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THE UNIQUENESS FOR MINIMAL SURFACES IN §3
Mivukr KOISO

1. Introduction

In this paper, we shall show a couple of new uniqueness theorems for compact gener-
alized minimal surfaces in the three dimensional open hemisphere.

At first, we remark on uniqueness results for minimal surfaces in R3. There are three
basic theorems. The first theorem is due to Radé [9] and states that if a Jordan curve T’
has a one-to-one parallel or central projection onto a convex plane Jordan curve, then I'
spans a unique minimal disk. The second theorem is due to Nitsche [8] and states that
if the total curvature of an analytic Jordan curve I' does not exceed 4n, then I' spans a
unique minimal disk. The third uniqueness theorem states that if a C?-Jordan curve T is
sufficiently closed to a C%-plane Jordan curve in the C?-topology, then I’ spans a unique
minimal disk (Tromba [11]). These three theorems were generalized by Meeks (6], which
treats (not necessarily disk-type) compact minimal surfaces.

Now let " be a Jordan curve in the three dimensional open hemisphere H of $°. Then
the area-minimizing surface spanned by I in $* exists (Morrey [7, Theorem 9.4.3]) and is
contained in H (Lawson [5]). Our main result is as follows. Let B be the 2-dimensional
unit open disk, let ¢g : S — S$? be the projection of the Hopf fibering, and denote by
K(T) the convex hull of T'.

Theorem 1.1. Let T C H be a Jordan curve such that there ezists a mapping X €
C%B,S*yN H}(B, S®) whose restriction X|pp : OB — T is a homeomorphism. Assume
that @olpr : I’ — I'o is a one-to-one mapping of T’ onto a Jordan curve Iy in S? and that
0o(I(T)°) C o, where Qq is one of the domains bounded by Ty tn S2. Then T spans a
unique generalized minimal surface in H. Moreover, the tmage of this minimal surface 1s
the image of a section : Qy — H of the Hopf fibering and its interior is an imbedded disk.

We shall verify this result in §3 by proving an equivalent result:Theorem 3.2. The
main tools of the proof are the maximum principle for minimal surfaces in $® (Theorem
2.12) and the convex hull theorem due to Lawson [5]. Besides Theorem 3.2, we will give a
more concrete sufficient condition on I' for the uniqueness (Theorem 3.4).

We should remark that Theorem 1.1 is an analogy of Radd’s uniqueness theorem
mentioned above. On the other hand, recently Sakaki [10] obtained an analogy in H of the
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third uniqueness theorem in R3. As for an analogous result for minimal surfaces in $° to
the Nitsche’s uniqueness theorem in R?, we will discuss in a forthcoming paper.
The author would like to acknowledge conversations with Hermann Karcher which

gave the motivation for this work.

2. Preliminaries, especially, the maximum principle

We set $® = {z € R*;|z| = 1}. Let R be a Riemann surface with or without boundary.
We denote the interior of R by R° and the boundary of R by IR.

DEFINITION 2.1. A mapping X = (X1, A2, X3 A1) : R — S is called a (generalized)
minimal surface if X satisfies the following conditions (1) and (it).

(1) X € C*(R, $*)N C?*(R°,S*) by regarding R as a 2-dimensional real differentiable
manifold.

(ii) X is conformal and harmonic, i.e., for any local parameter u' + V—T1u? of the
Riemann surface R°,

4 i\ 2 4 i 2 4 s :
o7 ax? ox7y 9xv
S(5r) ~2(5m) D aa 0

j=1

AX = —2|VX X,

5?2 o , e[ [0XIN?  foai\?
A= uy Ty 4 VA —Z{(W) +(W) }-

7=1

where

DEerFINITION 2.2. Let R be a compact Riemann surface with boundary. A mapping
X : R -+ 5% is called a (generalized) minimal surface spanned by a Jordan curve T C S% if
A satisfies the following conditions (i) and (ii).

(i) & is a generalized minimal surface.

(ii) The restriction X|sx is a homeomorphism of R onto T

REMARK 2.3. Let B be the 2-dimensional unit open disk, and T' be a Jordan curve in
53, Assume that there exists a mapping X' € C°(B,S*) N H}(B,S*) which satisfies the
condition (i1) in Definition 2.2 for ® = B. Then I spans at least one generalized minimal
surface X) : B — S (Morrey [7, p.389, Theorem 9.4.3]) which minimizes the area among
all disk-type surfaces spanned by I'. Moreover, if I is contained in the open hemisphere H
of §°, then the Morrey’s solution is contained in H (Lawson [5]).
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To make the discussion clear, we give the definitions of branch points and branched

immersions. As for detailed properties of them, we refer to [4].

DEFINITION 2.4. Let M be a 2-dimensional differentiable manifold, N an n-dimensional
differentiable manifold (n > 2), and f : M — N a C*'-mapping.
(i) We say that the mapping f has a branch point (of order m — 1) at p € M if there

1 4?) around p such that p corresponds to the

exist an integer m > 2, local coordinates (u
origin (0,0), and local coordinates (z?,- - -,z™) around f(p) such that f(p) corresponds to

the origin (0, - - -,0) which satisfy

gl + V=122 = w™ + o(w),

z¥ = o(|w|™) for k=3, -, n,
a(w) = of[wi™),
k
_g‘%(w),%(w) = o(|w[™™!) for j =1,2 and k=3, -, n,

where w = u! 4 /=1u’.
(ii) The mapping f is called a branched immersion if it is regular except for branch
points.

REMARK 2.5. If p € M is a regular point of the mapping f : M — N in Definition
2.4, the condition (i) is satisfied for m = 1. For convenience, we mean a regular point by
the expression branch point of order zero.

REMARK 2.6. A generalized minimal surface X : R — $* is a branched immersion in
R° ([4, Proposition 2.4]). '

Lemma 2.7. Let X : R — S° be a generalized minimal surface and p an interior point
of R. Let (y',y?%,y?) be local coordinates around X(p) € S such that X'(p) corresponds
to the origin (0,0,0). Then, by rotating S®, X is represented around p in the following
manner. There ezist a neighbourhood U of p and a C'-diffeomorphism 1 : U = V of U
onto a neighbourhood V of w = u! 4+ /=1u? = 0 in C with 7(p) = 0 such that T is real
analytic ezcept the point p and such that X is represented in terms of w and an integer
m > 1 as follows.

v+ V=-1yt =w™, P = $(w),

where

¢ € C3(V)NC(V\ {0}).



¢(w) = O(|w|™ 1),
2
auiau-j(

Moreover, if p 13 a regular point of X, then m =1 and ¢ € C¥(V).

-1 2w =0, w)=0([w[™"1) for i,j =1,2

Proof. We can verify this lemma by ﬁsing the same methods of the proofs of a series
of lemmas [4, Lemma 1.3, Lemma 2.1, Lemma 2.2, Lemma 3.1]. Q.E.D.

RemMARK 2.8. In Lemma 2.7 the diffeomorphism 7 is not a conformal mapping in
general, that 1s, w is not an isothermal parameter of the considered minimal surface in

general.

