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THE UNIQUENESS FOR MINIMAL SURFACES IN S3

MIYUKI 1(0180

1. 1ntroduction

In this paper, we shall show a couple of new uniqueness theorelns for compact gener­

alized minimal surfaces in the three dimensional open helnisphere.

At first, we relnark on uniqueness results for Ininilnal slufaces in R 3 . There RJ.'e three

basic theorems. The first theorem is due to Rad6 [9] and states that if a Jordan curve r
has a one-to-one parallel 01' central projection onto a convex plane Jordan curve, then r
spans a unique minimal disko The second theoren1 is due to Nitsche [8] and states that

if the total curvature of an analytic Jordan curve r does not exceed 41r, then r spans a

unique minimal disko The third uniqueness theorem states that if a C2 -Jordan curve r is

sufficiently closed to a C2-plane Jordan curve in the C2 -topology, then r spans a unique

minimal disk (Tromba [11]). These three theorems were generalized by Meeks [6], which

treats (not necessarily disk-type) compact minimal sm'faces.

Now let r be a Jordan curve in the three dimensional open helnisphere H of 53. Then

the area-minimizing surface spanned by r in 53 exists (Morrey [7, Theoreln 9.4.3]) anel is

contained in H (Lawson [5]). Our main result is as follows. Let B be the 2-dhnensional

unit open disk, let e.po : 53 --t 52 be the projection of the Hopf fibering, and denote by

J((f) the convex hull of r.

Theorenl 1.1. Let feH be a Jordan curve such that there exists a mapping X E

COCS, 53) n Hi(B, 53) whose restrietion ,,1'18B : aB --t f is a homeomorphism. Assu1ne

that e.po Ir : r --t ro is a one-to·one mapping 0/ r onto a Jordan curve ro in 52 and that

e.po(I((r)O) C [20, where f20 is one 0/ the domains bounded by ro in 52. Then f spans a

unique generalized minimal sur/ace in H. M oreovcr, the image 0/ this minimal s1Lr/ace is

the image 01 a section : 0 0 --t H 0/ the Hopl Jibering and its interior is an imbedded disko

\\'e shall verify this result in §3 by proving an equivalent result:Thcorelll 3.2. The

Inain tools of the proof are the l11axilnum principle for Ininilllal sUlfaces in 53 (Theorerll

2.12) and the convex huH theoren1 due to Lawson [5]. Besidcs Theoreln 3.2, we will give a

Inore concrete sufficient condition on r for the uniqueness (Theoreln 3.4).

V-/e should relnark that Theorem 1.1 is an analogy of Rad6's uniqueness theoreln

mentioned above. On the other hand, recently Sakaki [10] obtained an analogy in H of the
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third uniqueness theorem in R3. As for an analogous result for n1inimal surfaces in 53 to

the Nitsehe's uniqueness theorem in R 3
1 we will diseuss in a forthcoming paper.

The author would like to aeknowledge eonversations with Hermann I<areher whieh

gave the motivation for this work.

2. Preliminaries, especially, the maximum principle

vVe set 53 = {x E R 4
; IxI = 1}. Let R be a RieIllann surfaee wi th 01' withou t hounclary.

Vle denote the interior of R by RO and the boundary of n by an.

DEFINITION 2.1. A mapping ....1:' = (Xl 1 X 2 , X 3 , X 4 ) : R ~ 53 is eaUed a (generalized)

minimal 3urface if ....1:' satisfies the following eonditions (i) and (ii).

(i) X E eO(R, 53) n e 2 (RO, 53) by regarding R as a 2-dimensional real differentiable

manifold.

(ii) X is eonformal and harmonie, i.e., for any loeal parameter u 1 + yCIu2 of the

Riemann sunaee Ra,

and

where

DEFINITION 2.2. Let R be a compact Riemann surface with boundary. A n1apping

X : n -t 8 3 is called a (generalized) minimal ~urface 3panned by a Jordan curve r c 8 3 if

X satisfies the following conditions (i) and (H).
(i) ....1:' is a generalized 111inimal sunaee.

(ii) The restrietion X18'R is a homeolnorphism of fYR., onto r.

REMARK 2.3. Let B be the 2-din1ensional unit open disk, ancI r be a Jordan curve in

83
. Assun1e that there exists a mapping ....1' E GIO (fJ, 83

) n Hi (B, 83 ) whieh satisfies the

condition (ii) in Definition 2.2 for n = B. Then r spans at least one generalized minimal

sUlfaee Xl : fJ ~ 8 3 (Morrey [7, p.3S9, Theorcill 9.4.3]) whieh minimizes the area among

all disk-type surfaees spanued by r. Moreover, if r is eontained in the open hemisphere H
of 53, then the Morrey's solution is eontained in H (Lawson [5]).



3

To make the diseussion dear, we give the definitions of branch pointJ and branched

immersions. As for detailed properties of theln, we refer to [4].

DEFINITION 2.4. Let M be a 2-dimensional differentiable lnanifolcl, N an n-dilnensional

differentiable manifold (n ;::: 2), and f : lvI ~ N a C1-lnapping.

(i) \Ve say that the mapping f has a branch point (0/ order '1Yt - 1) at p E 1\1 if there

exist an integer m ~ 2, loeal coordinates (u l , u 2 ) around p such that p corresponds to the

origin (0, 0), and local coordinates (x 1 , ... , X n) around f (p) such that f (p) corresponds to

the origin (0,· . ',0) which satisfy

a(w) = o(I1Olm),

8a 8x k
m-l

-8.(10)'-8.(10) = 0(1 10 1 ) far j = 1,2 and k = 3,·· ',n,
uJ uJ

where 10 = u l + Au2
•

(ii) The luapping f i5 called a branched immersion if it is regular except for brauch

points.

REMARI< 2.5. If p E M is a regular point of the ll1apping f : 1\1 -+ N in Definition

2.4, the condition (i) i8 satisfied for m = 1. For convenience, we lnean a regular point by

the expression branch point of order zero.

REMARK 2.6. A generalized minimal surface X : n ~ 53 is a branched inunersion in

R O ([4, Proposition 2.4]). .

Lenllua 2.7. Let X : n -+ 53 be a generaIized minimal ~urlace and p an interior point

0/ R. Let (yI, y2, y3) be Iocal coordinates around ...l'(p) E 53 such that X(p) corresponds

to the origin (0,0,0). Then, by rotating 53, X is represented around p in the /ollowing

manner. There exist a neighbourhood U 01 p and a Cl -diffeornorphisrn T : U -7 V 0/ U

onto a neighbourhood V 01 w = u 1 + Au2 = 0 in C with T(p) = 0 S1LCh that T is real

anaIytic except the point p and such that X is represented in terms 01 10 and an integer

rn ;::: 1 as folIows.

where
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c/>( tu) = O( Iw Im +1
),

a°qS
(w) = O(IWlm

), /2:. (W) = O(l w lm -
1)for i,j = 1,2.

u) u l u)
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Moreover, i/ p is a regular point 0/ X, then rn = 1 and </> E CW(V).

Proo/. vVe can verify this lelnma by using the san1e n1ethods of the proofs of aseries

of lemmas [4, Lemma 1.3, Lemma 2.1, Lemlna 2.2, Len1lna 3.1]. Q.E.D.

REMARK 2.8. In LemIna 2.7 the diffeomorphism T is not a conforn1al mapping in

general, that is, tu is not an isothermal parameter of the considered lninilnal surface in

general.

