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§ 0.1. Introduction

In this paper we are going to study some differential-
geometric properties of the moduli space of compact complex mani-
folds of dimm 2 3 which admit non-flat metrics g with holonomy
groups H(g) #+ {0} and H(g) < SU(n). Such manifolds we will call

SU(n) or Calabi-Yau manifolds. Before stating the main results,

we will make several remarks.

Remark 0.1.1. It is not difficult to see that a metric on a compact

complex manifold whose holonomy Hoz {0} and H < SU(n), will be
Kdhler and Ricci flat. We will call it Calabi-Yau metric.

(See [21).

Remark 0.1.2, If M 1is a Calabi-Yau manifold, then from the theory

of invariants of the group SU(n) and the fact that holonomy group
B0+ (0) and =® € SU(n) it follows #HOM,0Y) = 0 for 1<i<n
and HO(M,Qn) is spanned by a holomorphic n-form W 1 which has no

zeroes and no poles. This implies that ¢, (M) = 0 Constructions of

1
Calabi-Yau manifolds arebased on the solution of Calabi conjecture by

Yau. See [@s].
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Recently SU(3) manifolds have attracted the interests
of physicists working on string theory and algebraic gecmeters
working on the classification of threefolds and on .algebraic cycles.
Let me state the results that are contained in this paper.

In §1 the following theorem is proved:

Theorem 1. Let M be a Calabi-Yau (SU(nz23)) manifold, where

n = dimM. Let 7 : X —> S 30, 771¢(0) = M be the Kuranishi family of M,

then S 1is a non-singular complex analytic space such that

1(Qn_1). See also [13].

_ 3a 1 _ oas
dimms = dlmmH {M,0) = dlmEH
More precisely we have proved Theorem 1'. From Theorem 1'

follows Theorem 1 and our curvature computations are based on

Theorem 1°'.

Theorem 1'° Let M be a Calabi-Yau (SU(n23)) manifold. Let
(gaﬁ) be a Calabi-Yau metric on M. Let HT(M,O) denote the
harmonic elements of H1(M,O) with respect to (gag), let ®y be

any element of H1(M,®), then there exists a unique power series

_ 2 N
plt) = w1t + wzt + ...+ th + ...
such that for |t| < ¢
a) o(t) |£C°"(M,Q°'1 ® 0,) b) 3*@(t) = 0, where 3* 1is the

M
adjoint operator of § with respect to (gaﬁ)'

c) JFelt) - %[«p(t),tp(t) =0 d) for each K22 @ luwy = ¥,

0 € HO(M,ﬂn} and w has no zeroes.

where o 0
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Theorem 1 was first anounced by F.A. Bogomolov in [18]. Later
P. Candelas, G. Horowith, A. Strominger and E. Witten proved

theorem 1 under the assumption that
B (M,z) sz. (117])

Theorem 1 was alsoc proved by Tian independently. Next we are going
to describe the results in §2. So we need some definitions in order

to formulate the results.

Definition. A pair (M,L) where M is a Calabi-~-Yau manifold and

L€n?(MR) will be called a polarized SU(n) manifold if

L = [Im g&E], where (g;g) is a Kidhler metric on M.

With [w] we will denote the class of cohomology of a form

w. From now on we will suppose that L 1is fixed.

Suppose that M + S 1is the Kuranishi family of polarized Calabi-

Yau manifold (M,L), so may be after shrinking S we may suppose
that for each s€S on M_ = - 1(s) there exists a unique Ricci-
flat Kdhler metric gag(s)v such that [Im gag(s)] = L. The last fact
follows from Yau's solution of Calabi's conjecture, Kodaira's
stability theorem, which states that small deformations of Ké&hler

manifold is Kdhler and the fact that for. SU(n23) manifolds

HZ(X,OX) = 0, From h2'0 = 0 it follows that M 1is an algebraic
manifold, Here we use the fact nz 3, since if n = 2, h2'0 =1 .
Now' we can identify the tangent space at s€sS, T with

s,58
m1(Ms,Os), where ZH1(MS,OS) is the harmonic part of H1(MS,OS) with

respect to gag(s) and OS is the sheaf of holomorphic vector fields.
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Now we are ready to define Weil-Petersson metric on S-the local

moduli space of (M,L}.

Definition. Let @1,w2 € TS =ZH1(MS,OS), then

.S

= B g B
Wyr0py b, 1{1 w1a cpE 9,59 Vvollg,g(s))

Here we are using the usual Einstein's conventions for summation.

