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Dedicaled to Professor F. Hir=ebruch

with deep respect and gl'atitude

1. The multidimensional arithn1etic of E. Hecke~ [4]. [.51: [7], Illa..y be regarded as

a study in analytic nunlber theory on the torus Resk/(fGm .k for a nUlnbcr field l..~

of finite degree over the field (JJ of rational numbers. Here we shall try to generalise

these considerations to an arbitrary algebraic torus defincd over a number field. After

applying \\Teil's restrietion of scalars, if necessary, we may suppose that our torus T

is defined Qver (JJ; it spli ts over a fin ite Donnal ex tension J( I(JJ. Let G = GaI(J( jQ»

be the Galois group of !(, let [!{ : ({J] = n be its degree: anel let d = dinl T denote

the dimension of T. Such a torus is uniquely defined by an integral representation

p: G' -; GL(d, 22) ,

where LZ is the ring of rational integers, [12) (cl'. also [15]). Consider aG-module

J([x], x:= {xii! 1 ::; i ~ d, 1 ~ j :::; n}, choose an integral basis {~'d 1::; i::; n} of

I{~, and let
n

ti = L XijWj

j=1

Equations

where

aEe; 1 :; i :::; d

n

al' .- "" x·· aw·I .- L....J I) )'

j=1

d

tf := n (jd
u

) , p(a) = (rjj(a)) , 1::; i,j :::; d
j=1 )



define an algebraic variety, say

)( = 5pec @[x]/ J ,

J being the defining ideal of )~'; tbc torus T may be regarded as a Zariski open

subset of )( given by the coudi tiOIl n ti =1= O. \Ve view ~\' (LZ) as a generalisatioll
l$i$d

of the ring of integers of an algebraic nunlber field (if T = RcskjqC'm,k one may

identify X(LZ) with the ring of integers of k)~ and intend to play thc usual game of

analytic number theory on this set.

2. On choosing a fixed eInbeddillg ~ t-t ([; we shall regarel tbc held~, tbe algebraic

closure of (Q, as a subfield of thc field (J: of complex nUI11bers. Für a k-algebra A,

k ~ (J), let AK = A ®ko ]{, where ko = ]{ n J.~ (the fields k anel A' are linearly disjoint

over ko since ]<[(P is normal). If one defines an embedding

in a natural \Vay: T(A) may be viewed as a subset of (;o-invariants, where Go :=

Gal(]{lko), that is ta say

T(A) = {t(a)1 a E And
, at(a) = ta(a) for a EGo}

n

(a ward about notation, t(a) := (t 1(a), ... , td(a)), ti(a) = L aijWj, Cl = {uijl 1 <
j=l

i ::; d, 1 :s j ::; n}, tC1 := (ti, ... ,td), etc.). Since

d

X((Q)\T(Cl]) ~ Uri , Ei := {xl x E~nd, Xij = 0 fot' 1 :s j::; d}
i=l

we mal' often replace ~\' (A) by T( A) causing no damage to the type of problelTIS

discussed here.

Before proceeding any further let us introduce the G-nl0dule of characters

i'={x\xE~d,ax=p(a)xforaEG},

and its dual
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where the upper affix t denotes.matrix transposition. The C;-nlodule

and its submonoid

Ai0 = {t x I x E t , X 2 O}
d

furnish us with a convenient parametrization of T(A). Here t X := n tfi, and J: ~ 0
J;;l

means Xi ~ 0 for 1 :::; i ::; d.

3. Let I(]{) and Io(l{) denote the group of fractional idea.ls of ]{ and the 1110noid

of integral ideals of J{ respectively, and let

l(T)
d

{21121 E l(I{)d, a21j =n2t;i j
(Q) for a E G', 1 :::; j ::; d} 1

1;;1

One defines the norm homomorphism N: I(T) -? ~+ by letting IV2t = n lV2tj
l$j:5d

for 21 E l(T). V'le say that 21 is a primary ideal if 21 E Io(T) and /V21 is a prime

power in ~. For a rational prime Pl let

be the submonoid of p--prinlary ideals. To analyze the strucLure of lp let us introduce

the G-module of one-parameter subgroups

\vhere u Y := (u Y1 , •. . ~ uYd ). Clearly, (ax)( au Y ) = x( 'l[Y) if we let x( uY) := (uYY = u y·x

for x E T, uY E 1'1t!.

