlllponents of Co then Ci < 0, Ci < 0, Cl C2 :2: 0 and aCI - bC2 would
be equivalent to a multiple of a fiber of tr for (l, b > 0 and thus (aC] - bC2)2 = 0,
a contradiction. Let i : B --+ Co C S be the normalisation. Consider 1rB : SB :=
P( (1r 0 i)* (E)) --+ B a ruled surface over B obtained via base change; it has a section Bo
which COlues frolu the epinlorphislll (tr 0 i)*(E) --+ i*Op([)(l). The section Bo is mapped
birationally to Co under the induced luap of projective bundles j : SB --+ S and it is a
component of BI = j -1 ( Co) which is contracted by 'P 0 j. Since BI is irreducible, it follows
that BI = Bo and

1 = deg(Bo = BI --+ Co) = deg(SB --+ S) = deg(Co --+ C)
and therefore we are done.
Remark. Note that this arguluent works also in case of Lellllua 7.2 from [PSW2] to
replace the original "lift-up" argtllllent which is inconlplete.

vVe continue with the divisorial case: As an iUlluediate consequence of the preceeding
lenlma let us note that the gooel sllpparting divisors af r.p anel ]J (Le. pullbacks of aIuple
divisors frolu the targets of respective luaps) luay be chosen to be H + E and H - E,
respectively.

Let now M be the intersection of a r-elimensional fiber of ]J with E, it follows that
M :: p(r-l) anel HIM = EIM = 0(1). Now since the map <p 111apS AI onto T, by a result

of Lazarsfeld [L] it follows that T ~ p(r-l). Since E + H is a pullback of a Cartier divisor
-](z/r from Z anel (E + H)IA1 = 0(2) it follows that -](Z/1' restricted to T is either
o (2) or 0 (1). In the latter case, however, using the relation

-!(ZIT = -!(T - cINT/Z

we woulcl find out that Cl Ny/Z = O. On the other hand, Slnce H = - E + (E + H)
is ample on E it follows that NT/Z 0 O(-](z/r) is aIuple. Thus, if Cl (NT/Z ) = 0 and

O(-Kz/r)IT = 0(1) the bundle NT{z(1) would be isoillorphic to E9 0(1)r+l, a contra
diction, since its projectivizatioll wau cl not have a dOluinant 1110rphism on Y of dimension
r +1. A similar arguluent done if (-](Z /1')IT = 0(2) leads to the situation when NT/Z (2)
is ample with first Chern dass 0(1' + 2) anel therefore by splitting type (see e.g. [W2, 1.9J)
NT/Z (2) :: Tpr-l EBO(1? The projectivization of this latter bundle luaps with connected

fibers (because they are hyperplanes in fibers of ]1) anto Y. Therefore, we check that the
morphislll p l'estrictecl to E is given by the evaluation of the bundle Tpr-l( -1) EB 0 2 and
thus we get the following

15



Lemma 6.3. If<p is divisorial then Y ::: pr+l and any non-trivial fiber of<p is Inapped by
p isomorphically onto a llyperplane in pr+l. Moreover T "" pr-l anel NT / Z ~ Tpr-l EB
0(1)2.

Now we deal with the case when both p and <p are of fiber type

Lemma 6.4. (Colnparison Lenuna [PSW2, 3.1]) Asslllne tbat <p is of fiber type. Let

7'y := lnin{ -I(y.e: wllere e is rational Oll X}.

Then ry . H + p* (I(y) is a gooel supporting divisor for "tlle otller" contraction <po

The proof of the above lenuna in case r ;::: 4 is identical as in [PSW2]; for r = 3 and
<p of fiber type the lemma will also work because <p has a fiber of dimension r, see Remark
(3.4) in [PSW2].
Remark 6.5. Note that in the divisorial case we also have the conlparison lemma since
the pull-back of 0(1) fronl Y = p"+1 to a fiber of<p is again 0(1).

Corollary 6.6. ASSlllJle tllat <p is eitller divisoria,l or of fiber type.