In §2 we calculated the Weil-Petersson metric on the moduli

space of polarized 8SU(n23) manifolds in terms of the standard

cup product on Hn-2,2' i.e.
n(n-2)
ca,v> = (1) 2 (™Y [ uav, u,vent?2 |

M

In order to simplify the computation of the curvature tensor

RaE'uG

loéal coordinates (t1

,...,tK) in S§ so that

_ _ _4 0=B .
hu; = 6u3'+2huv,a8t t” + (higher order terms) .
In §2 it is proved that such a coordinate system exists and so
{hpﬁ}’ i.e. the Weil~Petersson metric is a Kihler metric. Let

me describe how one fixes such "good" coordinate system which we

call "Kodaira-Spencer-Kuranishi" local in S. Let {nv} v=1,..

be a basis in ZH1(M,O) and let

0, (£ = n t* + o (£%)?

o
o o,t * wa,3(t ) o

of the Weil-Petersson metric (hug) we need to find "good"
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be the power series with the properties stated in Theorem 1', then
it 1s proved in §2, that (t1,...,tK) will be a good local coordinate

system, namely the following lemma is proved.

Lemma. Let (haE) be the Weil-Petersson metric on S, then with
respect to Kedaira-Spencer—-Kuranishil local coordinates the following

formula is true:
n{n-1)

. : 7,02 — L .0c T
) hztH=n 4 (@° [bjdtnamo)n(nsmo)+4t°‘t31{1[/s%am0hm%ﬁm01

B

+ (terms of order 23)], where Azna : A291’0 - AZQO and Azﬂa(UAV)=

= n (u) an (V) and [Azhalwo]

n-2,2 cHn(M,E) , where

denote the cohomology class of ZM(Azhulwo) in H
H 1is the harmonic projection. From this lemma we derive the following

theorem

Theorem 2. a) The following formulas are true for the curvature tensor

Raﬁ uv of the Weil-Petersson metric on the modull space of S5U(nz3)

manifolds

RU-E,U-\; =0 if a#*pu or v# R
nin+1) .
2 -2 2 I
Ruﬁ,aﬁ =+ n ()" gl (A na'Lwo] A LA ng-LwO]

b} The biholomorphic sectional curvature of the Well-Petersson

metric onthe moduli space of SU(nz3) manifolds is negative.
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The proof of the lemma is based on the following two observations.

ni{n+1)

Observation 1. Q0> b = (-1) 2

(i)n'zj(g1lmo)A($5Iag),

where Imo.mﬁb = [ vol (9,3

This formula says that in case of SU{(n) manifold we do not need
Calabi-Yau metric in order to define Weil-Petersson metric. We only
need the polarization class since if ImtAat = [L™ , then we have a

canonical isomorphism a : HT(M,@) = s 1 @ Nale) = ©lwy . On

n(n+1)

n-1,1 o L

H we have a canonical metric; <a,b> = (-1) (i) IaAb .
M
This is so since if n 2 3 all elements of Hn_1’1 are primitive
ana B0 5 w0, 0" =0 .
Observation 2. Let Da © S be the disc define by
t1,,= 0'o.o’ta-1 = 0,ta+1 = 0'...'tK = 0 - Let Ma —_—> Da be the
restriction of the Kuranishi family on Da . Let w o be the
_ t
holomorphic form on 1w 1(ta) =M o such that
t

Ju o dw = Jughwy , then o ~ as C n-form on M, can be

t t t
expressed in the following way

1(1-1)
t 2 1 o 1 o
(**) w = wy + ) (=1) Ao (t7) L w, , where A g (t”) €
o 0 & a 0 o
t 1=1
1.4A,0

T'(M,Hom(A™Q

1.0,1 1l a
AR })) and A wa(t )(u1A...Aul)

= 63 o
= wa(t )(u1)A...Ama(t )(ul) .

From observation 1 and 2 it follows that

n{n-1) Cdw dw 5
(Fxx) hug(t,E) = (-1) 2 (i)“'z/j t o £ \

\M at® at® /-
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From (***) Theorem 2 follows almost directly.

Remark 1. It is a well known fact that the moduli space of
marked polarized K3 surfaces is S0(2,19)/80(2) x S0O{19) .
From observation 1 it follows that the Weil-Petersson metric is

the Bergmann metric on S0(2,19)/S0(2) x SO(19). (See also [11]).

