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1. Introduction

In recent years there has been an interest in extending classical functors such
as K–theory, the Chow ring and cohomology to orbifolds and stacks. The new
ingredient in this theory is a new ring structure, called stringy, which traces
its way back to orbifold conformal field theory [DW, DVVV, IV, V] and string
theory [DHVW]. Of course there are mathematical versions of the algebraic
properties of the expected ring structures given via co-bordisms (see e.g. [Ka1]).

There are basically two flavors of this geometry. One for general stacks and
one specifically for global quotients, e.g. a pair (X,G) of a smooth projective
variety X and a finite group G that acts on it. In the former situation one uses
the inertia stack while in the latter one uses the geometry of the inertia variety,
that is the disjoint union over all fixed point sets.

Initially ring string structures of the above type were introduced using Gromov–
Witten theory [CR], that is in terms of a moduli space of suitable maps from
orbi–curves. Even on the classical level, that is genus 0 and mapping to a
point, which is all we will deal with in the following, this defines new product
structures. The GW approach yielded a new product on H∗ of the inertia orb-
ifold and which is known as Chen–Ruan cohomology. The main character here
is the obstruction bundle defined by the moduli space. In [FG] the obstruc-
tion bundle was given using Galois covers establishing a product for H∗ on the
inertia variety level, i.e. a G–Frobenius algebra as defined in [Ka1], which is
commonly referred to as the Fantechi–Göttsche ring. In [JKK1], we put this
global structure back into a moduli space setting and proved the so–called trace
axiom.

In the algebraic category, the multiplication on the Chow ring A∗ for the
inertia stack was defined in [AGV].

In [JKK2] we were able to give a representation of the obstruction bundle
in terms of representation theoretically defined elements of rational K theory
called Sm. This allowed us to define a stringy K–theory in both the global
quotient and the stack setting. Furthermore using the classes Sm we could
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even give a Chern character. Since this definition is essentially curve free it
is particularly useful in situations where it would otherwise not be possible to
say what the maps of curves should be. It for instance allows one to pass to
topological K–theory of stably almost complex manifolds and to the deRham
setting. It also has found its use on Hochschild cohomology, singularity theory
and string topology.

2. Stringy K–Theory

This paragraph is mainly joint work with Tyler Jarvis and Takashi Kimura
[JKK2].

2.1. Global Quotient Case. In the global quotient case the setup is as fol-
lows.

We fix G a finite group and regard the following data and objects
(1) We fix (X,G) variety with a G action.
(2) We let Xg be fixed points of g ∈ G, or more generally XH , H ⊂ G.
(3) We define the inertia variety: I((X,G)) = �m∈GXm.

Notice we have a map ∨ : I((X,G)) → I((X,G)) via ∨ : Xg → Xg−1
identically.

The main observation is now that for m1m2m3 = e we have the inclusion
maps

(2.1)
Xm1 Xm2 Xm−1

3

e1 ↖ ↑ e2 ↗ ě3

Xm

Let’s fix coefficients to lie in Q, then using the diagram above, one defines
the stringy versions of the functors F using the following procedure.

Given (X,G) and a functor, which has a multiplication (E.g. K, A∗, K∗
top,

H∗), we will use F = K for concreteness.
(1) We define the additive structure K (X,G) := K(I(X,G)) =

⊕
g∈G K(Xg)

(2) We define a stringy G–graded multiplication which is expected from the
stringy (cobordism/“twist field”) via a push–pull formalism using an
obstruction bundle.

K(Xg) ⊗ K(Xh) → K(Xgh)
For Fg ∈ K(Xg),Fh ∈ K(Xh)

Fg · Fh := e3∗(e∗1(Fg) ⊗ e∗2(Fh) ⊗ ObsK(g, h))

Remark 1. The above formula without ObsK(g, h) will not give something
associative in general. There are also natural gradings which would not be
respected without ObsK(g, h) either.

2.1.1. Two sources for the obstruction bundle R(g, h). As mentioned
in the introduction there are basically two sources for the obstruction bundle:

(1) R(g, h) from GW theory/mapping of curves [CR, FG, JKK1] (Initially
only for H∗).

(2) R(g, h) from K-theory and representation theory [JKK2].



Of course in situations where both definitions apply, they agree.