REMARK 2.9. Let a branched immersion f : M — N have a branch point p € M. Then
for any sequence {p,} of regular points of f such that p, — p (n = +c0), the tangent
space to f(M) at f(pn) tends to a limit as n — oo ([4, Lemma 3.1}). We call this limit
the tangent plane to f(M) at p. In Lemma 2.7 the tangent plane to A(R) at p is the
(y?,y?)-plane, where the local coordinate neighbourhood is regarded as a domain of R? via

the coordinates.

The following minimal surface equation will be used to prove the mazimum principle
(Theorem 2.12) below.

Lemma 2.10. Let D be a subdomain of {(y',y%) € R%: (') + ()2 < 1-¢€},0 <
e <1, and ¢ be a function in CY(D,(—n/2,7/2))N C*(D,(~n/2,7/2)). Assume that the
mapping X : D — 53 C R* defined by
X', v*)
= (V1=(")? = (¥?)Pcosd(y',v*), 9", %, V1 — (¥1)? — (¥%)2sing(y', %)),

t8 ¢ manimal itmmersion. Then
I(8): = {(1- (v")" = &))" 6> + 1= (")} s

—2{(1- (') - (U2)2)2¢51¢2 + 'y }dia

+H{A- ") - @) 62 +1- (1) e

+2(y 1 + v* 42)

X {((ylfﬁl + y2¢2)2 — ¢ - ¢522) (1 - (y1)2 - (yz)z) - 2}
= 0 in D,

where ¢y = 0 /0y*, ¢2 = 0p/Oy?, 11 = D*¢/(By")?, ete.

(2-2)

(2-3)
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Proof. Since a minimal immersion is a critical point of the area functional, we calculate
the first variation of the area for any variation of surfaces with type (2-2) preserving the
boundary values. Let 9 be any function in CZ(D), and Xt a mapping defined by (2-2) in
which we substitute ¢ 4+t for ¢. Denote by A(t) the area of X', By some calculation, we
get

AOy=—[| % 1)1 - ") - )
(2—-4) '/'/D

-3/2
L 2 2 1 2, 2\ T
x{l_(y1)2_(y2)2+¢1 +é2° —(y é1+y d2) dy” dy*,

where I(4) is the expression defined in (2-3). If X is minimal, then A’(0) = 0 for all
¥ € C}(D). Hence, by (2-4), I(¢) = 0. Q.ED.

DerFINITION 2.11. Let &) : Ry — S*, Xy : Ry — S? be two generalized minimal
surfaces. Assume that p = A}((1) = A2((2) for some points {; € R}, (2 € R§. We say that
A7 locally lies one side of Xy near the point p if there exist an open neighbourhood W of
pin S3, an imbedded 2-disk in W which contains p and divides W into two parts W; and
W, such that each X;(R;)N W is contained in W;, j = 1,2.

Theorem 2.12 (Maximum Principle). Let X7 : Ry — 83, Xy : Ry — S3 be two
generalized minimal surfaces. Assume that X locally lies one side of Ay near a point
p = A (0) = A(C2), &1 € RS, {2 € RS, and that ot least one of these surfaces, say X,
has a branch point of order at most one at the point (;. Then there ezist neighbourhoods
Uiy, Uy of (1, (2, respectively such that

X1 (Uy) = X(Us).
Proof. By rotating 53, we may assume that p coincides with the point (1,0,0,0). Set
H={(z' 2% 2% 2") € 8%z > 0},

and define a mapping

®:H - {(v',v%,v°) e R¥ (y)? +(*)? <1 and |y®| < n/2) =W

®(z', 2%, 2%, 2%) = (22,2, tan" ! (2 /z1)).
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Then (H,®) is a coordinate neighbourhood. Denote by (y',3?%,4*) the local coordinate
system in (H, ®). Remark that the point p corresponds to the origin (0,0,0), and

7y, yhy?) = (V1 - (v1)? — (%) cosy’ vt v?, V1 = (¥)? — (¥2) siny?).

Without loss of generality, we may assume that the surface X has a branch point of
order at most one at the point {;. From the assumption, the tangent planes to A3(R,),
2(R2) at (1, (2 (respectively) coincide. By rotating 53, we may assume that these tangent
planes are (y',y%)-plane. By Lemma 2.7, there exist a neighbourhood ﬁj of (j in Rj, an
open disk V in C with center w = 0 and radius p > 0, and a C*-diffeomorphism T : ﬁj -V,
such that
yH(w) + VT (w) = w™,

yi(w) = ¢;(w),

where y;-‘ = y*eXjor; 7! and $;, m; are defined in the same manner as in Lemma 2.7 for
k=1,2,3, and j = 1,2, and moreover my; =1 or 2.

Let B, be an open disk in (y!,y?)-plane in W C R® with center zero and radius r,
1/v/2 > 7 > 0. Let r be small so that

<y, j=1,2,

and let 4 be a simple closed arc in B, which connects the origin (0,0) and the boundary
OB,. Then in the domain B,\~v we can take a single valued branch of (y! + /=1y?)!/™
which we denote by w;(y',y?). Then ¢; := ¢;ow; is a real analytic function of y!, y? in
B, \~v. Let D be a simply-connected domain in B,\vy whose boundary is a smooth regular
curve containing the origin (0,0). Now ¢;|p is of class C! by virtue of (2-1). From the

assumption, by rotating S% if necessary, we may assume that
(2-3) $12 ¢, on D, $1(0,0) = ¢5(0,0) = 0.
Moreover, owing to (2-1),

(2-6) (01/9v)(0,0) = (862/0v)(0,0) = 0,

where (9¢;/0v)(0,0) is the outer normal derivative of ¢; at (0,0).
Consider minimal surfaces
T {(v,v2, 8 (v" v7)) (vt v%) € DY)
= {(v/1= (") = (¥2)2cos ¢;,y",v%, V1 — ()2 — (¥2)sin ;); (¥, ¥?) € D}.




By Lemma 2.10,
I(ﬁgl) = 1(952) =0.

Set
(2-17) g=¢1, h=¢s, and F=¢ —h.
Since I{g) — I(h) = 0, we obtain

{1 - @) - (*) ) g2 +1—=(y')*} Fur

_2{(1 (¥')? ~ (¥*)? ) 192 +y1y2}F12
+{(1 - (') -—(y ) 0% +1 - (*)°} Faa

1
d
+ (1= ("% = (¥*)%) hn / = (o +tFy)dt
0
1
d
— 2(1 - (yl)z _ (y2)2)2h12 / E{(hl + tFy)(he +1F,)}dt
0
1
+(1- (') - (yz)z)zfmf %(hl + 1Rt
0

+20= 0 = @) [ 5[0+ tR) + 0+ 1E))

x [{y' (b1 + tF1) + y*(he + tF2)}? — (b +tF1)? — (R + th)z]]dt
—4y1F1 —-4y2F2
= 0,

where g1 = 9g/dy?, g2 = 9g/8y*, hy = Oh/OY .- -, Fag = 0*F/(8y*)?. Denote the left
hand side of the equation (2-8) by L(F'). Then
2
(2-9) LF)= Y ajFy+ ) bjF;=0,
1<1,7<2 j=1
where
a;; = (1-(y')* - 1)) 02 +1- (v,
a1z = an = —{(1- ") - (")) 0102 +v'v*},

azs = (1 —(y')* - (y2)2)2g12 +1—(y%)?,
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and b; are continuous functions in D which are bounded on D by virtue of (2-1) and the
condition mqg < 2. Since D C By, r < 1/\/'2, we can see that the operator L is uniformly
elliptic. Now by (2-5), (2-6), (2-7), and (2-9),

L(F)y=0 and F >0 on D,

F(0,0) = 0, (9F/8v)(0,0) = 0.