Some historical notes. The purpose of introducing of invariant

metric on the moduli space (in case of Riemann surfaces on the
Teichmiiller space), is to provide information on the intrinsic
properties of @he space. The Weil-Petersson metric has successfully
filled this role in case of Riemann surfaces of genus g 2 2 .
Ahlfors was the first to consider the curvature of the Weil-
Petersson metric in case of Riemann surfaces, i.e. on the
Teichmiiller space. See [1 ]. He obtained singular integral
formulas for the Riemann curvature tensor. As an application he
found that the Ricci, holomorphic sectional and scalar curvatures
are all negative. Royden later showed that the holomorphic sectional
curvature is bounded away from zero. Tromba gave a complete formula
for the curvéture,of<Weil—Petersson metric on Teichmiiller spéce and
found that the .general sectional curvature is negative. See [147.
Later Scptt.Wolpert gave another formulas for the curvature
tensor of the Weil-Petersson metric on the Teichmiller space of
Riemann surfaces of genus g 2 2 . From his formulas S. Wolpert
showed that the hélomorphic sectional and Ricci curvatures are

bounded above by 5?%%:77 and the scalar curvature is bounded

above by -3(3w_1) . S. Wolpert showed that the curvatures are

governed by the spectrum of the Laplacian. See [1]. J. Royden
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also obtained similar results. Later S. Wolpert used his
calculations of the curvature tensor of the Weil-Petersson
metric to get some information of the global structure of the
moduli space of Riemann surfaces.

Siu generalized the formulas of S. Wolpert in case of
algebraic manifolds with Riceci < 0 and complex dimension 2 2
See [12]. Nannacini used Siu's method and obtain similar to Siu's
formulas in case of 8SU(nz2) polarized manifolds. See [9 ]. In
his introduction of [12] Siu announced that Royden also obtained
séme formulas for the curvature tensor of the Weil-Petersson metric
on the moduli space of compact complex manifolds with dim 2 2 and
Ricci < 0 . Koisorwas.the fi;st to introduce Weil-Petersson metric
in case of dim 2 2, [7 ], [4 1.

Recently the author found some applications of the results
of the present paper. Namely.we proved the global Torelli theorem
for complete intersections of SU(n23) manifolds. The proof is
based on the observations that the Discs Da defined in Observation
2 are totally geodesic submanifolds. After allowing certain
singularity we may construct a complete moduli space of SU(nz3)
manifolds with respect to Weil-Petersson metric. We
also use some results of A. Beauville on the image of
Diff (M) = {group of diffeomorphisms preserving the orientation of
complete intersections in BN , if dimyM 2 3} in
AutH (M,Z) . See [3 ].

The author wants to thank Max-Planck-Institute for Mathematics
in Bonn for financial support and excellent conditions for work

during the preparation of this article. The author wants to thank

S.T. Yau and Tian for informing me about the results of Tian.



-0.9-

§ 0.2 Conventions on some relations

0.2.1.a. (21,...,zn) will denote a system of local coordinates

on a compact complex manifold.

Al Al
0.2.1.b. dz"a..Adz " A..Adz * A..adz" means that if i, < .. < ig
i1 iK
then dz ',...,dz are omitted.

0.2.2 Given a Hermitian metric d52 = huﬁdtaAdEB on a complex

manifold, we say that it is K&hler if

3h =  h -
(0.2.2.1) af - YB
st at

A metric is Kdhler if and only if we can find normal coordinates

at each point, i.e. holomorphic coordinates such that at the point
the metric tensor has the development haé = Gaé + 0(|t|2) . If the
metric is Kdhler and real analytic, one can introduce a set of
canonical coordinates at a point which are.:characterized by the
property that the power series for huﬁ contains no ;erms which

are precducts only of unbarred (or only of barred variables). In

terms of canonical coordinates

(0.2.2.2) h ==3§ < +

K

where haé YS is the Riemann curvature tensor. If (51,...,5 )
r

and (n1,...,nK) are unit tangent vectors, the holomorphic

bisectional curvature in direction §&,n is given by:

(0.2.2.3) K. = Raé,yEEGEBEYES . See [10]
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and the holomorphic scetional curvature in direction § 1is given

by

_ B-v=z
0.2.2.4 K = R = = .
So we have proved in § 2 that Kodaira-Spencer-Kuranishi coordinates
are normal coordinates. So we apply (0.2.2.3) and (0.2.2.4) in

order to get Theorem 2.