(a) Let F be an l'-dünensiollal fiber of <po Tllell F is pr allel E'F( -1) := (p*EIF)( -1) is
nef, 8J](] Cl(E'F( -1)) is eit}ler 1 or 2.

(b) IE 1 "" pr-l is a genera1l1yperpl8Jle in F or - for <p oE fiber type - a general fiber

of<p tllen E'f(-l):= (p*EIf)(-l) is as described in [PSW1, TIlm. 1} or {PSW2, 0.6}.

Proof. We already noted that F = pr. The rest is proved exact1y as (5.2) and (5.3) from
[PSW2], the case Cl = 0 ruled out because t: is not locally free.

Lemma 6.7. ASSlllJle that <p is offiber type. TlJell bot}l Y allel Z are isolnorphic to pr+l.

Proof. We use notation froln 6.6, i.e. F is a "big" fiber of<p while 1 is a general fiber of
'P, 01' a general hyperplalle in F. Let us consider a conlposition of nlaps

where P( t'f) -+ P( t') is induced by the change of the base p : 1 -+ Y. We claim that
the composi tion is surjective. Indeed, if this is not the case then p-l (p(/l )) n 12 = 0 for
a sufficiently general choice of 11 and /2, so that the intersection of cycles p-l (p(/l)) . 12
is zero. But note that for a general choice of /1 we have di7n(p-l (p(/I)) n F) = r - 2
- because p(F) is aluple on Y - anel thus p-l (p(/l)) n 12 is non-elnpty of the expected
dituension r - 3 ;::: 0 for 12 CF.

Therefore, for l' 2: 5, lookillg up throngh the list from [PSW1], we find out that the
only possihili ty when P (&f) achlli tos a surjective luap onto a 7' + 1 ditnensional variety is

The map P(Ef ) -+ Z factors through pr+l anc! thus Z = pr+l. The reasoning is clearly
sYlnmetric with respect to the change of Z anel Y so the lemlna is proved in this case.

For r equal 3 and 4 we have to eliluinate SOHle other possibilities apart of t'f( -1) S;:;'

or+2 jO( _1)2, that is, possible sheaves &f( -1) which occur in the classification [PSW1]
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such that P (&f) adllli ts a morphisln onto an r + I-dimensional variety. If r = 4 the other
possibility is a sheaf frolll the sequence

see [PSWI]. We clnün that in this case H 1 (P 3 ,Ej(k)) = H Z(P 3 ,Ej(k)) = 0 for k ~ 2 and
therefore EF ( -1) extends to a locally free sheaf, see 4.2, 4.3. Indeed, the bundle Ej (k) is
isomorphie to either TP 3 (k - 3) EB O(k - 1) 01' to N(k - 2) EB O(k - 1)2, where N is a
null-correlation bundle on p3; thns we check the vanishing easily. Now, to conclude this
case, note that if EF ( -1) extends to a locally free sheaf :F then :F is nef on p4 anel wi th
Chern classes (Cl, Cz, C3) = (2,2,0), thus checking it with the list from [ibid] we arrive to a
contradiction.

The case r = 3 (that is f = P2) is dealt with silnilarly: apart of Ef( -1) 'V 0 5 jO( -l)Z
also decomposable bundles and a bundle with ehern classes (Cl, cz) = (2,2) admit mOf

phism onto 4-dilnensional variety, see the Inain theorem of {SW]. As ahove we check a
vanishing to clai01 that EF ( -1) extends to a locally free sheaf :F on F = p3 , :F is nef wi th
Chern class Cl = 2, thus globally generated, see [PSW1]. But P(:F) contains P(E) which
is Inapped onto a 4-dilllensional variety, so itself it has to be lllapped outo a 5-dimensional
variety. Agaiu, by [ibid] the only possibilities for :F are 0 6 jO( _1)2 01' flP3(2) EB 0, 01'
N(l) EB OZ, where N is a null-correlatiou; we are to exclude the latter two possibilities.