Therefore, by virtue of the strong maximum principle for solutions of uniformly elliptic
equations (c.f.[2, p.34 Lemma 3.4 and p.35 Theorem 3.5]),

F=0on D,

that is

¢1=¢s on D,
By the arbitrariness of the arc v, branches of (y*' + \/—lyz)“mi, and the domain D, we
can conclude that X;(U;) = A5(Us) for some neighbourhoods Uy, Us of (i, (2. Q.E.D.

REMARK 2.13. In the situation of Theorem 2.12, (; is either a regular point or a false
branch point of &j, 7 = 1,2.

3. Uniqueness theorems

In this section, we will prove a few uniqueness theorems for minimal surfaces in the

! > 0}. From now

three dimensional open hemisphere H = {z = (z!,2%,2°% z) € §% =z
on we assume that any Jordan curve I' C H in our discussion satisfies the assumption of
Remark 2.3. Therefore, there exists at least one generalized minimal surface spanned by T

in H. At first we define the uniqueness in our problem.

_DEeFINITION 3.1. Let ' C H be a Jordan curve. Fix three distinct points P, P,,
P; in I'. We say that " spans a unique generalized minimal surface in H if the following
conditions (i) and (ii) are satisfied.

(i) There exists a unique (up to conformal equivalence) compact Riemann surface R
with boundary OR such that there is at least one generalized minimal surface X' : R — H
spanned by I '

(ii) Under the condition (i), fix three distinct points Q;, @2, @3 in OR. Then there
exists a unique generalized minimal surface X : R — H spanned by T such that X'(Q;) =
P;,7=1,23.
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Now let us recall the Hopf fibering. 51 = {¢ € C;|¢| = 1} acts freely on $° = {(w,2) €
C?;|lw|? + |z|* = 1} on the right: ((w,z),e‘/-:io) € 8% x 51 5 (weV™Tl zeVTT) =
Ro((w,z)) € 8% Let ¢ : S* — §3/S! = S? be the canonical projection. Then
53(S5%, S, o) is a principal fibre bundle and is called the Hopf fibering. Each fibre oo~ (y)
(y € S?) is a great circle of S® and is called a Hopf circle.

Next, we define a restricted Hopf fibering. Set

=8 {z= (z',2%,2%,2*) € $%; 2! = 2* = 0}
= 5%~ {(w,2) € $® ¢ C*;w =0}.
Then S? acts freely on S3 on the right. Let ¥ be the 2-dimensional open hemisphere

{(z1,2*,2%,2*) € S 2! > 0 and 2z = 0}. We can define a restricted Hopf fibering
$%(Z, 5%, ¢) by

w:z €S o p(z):=2N{R(z);eV" ¥ € §'} e .
Each fibre
0~ (y) = {Ro(y); eV € '}, yex,

is a Hopf circle.

Going back to our uniqueness problem, let I' C H be a Jordan curve. Denote by K (T")
the convex hull of I, and by K(I')° the interior of K'(T'). (As for the definition of the convez
hull, refer to 5, §3].)

Theorem 3.2. Let ' C H be a Jordan curve. Assume that glp : T — T is a
one-to-one mapping of I' onto a Jordan curve ' in £, and that

(-1 (K(T)°) C L,

where Q0 1s the interior of I' in ©. Then T spans a unique generalized minimal surface in
H. Moreover, the image of this minimal surface is the image of a section :Q — H of the
restricted Hopf fibering and its interior is an imbedded disk.

Proof. Let X : R — H be any generalized minimal surface spanned by I'. Since X(R°)
is contained in K(I')° ([5, Theorem 1}),

(3-2) w(X(R°)) C 0

by virtue of the assumption (3-1).
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Set B = {¢ = u! +v/—=1u? € C;|¢| < 1}. Let A} : B — H be the minimal surface
spanned by I" which was obtained by Morrey (c.f. Remark 2.3). Then A; has no branch
points in B ([3, Theorem 8.1 and 8.2]). Now let us prove that X;(B) is the image of a
section : & — H. Namely, we will show that

(3 - 3) Xy(B) = {Ru(q)(0); g € @}

for some continuous function k of © into (—7/2,7/2). If not, owing to (3-2) and the
injectivity of ¢|r, there exists a point ¢ € © such that ¢™1(q) N X, (B) consists of at least
two distinct points. Let

p1, p2 € ¢7 () N X1 (B),

p1 = R (p2) (0 <ty < 7). Then
(3-4) X1(B) N Ryy(X2(B)) 3 1.

Set
T = max{t € (—m,7); X1(B) N R, (X1(B)) # 8}.

Such T exists and T > 0 because of the compactness of B, the assumption X,(B) C H,
the injectivity of ¢|p, and (3-4). Let us take a point p € A (B) N Rp(X1(B)). Then
p = &1((1) = RroX1((2) for two distinct points (1, ¢z € B. Now, by the definition of T,
minimal surface RroX) locally lies one side of X near the point p. Owing to Theorem
2.12, there exist neighbourhoods Uy, U; of (i, (2, respectively such that

A (Ul ) = Rpod) (Ug)

Moreover, by the proof of Theorem 2.12 (or the unique continuation property of the analytic
mapping A7), we see that A7(U;) is an open set of Aj(B). Therefore, the intersection
X1 (B) N Rrol(B) # 1 is open and closed in &(B). Since X;(B) is connected, X1(B) C
RroX1(B), which contradicts the fact that

X1(0B) N RroX:1(B) = §.

Hence we proved that X)(B) is represented in the form (3-3), which implies also that A;
is injective and A’ |p is an imbedding.

Next, we assume that X5 : R — H is a generalized minimal surface in H spanned by
T such that X;(B) # X2(R). Then there exists some ¢; (0 < |¢;| < 7) with

X,(B) N Ry, oX(R°) # 0.



11

The same argument as above leads a contradiction, which proves the uniqueness of the
image of minimal surfaces in H spanned by T, that is, X3(B) = A3(R). This implies
also that X;|g. is an imbedding and that R° = B (up to conformal equivalence), which
are proved as follows. Suppose that X is not regular at a point ( € R°. Because of
the injectivity of A3|sr, A2 has no false branch points ([4, Theorem 6.3]), which implies
that ( is a true branch point of A,. Hence A&, has a transversal self-intersection near the
point ¢ ([3, Theorem 3.1 and remarks after the proof of Lemma 8.1j), which contradicts
the fact that A5(R) = r’t’l(B) is the image of a section : Q) — H. Therefore Aa|re has no
singular points and is an imbedding. Now well-defined function f := &;71eX; : B = R is

a homeomorphism which implies that R® = B (up to conformal equivalence).

Let @1, @2, Q3 be three distinct points in B. Assume that the three point condition:
X1(Qi) = X2(Qi), + = 1, 2, 3. In view of relations |0X;/0u!|*? = 10X;/0u?|? > 0 and
(8X;/0ut) - (8X;/0u?) = 0, 7 = 1, 2, the homeomorphism f = X; 7 1oX; : B — B is
holomorphic or anti-holomorphic in B. By the three point condition, f is the identity
mapping, which implies that A7 = A5. Q.E.D.