§1. The Kuranishi space of a SU(n) manifold M is unobstructed

1.1. Remark a) From now on we will suppose that M 1is an SU(n)

manifold with a fixed Calabi-Yau metric (gag), i.e. IuE is a Ké&hler,
Ricci-flat metric on M.

b) If ¢ is any element of Hj(M,AKO), then by ZH?? we will denote
the harmonic part of ¢ and by :Hj(M,AKO) all harmonic tensors on

M whch are elements of Hj(M,AKO) with respect to the Calabi-Yau

metric.

c) For any point x €M from now on we will chose the local coordinates

(21,...,zn) in U>3x in such a way that
Wolo = az' a A dz"
oly .o
where Wy is the holomorphic form without zeroes on M.,
McX
1.2. Theorem. Let M be a 8SU(n) manifold and let + +71 be the
0€es

Kuranishi family of M, then
a) S 1is a non-singular complex manifold

. s 1
b) dlmES = dlmmH (M,0).
Proof: Let us first remember how the Kuranishi family is defined.
We define 3* to be the adjoint of § with respect to the Calabi-Yau
metric, w to be the Laplace operator, and G to be the Green
operator. Let {nvlv =1,...,m} be a base for :H1(M,O). Kuranishi

proved that the power series solution of the equation

O(t) = n(t) + 2 3*c[o(t) ,o(t)]
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m -
where f(t) = X tvhv has a unigue convergent power series solution.
=1

And this ¢(t) satisfies

To(t) ~ zlolt),et)] = 0

if and only if
Hlp(t),0(t)] = 0.

Let {311% =1,...,2} be an orthonormal base of ZHz(M,O) and let

<,> be the inner product in

a2 = 1?50,

Then

T

Hlp(t) ,0(t)] = ] <[olt),0(t)],B >B

A=1
Hence H[p(t),p(t)] = 0 4iff <[w(t),w(t)],8v> =0 for X =1,...,T.
Since A =1,...,T. Since ¢(t) 1is a power series in t so is
<[w(t),w(t)],6v> = bv(t)' Thus bv(t) is holomorphic in t for
A=1,...,t and .ltl <e. Then Kuranishi proved that S is

defined as follows

s = {t]ltl <€, by(t) =0, X =1,...,1} .

We have a family X 5 s such that it is locally complete and

n*1(0) = M. From all this it follows that if we prove that for each

n. ,v=1,...,r, there exists a power series (convergent)

. v.2 v, K
(p\’ (t) - n\)t + (sz + LI + (pKt . e



such that:

a) o, (t) = Lo (t) 0 (t)]

b) wv(t) fulfills the following equation

o, (t) = nt + 33*%clo (t) 0 (t)]

then bv(t) = 0 and so S 1is an open subset in ZH1(M,O), i.e. §

is an non-singular manifold of dimension equal to the dim H1(M,O).

So we need to prove that for each nv EZH1(M,O) v=1,...,2

we can find a power series

_ . v, 2 v K
wv(t) = nvt + wzt ..+ wKt +
such that
1
a) o, () = slo, (t),0, (t)]
_ 1
b) @, (t) = n t + 53*Glo,(t),0 (t)].
Lemma 1.2.1 Let ¢ (t} = n.t + wth + + wvtK+ be
- . L v _\) 2 - . " K . & =
convergent power series such that
— = 1
* = = -
a) 2 tpv(t) 0 b) 3¢ (t) z[wv(t),tpv(t)]., then
= _l’—*
o, (t) = nt + 59 G[wv(t),wv(t)]
—_ = _— =% —_—
H - = = * - *
Proof: 0, (t) Htpv(t) Gl:lcpv(t) G(3*3 +3 3 )u;)\)(t) G?d awv(t).
This is so since E*wv(t) = 0. From the equality

@, (t) - Ho () = Go* (&p\,(t))



[wv(t),wv(t)l we get

N —

and from §wv(t) =

o, (t) = Ho (t) + 2 3*Glo, (t) ,0 ()] = n t + 5 T*Gle, (t) 0 (t)]

QoEoDo

From all these fact it follows that we need to solve by

induction the following equations:

39, = % [w1,w1]. where F*wz =0

(*) .

= 1
00y, 1 = Loy, 0] + [og_ 10,1 +..o+ [og,00])

* =
where 3 N 0.

The solutions of (*) is based on the fdllowing lemmas

Lemma 1.2.2. For each erIﬂ(M,e} n.LwO is a harmonic form of type

{n-1,1).

TR 3 1 . n .
Proof: Let nfy; = I n_ dz e—5 and uwgfy = dz A...adz , then
o 0z

- - Y
= (-nH 1h£ az%A...a dzMa...adz"
a

now clearly

¥n = O»E(nlwo) =0 .