2.1.2. The obstruction Bundle through an Eigenspace decomposi-
tion. Let g ∈ G have the order r. 〈g〉 ⊂ G acts on X and leaves Xg invariant.
So 〈g〉 acts on the restriction of the tangent bundle TX|Xg and the latter
decomposes into Eigenbundles Wg,k whose Eigenvalue is exp(2πki/r) for the
action of g.

TX|Xg =
r−1⊕
k=1

Wg,k

The bundles S

Sg :=
r−1⊕
k=1

k

r
Wg,k ∈ K(Xg)

Theorem 2 (JKK). Let X be a smooth projective variety with an action of a
finite group G, then

R(g, h) = TX〈g,h〉 � TX|X〈g,h〉 ⊕ Sg|X〈g,h〉 ⊕ Sh|X〈g,h〉 ⊕ S(gh)−1

∣∣
X〈g,h〉

defines a stringy multiplication on K (X,G) – actually a G–Frobenius algebra
object.

2.2. The functors A and H∗. In the case of the functors A and H∗, we use
essentially the same formula, only that λ−1(R∗) gets appropriately replaced by
the top Chern class ctop(R).

vg · vh := e3∗(e∗1(vg) · e∗2(vh) · ctop(R(g, h)))

2.3. Notation. In all the situations the resulting ring for the pair (X,G) with
the stringy multiplication will be denoted by math-script letters: K ,A ,H .

2.4. The Chern Character. Let X be a smooth, projective variety with an
action of G.

Define Ch : K (X,G) → A (X,G) via

Ch(Fg) := Ch(Fg) ∪ td−1(Sg)

Here Fg ∈ K(Xg), td is the Todd class and Ch is the usual Chern–Character.

Theorem 3 (JKK). Ch : K (X,G) → A (X,G) is an isomorphism — to be
precise allometric isomorphism G–Frobenius algebras objects. Here allometric
means that the co–unit does not have to be preserved.

2.5. Interlude: G–Frobenius algebra objects. Let D(k[G]) be the Drin-
fel’d double of the group ring k[G], see Definition 15 with β ≡ 1. It is a
triangular Hopf algebra with an R matrix.

Via R and the coproduct ∆, D(k[G])–Mod is a braided tensor category.

Definition 4. A Frobenius algebra object in a braided tensor category C is an
object A together with

(1) a multiplication µA : A ⊗ A → A



(2) a co-multiplication ∆A : A → A ⊗ A,
(3) a unit η : 1C → A
(4) a co-unit ε : A → 1C

such that
(1) It is braided commutative and associative.
(2) (id ⊗ ∆A) ◦ (µA ⊗ id) = µA ◦ ∆A = (∆A ⊗ id)(id ◦ µA)

Definition 5. For an endomorphsims of a Frobenius object φ : A → A we
define the F–trace as Tr(φ) := ε(µ(φ ⊗ id)(∆ ◦ η(1)). Here we additionally
assume that 1C = k.

Definition 6. A (strict) G–Frobenius algebra object is a Frobenius algebra ob-
ject in the braided category D(k[G])–mod, which additionally satisfies:

(T) ρ(v−1) = id, where v is the element which expresses S2 as an inner
automorphisms in D(k[G]), i.e. S2(u) = vuv−1. It is given by

∑
g g�

g
(S) ∀v ∈ A :

Tr(lv ◦ ρ(hgh−1�
h
)) = χg−1Tr(ρ(h �

g−1
) ◦ lv)

where λv(a) = va.

Remark 7. This definition is actually necessary in the case of A and K
since we will not get G–Frobenius algebras in general. The reason is that the
spaces might be infinite dimensional and hence the form might turn out to be
degenerate. To amend the situation, we introduced trace elements in [JKK2].
Here these traces appear naturally via the structural morphisms. Checking this
claim of course amounts to a calculation, see [KP].

2.6. Stack case: Stringy K-theory for stacks Kfull.

2.6.1. Inertia stack. For a DM stack, the inertia stack is defined via

IX := X ×X ×X X

One can show that IX =
∐

(g) X(g), where the indices run over conjugacy
classes of local automorphisms, and X(g) = {(x, (g))|g ∈ Gx}/ZGx(g).

For a nice (see below) stack X we [JKK] defined a full orbifold K–theory
which has as underlying space

Kfull(X ) := K(IX )

This construction is the technical generalization to stacks of the push–pull
formulas and the obstruction bundle of the global quotient case discussed above.

