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1. The multidimensional arithmetic of E. Hecke, [4], [5], [7], may be regarded as
a study in analytic number theory on the torus ResgpGmi for a number field k
of finite degree over the field @ of rational numbers. Here we shall try to generalise
these considerations to an arbitrary algebraic torus defined over a number field. After
applying Weil’s restriction of scalars, if necessary, we may suppose that our torus 7T
is defined over @; it splits over a finite normal extension K|@. Let G = Gal(K|Q)
be the Galois group of K, let [K : @] = n be its degree, and let d = dim T denote

the dimension of T'. Such a torus is uniquely defined by an integral representation
p: G— GLd, Z) .

where Z is the ring of rational integers, [12] (cf. also [15]). Consider a GG—-module
Klz), z:={zy] 1 €1 <d, 1 <7 <n}, choose an integral basis {w;] 1 <7 < n} of
K@, and let

Equations

where

n d
ol; = Z:Eej ow; , t{ = D_lf;ﬁ(a) , plo) = (rilo) , 1<4,5<d .
Jj=1



define an algebraic variety, say
X = Spec Q[2]/J

J being the defining ideal of X; the torus T may be regarded as a Zariski open
subset of X given by the condition 1|<T|'<d i; # 0. We view X (ZZ) as a generalisation
of the ring of integers of an algebraic number field (if 7" = ResygpGm one may
identify X'(7ZZ) with the ring of integers of k), and intend to play the usual game of

analytic number theory on this set.

2. On choosing a fixed embedding @ — € we shall regard the field @, the algebraic
closure of @, as a subfield of the field @ of complex numbers. For a k-algebra A,
kC @ let Ak = AQy, K, where kg = K Nk (the fields k£ and /" are linearly disjoint

over ko since K|J is normal). If one defines an embedding
t: T(A) — Al

in a natural way, T{A) may be viewed as a subset of Go-invariants, where Gy :=
Gal(K|kg), that is to say

T(A) = {t(a)| ac A™ ot(a)=1(c) for o€ G'g}

(a word about notation, t(a) := (t1(a),...,t(a)), ti(a) = 3 ajw;, a = {ay| 1 <
i=1

1<d, 1<j<n}, t7:=(t],...,13), etc.). Since

d
X@\T@) C Uc,- L L= {zlze@™, z; =0for 1 <5 <d}

we may often replace X (A) by T(A) causing no damage 1o the type of problems

discussed here.
Before proceeding any further let us introduce the G-module of characters
T = {ziz € Z¢, ox = plo)zforo € G},

and its dual

T = {ylv' € Z°, oy =yp(c™") fora € G} ,



where the upper affix * denotes. matrix transposition. The G-module
M={f|z¢€ T, ot* =t foro € G},

and its submonoid
M= {t*|z €T, x>0}

d
furnish us with a convenient parametrization of T(A). Here {* := I:' t7',and 2 2 0
means z; > 0 for 1 <1< d.

3. Let I(K) and Ip(K') denote the group of fractional ideals of K" and the monoid

of integral ideals of I respectively, and let

d
I(T) = {YAe (K, o = []m;‘i("’ for oG, 1<5<d},

I(7Ty = I(T)n I(T)* .

One defines the norm homomorphism N : I(T) — @3 by letting N = 1<|-1d N,
<ig

for A € I(T). We say that 2 is a primary ideal if A € [,(T") and N2 is a prime
power in (. For a rational prime p, let

I(T)(:= 1) = {4 A € Io(T), NU = p" for some n}

be the submonoid of p—primary ideals. To analyze the structure of I, let us introduce

the G-module of one-parameter subgroups
M, ={u|ye T, ou? = u"_]y} ,

where u¥ := (u¥,...,u¥). Clearly, (oz)(ou¥) = z(u¥) if welet z(u¥) := (u¥)* = u¥=

for z € T, u¥ € M,. |

Let us choose a prime p in /{K') dividing p, and let
Gp = {o|op=p, 0 € G}

be the decomposition group of p, so that

p= W (Tp)°(”) in I{K) ,

+med Gp



where 7 ranges over G. Let % € [, then

%= [ @0 with  a(neZ o(n)20,
rmodc:p

and

d
(1) anj = [—IQIZ.U(U) = ]——l (Tp)(“("‘)'ﬂ("}lb )
=1 rmod Gp

On the other hand,

o, = ' (orp)&) |
rmod Gy

and in particular
T = p¥ O with  p )Rl .
But
TRl = ple(@elr ™, A with  p AL,
in view of (1). Therefore
a(r) = a-p(r7")"
and, moreover,

a-plo)=a for oc€Gp,

where we write a(e) = a and denote by e the unit element of G. Thus (cf. {1])