Proof (of Theorem 1.1). The assumption of Theorem 1.1 is equivalent to that of
Theorem 3.2, which can be verified as follows. The image @o(H) is just the set S —
{one point}, which we denote by 52, The mapping f = wo(po|n)~! : 5% = B is well-
defined and is a homeomorphism. Suppose that the assumption of Theorem 1.1 is satisfied.
By the assumption (K (T')°) C Qq, we see d{po(K(I')°)) D ['s. From this fact and the
simply-connectedness of wo(I(T')°), we know (o (K (T)°)) = Ty and Qy = (K (D)%) C
wo(H) = S?. Therefore Qg must be the interior of I’y in 52. Now the desired equivalence
is trivial via the homeomorphism f. Hence Theorem 1.1 is derived from Theorem 3.2.

Q.E.D.

The assumptions of Theorem 3.2 are satisfied by Jordan curves which are sufficiently
near to G-convex ([5, §3]) Jordan curves in &. However, for these Jordan curves, the
uniqueness is already known([10]). Theorem 3.4 below gives many examples of Jordan
curves which are more distant from Jordan curves in the geodesic hypersphere of $° but

satisfy the assumptions of Theorem 3.2.

In Theorem 3.4 and its proof, sin™! means the inverse function of the function sin :
[0,7/2] — [0,1].

DerFiNITION 3.3. Let I' C H be a Jordan curve such that o|p : I' — T is a one-to-one

mapping of I' onto a Jordan curve I'in £. Then the height function of T is the continuous
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function & : T' — (—n/2,7/2) which is defined in the following manner.
Ry (a) = (¢lr) 7 (g) for any g € T
Theorem 3.4. Let ' C H be a Jordan curve, and
f‘={3:€H;:n1=\/iTc—2 and z? = 0}

be a circle in T with radius ¢ (0 < ¢ < 1). Assume that |r : T — T is bijective and for
the hetght function h of T,

(3-9) [h(q1) = h(g:)] < sin™" (Sin(distww)/z))

o

forany ¢, @ €T (@1 # q2), where dist(q1,q2) ts the geodesic distance between q; and ¢,.
Then I' spans a unique generalized minimal surface in H. This minimal surface has the

property mentioned in the last sentence of Theorem §.2.

Proof. Let Q be the interior of T' in &. We shall prove that I' satisfies the condition
(3-1) in Theorem 3.2. Let 0 : H — R? be the homeomorphism which is defined as follows.

2? 2% 1 1,2 .3 .4 4
g(m):(w—l-,—l,;), IE:((E sy 7, T ,m)EHCR

'

3]

Then each geodesic in H is mapped to a straight line in R® and also the inverse statement
is true. Therefore, a subset A of H is G-convex if and only if 0(A4) C R? is convex. Hence,
o(I{(T)) is the convex hull of ¢(T").

Let p be any point of K(I")°. Our purpose is to prove that q := ¢(p) is contained in
2, which is equivalent to the inequality

(3 —6) a:l(q)>\/1—c2,

where z'(q) is the first coordinate of q (€ R*).
There exist (not necessarily distinct) four points py, p2, ps, pa € T'NIK(T) and
non-negative numbers Ay, Az, Az, A4 with

(3-17) A =1,

J

4
=1

7

such that

(3-8) o(p) = 3 Xo(0s)
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(c1.[1, p.9)). Let ¢; = ¢(p;), 5 =1, --,4. Since ¢; € T, it is represented as follows.
g; =(vV1—-¢% 0, ccosfBy, csinpy).
Set aj = h(q;). Then

pi = (V1=c*cosaj, V1 —ctsinaj, ccos(aj+ B5), csin(oj + fF;)),

1 .
(3-9) o(p;) = = Foosa (V1-—ctsinaj, ccos(aj +f;), csin(e; + ;).
- b)
Set
(3-10) o) = (W%, ).
Then
3
p=(1+ WALy YY), =) (),
j=1
(3-11) g=1+ B 1+ V=Ty 2 + V=1s*)eV " € C x C,

where 8 € (—7/2,7/2) is the uniquely determined number so that
(3 -12) 1+ \/—_lyl)e‘/__w is real and positive.
From (3-8), (3-9), (3-10), and (3-11), we get

2'(q) = (1 + |y|*)™/*(cos 6 ~ y sin )

1
(3 —-13) = (14 [y[>)1/? (cos€ - sinGZ)\j tan osj>.

i=1

By (3-8), (3-9), (3-10), and (3-12),

4
(3 — 14) 0=y1c089+sin9=sin9+cos€ZAJ~tanaj.

j=1
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Therefore,
4 2
(cos f— sin Z Ajtan aj)
j=1
4 4 2
= cos’ 8 — 2sinfcos b Z Ajtana; + sin? H(Z Aj tan oej)
Jj=1 j=1
4 2 4 2
= cos® 8 + sin? 8 + cos?® 9(2 Aj tan ozj) + sin? O(Z Aj tan aj)
j=1 j=1

4
(3 -15) =1+ (Z/\j tana,-)z.
1=1

On the other hand, owing to (3-7), (3-8), (3-9), and (3-10),
4
2 _ . cos(a; + B;)
1+ |yl —1+(§/\Jtana1) —c2 (Z ——— )

4
sm(aJ + 55)
1 — c'z (z; N s oS o )
2
=3 Z /\j/\k(l + tan o tan o)
MEPINEY

X {1:‘32 + cos(fB; — Br) — tan(a; — ag) sin(f; ,BL)}

c‘Z

1—¢2

(3 —16) < Z AjAk(1 + tan o tan ay)

1<5,k<4

< { 25 = 1 cos(; — Bu)+ | an(ar; = ) sin(B; - B},

where we used the property 1+ tan «; tan ax > 0 which is verified as follows. By virtue of

the assumption (3-5) and the remark before Definition 3.3,
|oej — ak| = [h(g;) = hlgx)| < /2.

Moreover |a;| = |h(g;)| < 7/2,7 =1, - -, 4. Therefore,

cos(aj — ag) 50

1+ tanojtanay =
COS @/ COS Q.
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Remark that

(3—17) dist(qj, qx) = 2sin™" (c|sin L—— B — Br ﬁk .
If B; — Br # nr (n € Z), then, by (3-17) and (3-5),
(3—-18)

Ci=—1+ COS(,B]' —Br) +1 tan(aj — ak)sin(ﬁj - ﬁk)l

( Bi - ,B;.) { 1+|tan(aj—ak)|‘tanﬂj+ﬁk|“l}

5 (S.m B — - ﬁk) { -1+ }tan(e; — ak)lltaﬂ(sin‘l (Sin(dist(CIja %)/2))) ‘—1}

(&

<0.

If B; — Br = nw, it is trivial that
(3-19) C <0.

From (3-7), (3-16), (3-18), and (3-19), we get

(3 — 20) L+ P < (1= @) {14 (3 Astanay)' )

Jj=1

In view of (3-13), (3-15), and (3-20), we see that

z'(q) > V1 —c2.

Moreover, z'(q) = V1 — ¢? if and only if B; — B = 2njpm (nj, € Z) for all j,k € {1,2,3,4]},
which implies that p = p1 = p, = p3 = p4 and hence p is in K (T'), which contradicts the
choice of p. Therefore, the inequality (3-6) holds.