REMARK 2.9. Let a branched immersion f : M -+- N have a branch point p E M. Then

for any sequence {Pn} of regular points of f such that Pn -7 P (n -+- +00), the tangent

space to f(Al) at f(Pn) tends to a limit as n -+ 00 ([4, Lemma 3.1)). We call this limit

the tangent plane to /(111) at p. In Lemma 2.7 the tangent plane to X(R) at p is the

(yl, y2)-plane, \vhere the local coordinate neighbourhood is regarded as a dOlnain of R 3 via

the coordinates.

The following minimal sur/ace equation will be used to prove the maxi7num principle

(Theorem 2.12) below.

Lenuna 2.10. Let D be a subdomain 0/ {(yl, y2) E R2; (yl)2 + (y2)2 ::; 1 - c}, 0 <
c < 1, and cP be a function in Cl (D, (-7r/2, 7r /2)) n C2 (D, (-7r/2, 7r /2)). Assume that the

mapping X : 15 -7 53 C R 4 defined by

X(yl ,y2)

= (-/,1 - (yI)2 _ (y2)2cos cP(yl, y2), yI, y2, VI _(yl)2 _ (y2 )2sin</>(yI, y2 )),

i.s a minim,al im7nersion. Then

(2 - 3)

I(cP) : = {(I - (yl)2 - (y2?)2 <P2 2+ 1- (yl)2}</>11

_ 2{ (1 - (yI)2 _ (y2)2) 2cPl <P2 + yl y2} cPI2

+ {(1- (yl)2 - (y2)2)2 cPI 2+ 1- (y2)2}cP22

+ 2 (y
1 cP I + y

2 <P2 )

X{ ((y1cPl + y2 cP2 )2 - <P1 2- <P2 2) (1 - (yl)2 _ (y2)2) - 2}

_ 0 in D,
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Proo/. Since a minilnal immersion is a critical point af the area functional, we calculate

the first variation of the area for any variation of sunaces with type (2-2) preserving the

boundary values. Let 'IjJ be any function in CS(D), and X t a 111apping defined by (2-2) in

which we substitute </.> + t'lj; for t/J. Denote by A(t) the area of ...Yt. By same calculation, we

get

(2 - 4)

where 1(</.» is the expression defined in (2-3). If X is minin1al, then A' (0) = °far all

?jJ E CS(D). Hence, by (2-4), 1(</.» =0. Q.E.D.

DEFINITION 2.11. Let Xl : R 1 -+ 53, ..1'2 : R 2 ~ 53 be twa generalized IniniInal

sunaces. Assume that ]J = Xl ( (1) = X2 ((2) for SOlne points (1 E Rf, (2 E K,z. vVe say that

Xl locally lies one side 0/ X 2 near the point p if there exist an open neighbourhood YIV of

p in 53, an imbedded 2-disk in W which contains p and divides T,V into two parts lVI and

vV2 , such that each Xj (Rj) n TV is contained in Y'Vj, j = 1, 2.

TheorelU 2.12 (Maximum Principle). Let Xl : R I -+ 53} X2 : R2 --t 53 be two

generalized mini7nal sur/aces. Assume that Xl locally lies one side 0/ X2 near a point

p = XI ((l) = ...l'2((2)} (1 E R~, (2 E R~) and that at least one 0/ these s'lLrfaces, say Xj}

has a branch point 0/ order at most one at the point (j. Then there exist neighbourhoods

Ub U2 0/ (b (2) respectively such that

Proof. By rotating 53, we lTIay assun1e that p coincides with the point (1,0,0,0). Set

and define a n1apping

by

~(1 2 3 4) (2 3 t -1 ( 4/ 1))':t' X ,x ,x ,x = x ,X ,an x x .
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Then (H, <p) is a coordinate neighbourhood. Denote by (VI, y2, V3) the Ioeal coordinate

systenl in (H, <%». Remark that the point p corresponds to the origin (0,0,0), and

vVithout lass of generality, we may assume that the surface ;\:'2 has a branch point of

order at most one at the point (2' From the asSumptiOll, the tangent planes to X1(RI ),

X2(R2) at (I, (2 (respectively) coincide. By rotating 53, we nlay asslllue that these tangent

planes are (y1, y2 )-plane. By Lemma 2.7, there exist a neighbourhood Uj of (j in Rj, an

open disk V in C with center w = 0 and radius p > 0, and a Cl-diffeomorphism Tj : Uj -t V,

such that

vJ(w) + yClyJ(w) = wmj
,

VJ(tv) = cPj(w),

where y j = Vk oXj oTj -1 and 4>j, m j are defined in the sroue manner as in Lem1ua 2.7 for

k = 1,2,3, and j = 1,2, and 1110reOVer m2 = 1 or 2.

Let B r be an open disk in (VI, y2)-plane in IV C R3 with center zero and radius 1',

1/V2 > r > 0. Let r be slua11 so that

r 1 / mj < . 1 2p, J = , ,

and let / be a simple closed arc in Er which connects the origin (0,0) and the boundary

aBr . Then in the d01nain B r \ I we can take a single valued branch of (VI + H y2)1/mj

which we denote by Wj(yl, V2 ). Then ~j := 4>jOWj is areal analytic function of yl, y2 in

B r \ /. Let D be a siIuply-connected d01uain in Er \ I whose boundary is a S11100th regular

curve containing the origin (0,0). Now ~j 1Dis' of dass Cl by virtue of (2-1). From the

asslul1ption, by rotating 53 if necessary, we luay asslllne that

(2 - 5)

Ivloreover, owing to (2-1),

(2 - 6) (D~l/aV)(O,O) = (D~2/Dv)(0,0) = 0,

where (D~j/ Dv )(0, 0) is the outer nonnal derivative of ~j at (0,0).
Consider minilnal surfaces

<1>-1 ({(vI, y2, ~j(yl, V2»); (VI, y2) E D})

= {( J 1 - (y 1 ) 2 - (y2)2 cos ~j, Y1, V2
, J 1 - (y1)2 - (V 2 ) 2 sin ~ j ); (V1, V2) E D}.
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By Lemlna 2.10,

Set

(2 - 7) 9 = 1>1, h = J2, and F = 9 - h.

Since 1(g) - 1(h) = 0, we obtain

(2 - 8)

{(1- (y1)2 _ (y2)2)2 g2 2+ 1- (yl)2}Fn

_ 2{ (1 - (yl)2 _ (y2 )2) 291 g2 + yl y2}F12

+ {(1 - (yl)2 _ (y2)2)2 91
2+1 - (y2)2}F22

+ (1- (yl)2 _ (y2)2)2 hll 11

~ (h2+ tF2)2dt

- 2(1 - (yl)2 - (y2)2)2 h1Z r1
~{(hl + tF1)(hz + tF2)}dtJa dt

+ (1 - (yl)2 - (y2)2) 2 h2211 :t (h1 + tFd elt

r1
d+ 2(1 - (yl)2 - (y2)2) Ja dt [{yl(h1+ tF1) + y2(h2+ tF2)}

x [{yl(h1+ tF1) + yZ(hz + tF2)}2 - (h1 + tF1)Z - (hz + tFZ)2J] dt

- 4y l F1 - 4yZFz

=0,

where 91 = ag/Dy l, 92 = ag/oy2, h1 = ah/ay1, ... , F22 = a2F/(ay2)2. Denote the left

hand side of the equation (2-8) by L(F). Then

(2 - 9)

where

2

L(F) = L aijFij +L bjFj = 0,
l~i,j~Z j=l

an = (1- (yl)2 - (y2)2)2 gZ 2+ 1- (yl)2,

a12 = a2l = -{ (1 - (yl)2 _ (y2)2)29lg2 + yly2},

a22 = (1- (yl)Z - (y2)2)2 g1 2+ 1- (y2)Z,
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and bj are continuous functions in D which are bounded on jj by virtue of (2-1) and the

conqition m2 ::; 2. Since D C B r , r < 1/.)2, we can see that the operator L is unifonnly

elliptic. Now by (2-5), (2-6), (2-7), and (2-9),

L(F) = 0 and F 2: °on j),

F(O,O) = 0, (8F/av)(0,0) = o.