(2) L=0LI)={%l%= [ () cecc;} .

where

C™ = {a|a€'f“', o-a20foroe G},
and
vpl — Cn r—-] (T-)Gp .
If C- # {0} let @ € C~\{0}; clearly
Y oae (T7)°\{0} .

e

so that T¢ % {0}, and T is not anisotropic. Therefore Io(7") = {1}, and consequently
T(Z) = X(Z) for an anisotropic torus 7. Suppose now that T is not anisotropic
(that is T¢ # {0}), then after a possible change of basis in T it may be assumed
that C* N (7)€ # {0}, and in particular Cj # {0}.
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Let
x: fo(T) — @ U {0}

be such a homomorphism that

"oy =L  with  #S<oo;

p€ES

here @; := {z| z € @, {z| = 1}. Let

(3) Lix,s)= Y x(@Na~ ;
Ael(T)

clearly

(4) Lix.s) =T TLp(x,9) -

where p ranges over all the rational primes, and
Ly(x,s) = > x(2)NA™* .
Ael,

Both the Dirichlet series (3) and the Euler product (4) converge absolutely for
Res > 1. By a well-known theorem (going back to D. Hilbert), the cone C* and
therefore the monoid I, are finitely generated. The generators of I, are the prime
ideals of T'; it can be shown that the theorem on the uniqueness decomposition of
the primary ideals into primes does not hold in this generality. Let P(T) be the set
of all the prime ideals in I5(7"), and let P € P(T'); we say that P is a strict prime if

A P = (A=P™ for some m) .

Let P,(T') be the subset of the strict primes. From a theorem in combinatories, {14,

theorem 2.5}, one concludes that

(5) Lo = 1 (1 =xmng=) 10,0

with Q,(z) € lz], @p(0) =

Lemma 1. For 2, € /, one has
(6) N2, = p*@ , bla)e(p) =a -z ,

withz; = Y ry(0); moreover, z € TC.
0€G,1<5<d



Proof. Let Np = p/®). 1t follows from (2) that

N, =p/PP with b, = Z Ira| |
rmod Gp

d ) .
where |a| := 3 «; for a € T". Since Cj; C (T")°® we have
]

7
1 1 -
" 2 T 2, 2,

0€G 0€G 1<i, j<d
Relation (6) follows now from the equation |Gp| = e(p)f(p); the last assertion is
obvious.
Write now
(==
(7) L(x,9) =Y _p™ Y x(%)
. n=0 (a|s)e(p)an
Waclp

For H C G, let Cy; = C*N(T")H, and let
B(H):=min{a-z{a#0, a €Cy} .

By construction,

B(H) = (min{ Y ralla #0, aec,;}) |H| ,
rmod H

and therefore

(8) |H| < B(H) < o0 .
Clearly §(H,) < f(H,) if Hy C H,, so that
(9) anigﬂ(H)zﬂo , Bo=B({e}) -
By (7)-(9),
(10) Lx,s)=1+4> p™ > x(%) -
n>0G (alz)e(p)=n
- Uoerp

Lemma 2. Both the Dirichlet series (3) and the Euler product (4) converge abso-

lutely for Res > '61:



Proof. It follows from (10) and the definitions (3), (4).

Clearly
. €1, , a-z=Pp(Gp)=2, isprime .

Let
Pr(T) = {2 a€C", a 2= fo}

be the set of the minimal primes. It follows from (5) that

(11) sy = D1 (= x(BINS™) 7100 s)

where

(12) L=, Tl o QXN 1o

with Q{(z) € =], QM(0) = 1, and the Euler product (12) converges absolutely

for Res > —— Bo+1 .

Corollary 1. The set
D(B)={alaeC a-2=8) , 8>0,
is a finite G-invariant set.

Proof. It follows from Lemma 1 that D(8) is G-invariant since z € 7; moreover,

a-z= Y |oa|l > |a| for a € C*, and therefore
o€C

|D(B)| < card{ala € Z%, a >0, |a| = B} < o0 .