Now we have proved that I satisfies all assumptions of Theorem 3.2, which implies
the desired conclusion. Q.ED.

REMARK 3.5. Set @ = (v/1 — ¢%,0,0,0). For any two points g1, g2 € I (¢1 # ¢2), denote
by angle(¢, q2) the angle of Z¢;Qg2(€ (0,7]). Then the assumption (3-5) is equivalent to
the following condition.

|h(q1) — h(g2)| < angle(qi, ¢2)/2.



16

References

[1] T. Bonnesen and W. Fenchel : Theorie der Konvexen Korper, Chelsea Publishing Company, New York,
1948.
(2] D. Gilberg and N. S. Trudinger : Elliptic Partial Differential Equations of Second Order, Springer-
Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
{3] R. D. Gulliver II : Regularity of mintmizing surfaces of prescribed mean curvature, Ann. of Math. 97
(1973), 275-305.
[4) R. D. Gulliver II, R. Osserman, and H. L. Royden : A theory of branched immersions of surfaces,
Amer. J. Math. 95 (1973), 750-812.
[5] H. B. Lawson, Jr. : The global behavior of minimal surfaces in S™, Ann. of Math. 92 (1970), 224-237.
(6] W. H. Meeks II1 : Uniqueness theorems for minimal surfaces, lilinois J. Math. 25 (1981), 318-336.
[7] C. B. Morrey, Jr. : Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966.
(8] J. C. C. Nitsche : A new uniqueness theorem for minimal surfaces, Arch. Rat. Mech. Anal. 52 (1973),
319-329.
[9] T. Radd : Contributions to the theory of minimal surfaces, Acta Litt. Sci. Szeged 6 (1932), 1-20.
[10] M. Sakaki : A uniqueness theorem for minimal surfaces in §3, Kodai Math. J. 1 (1987),39-41.
[11) A. Tromba : On the Number of Simply Connected Minimal Surfaces Spanning a Curve, Mem. Amer.
Math. Soc. 194 (1977).

Department of Mathematics
Osaka University

Toyonaka, Osaka 560

Japan



YANG-MILLS CONNECTIONS
OF HOMOGENEOUS BUNDLES

by

NoriniTto KOISO

Max~Planck—Institut
fir Mathematik
Gottfried—Claren-Strafle 26
D-5300 Bonn 3
Federal Republic of Germany

and

College of General Education
Osaka University
Toyonaka, Osaka 560
Japan

MPI / 88 - 40



1

10 August 1988

YANG-MILLS CONNECTIONS OF HOMOGENEOUS BUNDLES
NoridiTo KOISO
Dedicated to Professor Shingo Murakami on his 60th birthday

0. Introduction

Let (M, g) be a compact riemannian manifold and P a principal fiber bundle over M
with compact structure group K. A functional Fyym which maps a connection V to the
square integral [, |RY|?v, of the norm of the curvature tensor of V is called the Yang-
Mills functional. A Yang-Mills connection is by definition a critical point of the functional
FyMm. Therefore there is some possibility that so called the direct method and the heat
equation method can be applied to construct a Yang—Mills connection of P.

When the manifold M is an algebraic manifold and the group K is a unitary group,
there is a strong relationship between the notion of stable vector bundles and Yang—Mills
connections ([K]), and Donaldson shows the existence of a Yang-Mills connection by the
heat equation method ([D]).

In this paper we consider homogeneous bundles as simple examples in order to see
in what situations the direct method and the heat equation method can be applied to
the existence problem. Let the riemannian manifold M be expressed as a homogeneous
space G/H and the principal fiber bundle P as G x, I{ using a Lie group homomorphism
p: H — K. The space Cg of all G-invariant connections forms a finite dimensional vector
space. Corresponding to the direct method, we will get the following

Theorem 1. Assume that the Lie group H is connected. The function Fypm|Cq 1s
proper if and only if one of the following conditions holds. (1) The fundamental group
7 (M) of M is finite. (2) The Lie algebra k of the structure group KX has no trivial factor
as H-module.

This means that if (1) or (2) holds, then any minimizing sequence for the function
Fym|Cc has a convergent subsequence to a Yang-Mills connection. But if neither (1)
nor (2) holds, a minimizing sequence may diverge to “oo”.

However, even if neither (1) nor (2) holds, we can find a Yang-Mills connection by the
heat equation ~ an ordinary differential equation in our case — method.
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Theorem 2. The heat equation with ¢ G-invariant connection Vg as the initial data
has a solution V, which 1s a bounded curve in the space Cg. In particulaer, the bundle P
admits a Yang-Mills connection.

As a particular case of Theorem 2, we will see what happens in the case of homo-
geneous complex situations. Finally, we will prove Mountain—Pass Lemma for the function
Fym|Cq. Remark that, when we consider Einstein’s equation the corresponding statement
to Theorem 2 does not hold, i.e., the solution diverges in general ((WZ, Introduction}).

This work was done while the author was staying in Max-Planck-Institut fiir Mathe-
matik, to which he is grateful for the hospitality.

1. Properness

We will prove Theorem 1 in this section. Let Af be a compact homogeneous riemannian
manifold G/H, where G is a compact Lie group and H is a closed subgroup. Denote by g,
h the Lie algebra of the Lie group G, H respectively. Fix a bi-invariant inner product { , )
on g and denote by m the orthogonal complement of k in g. The riemannian metric of the
space M is represented by an H-invariant inner product ¢ on m. Define a principal fiber
bundle P = G X, K using a compact Lie group I{ and a homomorphism p : H — I. The
Lie algebra of I{ is denoted by &k and is endowed with a bi-invariant inner product { , ).
The differential : h — k of the Lie group homomorphism p is denoted by the same symbol
p. The space k becomes an H-module and an H’-module via p, where H? is the identity
component of H. For basic facts about Lie groups, refer to {H].

As usual, we denote by g’ the semi-simple part of the Lie algebra g and by z(g) its
center. Let m' be the projection image from g’ to m. The vector space m decomposes as
H-module :

(1.1) m=m'®mn z(g),

which corresponds to the decomposition of the universal covering of M into a compact
manifold and a vector space. Therefore the fundamental group = (M) is finite if and only
if T N z(g) vanishes. When the Lie algebra k& decomposes into the semi-simple part and
the center, the function Fyy correspondingly decomposes. These facts reduce the proof of
Theorem 1 to the following propositions.

Proposition 1.1. Assume that the Lie group H i3 connected. If the space k has
e trivial factor as H-module and the space m N z(g) does not vanish, then the function

Fym|Cq 13 not proper.
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Proposition 1.2. If one of the following conditions holds, then the function Fym|Cq
18 proper.
(1) The space k has no trivial factor as H'-module.
(2) The Lie algebra k is commutative and the space m N z(g) vanishes.
(3) The Lie algebra k 1s semi-simple and the spuce m N z2(g) vanishes.

We will give proofs of these propositions in this section. The following lemma is
fundamental.

Lemma 1.3 ([KN, Chapter IT Theorem 11.7]). The space Cg s canonically identified
with the space of all H-homomorphisms Hompy(m, k), and the curvature tensor R ¢
Hompg(A?m, k) of an element A € Homy(m, k) is given by

(1.2) RA(U, w) = [.é(v),AA(w)] — A([v,wlm) — p([v,w]p),

where ( ) and ( ), denote the components with respect to the decomposition g = h @ m.