Next we need to prove that



-5*(an0) =0

The proof of this fact is based on the following fact

(+*) G*e), 5 = NP5 ¢P% o - =, see [8]
p'"q 8 p'B g

From the formula

= Vn L w, * ni1Vw

Vin 1L w 0

0) 0

and from the Bochner principle, that on any Ricci flat compact com-
plex manifolds any holomorphic tensor is parallel, we get that

Vmo = 0. See [8 ]. So

\Y n.LwO) = Van.LwO

o
From this formula we get that

8*(n.Lw0) = (8*n).Lw0 = 0.

Lemma 1.2.3. For each. n EI{1(M,G) we have that if

n[U = Enﬂ az% o au, then

a 9z’

an“ =.0 Vo

- 1,...,n.
u=1 va

Proof: We know that h.LwO is a harmonic form on a Kihler manifold

SO

B(nJ.wO) =0 .



On the other hand

1

nLwyy. = 2=DF 1" a3% aaz! a...aafPa. .. naz?

o
So .

1

- . ~a n TR
3(n Luyly) g({‘iauw_)dz AdZ A ...n dZTAL..AdZT = 0

o

=

From here = zauw =0

2|

0,1

Lemma 1.2.4. Let ¢,y € T(M,Q2° " @ Q) = F(M,Hom(£21'0

2%y ana

a{p L wo) = B(‘leo) = 0, then

23 (w A T.Lwo) = ([p,¥] L wo)

100 420007y ana

where ¢ A YE I‘(M,Hdm(Azﬂ
(p A ¥)(u A v)i= plu) A ¥YI(Vv).

Proof: We have:

2LpA‘P|U=( ¥ (DiA‘Pj-‘PlA(D])DLiA_a . Here
~ i<j 3z 5z

LpIU=ZLp_j:dE ® ai,W|U=Ew2dEv@—a—. and
u 9z -V 5z

of = ¥ oF az¥, ¥I = 7 vlazV
TRY vy

From these formulas we get:

= T =020t A w3 vt apdyazal L aattal L.
i<j

2(0 A ¥ L wy) |,

ad®3n. .. naz"



Let us compute the coefficient of 2B(w:\?.Lw0) in front of
AL )
dZ1A.-.AdZiA...dZ Ja...adz" . So we have

(1.2.4.1) 23(0a¥ Luy |y, = Z[E(—1)3”1(aigﬂij-aiwiij«miaiwj-wiAaiwj) A
| i

A dz1A...AdziA...AdeA...Adz”], where
n R u .
3.0t = 5 (d0haz ,  a.vt = T s, viaEY
i L i — i L i —
u=1 u v=1 Y
K i_ K i
From d3lwlw,) = 3 (YLlw,) = 0= J 3o =73 3.¥ =0
0 0 i=1 it

So from these formulas and (1.2.4.1) it follows that:

n

n .. . A
(1.2.4.2) 23(®AWlw0)|U = ¥ ( ¥ (-1)1+J[wlaiwj—wiaiwj]Adzldidzlh

j=1 i=1

From the definition of [¢,¥], i.e.

i i, 3
(1.2.4.3)  [o,¥]], = % (g(w o, ¥- v'a,07)) o

and (1.2.4.2) we get that

28[(@A‘¥Llw0]=[w,W]J_mo

Lemma 1.2.5. Let o, €T, Hom(e *®,0% ")) for 2sisN ana

21
a) 3(91 e 5‘([Lpi_1 '(p»]] + [win2:w2]+...+[®2 'lDi_1]+[tD1 ;(Di_1] ’

b} 3(01 =0

LAdz



then

- 1 _
3z Loy 0y ] + Loy _4,0,] +o.otloy, 00 J1+[0,,0,1) = 0.
Proof:

Clearly we have:

_ N
3 (.
K

1
(1.2.5.1)

Il e~ |

N —

0
, NS _

= i(KZO ([awN_waK+1] - [‘-DN_KJBLDK+1]}

From -[wj,awi]==[3wi,wj] {mi.wj]==[wj,wi] (see [ 8 ]) and

‘ K
Bogeq = 710001 + oo+ [o00]) =50 ]

1

we get

(1.2.5.2.,)

N —

NE1 ‘
EX [w 'O 1) =
K=0 N-K'"K+1

= (2[log_1,091,0,1 + (Lo, 0,10 1) +

N-1

-+

i>1,jZ1,K>1 [[wi.wj],wK]-+[[wK,wi],wj]-+[[wj,wK],wi])

i#j+K
i+j+K=N+1

1 1
+ z ([[(D 4P QP ]+—[[(D P '].r(p ])"'(_[[LD ’ ]f(p ]])
LN= 2y NT2HHE T 28 T N2 ] R U Gl

if N+1 = 3K) . From (1.2.5.2.) and Jacobi identity we get that



_ W-1
3 ) lo

w0y 1]
k=0 N-K'TK+1

[ O] =0

QoE .D.