Let us choose a prinle p in I (I{) di viding p, and let

Gp={alap=p, aEG'}

be the decomposition group of p, so that

p = n (Tl' )e(p)

Tmod Gp
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where T ranges over G. Let 2l E I pl thcn

2lj = n (Tl' )aj(T)

rmod Gp

and

with

(1)

On the other hand,

a2lj = n (aTl'tj(r) ,
rmod Gp

and in partieular

But

with

with

l' 12!j .

in vipw of (1). Therefore

and, moreover,

Q.p(a)t=a for a E Gl' l

where we write a(e) = a and denote by e the unit element of G. Thus (cL {I])

(2)

where

and

I p =Ip(T)={2la l2l a = n (Tpr,a,aECp},
rmod Gp

C" = {al a E t .. , a· (J. ~ 0 for a E G}

Cp= C· n ct·)Gp

If C .. # {O} let a E C .. \ {O}j c1early

L aa E (T .. )G\ {O}
O'EG

so that TG # {O) 1 and T is not anisotropie. Therefore foCT) = {I} ,and consequently

T(LZ) = X(LZ) for an anisotropie torus T. Suppose now that T is not anisotropie

(that is t G # {O}), then after a possible change of basis in T it may be assumed

that C" n (y-)G i= {O}, and in partieular Cpi= {O}.
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Let

x: lü(T) -+ a1 U {O}

be such a homomorphism that

X-I ({ O}) = Ulp
peS

here rEr := {zl Z E ff:, lzl = 1}. Let

with #5' < Da

(3)

clearly

(4)

L(X,s) = L X(21)JVQL-3
21e 1o(T)

where p ranges over all the rational primes, and

Lp(X, s) = L X(21)1"~:?l-3

2lelp

Both the Dirichlet senes (3) and the Euler product (4) converge absolutely for

Re s > 1. By a well-known theorem (going back to D. Hilbert), the cone C" and

therefore the monoid lp are finitely generated. The generators of lp are the prime

ideals of T; it can be sho\....n that the theorem on the uniqueness decomposition of

the primary ideals into primes does not hold in this generality. Let P(T) be thc set

of all the prime ideals in lütT), and let ~ E P(T); we say that ~ is a stTict prime if

211 ~n ==> (21 = ~m for SOlne 111) .

Let P 3 (T) be the subseL of the strict primes. Fronl a theorenl in cOlnbinatories, [14:

theorenl 2.5], one concludes that

(5)

Lenlma 1. For 2la E lp one has

(6) b(a)e(p)=a·z,

. ~G

wlth Zi = L rij( er); moreover, z E T .
aEG,l$j$d
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Proof. Let Np = ]rI{p). It fo11ows from (2) that

with

where laI := t aj for aE t-. Since Cp~ (t-)Gp we have
j;}

Relation (6) follows now from the equation IGpI = e(p)f(p)j the last assertion is

obvious.

Write DOW
00

(7) Lp(X,s) = LP-n.. L X(Q1a)
n;O (QIJ")~(p)t:ln

2la Elp

For II ~ C, let C'H = C- n et-)H, and let

ß(H) := min {a . zl a =f. 0, a E CH}

By construction,

ß(H) = (min { L ITO'lla =f. 0, aE eH}) ·IHI ,
,mod H

and therefore

(8) IHI ::; ß(H) < 00

Clearly ß(Ift} ~ ß(H2 ) if fI I ~ H2 , so that

(9)

By (7)-(9),

min ß(H) = ßo , ßo = ß( {e}) .
Hr;;G

(10) Lp(X,s) = 1 + L p-n..
n~ßo (alJ")~(p):c:n

2la E Ip

X(21a )

Lemma 2. Both the Dirichlet series (3) and the Euler product (4) converge abso

lutely for Re s > ~.
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Proof. It follows from (10) and the definitions (3L (4).

Clearly

21a E Ip , a· Z = ß(Gp) ==> ma is prinle

Let

be the set of the minimal primes. It follows froill (5) that

(11)

where

(12)

with Q~l)(X) E Gixl, Q~l)(O) = 1, and the Euler product (12) converges absolutely

far Res> ßo~l •

Corollary 1. The set

D(ß) = {aJ a E C·, a· Z = ß} , ß > 0 ,

is a finite G-invariant set.