From now on an element of the space Homg(m, k) is identified with a connection of
P, and so the function Fym|Cq is regarded as

(1.3) Fym(A) = Vol(M) x |RA2.

Since the properness of the function Fym|Cq is independent of the choice of inner products
of m, we may assume that the inner product g is the restriction of { , } in this section.

Proof (of Proposition 1.1). The assumption implies that there are non-zero elements
X in a trivial factor of the H-module & and vy in mNz(g). Then we can define an element
A in Homg(m, k) by A(v) = (v,v0)X, which satisfies R** = R for any real number A by
formula (1.2). Q.E.D.

We decompose m as H 0—11}odu1e into the trivial factor mg and the sum 1 of the
irreducible factors. Then we have inclusions ;

(1.4) my; Cm' and mnNz(g)C mg.

Lemma 1.4. There ezist positive constanis ¢, ¢z and c3 such that for any A €
Hompy(m, k) it holds that

(1.5) IRA) > er|Alma|” = | Alm'| = 5.
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Proof. We set [A A A)(v,w) = [A(v), A(w)] and observe that if [A A A] = 0, then
A(m,) = 0. In fact

0 = ([A(m), A(m)], p(h)) = (A(m), [p(h), A(m)])
= (A(m), A([h, m])) = (A(m), A(m1)).

Therefore if we set ¢; = inf{|[4 A 4]|; A € Hompy(m, k), |A| = 1}, then ¢; > 0. For the
second term A([v,w],,) of formula (1.2), it depends only on Ajm’'. Q.E.D.

(1.6)

Proof (of Proposition 1.2 (1)). Since the space k has no trivial factor as H’-module,
the space Homy(m, k) coincides with Homp(m,, k). Thus A, A|m’ and A|m,; coincide
in Lemma 1.4. Q.E.D.

Proof (of Proposition 1.2 (2)). Let A4 be any element of Hompy(m, k). Since the Lie
algebra k is commutative, the first term [4 A A] of formula (1.2) vanishes. And since k is
trivial as H%-module, A(m) = 0. On the other hand, since m N z(g) = 0, it holds that
m = m' = [m, m},, + my. Therefore if A # 0, then the second term A([m,m}m) # 0.
Thus we can define a positive number ¢; by inf{|.4|[m,m]m|; A € Homy(m, k), |A| =1}
and setting c; the norm of the third term, we get |R4| > ¢;]4| — ¢;. Q.E.D.

To prove the case of semi-simple Lie algebra k, we introduce the following usual no-
tations. For a reductive Lie algebra 3, t(7) denotes a Cartan subalgebra. When j is
semi-simple and endowed with a bi-invariant inner product { , }, we denote by A(7) its
root system as a subset of #(j) and characterize root vectors X, € j for @ € A(g) by
(1) [u, Xqa) = (v,a)X_, for all u € ¢(3) and (2) [X4,X_o] = @. The following lemma
will be proved later.

Lemma 1.5. Let k be a compact semi-simple Lie algebra. For an element (wp,w,w2)
of k3 we define an element (ug,uy,uq) of k3 by

(1.7) ug = [wir,wq] —wo, Uy = [we,wo] ~ w1, u2 = [wy,wi]— wy,
then this map : k® — k3 is proper.

Note that mg becomes a subalgebra of g, i.e., [mg,mqg] C mg, and [mg,m4] is
contained in m;. Since Cartan subalgebras t(h) and ¢(m) commute, there is a Cartan
subalgebra ¢(g) which contains t(h) and t(mg). The space t(g) decomposes into the center
z(g) and a Cartan subalgebra t(g'). It admits also an orthogonal decomposition :

(1.8) t(g) =t{(h)dt(mo) ®t(g) Nm,.

We denote by t(g')o the image of the orthogonal projection from t(g') to t(my).



Lemma 1.6. Denoting by (my) the semi-simple part of myg, we get
(19) t(g’)o -+ (mo)’ = m' N mg.

Proof. 1t is clear that the left hand side is contained in the right hand side. Let v be
an element of the right hand side which is orthogonal to the left hand side. Then v is an
element of the center z(my), and is orthogonal to ¢(g’). Therefore we see that v € 2(g)
and so by (1.1) we conclude that v = 0. Q.E.D.

We rewrite Proposition 1.2 (3) as follows in order to use it in section 2.

Proposition 1.7. If the Lie algebra k is semi-simple, then |A|m’| 18 estimated from
above by using |R4|.

Proof. First remark that, by Lemma 1.5, if we take vg,v1,v; € m with [vg,v1)m
= vy, [v1,V2)}m = v, [v2,v0)m = v1, then |A(v;)|’s are estimated by using |[R#|. Therefore

we can get an estimation of A4[|(mg)’ because the space (my)’ is spanned by its roots and
root vectors. Next we decompose a root o € A(g’'} by (1.8) and denote by ap, a; the
t(mye), t(g) N my—component, respectively, and set o' = ap + a;. The vector o’ is the
m~component of «, and belongs to m/.

Now assume that ag # 0. Then

i|a0|2 ’ X:EO' = [aovxio] = [C‘O’(X:Ea)h] + [O’o,(-X;ta)m]

1.10
( ) = [a'o, (.'Yia)'m.] € m,

and so X1, € m. Setting vy = |a'{7%a’, vy = |o|7' X4, vz = |a’'|7' X_,, we can get an
estimation of A(a') by the previous remark. Moreover, since A(Adpa') = Ad,»)A(a’) for
h € H°, we get an estimation of |4(ay)| by

(1.11) |A(ao)| = ’A ( /H O(Adha’)dh)l < /HO |A(Adya")|dh = |A(a")),

where dh is the Haar measure of H%. Since the space t(g'); is spanned by such ay’s,
we get an estimation of Alt(g')e. Combining with the estimation of A|(my)’, we get an
estimation of A|(m’ N my) by Lemma 1.6. Finally, using Lemma 1.4 and the inequality :
]A[m"| < |Aj(m’ N mg)l + IAlmlf from (1.3), we get an estimation of 4|m,, therefore of
Alm/'. Q.E.D.



6

Proof (of Lemma 1.5). We set ¢ = max{|ug|, [u1], |uz|} and £ = |wo|, and show that
£ is bounded from above by using c. In the following, ¢;’s mean positive constants which
depend only on ¢ and do not depend on €. At first we see that

lwy |2 — clwi] € (w1, + ug) = (wy, [ws, we))

(1.12)
= ([wy, w2}, we} = (wo + uo, wo) < 22 4 ct,

and so |{w;]| £ £+ c. By the same way we see also that |w;| £ € +c.

We choose a Cartan subalgebra t(%) containing wy and a linear order > of t(k) so that
if (wg,a) > 0, then a > 0. Denote by IT = {a;} the fundamental root system. Since IT is
basis of t(k), whose pattern is independent of the choice of orders, it holds that

E Ti0y

a;ElT

(1.13) > ¢ Z |z;] for any (=;).

a; el

We set w; = z+ 3 aqX4, where z is an element of ¢(k) and the summation is taken
for roots @ € A(k). Then we see that

(1.14) fwe,w1] = Zaa(a,wo)X_a,

(1.15) wy = [wo, w1] —uz = Y aafo, wo) X o — uz,

(1.16) [wo, w2} = — Z a0, wo) X o — [wo, ug).