1.2.6. Now we are ready to solve the equations (*) on page 4. We

will solve them inductively.

Induction hypothesis. Suppose that for any 2 £k $N, we have

1 K-1
i=1
=, -
b) 3 @y 0
c) wK.LmO = BTK "~ and so B(wK.LwO) = 0.
Wa must find wN+1 such that
3 -4 o 0, 1)
a) PN+t T 20 L tON-i410 9y
— _
b) 3 wN+1 0
c) 8(@N+1.Lw0) =0 and moreover
Oye1 L@ T 8?N+1 .

From lemma 1.2.4. it follows that

1 -
1.2.6.1. s} [ 0 D) Lwg =30 ] (9 A@.) Luwy)
2 21 N-1+1 0 feklner 1% 0

From lemma 1.2.5. it follows that

1.2.6.2. 2 [Og_ieqr@31) Loy =330 T (o a@) Lug) = 0.

1+K=N+1

NI—‘
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From Hodge theorem, the fact that M 1is a Kdhler manifold we get

T2 3ay)

1.2.6.3. 3l ) 0. N+1 N+1

A@,) L w,]=233-¥
itK=N+1 &K 0

From Hodge theorem and the fact that M 1is a K&hler manifold

we get
1.2.6.4 pul = Ty o+ Fwy
TeeTeTe N+1 N+1 N+1
— ] x . Ak o Nk
where 3 WN+1 = B?N+1 and so 3 HWN+1 = 0 since 3d* o 3* = 0,
Define
= *
1.2.6.2. L BWN+1 L wg s where
ma € F(M,Ane) and <w3,w0> = 1 pointwise, i.e.
3 9
Wl = — ... —=
0'u az1 e
Clearly from the fact that
Vawa =90 (Bochner principle)
we get immediately that
Y *) = (9% = 0. i
P wwNﬂim& = (BBWN+fLwO) 0. (For more details see
lemma 1.2.2.). So
— _ 1 N
* — = -

The theorem is proved.

Q.E.D.
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We have proved the following theorem:

Theorem 1.2'. ILet M be a SU(N) manifold and let n €E1(M,®),

then there exists a convergent power series.in norms defined in

[ 8]

e(t) = nt+o tie. e th 4 L,
such that
1) 0, € F(M,QO’1 ® 0)
2)  F*e, = 0
3) wiJ-w0= BTi
4 Telt) = lelt) 0] . .

Remark. It is proved in [ 8 ] that if o(t) £fulfills 1),2) & 4},

then o(t) € c®m,2%" & 0).
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§2. Computations of the curvature tensor of the Weil-Petersson metric

2.1. Definition. We know that the tangent space T, g at the point
7

s€S , where S 1is the Kuranishi space,can be identified with

H (M_,0_) . H'(M ,0 ) is the harmonic part of H'(M,0 ) with

S ) S
respect to Calabi-Yau metric gag(s) on n_1(s) = M , where the
cohomology class [[mgag(s)] = [[mgag(O)]. We know that gaE(S) is

the unique K&hler Ricci-flat metric such that

[Im(gag(S))] = [Im(an(O))] = L

see [15].

Let w1,m2 € TS g = H (MS,OS), then

VO . _Ba
2.1.1. <w1’®2>w.p. J o o 9,59 vol(gag(s))
Jea 1,8
n{n+1)
2.2, Lemma. <w1,@2> = (-1) n (i)n—2 I(m1.LQ$) A (wz.Lwa), where
st Aﬂgb = f vol(g z(s)) ‘and Wy is a holomorphic n-form on M
Proof: From Vms = 0 {(Bochner is principle) = V(wg AGS) = 0. On the
other hand V(vol(gag(s)) = 0, sO we may assume
2.2.1 W = =
( ) WAL vol(gaB(S)).
From (2.2.1) and waé = méa (See [ 9 1) it follows that
n{n+1)
2 .\ N—2 —_—
Wy p, T (-1) (1) 1{1 (0, Lug) A (@) Lug)
' S

Q.E.D.
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2.3. Let us define locally

of = az%+ ] ¢Z{r)dz" @ =1,...,n
u
where
(t) = ot + @ t2 4.+ @ th + ..
® 1 2 . n
and

1) @, €H (M,0)
2) Trp(t) = 0

3) Jo(t) = sle(t) ,o(t)]

o] =

4) wi.LmO = awi for 122 .