Proof. It follows from Lemma 1 that D(ß) is G-invariant since z E TC; moreover,

a . Z = E laal 2:: lai for aE C·, and therefore
aEC

IDCß)I ~ card{ al a E 2Z d
: a 2:: 0, lai = ,8} < 00

Let

be the decomposition of the set D(ßo) inta G-orbits

and let
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We have

(13)

with

(14)

where f( s) is equal to an Euler product absolutely convergent for Re s > 2~ 2: ßo~l .

Let

fi i = {erl er E C, era(i) = a(i)}

be the stabiliser of Q (i), and let

be the subfield of !{ corresponding to Hj ; let

so that

T j-' = { L a(a)al a E C, o(er) E Zl}
O'mod Hi

There is a surjective homomorphism h: it -t t-, uniquely defined by the condition

Ji(a) = a· a(i); clearly Ji(Tt) coincides with the submodule [Dd generated in t .. by

Di . By constructlon,

where G = U Hiaj, di = IDil = [ki : Q'J]. Therefore we can define a hon10n101'
l::;j~di

phism

Xi: Io(kd ~ ([1 U {O}

as follows: let 23 1 E i o(kd with lVQ31 = pt for a rational prilne p, and let Q3j = 23~),

1 ::; j ::; di ; then Q3 E Ip(Td, say Q3 = 21a with a E Ti 1 and we may set Xi(Q31) =
X(2l!i(a)) for the uniquely defined ideal Q!f;(a) in Ip(T). Let

(15)
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Proposition 1. \-\Te have

(16)
B

L (X, s) = fl L(X i, ßo s )L (2)(X, 8) ,
1=1

where L(2)(X, s) is represented by an Euler product absolutely convergent for

Re s > ßo~l; moreover,

(17)

Proof. In view of (11) - (15), it suffices to note that

Proposition 1 may be regarded as a formal counterpart of a theorem of Draxl's (cf.

[1], equation (2.1)).

4. Now we are ready to procecd to the nlain part of this investigation and to comnlent

on the structure of X(LZ) as a discrete subset 01' )((Di). 1'0 begin with let

G2 = Gal(!(1 !( n IR)

so that

!G21 = {I if !{ ~ IR
2 otherwise

Since hoth TITG') and jC') IrG are torsion-free there is a ~-basis {Uj 11 ~ j ~ d}

ofT such that {ujl1 ~j ~ fL} isa basisofTG
1 while {ujll ~j ~J-1+r} isa basis

of T G
2. Clearly

and we can define a surjective map

where fL + r + d1 = d, d1 ;::: 0, i > Jl + 7'. By a generalisation of the Dirichlet unit

theorem, [12], [13],
T(ZZ) ~ LZ r x 21 with 1211< 00 ;
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therefore T(IR)/T(2Z) ~ JR-.( x T, where

and ro ::; J.l + r.

Given a set

5 = {oo} U So , So ~ {pi p is a rational prilne} ,

let

and let

TA = U l A(S) .
151<00

Clearly TA = T(Aq), where A:, is the adele-algebra over~. Let

Tl = {al a ETA, Ix(a)l = 1 for xE t C
} ;

clearly T((Q) ~ Tl (if one identifies T(~) with its image under the diagonal embed

ding into TA)' By a well-known theorem, [12], [15], T;\ /T(Oj) is a compact group.

We have

where p is a fixed prime in I(I{) \\'ith plp. Therefore there is a natural embedding

9 : Ip~ TA (5) with 5 = {OO,P} such that g(Ip)q = 1 for q f/; 5, and g(21a )p = pa

for 21a E I p; moreover, it may be assumed that g(lp) ~ Tl if one adjusts g(lp)oo

properl::;,:. One extends 9 to an embedding

Given a character

x: Tl/T(k) -t CEt ,

the set So = {pi Xp(~p) -# 1} is finite; for p f/; So we let XP = Xp 0 g, if p E So let

Xp(Ip) = O. This procedure gives rise to the group Gr(T) of Hecke charaeters

lf X E Gr(T) then Xi E Gl'(kd, 1 ::; i ::; B, where Gr(k) denotes thc group of all

the Grössencharakteren of a number field k. The following result may be regarded

as a corollary of Satz 1 in [1].
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,
Corollary 2. Suppose that X E Gr(T). Then equation (1 G) defines L(X ~ s) as a

meromorphie function of s in the halfplane { s I s E (E, Re s > ßo~ I } 1 with the only

possible pole at s = 1/ßo.

Proof. It is an immediate consequence of Proposition 1 sinee L(Xi, s), 1 ::; i ::; B,
is a Hecke L-funetion of ki in this ease.