Remark 8. The full technical assumption is as follows:
We say that a stack X satisfies the KG-condition if the Grothendieck group

Knaive(X , Z) of (orbi-)vector bundles is isomorphic to the Grothendieck group
K0(X , Z) of perfect complexes and to the Grothendieck group G0(X , Z) of
coherent sheaves on X .

If X satisfies the KG-condition, we will simply write K(X ) to denote this
group with rational coefficients:

K(X ) := K0(X , Z) ⊗ Q ∼= Knaive(X , Z) ⊗ Q ∼= G0(X , Z) ⊗ Q.



We assume that the stack X , its inertia stack IX , and its double inertia
stack IIX all satisfy the KG-condition.

The condition is for instance satisfied if X its inertia and double inertia are
smooth with resolution property. This happens e.g. if X is a smooth DM stack
with finite stabilizers.

Hence special cases of interest are [X/G ], where G is a Lie group which
operates with finite stabilizers.

2.7. Variations and Compatibility.
(1) If X is a stable complex manifold, then analogous results hold for the

topological K–theory K∗
top and cohomology H∗ yielding an isomorphism

of G–Frobenius algebras.
(2) For a smooth Deligne-Mumford stack X with a projective coarse moduli

space there are respective versions for the K–theory, the Chow Rings
and the Chern–Characters using the inertia stacks.

In this situation the Chern character is only an injective ring homo-
morphism as the K–theory is bigger than the Chow ring. In the case
of a global quotient [X/G] we [JKK2] have identified the inverse im-
age of the Chow ring as a subring of the full orbifold K–theory given
by Ksmall([X/G]) = K (X,G)G, that is the G–invariants of the global
orbifold theory for a pair that defines a presentation of the stack.

2.8. Comparing the Theories. In particular for a global quotient three the-
ories where introduced which are additively over C given as follows.

K ((X,G)) := K(I(X,G))) �
⊕
g∈G

K(Xg)(2.2)

Kfull([X/G]) := K(I[X/G]) �
⊕
[g]

K([Xg/Z(g)])(2.3)

Ksmall([X/G]) := Kglobal((X,G))G �
⊕
[g]

K(Xg)Z(g)(2.4)

Notice that we proved in [JKK] that Ksmall is isomorphic to the Chen–Ruan
Cohomology while K is isomorphic to the Fantechi–Göttsche ring via a Chern
character.

Proposition 9. Additively we have:

K (I(X,G), G) = K(�x∈G(�g∈GXg)x

=
⊕

g∈G,x∈Z(g)

K(X〈g,x〉)(2.5)

and for
∏

xi = 1, and g : x ∈ Z(g), h : y ∈ Z(h) the multiplication is given by

(2.6) Fg,x1 ∗ Fh,x2 = ěx3∗(e
∗
x1

(Fg,x)e∗x2
(Fh,y)R(x1, x2)) = δg,h Fg,x1 ∗g Fg,x2

where ∗g is the multiplication on K (Xg, Z(g)), that is as rings

(2.7) K (I(X,G), G) =
⊕
g∈G

K (Xg, Z(g))



Corollary 10. Additively:

Ksmall(I(X,G), G) = K (I(X,G), G)G

= [
⊕

(g,x)∈G×G,x∈Z(g)

K((Xg)x)]G

=
⊕

[g,x]∈C2(G),x∈Z(g)

K(X〈g,x〉)Z(g,x)(2.8)

and as rings

(2.9) Ksmall(I(X,G), G) =
⊕

[g]∈C(G)

Ksmall(Xg, Z(g))

On the other hand we have additively

Kfull([X/G]) =
⊕

[g]∈C(G)

K([Xg/Z(g)])

=
⊕

[g]∈C(G)

KZ(g)(X
g)

=
⊕

[g]∈C(G),[x]∈C(Z(g))

K((Xg)x)Z(g,x)

=
⊕

[g,x]∈C2(G)

K(X〈g,x〉)Z(g,x)(2.10)

The multiplication is more complicated however, see e.g. Theorem 11.

2.9. Examples. Let’s look at some simple examples like (pt,G)

K ((pt,G)) = k[G]

Ksmall((pt,G)) = k[G]G = Z(k[G])
KAS([pt/G]) = KG(pt) = Rep(G)(2.11)

Here the latter is the Atiyah–Segal K–theory. We wish to point out that al-
though the two latter theories are additively isomorphic they have decidedly
different ring structures.