Therefore, by virtue of the strong lnaximum principle for solutions of uniformly elliptic

equations (c.f.(2, p.34 Lelnma 3.4 and p.35 Theorem 3.5]),

F =0 on D,

that is

By the arbitrariness of the arc " branches of (y1 + y=IyZ?/m;, and the domain D, we

can conclude that X1 (U1 ) = l"1:'z(U2 ) for some neighbourhoods U1, U2 of (1, (2. Q.E.D.

REMARI< 2.13. In the situation of Theorem 2.12, Cj is either a regular point 01' a false

branch point of Xj, j = 1,2.

3. Uniqueness theorems

In this section, we will prove a few uniqueness theorelns for 111inimal surfaces in the

three dimensional open hemisphere H = {x = (xl, x Z, x 3, x 4) E 53; xl > O}. From now

on we aSSUlne that auy Jordan curve reH in our discussion satisfies the assuluption of

Relnark 2.3. Therefore, there exists at least one generalized nlinimal surface spanned by r
in H. At first we define the uniquenesJ in our probleIn.

. DEFINITION 3.1. Let reH be a Jordan curve. Fix three distinct points PI, P2 ,

P3 in r. We say that r spanJ a unique generalized minimal s1Lrface in H if the following

conditions (i) and (H) are satisfied.

(i) There exists a unique (up to confonnal equivalence) cOlupact Rienlann sUlface n
with boundary an such that there is at least one generalized luinilnal surface X : n ~ H
spmmed by r.

(ii) Under the condition (i), fix three distinct points QI, Qz, Q3 in fJR. Then there

exists a unique generalized luinimal surface X : n ~ H spannecl by r such that X( Qj) =

Pj, j = 1, 2) 3.
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No\v let us recall the Hop/ fibering. SI = {( E C; 1(1 = 1} acts freely on 53 = {(w, z) E
C2; Iwl2 + Iz12 = I} on the right: ((w, z), ev'=Ie) E 53 X SI --+ (wev'=Ie, zev'=Ie) =:

Re((w,z)) E 53. Let!..po: 53 --+ 53/51 = 52 be the canonical projection. Then

53(52 , SI, !..pO) is a principal fibre bundle and is called the Hop/ fibering. Each fibre !..pO -1(y)

(y E 52) is a great eircle of 53 and is ealled a Ho p/ cirele.

Next, we define a restricted Hopf fibering. Set

53 .= 53 _ {x - (x 1 X 2 X 3 X 4 ) E 53. xI = X 2 = O}
• -, " l

= 53 - {(tu, z) E 53 C C2; tu = O}.

Then SI aets freely on 53 on the right. Let ~ be the 2-dilnensional open hemisphere

{(xl, x2
, x3

, x4
) E 53; xl > 0 and x2 = O}. \Ve ean define a rcstricted Hopj fibering

S3(~, SI, <p) by

<p : x E 53 --+ cp(x) := E n {Re(x); ev=Ie E SI} E ~.

Each fibre

is a Hopf circle.

Going back to our uniqueness problem, let feH be a Jordan curve. Denote by J{(f)
the convex huH of f, anel by J{(f)O the interior of J«(f). (As for the definition of the convex

hull, refer to [5, §3].)

Theorenl 3.2. Let reH be a Jordan curve. Assume that !..pJr r -+ r 1S a

one-to-one mapping 0/ f onto a Jordan C'UTVe r in E, and that

(3 - 1)

where n is the interior 0/ r in E. Then r spans a unique generalized minimal sur/ace in

H. Moreover, the image 0/ this minimal sur/ace is the image 0/ a section :n -J- H 0/ the

restricted Hopj fibering and itB interior is an imbedded disko

Proof. Let "Y : R -+ H be any generalized luinin1al sunace spanned by f. Since X(1(,O)
is contained in J{(f)O ([5, Theorem 1]),

(3 - 2)

by virtue of the assumption (3-1).
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Set B = {( = u l + Au2 E Cj 1(1 < 1}. Let Xl : jj --. H be the lninilnal surface

spanned by r \vhich was obtained by lvlorrey (c.f. Remark 2.3). Then Xl has no branch

points in B ([3, Theorem 8.1 and 8.2]). Now let us prove that Xl(B) is the image of a

section : n--. H. Namely, we will show that

(3 - 3)

for some continuous function h of n into (-7r/2, 7r /2). If not, owing to (3-2) and the

injectivity of eplr, there exists a point q E n such that ep-l(q) nXl(B) consists of at least

two distinct points. Let

PI, pz E ep-l(q) n Xl(B),

PI = Rto(PZ) (0 < t o < 7r). Then

(3 - 4)

Set

Such T exists and T > 0 because of the cOlnpactness of B, the assU111ption ...1:'1 (.8) eH,

the injectivity of eplr, and (3-4). Let us take a point P E ...r1 (B) n RT("'Yl(B)). Then

p = A:'l((l) = RTOX1((Z) for two distinct points (1, (2 E B. Now, by the definition of T,
nunimal sUlface RT0A:'l locally lies one side of Xl near the point p. Owing to Theorem

2.12, there exist neighbourhoods UI, U2 of (1, (2, respectively such that

Moreover, by the proof of Theorem 2.12 (01' the unique continuation property of the analytic

mapping Xl), we see that X1(U1) is an open set of X1(B). Therefore, the intersection

...1:'1 (E) n RT0A:'l (E) -:f 0 is open and clased in Xl (E). Since ...1:'1 (E) is connected, Xl (E) c
RTo.1'l(B), which contradicts the fact that

Hence we praved that Xl (E) is represented in the fann (3-3), which ilnplies also that Xl

is injective and X1 1B is an ilnbedding.

Next, we assulne that .1'2 : R --. H is a generalized lninimal sUlface in H spanned by

r such that .1'1(..8) -:f Xz(R). Then there exists SOl1le t 1 (0 < ltll < 7i") with
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The srone argument as above leads a contradiction, which proves the uniqueness of the

image of minimal surfaces in H spanned by r, that is, Xl (.8) = .-1:'2 (R). This implies

also that X2 1'R.o is an imbedding and that RO = B (up to conforn1al equivalence), which

are proved as follows. Suppose that X2 is not regular at a point ( E RO. Because of

the injectivity of X2 18'R., X2 has no false branch points ([4, Theoreln 6.3]), which implies

that ( is a true branch point of X2. Hence .-1'2 has a transversal self-intersection near the

point ( ([3, Theoreln 3.1 and relnarks after the proof of Lemma 8.1]), which contradicts

the fact that X2(R) = .-1'1 (.8) is the image of a section : fl -+ H. Therefore X21'R.o has no

singular points and is an ilnbedding. Now well-defined function f := Ä 2 -1 oÄl : f3 -+ R is

a homeomorphism which ilnplies that RO = B (up to confonnal equivalence).