The usual machinery of analytic number theory (see, for instanee~ [9] and referenees

therein) yields now the following results:

(18)

and

l
y

dlL (V19card {pI p E P(T), f\/p < yl/ßo} = B -1- + 0 ye- C
logy

2 og 1L

with C > 0 ,

(19) card {21121 E Io(T), /V2J. < yl/ßo} = yp(logy) + O(yl-Ci) ,

with Cl > 0 ,

where p(x) E CL1x], deg p = B - 1.

The infinite eomponent Xoo in the decomposition X= Xcv .n XP may be regarded as
p

a character of T(JR)jT(2Z), say

X00: IR*-: x T ---t ([1 .

The grossencharacter X obtained from X is said to be nonnalised if Xoo IR." = l.
+

\Vrite

and let fo{x) = n pm p ~ where
p

ffip = min {n21 Q' E LZp, Q' = l(mod pm) => Xp( 0') = I}

The pair f(X) = (foo(X), fo(x)) is said to be the conduetor of x· The group Gro(T, f)

of all the normalised grosseneharaeters having a given eonduetor f is isomorphie to

2Zd-~ x ~(f), where ~(f) is a finite Abelian group. i\1oreover, ~(f) may be chosen

to eoineide with the subgroup of all the eharaeters of finite order in G'ro(T, f). Let

~ (f).L = {2J.I2! E Io(T), X(21) = 1 for X E ~(f)} ,

11



and let

]J(T) = {mi x(m) -1= 0 fol' X E G1'0(T, f)} .

The ray dass group H(f) := IJ(T)/~(f).L is finite, [12] (cL also [15]), and ~(f)

may be regarded as the group of characters of H (f). In a usual way one obtains the

following asymptotic formulae for the number of integral ideals and for the number

of the prime ideals in a given ideal dass, Let A E H(f), we have

(20) card {pI p E P(T) n A, lVp < yl/ßo}

= (L" X(A)9(X)) 1" 1:;U + 0 (ye-"VIOgy)
xE~(f)

and

(21) card {21121 E A, N21 < yl/ßo} = y L" X(A)Px(log y) + O(yl-C3
) ,

xE~(f)

where C2 > 0, C3 > 0, ~. := IH~f)l 2:, Px is a polynonlial of degree g(X) - 1 whose

coefficients may depend on X, g(X) := card{ il1 ::; l' ::; B, Xi = I} (if g(X) = 0 we

let Px = 0).

Although our ultimate purpose is to investigate the distribution of integer points

on X in the real locus X(IR), the methods for this paper fall short of such a goal,

and we should be content with some\\'hat weaker results on the integer points of

the variety Y defined as folIows. For a E ]( ..d let c:(a,a) = (aa)(aU)-I, and write

t(a): 0 I--lo c:(a,a), 0 E G; define an equivalence relation "'-':

t(a) "'-' ((a') <===} ((a) = c(a')t(b) for same b in ER- ,

where Ei{ denotes the group of units of !{, and let

A = {c:(a)1 a E J( ..d, f(a,a) E E~. for a E G}

Let B be a set of representatives for AI "'-' containing the identity c:(0) (here ((0) :=

f(l), f1(1, a) = 1 for 1 ::; i ::; d). We set

the variety '/~ being defined by the equations

aEG
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clearly ~(O) = X, SO that X ~ Y. The open subset f~ of \~ defined by the eondition
dnt i =j:. 0 is a T-homogeneous spaee, and we identify ,~(m) with T(IR). !vloreover,

1=1

(t(a)) E Io(T) <===} a E Y(2Z) 1

with Y:= U 'C:. Making use of the theory developed here \...'e obtain now an estimate
(EB

for the nu mbel' of integer points on )" in the ::reetangu lar" eompaet domai 11 U (y )
in T(JR) given as follows:

U(y) = {al a E T(IR), IIVt(a)1 < yl/ßo, y-l::; uj(a)::; y für 11 + 1::; j ::; Jl + 7'}

d

where jVt(a) := nn (ati)(a).
1=loEG

Corollary 3. Let 210 E IJ(T), and let

M (210 ) = {a I a E Y (2Z) , (t (a )) S; 210, (t (a )) E ~ 0 ( f).L }

We have

(22) card(U(y) n M ('210 ») = c, (Q1o)y(log y)b+' (1 + 0 Co~ y)) ,

wi th 0 ::; b :::; B - 1.