Theorem 11. [KP] Let D(k[G]) be the Drinfel’d double of k[G], then Kfull([pt/G]) �
Rep(D(k[G])).

If G is Abelian then K ((I(pt,G), G)) = D(k[G]), else it is a subalgebra that
is Morita equivalent to D(k[G]) in the sense that they have the same category
of representations.

We were informed by C. Teleman, that a similar formula for the case of [pt/G]
can be deduced from the work of Freed-Hopkins-Teleman [FHT].

3. Applications

As mentioned previously the new description of the obstruction bundle opens
up a plethora of possibilities to introduce stringy multiplications. Here are a
few examples.



3.1. DeRham theory. In [Ka5], we used the definition of the obstruction
bundle in terms of the Sg to give a pull–push formula suitable for de Rham–
chains using a variant of the Thom–map. This gives a new stringy product on
the chain level.

3.2. Hochschild. Similar results were obtained afterwards by [PPTT] in the
S1–equivariant setting using a Hochschild description for the groupoids.

3.3. String Topology. In [GLSU] the authors used our description of the
obstruction bundle to define a string topology for orbifolds.

3.4. Singularities. In the case of singularities [Ka6] with an Abelian symmetry
group we can also now solve the stringy multiplication problem [Ka1, Ka2] in
terms of Hessians of the obstruction bundle using the results of [Ka5].

4. Twisting K–Theory with Gerbes

This paragraph is basically joint work with David Pham [KP].
We will consider twisting the various versions of K–theory for global quotients

(X,G) with gerbes pulled back from [pt/G]. In particular, we will consider 0, 1, 2
gerbes on (X,G) pulled back from [pt/G] which are given by group co–cycles.

Following Hitchin and Thaddeus, we can think of these gerbes as trivial gerbes
that are not equivariantly trivial.

4.1. Gerbes over [pt/G]. For i ∈ {0, 1, 2} an i–gerbe is given by an element
of Zi(G, k∗). That is we will actually consider trivialized gerbes.

4.2. Twisting with 0–Gerbes aka. line bundles. A 0–gerbe over [pt/G] is
nothing but an equivariant line bundle over a point, that is a 1–dim represen-
tation χ of G.

If we pull–back the line–bundle to X we get a trivial line bundle that is
not equivariantly trivial. That is there are isomorphisms g∗(L ) � L for each
g ∈ G. Trivializing the line bundle we get back the representation χ of G.

We can use this to either

a) Twist Cohomology: H∗(X,L ).
b) Twist K-theory: Kχ(X) = K(X) ⊗ L . That is we actually have an

gauge endomorphism of K(X) given by “twisting” with L .

Remark 12. Notice that in this case there is no obvious product. The consid-
erations are useful in the following, however, and in the context of non–strict
G–Frobenius algebras and the Ramond twisting of [Ka1]. This theory plays
a special role when considering singularities with symmetries [Ka2] where it
corresponds to passing from the Milnor ring to the differentials by choosing a
primitive form.



4.3. Twisting with 1–Gerbes. A 1–gerbe over [pt/G] is a trivial gerbe over
pt but the pull back under g need not be trivial. In this case the isomorphism
of two trivial gerbes under pull–back by g is given by a line bundle.

If we pull–back the gerbe X we get a trivial gerbe G that is not equivariantly
trivial. That is there are isomorphisms g∗(G ) � G for each g ∈ G given by
(trivial) line bundles Lg.

Moreover we have isomorphisms Lg ⊗ Lh → Lgh that satisfy associativity.

4.4. Co-cycles. Notice that if we trivialize the Lg we obtain a co-cycle α ∈
Z2(G, (U(1)).

4.5. Transgression. Another way to view the line bundles is via transgression
to IX . Here we get a 0 gerbe that is a collection of line bundles Lg|X(g)

.
We could also transgress to I((X,G)) or Λgrp(X ), that is the loop groupoid

of the groupoid associated to the stack.
We can use this to either

a) Twist Orbifold Cohomology: H∗(Xg,Lg) as was considered in [CR].
b) Twist K-theory: Kχ(X) = K(Xg) ⊗ Lg. That is we actually have an

gauge endomorphism of K(X) given by “twisting” with L .
Notice in both cases we can use the isomorphisms Lg ⊗ Lh → Lgh to get a

multiplication on Fglobal((X,G)) or Fstringy([X/G]).
Note: Twists of the type b) were also considered in [AR], but since they do

not consider a string product their twisted theory carries no internal product.