1,0

£ lU Of course we

Clearly for each t {@%} is a basis for @

suppose that

2.4. Lemma. d(@lA...AOE) =0 (See also [ 19 ] and A. Weil,

Collected work vol. 2.)
Proof: Since ¢(t) € F(M,Hom(ﬂ1’0,90'1)), then for each K:2n
K > 0 we can define

1’0,AKQO'1

Ach(t) € F(M,Hom(AKQ ))

where



_‘]4_
(AKw(t))(u1A...AuK) = @(t) (W) A. A0 (t) (W) .

Next we have the following formula

: : n K(K-1) ]
(2.4.1.)  OpA...A0p = dz a...idz” + J(-1) °  A¥eudz a...hdZ"
K=1
K(K-1)
7

= moy + Y(-1)

(For1ug) | -
U- u

Formula (2.4.1) follows from the definitions of AXp(t) and

1

%

: n
A...AOt .

K(K-1) K(K+1)

Proposition 2.4.2. (-1) 2 S(AKw¢w0)+(—1) 2 8(AK+1wLw0)

Proof: ©So it is enough to prove

E(AlewO) + (—1)KB(AK+1mLm0) = 0

From do(t) = %[w(t),w(t)] it follows that
= i T 3. i
(2.4.2.1.) 3 () = ) ola.0
.2 1 ;|
J
since
i i
(2.4.2.2.) AKw = Y © Ta...n0 K o )
i,<...<i <1 *K
A K 32 32
we get
P A

(=142 + (1 1) i i i 4
(2.4.2.3.) (Fawg) | =J-n K, o KadzT . ndz 'nendz K
U

.Adz
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(i —1)+ +(1K-1)+(u-1) 11 i iK

(2.4.2.4) BM(mm&l 5 (-1) © A AB0 Ha..n0 Kndza. A
A A
i .
A..Adz,1'A..Adle A..Adzn

From (2.4.2.1) and (2.4.2.3) we get

(1 =N+ (L 1) +(u-1) i i
(2.4.2.5) 3(N wimo)l 2( 1) X ) A AEwJAij A AdleA
Ai AiK ]
AdZ A..Adz 1 A..AdZ 'A..Adzn =,
(1,=1)+. .+ (i,-1) i Aj
=y (-1) 1 .lK (ijAw 1A..A8jwiA..Aw K)AdzlA..AdZ LIV
A ' i

A..AQzZ A..Adzn

Next we must compute (—1)K3(AK+1wlw0) = ?

Suppose that i, <i, < .0l < 11_1 S 3 < i, < .. < i

. K+1 (i —1)+..+(j—1)+..+(iK-1) i1

(2.4.2.6) 3((-1)"A" ‘ot)=(-1) 3(2(1) © A APTALA
i1< .<J<. <1 :
Al A Al
A..AleAdZJA..AdZ A A..Adzj Aeondz K AL ondZ=
(L =T (=N 4+ (D HI-) + (-1 +(K47) L 1
=(-1)Kiz(-1) X P L. .Aajw oA

J
. A A
i i
Ae AP KAdZ1A..AdZ 1A..AdeA..AdZ A. .AdZ"

From zajwj = 0 and (2.4.2.6) we get that

(2.4.2.7) 3((-1)%n K+1mlw0)=
(1.-1)#..+(i-1) n . i i
=( Y (-1 1 K ) o) Ap lA..AB.w uA..A¢fKAdZJA..A
il<..<iK 3=1 3
A N
4 ik

n
A..AdZ A..AdZ T AL AdZ
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From (2.4.2.5) and (2.4.2.7) we get that

5 (A%01u,) + (-1)K8(AK+1wLwO) =0
Q.E.D
From 2.4.2 it follows that
ace. oty = 0
tr‘\..A £ =
Q.E.D.