To this end note that C3(!1P3(2)) = 0 and thus EF is locally free. Now we can apply
an argument froln [PSW2, 5.5]: using the relative Euler sequence (because E is locally free
at p(F)) we COlllpute the total ehern class of flXIF:

On the other hand, becanse of [AW, 4.9,4.12] N F/X = Tpr(-I) (NF/ x denoting the
normal bundle), and we C0l11pl1te

and further
Ct(p*(flV)IF) = 1- 5h + 11h2

- 13h3
,

w here h denotes the class of a plane in P 3
; in pal'ticular p(F) . C3 (nY) is not divisible by

5. In our case, however, the integer 7'y frolll 6.4 is equal to 5 so either -[(y is divisible by
5 in PicY and then Y = p4 01' - [(y generates PicY. In the latter case the iutersection
of auy 1-cycle with any divisor would be divisible by 5 (this follows e.g. from deformation
theory), a contradiction. On the other hand Ct(!1p4) = 1 - 5h + 10hz - 10h3 + 5h4 so
comparing it with the above fonnula for Ct(P* (flY)IF) we arrive to a contradiction even if
V = P4. This cOll1pletes the proof of 6.7.

To conclude the classificatioll we will deal with the case V = pr+l in our set-up 6.0
(i)-(iii). Let EH denote the restrietion of E to a general hyperplane H = pr in pr+l;
EH (-1) is then a nef vector bundle (see 6.4, 6.5) with Cl = 2. Looking up through the list
from [PSWl] we get the following possibilities depending on the dimension of Z:
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(i) EH(-1) = or+2/0(_1)2 and P(EH) has a contraction onto pr+l,
(ii) EH( -1) = (Tpr( -1) EB 0(1))/0 anel P(EH) aclmits abirational lllorphisin onto a

quadric Q2r-l, the variety P(EH ) is a blow-up of the qua(h'ic along a linear pr-I,
(iii) EH( -1) = 0"+1 /O( -2) anel P(EH) is contracted onto pr.

The relnaining cases appearing in [PSWl, TIllll. 1] are excluded: decomposable bun
dIes because of 4.2.2, the other ones because they do not adlnit lnaps onto varieties of
dimension einerging in cases (i)-(iii) of 6.0.

Note that above three cases are in one-to-one correspondence with the cases (i)-(iii)
from 6.0. The variety Z - the target of the contraction <p - is therefore pr+l, Q2r and
pr, respectively. If <p is divisorial 01' a quadric bundle, we obtain a description of X (and
therefore of E) inlluediately - see 6.3 allel 6.1, respectively. If <p is of type (i) then note
that E( -1) is spanned by r +2 sections, because Op(E(-l»(l) = <p*0(1), and therefore we
have an exact sequellce

o--+ 1-l --+ or+2 --+ E( -1) --+ 0

with H. a reflexive sheaf of rank 2. Since E( -1) rest1'icteel to a hyperplane is or+2 /O( _1)2
it follows that H. = O( _1)2 anel thus we have a description of & alld of X.

We Stllllmarize the resul t in the following

Theorelu 6.8. Let X be a FaJlO 11lalliEold oE index 7' alld diJnension 2r. Assullle that X
is a projectivization oE a sllea{ &, p : X = p(&) -+ Y, alld aSsume moreover that E is
not locally {ree. Tllen Olle o{ the Eollowing llolds (note tlIat tlle top ellern dass Cr+l (E) is
equal to tlle nUlnber oE singular Fibres oE E):
(i) Y rv pr+l, X is an intersection oE two divisors oE bidegree (1,1) in pr+l X pr+l,

(ii) Y ~ pr+l and X is a blow-up oE Q2r along a linear pr-l C Q2r,

(iii) Y rv pr+1, X is a divisor oE hidegree (1,2) in pr+1 X pr al1d

(iii') Y rv Qr+l, X is a divisor oE bidegree (1,1) in Qr+l X pr and
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