4.6. Discrete torsion.

4.6.1. Twisted group ring. Given a co-cycle α ∈ Z2(g, k∗) we can define
the twisted group ring kα[G] by giving k[G] a new multiplication defined by:
ĝ · ĥ = α(g, h)ĝh

4.6.2. A product for G–graded modules. Given two G graded modules
A =

⊕
g∈G Ag, B =

⊕
g∈G Bg, we define

A⊗̂B :=
⊕
g∈G

(Ag ⊗ Bg)

Proposition 13. Given α ∈ Z2(g, k∗) the α twisted theories satisfy Fα
global((X,G)) =

Fglobal((X,G))⊗̂kα[G].

This essentially identifies the geometric twists above with the algebraic twists
of [JKK2, Ka4].

4.7. Twisting with 2 Gerbes.

Remark 14. The situation for 2–Gerbes is as follows:
(1) The 2–gerbes over [p̃/G] are of the type β ∈ Z3(G,U(1)) and this type

of gerbe can also the be used to twist the Drinfel’d double. And indeed
there is a connection.



(2) We can transgress the equivariant 2–gerbe to an equivariant 1–gerbe G
on IX and actually even to a 1–gerbe over (I(X,G), G). Here the gerbe
is characterized by a set of line bundles, which provide the isomorphisms
Lg,x : x∗(G |Xg ) ∼→ G |

Xx−1gx together with associativity isomorphisms
θg(x, y) : Lg,x ⊗ Lh,y → Lg,xy if g = x−1gx.

(3) The condition of coming from a 2-gerbe expresses itself in a constraint
on the θg. See below.

Definition 15. for a finite group G and an element β ∈ Z3(G, k∗), the twisted
Drinfel’d double Dβ(k[G]) is the quasi-triangular quasi-Hopf algebra whose

(1) underlying vector space has the basis g�
x

with x, g ∈ G

Dβ(k[G]) =
⊕

k g�
x

(2) algebra structure is given by

g�
x

h�
y

= δg,xhx−1θg(x, y) g �
xy

where θg(x, y) = β(g,x,y)β(x,y,(xy)−1g(xy))
β(x,x−1gx,y)

(3) The co-algebra structure is given by

∆( g�
x
) =

∑
g1g2=g

γx(g1, g2) g1�x ⊗ g2�x

where γx(g1, g2) = β(g1,g2,x)β(x,x−1g1x,x−1g2x)
β(g1,x,x−1g2x)

(4) The R matrix is given by

R =
∑
g∈G

g�
e
⊗ 1�

g
, where 1�

g
=

∑
h∈G

h�
g

(5) The antipode S is given by

S( g�
x
) =

1
θg−1(x, x−1)γx(g, g−1)

x−1g−1x �
x−1

(6) The Drinfel’d associator Φ is given by

Φ =
∑

g,h,k∈G

β(g, h, k)−1 g�
e
⊗ h�

e
⊗ k�

e

4.7.1. Category of modules. Since Dβ(k[G]) is a quasi–triangular quasi
Hopf algebra we have a braided category of Dβ(k[G]) modules.

Notice that there is the operation of forming the tensor product which is
neither commutative nor associative. But there are isomorphisms for the com-
mutation and the association.

4.7.2. 2–Gerbe twisting. First of all there is a näıve twisting on K ((I(X,G), G)
by the various θg transgressed from β. In the case of (pt,G) with G Abelian
this yields a geometric incarnation of Dβ(k[G]). In the general group case, we
get a Morita equivalent subalgebra.

More importantly, however, there is a twisting for the full K–theory.



Definition 16. Given β ∈ Z3(G, (U(1)) we define the twisted full K–theory
Kβ

full([X/G]) using the co–product and the obstruction: That is the multiplcation
that is induced by:

Fg · Fh := e3∗(e∗1(Fg) ⊗γ e∗2(Fh) ⊗ ObsK(g, h))

Here we use the co–product in Dβ(k[G]) which is given by γ defined above to
define the action of Z(g, h) on the tensored bundle.

Remark 17. There is a different twist considered in [ARZ], which is on the full
K-theory of the inertia stack: Kfull(IX ) and does not seem to use a co–product
structure.