Let Ql, Q2, Q3 be three distinct points in oB. Assulne that the three point condition:

Äl(Qd = X2(Qi), i = 1,2,3. In view of relations !oXj/8UlI2 = lo,-1'j/ou212 > 0 and

(8Xj /8u 1
). (oXj /ou 2 ) = 0, j = 1, 2, the hOllleolllorphism f = X2 - 1 o.-1:'1 : 13 -+ 13 is

hololnorphic 01' anti-holomorphic in B. By the three point condition, f is the identity

mapping, which implies that Xl == ;\:'2. Q.E.D.

Proof (of Theoren1 1.1). The assumption of Theorelll 1.1 is equivalent to that of

Theorem 3.2, which can be verified as follows. The ima.ge 'Po(H) is just the set 52 ­
{one point}, which we denote by 52. The mapping f := <po(<.po IH )-1 : [;2 -+ 2:; is well­

defined and is a homeomorphism. Suppose that the assumption of Theoreln 1.1 is satisfied.

By the assulnption <po(I((r)O) C !10 , we see 8(<po(I((rt)) :) t o. Fr0l11 this fact and the

simply-connectedness of <po(I((r)O), we know o(<.po(I((r)O)) = ro and 0 0 = <po(I((r)O) C

'Po(H) = 32
. Therefore !10 mllSt be the interior of ro in 32 . Now the desired equivalence

is trivial via the hOlneomorphism f. Hence Theorem 1.1 is derived froln Theoreln 3.2.

Q.E.D.

The assumptions of Theoreln 3.2 are satisfied by Jordan curves which are sufficiently

near to G-convex ([5, §3]) Jordan curves in 2:;. However, for these Jordan curves, the

uniqueness is already known([10]). Theorem 3.4 below gives Inany exalnples of Jordan

curves which are Inore distant froln Jordan curves in the geodesie hypersphcre of 53 but

satisfy the assuluptions of Theoreln 3.2.

In Theorem 3.4 and its proof, sin -1 means the inverse function of the function sin :

[0, 1r /2] -+ [0,1].

DEFINITION 3.3. Let reH be a Jordan curve such that <plr : r -4 f is a one-to-one

mapping of r onto a Jordan curve r in ~. Then the height function of r is the continuous
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function h : t -+ ( -7r /2, 1r /2) which is definecl in the foHowing manner.

Theorenl 3.4. Let feH be a Jordan curveJ and

be a circle in ~ with radius c (0 < c < 1 ). Assume that cplr : f -+ t is bijective and for

the height function h of f J

Ih(ql) - h(q2)1 < sin-1 Cin(dist(~l,q2)/2))

for any ql J q2 E t (ql t q2) J where dist (ql , q2) is the geodesie distance between ql and Q2·

Then f spans a unique generalized minimal surface in H. This minimal surface has the

property mentioned in the last sentence of Theorem 9.12.

Proof. Let n be the interior of t in ~. Vle shall prove that f satisfies the condition

(3-1) in Theorem 3.2. Let a : H -+ R 3 be the hon1eon10rphislTI which is defincd as follows.

X 2 x3 x 4

( )
1 2 3 4) 4a(x)= -1'-1'-1' x=(x,x,x,x EHeR.

x x x

Then each geodesic in H i8 mapped to a straight line in R 3 and also the inverse statement

i8 true. Therefore, a subset A of H is G-convex if and only if a(A) e R3 is convex. Hence,

a(J((f») is the convex huH of a(f).
Let p be any point of J((f)o. Dur purpose i8 to prove that q := <p(p) is contained in

Sl, \vhich i8 equivalent to thc inequality

(3 - 6)

where Xl (q) is the first coorclinate of q (E R 4
).

There exist (not nccessarily distinct) foul' points PI, P2, P3, P4 Ern 8J((f) and

non-negative numbers Al, A2, A3, ..\4 with

(3 - 7)

such that

(3 - 8)
4

a(p) = ~ ,\ ja(]Jj)
j=l



(c.f.(l, p.9)). Let qj = 'P(Pj), j = 1," ',4. Since qj Er, it is represented as follows.

q . - ( VI - e2 0 e .cos ß. e .sin ß.)) - " )1 ) •

Set aj = h(qj). Then

Pj = (VI - e2 cos Ctj, VI - e2 sin aj, e·cos(O'j + ßj), e·sin(aj + ßj )),

13

(3 - 9)

Set

(3 - 10)

Then

(3 - 11)

a(pj) = 1 (VI - e2 sin aj, e· co~(aj + ßj), e·sin(aj + ßj )).VI - e2 cos O'j

3

P = (1 + jYI 2 )-1/2(1, y1, y2, y3), IYl2 = L(y j )2,
j=l

where B E (-7r /2, 'lT /2) is the uniquely determined number so that

(3 - 12) (1 + yCly1 )e..;=I8 is real and positive.

From (3-8), (3-9), (3-10), and (3-11), we get

(3 - 13)

X
l

( q) = (1 + Iy 1
2

) -1 /
2

( cos B- Y1 sin B)
<1

= (1 + IYI2)-1/2 (cos B- sin BL Aj tan aj).
j=l

By (3-8), (3-9), (3-10), and (3-12),

(3 - 14)
4

o= y1 cosB + sinB = sinB + cosB L Aj tanO'j.
j=l
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Therefore,

4 2

(cos B- sin 2: Aj tan aj)

j=l

4 4 2

= COS
2 B- 2sinBcasB 2: Aj tanaj + sin2 B(2: Aj tanaj)

j=l j=1

4 2 4 2

= COS
2 B+ sin2 B+ cos2 B(2: Aj tan ('(j) + sin2 B(2: Aj tan aj)

j=1 j=1

(3 - 15)

On the other hand, owing to (3-7), (3-8), (3-9), ancl (3-10),

(3 - 16)

(
4 ) 2 c2

(4 cos(('( . + ß')) 2
1 + lyI2 = 1 + "" Aj tan aj + 2 ""' Aj ) )

~ 1 - c ~ cas a)'
)=1 )=1

+ c
2 (~A' sin(aj + ßj))2

1 - c2 L..,) cas G' '
j=1 )

c2

- 1 _ c2 2: AjAk(l + tan G'j ta11 G'k)

1 ~j,k~4

X { 1 ~2 c
2

+ cos(ßj - ßk) - tan( Cl:j - Cl:k) sin(ßj - ßk) }

c2

:::; 1 _ c2 2: AjAk(l + tan G'j tan ak)

1~j,k~4

X {c12 - 1 + cos(ßj - ßk) + Itan( Cl:j - Cl:k) sin(ßj - ßk)I},

where we used the property 1 + tan O'j tan ak > 0 which is verifiecl as fallows. By virtue of

the assmnption (3-5) and the remark befare Definition 3.3,

Moreover lajl = Ih(qj)1 < rr/2, j = 1, .. ·,4. Therefore,

COS( G'j - G'k)
1 +tanG'jtanO'k = > o.

cos aj cos G'k



(3 - 17)
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Remark that

dist(qj, qk) = 2 sin-1 (clsin ßj ; ßk 1).

If ßj - ßk # n1r (n E Z), then, by (3-17) and (3-5),

(3 - 18)
C := - 1 + cos(ßj - ßk) + 1 tan(O:j - O'k) sin(ßj - ßk)1

(
ß·-ßk)2{ I ß'- ßk l-1

}=2 sin ) 2 -1 + Itan(aj - ak)1 tan ) 2

2( ' ßj-ßk)2{ l+lt ( )llt (. _1(sin(dist(Qj,Qk)/2)))!-I}= Sln 2 - an 0'j - 0' k an SIll c

<0.