Proof. Clearly

a E A1(2!0) <===} (t( a)) = 2!2!o with 2! E A ,

where A E H(f), 2!0 E A-1
. By the unit theoren1,

card{ al (t(a)) = (t(ao)), aEM(Q1o) n U(y)} = c2(logy)' (1 +OCo~))

Relation (22) follows from this estimate \",hen combined with (21).

Proposition 2, If T is anisotropie then

(23) card( X( 72) n U(y)) = C3(lOgyr (1 + 0 Co~ y) )

13



Proof. In this case 10(T) = {1}, so that X(2Z) n U(y) coincides with T(2Z) n U(y).

Therefore (23) follows from the unit theorem.

Remark 1. The constants Cl U21 0 ) and C3 ean be explicitly evaluated; if 1\1(210 ) :j:. {O}

(resp. X(LZ) :j:. {O}) then cl(21o) > 0 (resp. C3 > 0).

5. Proposition 2 provides a eomplete solution of the problem of counting integer

points on an anisotropie torus, although further refinelnents in the spirit of [3] may

be probably obtained. Thus henceforth we assume again that the torus Tunder ca11

sideration is not anisotropie. The deeper results on the spatial C;multidin1ensional")

distribution of the integer points as weIl as of the integral (or of the prime) ideals

depend on the following candition

(24) Xi =] for ] :::; i :::; E =} X E E(f) for sarne f

to be satisfied. If (24) holds and B = 1 then a complete analysis in thc spirit of [8],

[9], (11] is possible. Ir (24) holds but B #- 1 we can still prave a spatial equidistri

bution theorem far integral ideals gaining, however, only apower of logarithm of

the main term in the errar term (this being insufficient for finer applications to an

equidistribution theorem for integer points, a.s exhibited in [11]).

In view of (17), eondition (24) holds true (with an even stranger conclusion) if the

set Pm(T) oi minimal primes generates the monoid Jo(T) of integral ideals. The

following observation [1, Satz 1] lies deeper, and it is more useful.

Lemma 3. If Pm(T) generates the group I(T) then (24) holds true.

Prüof. lt is an immediate consequence of the last assertion in [1, Satz 1].

Example 1. The norm-forn1 (01' Vinogradov) torus T ean be defined as folIows. Let

k be a field of algebraic numbers of fini te degree over (J]; let ki Ik 1 1 ::; i ::; V 1 be a.

finite extension. The torus Tk is defined by the following eondition (cL [1]):
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for any k-algebra Bi we let T = Resk/QTk . It follows from Lelllma 3 that the torus

T satisfies (24), and therefore one can prove a theoreln on the equidistribution of

integral ideals having equal norms (cf. [8], where k = cp and the fields k j are assumed

to be linearly disjoint over k). t\10reover, if the fields kj , 1 ~ i ~ 11 , are linearly

disjoint over k then B = 1; therefore a conlplete theory in the spirit of [8], [9], [11]

(where we have assumed k = ({l) can be developed in this case.

An open question. A Draxl L-function L(s, X) of an algebraic torus is known to be

meromorphic in the half-plane {si S E ([), Re S > O}, [1]. :Moreover, if T is a norrn

form torus considered in Example 1, then L(s, X) has the line {s I s E (E, Re s = O}

as its natural boundary for analytic eontinuation, unless either #{ il kj f: k} ~ 1, 01'

#{iJ ki f: k} = 2 and [ki : k] ::; 2 for each i in whieh eases L(s, X) is meromorphie on

the whole complex plane, [6], [10]. Therefore we may ask under what conditions on

T the funetion s I-t L(x, X) ean be analytically continued to a meromorphic funcLion

on CE.
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Correction

p. 3, line 10, read : Io(T) = J(T) n Jo(J()d
p. 5, Hne 4, read: TI (instead of 11)

pES pES

p. 6, formulae (7) and (10), read : (o:/z) = n· e(p) (instead of (o:/z)e(p) = n)

p. 7, Hnc 7 from below, read: lai::; ß (instead of la] = ß)
p. 9, Hnes 8, 9 from below, read: TG, t G2 (instead of T G , T G.)

p. 14, in (24) read: ~(f) (instead of B(f))
p. 14, lemma 3 should read: If C* (ßo) generates the group T* then (24) holds true. Here

C*(m):= {ala E C*,a.z = m},m E Z,m ~ 1.

p. 15, Hne 7 from below, read: Literature cited