Let
B
D(Bo) = | Di
=1
be the decomposition of the set D(fFy) into G-orbits
D;=G-d | 1<i<B,

and let
Di(p) = {Ya| % € I,(T), a € D;} .
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We have

13 [l 1 — x(PINB™® o) [ e

(13) EDer(T)( X(B) ‘13 ) J( )1_-?58 » (3)

with

14 )= [ (14 x(Pyp2els®) |

(14) ps) = Ll L+ x(Py )

where f(s) is equal to an Euler product absolutely convergent for Res > 5= > =

Let
H, = {cr| o €@, gd = a(")}

be the stabiliser of a¥), and let

ki = {:r[ €N, or=zforoce H;}
be the subfield of K corresponding to H;; let

T; = Resy,jpGray; » 1515 B,

so that

T;:{ Y afo)alo €, a(a)EZ}

emod H;

There is a surjective homomorphism f; : 77 — 7T, uniquely defined by the condition
filo) = a-a¥; clearly f,(T,') coincides with the submodule [D;] generated in 7* by
D;. By construction,

HL)={A % e I(k), %; =%, 1 < <di} o

where G = |J Hoj, di = |Di| = [k : @]. Therefore we can define a homomor-

1<;5<d;

phism
xi: Io(ki) — @ U {0}

as follows: let B, € Ip(k;) with NB, = p’ for a rational prime p, and let B; = B7’,
1 <5 < d;; then B € I(T;), say B =, with a € Ti‘, and we may set y;(B;) =
X(2;(a)) for the uniquely defined ideal 2y, ) in I,(T). Let
1

(15) Lixis)= L1 (1= xip)Np™)



Proposition 1. We have

B
(16) L(x,s) = [1L(xi, Bos) LD (x, ¢)

where L®(x, s) is represented by an Euler product absolutely convergent for

Re s > Elﬁ; moreover,
(17) xi=1 for 1gigB<=>x|Pm(T):1.

Proof. In view of (11) - (15), it suffices to note that

Di(p) = {Usw)| %o = B with NB, = p, B € [,(T))} .

Proposition 1 may be regarded as a formal counterpart of a theorem of Draxl’s (cf.
[1], equation (2.1)).

4. Now we are ready to proceed to the main part of this investigation and to comment
on the structure of X(ZZ) as a discrete subset of X (IR). To begin with let

G, =Ga(K|KNR) |

so that

2 otherwise

1 if K C
!Gzl={ i KN CIR

Since both T/7? and T /TC are torsion—free there is a Z-basis {u;|1 < j < d}
of T such that {u;] 1 <7 < p}isabasis of 79, while {u;| 1 <j < p+r}is a basis
of T%2, Clearly

T(R) = {a|a € R™, v (a)=tu(a) for 7 € G2} ,
and we can define a surjective map

f:TUR) — ™7 x (84 |

u;(a)
a (ztl(a),...,uu+,(a),..., |u,~(a)|"“> ,

where p +r+d;, =d,d; 20,17 > g+ r. By a generalisation of the Dirichlet unit
theorem, [12], [13],

T(Z)2 Z" x2A with |2 < o0 ;



therefore T'(IR)/T(Z) = IR} x T, where
T = (SY* x (Z)2722)

and ro < g + 7.

Given a set
S={o0}USs , SoC{p|pisarational prime} ,
let
Ta8)=117@) x| 17(2,) .
and let
Ty = U Ta(S) .
|S|<eo

Clearly T4 = T(Ag), where Ag is the adele-algebra over Q. Let
Ti = {al¢ € Ty, |z(a)l =1 for z € T} ;

clearly T{@) C T (if one identifies T'(@) with its image under the diagonal embed-
ding into T4). By a well-known theorem, {12], [15], T/T(@) is a compact group.
We have

T@y) = {p*lae ()%}
where p is a fixed prime in J(K) with pip. Therefore there is a natural embedding
g : I = T4(S) with S = {oo, p} such that g(J,); = 1 for ¢ ¢ S, and g(A,), = p°
for %, € I,; moreover, it may be assumed that g(I,) C T} if one adjusts g(J,)eo

properly. One extends g to an embedding

Given a character
X THYT(k) — G
the set So = {p| Xp(Zp) # 1} is finite; for p ¢ Sy we let xp, = xp09, il p € Sg let
xp(1p) = 0. This procedure gives rise to the group Gr(T') of Hecke characters
X: 1(T) — G u {0} .