If ßj - ßk = n7f, it is trivial that

(3 - 19) c S; O.

From (3-7), (3-16), (3-18), and (3-19), we get

(3 - 20)
<1

1 + Iy 1
2

::; (1 - c2
) -1 {I + (E Aj tan 0' j ) 2 } .

j=1

In view of (3-13), (3-15), and (3-20), we see that

Moreover, x 1 (q) == V1- c2 if and only if ßj-ßk = 211jk7f (njk E Z) for allj,k E {1,2,3,4},

which itnplies that p =])1 = P2 = P3 = P4 and hence P is in DI((r), which contradicts the

choice of p. Therefore, the inequality (3-6) holds.

No\v we have proved that r satisfies all assumptions of Theorem 3.2, which itnplies

the desired conclusion. Q.E.D.

REMARK 3.5. Set Q = (V1- c2 ,O,O,0). For any two points ql, q2 E r (f]1 #- f]2), denote

by angle(ql, 12) the angle of L11 Q12(E (0, 1r]). Then the aSSUlnpt ion (3-5) is equivalent to

the following condition.
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YANG-MILLS CONNECTIONS OF HOMOGENEOUS BUNDLES

NORIHITO 1(0180

Dedicated to Professor 8hingo ~1urakalni on his 60th birthday

o. Introduction

Let (]"1, g) be a cOlllpact rielllannian luanifold and P a principal fiber bundle aver M

with compact structure group !(. A functional .rYM which lnaps a connection V7 to the

square integral IM IRV I2 vg of the Donn of the curvature tensor of V is called the Yang­

Mills functional. A Yang-Mills connectiol1 is by definition a critical point of the functional

.rYM. Therefore there is sOUle possibility that so called the direct method and the heat

equation method can be applied to construct a Yang-~1ills connection of P.

When the lnanifold At[ is an algebraic ll1anifold and the group !( is a unitary group,

there is a strong relationship between the nation of stable vector bundles and Yang-Mills

connections ([I<D, and Donaldson shows the existenee of a Yang-Mills eonnection by the

heat equation lnethod ([DD.
In this paper we consider hOlllogeneous bundles as silnple examples in order to see

in what situations the direct 111ethod anel the heat equation lnethod can be applied to

the existenee problelll. Let the rielnannian Inanifold 1\1 be expressed a.s a homogeneous

spaee G/ H and the principal fiber bundle P as G X p ]( using a Lie group homon10rphism

p : H -+ ](. The spaee Ca of aH G-invariant connections forms a finite dimensional vector

spaee. Corresponding to the clirect nlethocl, we will get the following

Theorell1 1. Assume that the Lie gro'lLp H is connected. The function ..rYM ICa '"

proper if and only if one of the follo'Wing conditions holds. (1) The fundamental group

1rl (Al) 0/ A1 iJ finite. (2) The Lie algebra k of the struct'lLre group ]( has no trivial factor

as H -module.

This means that if (1) 01' (2) holds, then any lllinimizing sequenee for the function

..rY MICe has a eonvergent subsequence to a Yang-Mills connection. But if nei ther (1)

nor (2) holds, a nliniInizing sequenee 1118y diverge to "00".

However, even if neither (1) nor (2) holels, we ean find a Yang-Mills connectio11 by the

heat equation - an ordinary differential equation in aur ease - method.
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Theorenl 2. The heat eq'lLation 'With aG-invariant connection \70 as the initial data

haJ a .5olution \7t which is a bounded curve in the space Ca. In particular, the bundle P

admits a Yang- Mills connection.

As a particular case of Theorenl 2, we will see what happens in the case of homo­

geneous complex situations. Fina.lly, we will prove 11ountain-Pass Lemma for the function

FYMICa. Remark that, when we considcr Einstein's equation the corresponding statement

to Theorem 2 does not hold, Le., the solution diverges in general ([\VZ, IntroductionJ).

This work was done while the author was staying in ~1ax-Planck-Institutfür Mathe­

matik, to which he is grateful for the hospitality.

1. Properness

'Ve will prove TheareIn 1 in this section. Let A1 be a compact homogeneous riemannian

luanifold GIH, where G is a compact Lie group and H is a closed subgroup. Denote by 0,

h the Lie algebra of the Lie group G, H respectively. Fix a bi-invariant inner product ( , )

on 9 and denote by m the orthogonal COlllplcIuent of h in g. The riemannian metric of the

space lvI is represented by an H-invariant inner product g on m. Define a principal fiber

bundle P = G x p !( using a conlpact Lie group !( und a hOIllOITIorphism p : H -+ !(. The

Lie algebra of !( is denoted by k and is endowed with a bi-invariant inner product ( , ).

The differential: h -+ k of the Lie group h011101110rphislTI p is denoted by the same symbol

p. The space k beconles an H-nlodule and an HO-nl0dule via p, where HO is the identity

conlponent of H. For basic facts about Lie groups, refer to [H].
As usual, we denote by g' the senli-siInple part of the Lie älgebra 9 and by z(g) its

center. Let m' be the projection hnage froIn g' to m. The vector space m decomposes as

H-module:

(1.1 ) m = m' ffi m n z(g),

which corresponds to tbe decoInposition of the universal coverillg of ].,{ into a compact

manifold and a vector space. Therefore thc fundanlental group 7r} (M) is finite if and only

if m n z(g) vanishes. \Vhen the Lie algebra k decolllposes into the semi-simple part and

the center, the functioll :FY1'I corresponclingly decoIuposeS. These facts reduce the proof of

Theorem 1 to the following propositions.

Proposition 1.1. ASB7l.1ne that the Lie gro'1Lp H is connected. 11 the space k ha.5

a triviallactor as H -1nod'lLlc and the space m n z(g) doe.5 not vanish, then the function

FYM lea is not proper.
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Proposition 1.2. 1f one of the follo'wing conditioTW holds, then the function :FYM ICo

~s proper.

(1) The space k has no trivial factoT as HO -module.

(2) The Lie algebra k is commutative and thc space m n z(g) vanishes.

(3) The Lie algebra k is se1ni~simple and the space m n z(g) vanishes.

We will give proofs of these propositions in this section. The following lemma is

fundamental.

Lel1Ulla 1.3 ([I(N 1 Cbaptel' II Theore111 11.7]). The space CG is canonically identifi ed

with the .5pace of all H -ho1nomorphi:nns HOffiH(m, k), and the curvature tensor RA E

HomH(1\2 m , k) of an ele1nent A E H0111H(m, k) is given by

(1.2) RA(v, tu) == [A(v), A( tu)] - ..4.([v, w],n) - p([v, W]h),

where ( )h and ( ),n denote the component.5 'with respect to the decomp0.5ition 9 = h ffi m,

Frolll now on an element of the space HornH ( m, k) is ielentified wi th a connection of

P, and so the function EYM ICG is regareled as

(1.3)

Since the properness of the functiol1 FYM ICG is independent of the ehoice of inner produets

of m, we may assume that tbe inner procluct 9 is the restrietion of ( , ) in this seetion.

Proof (of Proposition 1.1). The assulnption ilnplies that there are non-zero elements

X in a trivial faetor of the H-moelule k anel Vo in mnz(g), Then we ean define an element

A in HOffiH(m, k) by A(v) == (v,vo)~Y, which satisfies RAA = RO for any real number A by

fannula (1.2). Q.E.D.