And so,

(1.17) uy = [wy,we] —wy = Zaa(a,wo)zxa + [wo, uz] — z — ZaaXa,
(1.18) Z ac,,((ar,wg)2 — l)X,,.= z + w1 — [wo, ua].

Since {Xq4; o € A(k)} are orthogonal, it follows that
(1.19) laa||{a,wo)? = 1| € [Xo| 7 (€ + ) + ¢+ c2c€) < c3(€+1).
Therefore, if {a,100)? > 2, then |
(1.20) |eta|{r, wo)? < 2¢5(€ + 1).
And since
[, wesry = [w1, ) aa(@, w0)Xoa — uzl)
(1.21) =[z+ Z aXa, Z aa e, wo) X —aleky — [w1, U2lyr)
=Y (aa)? (@, w0} @ = [0, uglyay,



we get

wo = (w1, Waleky — (o))

.22
(1.22) = Z(aa)g(a,wo) o — [wl,u2]t(k) - (“0)t(k)'

Now for a positive number ¢, we define a subset II, of the fundamental root system
IT by

(1.23) I, = {o; € IT; (@i, wp) < €|wol|ail}.

The number ¢ will be fixed later independently of {. In the following, the constants ¢; are
independent also of €. Put

(1.24) S=Ak)N > Za

ai€ll,

An element § of A(k) — S can be represented as ) m;a; (o; € IT'), where all m; are

non-negative or all are non-positive. And so

I(}B,WOH = Z Im,-(wg,a-.-)l
(1.25) > (wg, ;) for some e; € II —1I,
> C4E l.

Therefore if £ > 1 and \/§(c4£)'1, then, by (1.20), we see that

(ag)2|(B,wo)] < (2¢3(€ + 1))*|(8,100)]

(9C3 L+1 ) (C4E€)
-3

(1.26) <
<c

We represent 3 o o(@a)? (o, wo) - as Y s;0; (a; € I1.). Since

(1.27) S(aaawo)a= Y ((a)? +(a-a)?) @, wo)-a,

aES a€S, ax0

all s; are nonnegative, and so

(wo, Y _siai) = si{wo, o) < Y sifwollaile
< cseEZs;.

(1.28)
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On the other hand, from (1.13), (1.22) and (1.26), if £ is greater than 1 and v/2(c4e)™?,
then

1 ZS:’ < |Zsiai|

(1.29) = |wo ~ Z(aﬂ)z(ﬂ’ wo)- B + [wr, uzleqry + (wo)eqry|
BES
<O+ cre™ + gl + cp.

Combining it with (1.28),
(1.30) (wo, Z s;0;) < €106 e+ (polynomial of € of order 1).

Therefore, again using (1.22) and (1.26), we see that if £ > 1 and v/2(c4e) ™, then

€% = (wp, wo)

= (wo, y_(ag)*(B,wo)-B+ Y sicxi — [w1,ualary — (0 )eqar)

BES

(1.31) < €106 €% + ¢f[wo,w1]| + (polynomial of £ of order 1)
= ¢10¢ 0 + clwy + u2| + (polynomial of ¢ of order 1)
< ¢106 €2 + (polynomial of £ of order 1).
Thus choosing ¢ so that ¢joe < 1/2, we get the desired estimation of £. Q.E.D.

2. Gradient Flow

We consider the heat equation for the functional Fyy with respect to the L, inner
product, which becomes

d .
(2.1) Ev‘ = —(grad Fym)w, = (V) (RV)ui-

If we choose Vy € C¢ as the initial data of this equation, then the solution V, is a curve
in Cg and coincides with the solution of the ordinary differential equation defined by the
vector field —grad(Fym|Cq). As is easily computed from formula (1.2), the equation is
given by (up to constant multiplication of time variable t),

%As = 1A (4, Al = D CiR{A, Ak = ) Citi[ Ay, ps]

(2.2) . | |
+(1/2) > Cifl Ay, A = (1/2) Y CACh AL = (1/2) Y C5%C%pa,
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where we take orthonormal basis {v;} of m with respect to g and basis {v,} of h, and set

Ai= A(), po=plo)
[v,-,vj] = ZC Uk +ZC, Vs

All the summations are taken for j, k,I, s, which appear twice in the terms.

(2.3)

We will prove Theorem 2 for equation (2.2). Denote by A(t) the solution. At first, by
Proposition 1.7, the norm of A(t)|m’ is estimated from above by using |RAO) |, Therefore,
denoting by (m')* the orthogonal compliment of m’ in m with respect to g, it is sufficient
to prove that A(t)|(m')* is bounded. To show it, we choose an arbitrary unit vector vy in
(m'), choose orthonormal basis {v;;0 < i < dimm} of m containing vo, and prove that
Ay(t) is bounded. For 4y(t), equation (2.2) is simplified as

(2.4) _AU - 2[43? AJ=A0]] - Z C; U[AJ’AL]

In fact the structure constants C;% vanish in equation (2.2) becrfise [m, m];n C m'.
Moreover, since the inner product ¢ is H-invariant and v, is orth/gonal to m’, the vector
vo is an element of my, and as the remark following Lemma 1.5, [mg, m] C m, which
implies that also the structure constants C;% vanish.

Next, as we see from equation (2.1) or (2.2}, when the Lie algebra k decomposes as
k' ® z(k), the solution also decomposes, and the z(k)-component of 4,(?) is constant from
equation (2.4). Therefore we may assume that the Lie algebra k is semi-simple. Moreover,
since the equations do not depend on the choice of inner products on k, we may assume
also that the root vectors X, of k are umit.

Now we define a function L on the vector space k as follows. Let 28 be the sum of
all positive roots of k. We represent 26 as 26 = 3 nja;. Let {w;;1 < ¢ < r} be the
fundamental weight system of k, and set £; = (n;) " w;. For w € k, we define

(2.5) L(w) = max{{Ad,w,&) 1 <i<r vy € K}.

Lemma 2.1. For w € k, the value L(w) is realized by v € K such that Ad,w belongs
to the positive Weyl chamber W . In particular L is a norm of k.

Proof. From the assumption, for any X € k,
(2.6) 0 = ([X,Ad w], &) = (X, [Ad,w, &]).

Therefore Ad,w and &; belong to the same abelian subalgebra of k. Since all Cartan
subalgebras are conjugate, we may assume that Ad,w € t(k). If (Ad,w, ;) < 0 for some
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aj € II, then, taking n € I which gives the reflection with respect to a;, for any £, we see
that

(Adyyw, &) = (Ad, (Adyw), &)
(Adyw —2Ja;]7*(ay, Adyw)-aj, &)
(

(2.7) s .
= (Ad,w, &) — 2o ™ e, Adyw)(n;) 7 éji

> Ad-,w,fk).

That is, when Ad,w is mapped into W by the Weyl group, the value L(w) is still realized.
Q.ED.

We reduced to the case that the Lie algebra k is semi-simple in order to use the
following

Lemma 2.2, Let k be semi-ssmple. There exists a positive number € with the following
property. Let w be a unit vector in the positive Weyl chamber W. If (w, o) < €, then there
13 £ such that (w,§;) > (w,§;).