If x € Gr(T) then y; € Gr(k;), 1 <1 < B, where Gr(k) denotes the group of all
the Grossencharakteren of a number field k. The following result may be regarded

as a corollary of Satz 1 in [1].
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\
Corollary 2. Suppose that ¥ € Gr(T). Then equation (16} defines L(x,s) as a
meromorphic function of s in the halfplane (s s € €, Res > Eﬁ , with the only
possible pole at s = 1/;.

Proof. It is an immediate consequence of Proposition 1 since L(xi,s),1 < ¢ < B,
is a Hecke L-function of &; in this case.

The usual machinery of analytic number theory (see, for instance, [9] and references

therein) yields now the following results:

y
(18) card{p| pE 'P(T), Np < yllﬁo} - Bf du 10 (ye-c,/logy) :

» logu
with ¢>0 ,
and
(19) card {2 A € Io(T), N < y/%} = yp(logy) + O(y' ™) ,
with ¢ >0,

where p(z) € C{z], degp=B - 1.

The infinite component Yo in the decomposition ¥ = Yo, - [y, may be regarded as
P

a character of T(IR)/T(Z), say
Xew: RYxT — @ .

The grossencharacter y obtained from Y is said to be normalised if )200|R;,, = 1.
Write

foo(X) = {a] @ € (Z)2Z)", Yeo(a) #1} .
and let fo(x) = l;lpmp, where

m, = min {m| a € Z,, a = 1{mod p™) => Xp(a) =1} .

The pair f(x) = (foo(X) fo(x)) is said to be the conductor of . The group Gro(T, §)
of all the normalised grossencharacters having a given conductor § 1s isomorphic to
Z# x B(f), where B(f) is a finite Abelian group. Moreover, “B(f) may be chosen
to coincide with the subgroup of all the characters of finite order in Gro(7, f). Let

B(f)* = {A2A € I(T), x(A) =1 for x € B(f)} ,
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and let
INT) = {2 x(%) # 0 for x € Gro(T,f)} -

The ray class group H(f) := 1'(;(3")/‘B(f)l is finite, [12] (cf. also [15]), and B(f)

may be regarded as the group of characters of H(f). In a usual way one obtains the

following asymptotic formulae for the number of integral ideals and {or the number

of the prime ideals in a given ideal class. Let A € H(f), we have

(20) card {p|p € P(T)N A, Np < y'/™)
7y Y du —cpq/flogy
= | D" x(A)glx) ogu HO (yemv )
x€B(f) g
and

(21)  card{UA e A NU<y"™} =y )~ x(A)pc(logy) + Oy ™) ,
x€B(f)

where ¢2 > 0, ¢3 > 0, )" := IH_I(ﬂTZ’ Py 1s a polynomial of degree g(x) — 1 whose
coefficients may depend on y, g(x) 1= card{i| 1 <i < B, xi =1} (if g(x) = 0 we
let p, = 0).

Although our ultimate purpose is to investigate the distribution of integer points
on X in the real locus X ([R), the methods for this paper fall short of such a goal,
and we should be content with somewhat weaker results on the integer points of
the variety Y defined as follows. For a € K™ let ¢(a,0) = (ga)(a®)7!, and write

ela): o — €la,0), o € G; define an equivalence relation ~ :
e(a) ~ e(a’) < e(a) = ¢(a’)e(b) for some b in E% |
where Ey denotes the group of units of /', and let
A= {e(a)| a€ K™, €(a,0) € E5- for 0 € G} .

Let B be a set of representatives for A/ ~ containing the identity €® (here ¢© :=
€(1), e(l,o)=1for 1 <7< d). We set

y=Jv,

13-}

the variety V, being defined by the equations

at = e(o)t’ , oG ;



clearly Vo) = X, so that X C Y. The open subset 1‘/[ of ¥, defined by the condition
d

I'———1l t; # 0 is a T-homogeneous space, and we identify V,(IR) with T(IR). Moreover,
(t(a)) € Io(T) <= a € Y(Z) ,

with ¥ := | J V.. Making use of the theory developed here we obtain now an estimate
ceB

for the number of integer points on Y in the “rectangular” compact domain U(y)

in T(IR) given as follows:

y) = {al e € T(R), [Nt(a)| < g%, y™' Sujla) <yforp+1<j<ptr)

d
where Nt(a) : |j| Cl (ot;}a

Corollary 3. Let 2, € IJ,(T), and let

M(2o) = {a| a € Y(Z), (t(a)) C Yo, (t(a)) € Bo(1)"} .