We decompase rn as HO-lllodule into tbe t.rivial factar m,o and the surn ml of the
I

irredueible faetors. Then we have inclusions :

(1.4) nll C m,' anel m n %(g) C mo.

LenUlla 1.4. There exist positive con..~tants Cl, C2 and C3 such that for any A E

HOffiH( m, k) it holds that

(1.5)



(1.6)
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Proof. We set (A 1\ A](v,w) = (A(v),A(w)] and observe that if (A 1\ A] - 0, then

A(m]) = O. In fact

0= ([A(m),A(m)],p(h») = (A(m), [p(h),A(m)])

= (A(m),A([h,mJ)) = (A(m),A(m]»).

Therefore if we set Cl = inf {I[A 1\ All; A E HonlH(m, k), lAI = 1}, then C] > O. For the

second term A([v, W]nl) of fonnula (1.2), it depends only on Alm'. Q.E.D.

Proo/ (of Proposition 1.2 (1». Since the space k has no trivial factor as HO-module,

the space HOffiH(m, k) coincides ,vith HonlH(m], k). Thus A, Alm' and Alm] coincide

in Lemma 1.4. Q.E.D.

Proo/ (of Proposition 1.2 (2». Let A be al1Y elelnent of HOlllR(m, k). Since the Lie

algebra k is commutative, the first term [A 1\ AJ of fonuula (1.2) vanishes. And since k is

trivial as HO-module, A(m]) = O. On the other hand, since m n z(g) = 0, it holds that

m = m' = [m, m],ll + ml. Therefore if A :f 0, then the second term A«(m, m],ll) :f O.

Thus we can define a positive n\.uuber Cl by inf {IAI(m, m]1111; A. E ROffiH( m, k), IA] = 1}

and setting C2 the l10nu of the third tenu, we get lRAI 2:: cl1Al- C2' Q.E.D.

Ta prove the case of senli-shnple Lie algebra k, we il1troduce the following usual no­

tations. For a reductive Lie algebra j, t(j) denotes a Cartan subalgebra. When j is

semi-simple and endowed with a bi-invariant inner product ( , ), we denote by L)(j) its

root system as a subset of t(j) and characterize rüot vectors X o E j for a E L)(j) by

(1) [u, Xo] = (u, a).Y_ o for all u E t(j) and (2) (XO', X -0'] = a. The following lemma

will be proved later.

Lenlnla 1.5. Let k be a c01npact semi.simple Lie algebra. For an element (100,101,102)

0/ k 3 we define an element (uo, lL], 'U2) 0/ k 3 by

(1.7) 'Uo = [101,102] - Wo, 'U1 = [102, 100] - 10], U2 = [WO,1Ol] - 102,

then this map : k 3
-t k 3 is proper.

Note that mo becolues a subalgebra of 9, l.e., [mo, mol C mo, and [mo, ml] is

contained in ml. Since Cartan subalgebras t(h) Rnd t( mo) commute, there is a Cartan

subalgebra t(g) \vhich contains t( h) anel t(mo). The space t(g) decomposes into the center

z(g) and a Cartan subalgebra t(g'). It admits also an orthogonal decomposition :

(1.8) t(g) = t(h) EB t(mo) EB t(g) n ml.

We denote by t(g')o the illla.ge of the orthogonal projection from t(g') to terno).
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LenUlla 1.6. Denoting by (mo)' the se1ni-simple part of mo, we get

(1.9) t(g')o + (mo)' = m ' n mo.

Proof. It is clear that the left hand siele is contained in the right hand side. Let v be

an element of the right hand side which is orthogonal to the left hand side. Then v is an

element of the center z( tno), and is orthogonal to t(g'). Therefore we see that v E z(g)

and so by (1.1) we conclude that v = O. Q.E.D.

\Ve rewrite Proposition 1.2 (3) as follows in order to use it in section 2.

Proposition 1.7. 1/ the Lie algebra k is semi.simple, then IAlm'l is estimated from

above by using IRA I.

Proof. First remark that, by LeIlllna 1.5, if we take vo, VI, V2 E m with [vo, Vl]m

= v2, [Vb V2],n. = vo, [V2' Vo]nJ = VI, then IA(v;)l's are estiluated by using IRA I. Therefore

we can get an estimat ion of ..41 (mo)' because the space (mo)' is spanned by it s root s and

root vectors. Next we decolupoSC a root 0: E Ll(g') by (1.8) and denote by 0'0, 0'1 the

terno), t(g) n ml-component, respectively, and set ci = 0'0 + 0'1. The vector ci is the

m-component of Q', and belongs to m'.

Now assume that 0.'0 i= O. Then

(1.10)
±Iao 1

2
. X±O' = [0'0, X±a] = [ao, (X±n )11] + [ao, (X±a )111]

= [0'0, ("'-Y±a),11.] E m,

and so X ±a E m. Setting Vo = la'l-2O", VI = 10"1-1X a , V2 = 10:'1-1X-a , we can get an

estimation of A(0") by the previous reInaJ:k. Ivloreover, since A(Adha') = Adp(h)A(0") for

h E HO, we get an estitnatiol1 of 1.4(0'0)1 by

where dh is the Haar measure of HO. Since the space t(g')o is spanned by such ao 's,

we get an estimation of Alt(g ')0 . COInbining with the estiIuation of AI (mo )', we get an

estimation of AI(m.' n m.o) by Lenlnla 1.6. Finally, using Lenmla 1.4 and the inequality :

JA Im/J ::; IAI(m.' n m.o) I+ IAJ m ll fronl (1.3), we get an estiInation of Alml, therefore of

Alm'. Q.E.D.
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Proof (of Leu1ffia 1.5). 'Ve set C= Illax{ luD], IUII, !U21} and e= lwo I, and show that

i is bounded frOln above by using c. In the following, Ci'S mean positive constants which

depend olllyon c and do not depend on e. At first we see that

IWI t
2

- clwd ~ ('lo], Wl + UI) = (WI, [W2, 'Wo})

= ([Wl, tv2], wo) = (wo +UD, wo) ::; e2 + ci,

and so IWll ~ e+ c. By the SBJ.lle way we see also that IW21 ::; e+ c.

We choose a Cartan subalgebra t( k) containing Wo and a linear order >- of t(k) so that

if (100,0') > 0, then 0' >- O. Denote by n = {O'd the fundamental root system. Since n is

basis of t(k), whose pattern is independent of the choice of orders, it holds that

(1.13) L XiO'i ~ Cl L Ixd for any (Xi)'

oiEn oiEn

"Ve set tvl = Z + L: a o -3(o, where z is an elenlent of t(k) and the summation is taken

for roots 0' E Ll(k). Then we see that

(1.14)

(1.15)

(1.16)

And so,

(1.17)

(1.18)

[wo, WI] = L ao(a, wo)X-o,

'W2 = [wo, wd - 1.l.2 = :2:= aa: (0' 1 Wo }_X"-0' - U2,

[wo, W2] = - L 0.0 {O', wo}2 _Ya - [wo, tl2]'

Ul = [W2, wo] - WI = L ao{O', wO)2 )';0 + [wo, tL2J - Z - L aoXa ,

L ao ( (a, wO}2 - 1))';0' = Z + 'lll - [wo, '112]'

Since {Xa; a E Ll Ck )} are orthogonal, it follows that

(1.19)

Therefore, if (Cl', wo) 2 ~ 2, then

(1.20)

And since

(1.21)

[WI, W2]t(k) = [W1, L ao·{O', wo}-\'"-a - '112]t(k)

= [z + L 0 0 -'\'"(1) L oo{(1', 'Wo)_Y-o]t(k) - [10], 'ltz]t(k)

= LCao )2{a,wo}'0' - [wj,UZ]t(k),
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we get

(1.22)
Wo = [wt, W2]t(k) - (UO)t(k)

=L(aO')2(a,Wo)'Q' - [Wt, U2]t(k) - (ttO)t(k).