Proof. Set w = Y azrag. Then all z; are positive and (w, &) = (ng) Hw,w) =
(n&) 'z, Assume that (w,&;) < (w, &) for all €;. Then, since (aj,a;) <0 for j # i,

(w,0:) =) (aj, i)z,

> (Cf,‘, 0/,').‘17,' -+ Z(aj,a;)nj(n,‘)_lmi
(2.8) J#i
= (n;)_l Z(njaj,ai)m.-

j
= (-n.,-)_] (25, CYi)-'L':' >0,

because 26 belongs to the open positive Weyl chamber W. Thus the conclusion follows
from the continuity. Q.E.D.

Proof (of Theorem 2). It is sufficient to prove that L(Ay(t)) is bounded. Since Ay(%)
is real analytic, L{A(t)) is continuous and, by Lemma 2.1, piecewisely represented as

(2.9) L(4o(1) = (Adyndo(t).&r),  Adydo(t) €W,

where y(t) is a real analytic curve of I{ and & is taken by renumbering of suffix. We may
assume that y(¢) = 1 at a time ¢ = ¢y by changing the Cartan subalgebra (k) if necessary.
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We set A; = uj+ 3, 77 Xq, where u; € (k) and a € A(k). At the time ¢ = t9, we see
that

(210) L 1(A0) = (A0,60) + (1, Aol 61) = (540, 61).

Thus assigning (2.4), the last expression

== > (Ao AL 16, 450 = D Cfollén, 45, Au)

J#0 1,k#£0
= _Z< Z 0’ AO -X—cn Z $?(C\f,€1)x_a)
J#0 a€Aa(k) acAa(k)
- Z CJ 0< Z (\’ 6] X—G)u’s + Z
J,k5#0 acA(k) acAa(k)
=-{ ¥ (@&)ea)e?+ Y c,-*o<a,sl>m;-*m;°}
J#0, a€A(R) J.k#0, acA(k)
== Y Tt A+ Y o) Ao
a€A(k),ax0 ~j#0 k0
+ > (Cifo = Clo){e, &a)aay }
J,k#0

This summation is taken only for positive roots a € A(k) such that {a, &) # 0. If
we represent such o as Y mja;, then my > 1 and all m; > 0, and so {a,&) > jw1]™?.
Therefore by Lemma 2.2, it holds that {(a, Ag) > €]Ag|. In fact, if |{a, Ag}| < €lAg], then
ey, Ao}l < €]|Ao| and so (Ao, &;) > (Ag, &) for some 7, which contradicts the maximality
of (Ag,£1). We regard the last expression as a quadratic form of (z%) and (z;), and see
that, if L(A) is sufficiently large, and so is | Ao}, then the coefficients of (¢§)? and (z;*)?
are sufficiently greater than that of z72 [, which implies the non-positivity of the last
expression. Q.E.D.

REMARK 2.3. From the boundedness of A(t), we see that any subsequence of A(t) hasa
subsequence which converges to a Yang-Mills connection. It seems to the author that A(%)
itself converges. At least it is clear that if the closure of the set {A(t);t € R1} contains
an isolated Yang—Mills connection, then A(f) converges. Here we mean by isolated to be
isolated modulo the action of the normalizer group Ny (p(H)) of p(H) in K.
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3. Appendix

At first, we consider the relation between equation (2.2) and holomorphic vector bun-
dles. Let M be an algebraic manifold and P a principal U(r)-bundle. Take the complexi-
fication GL(r, C) of the compact Lie group U(r), and complexify P to a principal GL(r, C)-
bundle P€. There is a one-to-one correspondence between holomorphic structures 8 of PC
and connections V of P whose curvature tensor RV are of type (1,1). Kobayashi shows that
if the corresponding connection V to a holomorphic structure @ is a Yang-Mills connec-
tion, then 0 is semi-stable ([K]). Conversely, the following hold. Let d; be a holomorphic
structure and V; the corresponding connection. Heat equation (2.1) with initial data V,
has a unique solution V,, whose curvature tensors are of type (1,1). Let J; be the corre-
sponding holomorphic structure. Then all §, are conjugate to dy under automorphisms of
PC. Moreover, if §, is stable, then both V, and 8, converge, and lim &, is conjugate to 9,
([D]). In our homogeneous situation, we get

Corollary 3.1. Let M and P be as above with homogeneous assumption. Let 3, be
an invariant holomorphic structure. Then the solution O, has a convergent subsequence.

But if Oy is not semi-stable, then the limit of O, is not conjugate to Op.
Next we consider so called

Mountain-Pass Lemma. Let S be a manifold and f o function of S. If there are
relative minima zy,z9 € S of f which are not contained in a connected component of the

critical point set, then there ezists an unstable critical point x3 € S.

Theorem 3.2. Mountain—Pass Lemma holds for the space S = Cg and the function
f=FvmlCo.

ExaMPLE 3.3 Assume that G is semi-simple and set H = {id}, K = G and p = id.
Then the space Cg is identified with Endgr(g), and Fym(A) = 0 if and only if 4 is a
Lie algebra homomorphism. Therefore A = 0 and A = id are critical points of Fym|Ce,
and belong to different connected components. Thus we can conclude, by Mountain—
Pass Lemma, that there exists another unstable Yang-Mills connection in Cq. When
the riemannian metric ¢ on G is bi-invariant, it is easy to get such an unstable Yang-
Mills connection, say A = (1/2)id. However it is not clear to see the existence of such a

connection for a general left invariant metric on G without our Theorem.

As the above example, if the space S is a vector space and if the function f is (by
Theorem 1) proper, then Mountain-Pass Lemma holds by [C, (VI 6.1)]. For general case,
i.e., when the fundamental group 7;(M) may be infinite, we use the next lemma. Let V be



13

a finite dimensional vector space, S a closed convex domain of V and f a smooth function
on V. A point z in S is said to be eritical 2n S if and only if one of the following conditions
is satisfied. (1) z is an interior point of S and is critical for f. (2) z is a boundary point
of § and it holds that (df).(y — =) > 0 for all y € §. The following is a finite dimensional
version of Struwe’s Mountain-Pass Lemma, where Palais-Smale condition is equivalent to
the properness.

Lemma 3.4 ([S, Chapter II Theorem 1.13]). If the function f|S is proper, then

Mountain-Pass Lemma holds replacing critical by critical in §.

Proof (of Theorem 3.2). Let {v;;1 < i < k} be orthonormal basis of (m')’ and
{vi;k < ¢ < n} that of m'. We regard the vector space V = Hompy(m, k) as a subspace
of k® = {(A1,..., A, Ak41,...,An)}, where A; = A(v;). Using the decomposition : k =
k' @ z(k) and the function L on k' defined by (2.5), we set

(3.1) §={(A)eV; L{(Aw) < c and |(A)s| S ¢ for 1< < k),

where ¢ is a sufficiently large constant. Then S is a closed convex domain of V and by
Proposition 1.7 the function Fym|Cq is proper on S. If A € 35 is critical in S, then, by
definition, (d Fym|Cg)a(B — A) > 0 for all B € §. But Proof of Theorem 2 implies the
opposite inequality, provided that c is sufficiently large. Thus A € § is critical in § if and
only if A is critical in the usual sense, and so the proof reduces to Lemma 3.4. Q.E.D.
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