(22 eard(UG) N M (@) = a@alytlogn)* (1+0(=))

with0 <6< B-1.

Proof. Clearly
a € M) <= (i(a)) = AYp with A€ A,

where A € H(f), Uy € A™!. By the unit theorem,

card{a| (t(a)) = (tao)), a € M(Ao) NU(y)} = ca(logy) (1 + O(]o]gy)>

Relation (22) follows from this estimate when combined with (21).

Proposition 2. If T is anisotropic then

(23) card(X(Z) N U(y)) = cs(logy)’ (1 +0(10;y))

13



Proof. In this case Io(T") = {1}, so that X(Z)NU(y) coincides with T(Z)NU(y).
Therefore (23) follows from the unit theorem.

Remark 1. The constants ¢;(2lg) and c3 can be explicitly evaluated; if M (o) # {0}
(resp. X(Z) # {0}) then ¢;(™Up) > 0 (resp. c3 > 0).

5. Proposition 2 provides a complete solution of the problem of counting integer
points on an anisotropic torus, although further refinements in the spirit of [3] may
be probably obtained. Thus henceforth we assume again that the torus 7" under con-
sideration is not anisotropic. The deeper results on the spatial (“multidimensional”)
distribution of the integer points as well as of the integral (or of the prime) ideals

depend on the following condition
(24) xi=1 for 1 <:< B= yx € B(f} for some {

to be satisfied. If (24) holds and B = 1 then a complete analysis in the spirit of {§],
[9], [11] is possible. If (24) holds but B # 1 we can still prove a spatial equidistri-
bution theorem for integral ideals gaining, however, only a power of logarithm of
the main term in the error term (this being insufficient for finer applications to an

equidistribution theorem for integer points, as exhibited in [11]).

In view of (17), condition (24) holds true (with an even stronger conclusion) if the
set Pin(T') of minimal primes generates the monoid /o(7) of integral ideals. The

following observation [1, Satz 1] lies deeper, and it is more useful.
Lemma 3. If P,,(T) generates the group I(T') then (24) holds true.
Proof. It is an immediate consequence of the last assertion in [1, Satz 1].

Example 1. The norm-form (or Vinogradov) torus T can be defined as follows. Let
k be a field of algebraic numbers of finite degree over @; let %i|k, 1 < ¢ < v, be a
finite extension. The torus T} is defined by the following condition (cf. [1]):

Ty(B) = {bl be D (B®: k)", Npgyk/Bb1 = Npgrypbi, 1 <1< V}

14



for any k-algebra B; we let T = ResyppT}. It follows from Lemma 3 that the torus
T satisfies (24), and therefore one can prove a theorem on the equidistribution of
integral ideals having equal norms (cf. [8], where £ =@ and the fields k; are assumed
to be linearly disjoint over k). Moreover, if the fields k;, 1 < 7 < v, are linearly
disjoint over k then B = 1, therefore a complete theory in the spirit of [8], {9], [11]

(where we have assumed k = @) can be developed in this case.

An open question. A Draxl L-function L(s, x) of an algebraic torus is known to be
meromorphic in the half-plane {s| s € €, Res > 0}, {1]. Moreover, if T is a norm-
form torus considered in Example 1, then L(s, x) has the line {s| s € €, Res = 0}
as its natural boundary for analytic continuation, unless either #{i} k; # k} < 1, or
#{i| ki # k} = 2 and [k; : k] € 2 for each ¢ in which cases L(s,y) is meromorphic on
the whole complex plane, (6], (10]. Therefore we may ask under what conditions on
T the function s — L(z, x) can be analytically continued to a meromorphic funciion

on T.
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Correction

g Bieo Bice Bilse Bice | o o

.3, line 10, read : Io(T) = I{T) N Io(K)*
.5, line 4, read: [[ (instead of ][] )

pES PES

. 6, formulae (7) and (10), read : (a/2) = n - e(p) (instead of (a/z)e(p) =n)

.7, line 7 from below, read: la| < 3 (instead of |a| = 3)

.9, lines 8, 9 from below, read: 7% TC: (instead of T¢,TC)

. 14, in (24) read: B(f) ( instead of B(f))

. 14, lemma 3 should read: If C*(8,) generates the group T* then (24) holds true. Here

C*(m):={aja€ C*yaz=m},melm>1.

. 15, line 7 from below, read: Literature cited