Now for a positive number €, we define a subset lIe of the fundamental root system

II by

(1.23)

The number c will be fixed later independently of e. In the following, the constants Ci are

independent also of c. Put

(1.24) S = od(k) n L ZO'i

O'iEnc

An element ß of od( k) - S can be represented as L: 1niO'i (Q'i EIl), where all mi are

non-negative 01' all are non-positive. Anel so

(1.25)

J(ß, wo)1 =L Inlj(wo, o'i)1

~ (wo, ai) for some l1'j E II - IIe

~ C4C e.

Therefore if e~ 1 and V2( C4 C) -1, then, by (1.20), we see that

(1.26)

(ap)21(ß,wo)l::; (2C3(e + 1))2!(ß,wo)!-3

::; (2C3(C + 1))2(c4ce )-3

::; C5 C- 3 •

(1.27) L(aO')2(a,WO)'Q' = L ((aO')2 + (a_O')2)(0:,1Oo)'0"
oES aES, a>-O

all Si axe nonnegative, and so

(1.28)
(wo, L 8;O:i) = L Si(WO) O'i) < L 8ilwoll0:;lc

::; e6t: eL Si·
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On the other hand, fronl (1.13), (1.22) anel (1.26), if I! is greater than 1 and V2(C4C)-I,
then

(1.29)

Cl :z= Si ~ I:z= SiO'd
= Iwo - :z=(aß)2{ß,wo)·ß + [WI,UZ]t(k) + (uo)t(k)1

ß~S

~ e+ C7E-3 + Cse + Cg.

Combining it with (1.28),

(1.30) (wo, :z= 8iO'i) ~ ClQE e2 + (polynollual of eof order 1).

Therefore, again using (1.22) and (1.26), we see that ife 2: 1 and V2(C4E)-I, then

(1.31)

e2 = (wo, wo)

= (wo, :z=(CLß)2(ß,wo)·ß + :z=SiG:i - [Wl,U2]t(k) - (UO)t(k»)
ßilS

~ CIOE e2 + cl[wo, wdl + (polynomial of eof order 1)

= eIDE e2 + CIW2 + U21 + (polynomial of eof order 1)

~ CIoE e2 + (polynonlial of eof order 1).

Thus choosing E so that CIoE < 1/2, we get the clesired estiInation of e.

2. Gradient Flow

Q.E.D.

We consider the heat equation for the functional :FYM with respect to the L 2 inner

product, which becomes

(2.1)

H we choose V'0 E Ca as the initial data of this equatiol1, then the solution V' t is a curve

in Ca and coincides with the solution of the ordinary differential equation defined by the

vector field -grad(:FYM ICa). As is easily conlputed from formula (1.2), the equation is

given by (up to constant l1lultiplication of tinle variable t),

(2.2)
~Ai = :Z=[Aj , [Ai> AilJ- :z= C/i [Aj, Ak] - :z= C/i[Aj, PB]

+ (1/2) :z= C/dAj, .4k] - (1/2) :z= C/kC/k .41 - (1/2) :z= C/kC/'kPII,
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where we take orthononual basis {vd of m with l'espect to 9 and basis {vp } of h, and set

(2.3)
Ai = A(v;), Plt = p(v,,),

[Vi, Vj} = L C/'jVk +L C/'jVs '

All the summations cu'e taken for j, k, 1, s, which appear twice in the tenns.

We will prove Theorem 2 for equation (2.2). Denote by A(t) the solution. At first, by

Proposition 1.7, the n01'111 of A(t)lm' is esthnated fronl above by using IRA(O) I. Therefore,

denoting by (m')J. the orthogonal cOlllplhllent of m' in m with respect to g, it is sufficient

to prove that A(t)l(m')J. is bOtlllded. To show it, we choose an arbitrary unit vector Vo in

(m')J., choose orthono1'111al basis {Vij 0 :::; i < dhn m} of m containing Vo, and prove that

Ao(t) is bounded. For ..4o(t), equation (2.2) is Siolplified as

(2.4)

In fact the structure constants CjOk vanish in equation (2.2) beer:tse [m, m}m C m'.
Moreover, since the inner product 9 is H-invariant and Vo is orth~ional to m', the vector

Vo is an element of mo, and as the reluark following Lenlma 1.5, [mo, m] C m, which

implies that also the structure constants C/~o vanish.

Next, as we see fronl equation (2.1) 01' (2.2), whel1 the Lie algebra k decomposes as

k' EBz(k), the solution also deC0I11pOSeS, ancl the z(k)-component of Ao(t) is constant from

equation (2.4). Therefore we luay asslllue that the Lie algebra k iJ Jemi-Jimple. Moreover,

since the equations do not depend on the choice of inner products on k, we may assume

also that the root vectors _Yo: of k are unit.

Now we define a function L 00 the vector space k as follows. Let 28 be the surn of

811 positive roots of k. Vle represent 28 as 28 = L: niG'i. Let {Wi; 1 ~ i ~ r} be the

fundaluental weight system of k, anel set ~i = (ni)-lwi. For 10 E k, we define

(2.5) L(w) = lnax{ {Ad-,w,~i)j 1 ~ i ~ r, , E j(}.

LenUlla 2.1. For 10 E k, the val'll.e L(w) iJ realized by 1 E j( ~uch that Ad-,w belongJ

to the positive Weyl chamber T'V. In particular L is a norm 0/ k.

Proof. From the assluuption, for any ){ E k,

(2.6) o= ([X, Ad,w], ~i) = (){, [Ad,w, ~i])'

Therefore Ad,tv and ~i belong to the Salue abelian subalgebra of k. Since all Cartan

subalgebras are conjugate, we 111ay aSSlllne that Ad,tv E t(k). H (Ad,1O, aj) < 0 for some
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aj E fl, then, taking 1] E 1( which gives the reflection with respect to aj, for any ~k we see

that

(2.7)

(Ad 71 -yw, ~k) = (Ael,,(Ad-yw), ~k}

= (Ad-yw - 21Q'jl-2(O'j,Ad-yw}.aj,~k)

= (Ad-yw,~k) - 210'jl-2(O'j,Ad-yw}(nj)-10jk

;::: (Ad-y1O, ~k).

That is, when Ad-yw is mapped into Hf by the \Veyl group, the value L(w) is still realized.

Q.E.D.

We reduced to the case that the Lie algebra k is senli-shnple in order to use the

following

Lemlna 2.2. Let k be "emi-si7nple. There exists a positive number c with the /ollowing

property. Let 10 be a unit vector in the p03itive Weyl chamber lV. 1/ (10, O'i) < c, then theTe

is ~j ,,'Uch that (10, ~j) > (10, ~i)'

Proof. Set 10 = L: XkQ'~·. Then all Xk are positive and (w, ek) = (nk)-l (W,Wk) ­

(nk)-lxk. Asstune that (w,~j) S; (W,ei) for all ~j. Then, since (aj,O'i) S; 0 for j f:. i,

(2.8)

(1O,ai) = L(Q'j,O'i}Xj
j

;::: (ai,O'i}xi + L(aj,ai}nj(nd-1xi
j::li

= (nd- 1 L(njoj, O'i}X;
j

=('11.;)-1 (20, Q'i}Xi > 0,

because 20 belongs to the open positive Vleyl chamber l-V. Thus the conclusion follows

from the continuity. Q.E.D.