Theorem 18. Kfull([pt/G])β � Rep(Dβ(k[G])).

4.7.3. Philosophical remarks. This theorem is astonishing in the sense
that the resulting structure is neither commutative nor associative in gen-
eral. But it is of course associative and commutative in the sense of braided
monoidal categories. We hope that we have motivated the appearance of
braided monoidal categories already through the definition of Frobenius traces
and objects. Moreover, if one reads for instance Moore and Seiberg’s work on
classical and quantum field theory one sees that the fusion ring is actually not
expected to be associative and commutative. Only the dimensions of the inter-
twiners lead to such an algebra on the nose. In case of the objects themselves
one should actually expect that one has to go to the braided picture.

4.7.4. Alternative description in the trivial G–action case. If we have
no obstruction, like in the case [pt/G], we can give a different simpler descrip-
tion:

For this we first recall the setup of G–equivariant K–theory in terms of
modules: KG(X) � Bproj.,fin. gen. − mod where B is C∞(X) � G with the mul-
tiplication (a, g) · (a′, g′) = (ag(a′), gg′).

In order to twist with a 1–gerbe α ∈ Z2(G, (U(1)) following Atiyah-Segal,
we give a new multiplication on B via

(a, g) · (a′, g′) = (ag(a′), α(g, g′)gg′)

Now the twisted K–theory are just the projective finitely generated B–modules.
For the 2-gerbe β twisted K–theory, we twist the G action on V ⊗ W by

using the co–product. In the free G–action case this amounts to the following.
If A = C∞(X) and the action is free then C∞(I(X,G)) =

⊕
g∈G A. Now

although the G action on X is trivial, it is not trivial on IX, since it permutes
the components.

It is easy to check that in the trivial G action case the algebra is

B = C∞(I(X,G)) � k[G] � A ⊗ D(k[G])

and hence we see that we can twist with β to obtain

Bβ = A ⊗ Dβ(k[G])

whence we get the generalization of the Theorem of [p̃/G] to the case of a trivial
G–action by considering the braided category projective finitely generated Bβ

modules.



Remark 19. In the algebraic category, we can use OX instead of A.
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[FG] B. Fantechi and L. Göttsche, Orbifold cohomology for global quotients. Duke Math. J.
117 (2003), 197–227.

[GLSU] A. Gonzlez, et al. Chen-Ruan Cohomology of cotangent orbifolds and Chas-Sullivan
String Topology.

[IV] K. Intriligator and C. Vafa, Landau-Ginzburg orbifolds, Nuclear Phys. B 339 (1990),
95–120

[JKK1] T. Jarvis, R. Kaufmann and T. Kimura. Pointed Admissible G-Covers and G-
equivariant Cohomological Field Theories. Compositio Math. 141 (2005), 926-978.

[JKK2] T. Jarvis, R. Kaufmann and T. Kimura. Stringy K-theory and the Chern character.
Inv. Math. 168, 1 (2007), 23-81.

[Ka1] Orbifold Frobenius algebras, cobordisms, and monodromies. In A. Adem, J. Morava, and
Y. Ruan (eds.), Orbifolds in Mathematics and Physics, Contemp. Math., Amer. Math.
Soc., Providence, RI. 310, (2002), 135–162 and R. M. Kaufmann Orbifolding Frobenius
algebras. Int. J. of Math. 14 (2003), 573-619.

[Ka2] R. M. Kaufmann. Singularities with symmetries, orbifold Frobenius algebras and mirror
symmetry. Contemp. Math. 403 (2006), 67-116.

[Ka4] R. M. Kaufmann, The algebra of discrete torsion, J. of Algebra,282 (2004), 232-259.
[Ka5] R. M. Kaufmann.A Note on the Two Approaches to Stringy Functors for Orbifolds.

math.AG/0703209.
[Ka6] R. M. Kaufmann.Singularties with Abelian symmetry groups and Orbifold Laudau–

Ginzburg theory In preparation.
[KP] R. M. Kaufmann and D. Pham. The Drinfel’d double in stringy orbifold Theory. Preprint.
[PPTT] M. J. Pflaum et al. Orbifold cup products and ring structures on Hochschild coho-

mologies. arXiv:0706.0027
[V] C. Vafa, String vacua and orbifoldized LG models, Modern Phys. Lett. A4 (1989), 1169–

1185.