Proo/ (of Theorem 2). It is sufficient to prove that L(Ao(t)) is bounded. Since Ao(t)
is real analytic, L(Ao(t)) is continuous anel, by Lemma 2.1, piecewisely represented as

(2.9)

where let) is areal analytic curve of !( and ~I is taken by renunlbering of suffix. We may

assume that ,(t) = 1 at a tüne t = to by chang-ing the Cartan subalgebra t(k) if necessary.
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We set Aj = Uj + L:O' xJX a , where 1.lj E t(k) and Q' E Ll(k). At the time t = to, we see

that

(2.10)

Thus assigning (2.4), the last expression

= - L ([A o, A j ), [~l, A j ]) - L Cj
k
O([~I, Aj ], A k )

j~O j,k~O

= - L( L xj{a, Ao).\'"-o, L xj(O:'~l)X-O')
j~O oE.a(k) oE.a(k)

- I: Cj kO( L xj {(Y, 6 )..Y-0, U k + I: xkX 0 )

j,k~O aEL\(k) oE.a(k)

= - { I: (0' , €1 ) (o:, Ao)( x j )2 + I: Cj k0 (O' 1 €1 ) X j x k0 }

j~O, oEL\(k) j,k~O, oEL\(k)

L {L(a'~l)(a,Ao)(xj? + L(a'~l)(a,Ao)(Xk"?
oE.a(kL 0>-0 j~O k~O

+ L (C/0 - Ck j0) (a, ~1)x j x k" }.
j,k=;tO

This swnmation is taken 0111y for positive roots 0' E L1(k) such that (0', ~l) =f O. If

we represent such 0' as "L:rniO'i, then ffil 2: 1 and al1 ffii 2: 0, and so (O',~l) ~ IWll-1.
Therefore by LemnlR 2.2, it holds that {a,Ao} 2: elAoj. In fact, if I(O',Ao)j < elAol, then

l(aI, Ao}I < elAo I and so (Ao, ~i) > {Aa,6} for same i, which contradicts the maximality

of {Ao, ~1}. VVe regard the last expression as a quadratic form of (xj) and (xk"°), and see

that, if L(Ao) is sufficiently Im'ge, and so is IAol, then the coefficients of (xi? and (x;O?
are sufficiently greater than that of xjxJ:'\ wmch implies the non-positivity of the last

expression. Q.E.D.

REMARI< 2.3. Fl'Olll the bOluldedness of A(t), we see that any subsequence of A(t) has a

subsequence which converges to a Yang-~lIills connection. It seems to the author that A(t)
itself converges. At least it is clear that if the closure of the set {A(t); t E R+} contains

an iso1ated Yang-Mills connection, then A(t) converges. Here we mean by iso1ated to be

isolated modulo the action of the nornlalizer group NK(p( H)) of p(H) in [(.
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3. Appendix

At first, we consider the relation between equation (2.2) and holomorphic vector bun­

dles. Let ]1,11 be an algebraic Inanifold and P a principal U( r )-btu1dle. Take the complexi­

fication GL(r, C) of the conlpact Lie group U(r), and complexify P to a principal GL(r, C)­
bundle pO. There is a one-to-one correspolldence between hololnorph.ic structures aof po

and connections \7 of P whose curvature tensor R" are of type (1,1). I(obayashi shows that

if the corresponding connection \7 to a holomorphic structure ais a Yang-Mills connec­

tion, then ä is semi-stable ([1\:]). Conversely, the following hold. Let Do be a holomorphic

structure and \70 t he corresponding COlUlection. Heat equatiou (2.1) with initial data \70

has a unique solution \7 t , whose curvature tensors are of type (1,1). Let 8t be the corre­

sponding holonl0rphic structure. Then a11 ßt are conjugate to [jo tu1der automorphisms of

pO. Moreover, if ao is stahle, then both \7 t and at converge, and lim 8t is conjugate to 80

([D]). In our homogeneous situation, we get

Corollary 3.1. Let !vI and P be as above with homogeneous aS3umption. Let ßo be

an invariant holomorphic str'Ucture. Then the sol'ution ßt has a convergent 3ub" equence.

flut i/ äo is not 3emi-3table, then the limit 0/ ßt i~lJ not conjugate to äo.

Next we consider so called

Mountain-Pass Lenuna. Let S be a mani/old and f a /unction 0/ S. 1/ there are

relative minima Xl, X2 E S 0/ f which are not contained in a connected component 0/ the

critical point "et, thcn there exiJt3 an un"table critical point X3 ES.

Theorem 3.2. Mountain-Pa"3 Lemma holds /or the 3pace S = Co and the /unction

f = .rYM!Ca.

EXAMPLE 3.3 Asslune that G is senli~sitllple and set H = {id}, 1( = G and p = id.

Then the space Co is iclentified with EndR(g), and .rYM(A.) = 0 if and only if A is a

Lie algebra homomorphism. Therefore A = 0 and A = id are critical points of .rYM ICG,
aud belong to different connected cOlllponents. Thus we can conclude, by Mountain­

Pass Lemma, that there exists another unstable Yang-Mi11s connection in Ce. When

the riemanman metric 9 on G is bi-invariant, it is easy to get such an unstable Yang­

Mills connection, say A = (1/2)id. However it is not clear to see the existence of such a

connection for a generalIeft invariant Inetric on G without our Theorem.

As the above eXaIuple, if the space S is a vector space 8Jld if the function f is (by

Theorem 1) proper, then Ivlountain-Pass Lelllnla holds by [C, (VI 6.1)]. For general case,

i.e., when the fundaluental group 7rl (111) Inay be infinite, we use the next lemma. Let V be
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a finite dilnensional vector space, S a closed convex dOlnain of V and f a smooth function

on V. A point x in S is said to be critical in S if and only if one of the following conditions

is satisfied. (1) x is an interior point of Sand is critical for f. (2) x is a boundary point

of S and it holds that (df)x(y - x) ~ 0 for all y E S. The following is a finite dimensional

version of Struwe's Mountain-Pass Lelnnla, where Palais-Smale condition is equivalent to

the properness.

Lelnnla 3.4 ([S, Chapter 11 Theorem 1.13]). 1/ the function fiS ~ proper, then

Mountain-Pa33 Lemma holds replacing critical by critical in S.

Proo/ (of Theorem 3.2). Let {Vi; 1 :s; i :s; k} be orthononnal basis of (m.').L and

{ Vi j k < i :s; n} that of m'. 'Ve regard the vector space V = HornH ( m., k) as a subspace

of k n = {(Al, ... , Ak, Ak+1, ... , An)}, where Ai = A(Vi). Using the decomposition : k =
k' EB z(k) and the function L on k' defined by (2.5), we set

where c is a suffieiently large constant. Then S is a closed convex domain of V and by

Proposition 1.7 the function ..rYM ICG is proper on S. If A E' as is critical in S, then, by

definition, (d ..rYM ICG ) A (B - ..4.) ~ 0 for all B ES. But Proof of Theorem 2 implies the

opposite inequality, provided that c is sufficiently large. Thus A. E S is critical in S if and

only if A is clitical in the usual sense, and so the proof reduces to Lemma 3.4. Q.E.D.
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