Remark 2.4.9. Since and for all K AKm are globally defined

)
tensors it follows that

K(K-1)
n 2 K

(2.4.9.1) w, = Wy + Y (=1) (A plwy)
K=1

is also globally defined. From (2.4.1) it follows that Wy is a

holomorphic n-form on Mt ; Since dwt = 0 and Wy is of type

(n,0) on Mt

Remark 2.5. Let {na} be a basis of IHj(M,G) . Let

o, o o, 2 a, N
wa(t ) = nat + wa'2(t )T+ L.+

be an element of I’(M,QO’1 ® 0) such that

o
(<91
S
Q
rt.
Q2
1}

1 o o
§[wa(t ),wa(t ) ]

Q

S
=

g

n

Bwa'K VK 2 2
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then (t1,...,tK) will be a local coordinate system in S . From
Theorem 1.2' we know that wa(ta) exists for each o . We will
call such coordinates Kodaira-Spencer-Kuranishi coordinates. From

now on we will fix these local coordinates.

2.6. wa(ta) defines a disc Da in S and we have a family of

SU(n) manifolds over D_ m_ : X > D . Let w be the holo-
a o o o ta
ﬁorphic n~-form on M o = ﬂ_1(ta) defined by (2.4.9.1), i.e.
t

. K(K-1)

= _ 2 K o
(2.6.1) wt“ = 0wy + L(=1) A ey (£7) Loy
then we have:
(2.6.2) Jw Ao =] wAu, .

o o 00

MO t t MO
Proof of (2.6.2): Let f£(t%t% := [ w A& _ . If we prove that
o o
M t t ‘

Qaf _ df | 0 at each point, then (2.6.2) will be proved. From
at®  ag®

(2.6.1) it follows that:

(2.6.2.1) = uwg + tn + 0(t%) .

So

(2.6.2.2) £(t%%=f w aAw =j wohwg*1£%] j(n L) A (nLiog ) +0 (| €% 12)

My £ty

Let A o € I'(M,Hom(T*(M)®C, T*(M®T)) , where locally
t
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X, _ K ' o, K.=u _
(2.6.2.3) Ata(dz ) = dzo o+ {wa(t )ﬁdz K=1,...,n

A Ol(de)

azf + Jo (£*)2az¥ .
t v H

FProm the definition of A a it follows that

t
(2.6.2.4) = 1 n
.6.2. W = (A adz } Ac.a (A adz ) .
t u t t

Let us fix tg , where tg is any point of Da . We want to find

Taylor series expression of f£(t*t%) = J w o M a-a in the form:
"Mt t
-0

£06%,8% = £(eg, T + (t—to)f1(tg,Eg) + ... . In order to get

this expression we notice that

(2.6.2.5) azk = a7t ¥
£& ©
o to

So we have

(2.6.2.6) w

-1 K _ K K _ .U K ,* 2
(2.6.2.7) Ata Ot“ eta t, Zna,u etaa (eto) +0(ty) .
0 0 0 0
This is so since A_ = id + (tn  * Eﬁa) + ... . From (2.6.2.7) and

(2.6.2.6) we obtain that
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(2.6.2.8) w =o' A..Aee'A--AO]Z +(ta-tg)2(-1)u_1nu =de’ A
ol T I GrY 2
U 0 0 0'u 0
1 A Y
10 A AP A AGE w0 (%% 2
£ ) & 0
0 0 0

So from (2.6.2.8) it follows that
) - - a_ o2 ——— a o3
(2.6.2.9) "w Mw =v Ao +t75e0] (0 En A In)+0((E =) ) .
t t t0 t0 t t

1
Here Ny, stands for an element of H. (M ,,0 a) . So we get that:

to %o

O Gy e @ L0, 0 02 L0 a o a2
(2.6.2.10) £(t7,t );f(to,t0)+|t t0[ f1(to,t0)+0((t to) ) .

— N PR s e I
a Loy RE(tt
From (2.6.2.10) = °f (t Lt )| . ;~__£L;i;gl =0 .
o LG a =, 0 a_ .o
ot t =t0 ot t =t0

So f(ta,Ea) = const.

Q.E.D.

Lemma 2.7. Let (hu;(t,E)) be the Weil-Petersson metric, then

n(n-1)

> dwtp dmtv

(1)772) —
. 11
M dt dt

h S(t,t) = (1) .

Proof: Lemma 2.7 follows from lemma 2.2, -Remark 2.6 and

dwtu
is a form of type (n-1,1) on M . Moreover
U u
dt t
dw, u de (t")
t _ vl -
n B TR
dt” (M dt t
tH

This is proved by Griffiths in [19]. So from the last equality

we get 2.7.
Q.E.D.



_20_

n(n+1)

S a2 .n=2f —
Lemma 2.8. hy;(t,t) = (~1) (i) (i(nulw0)+(nviwo)+

+4tutv(I[AZnULwOJA[AznvaOJ) + (terms of higher order 2 3 1in
M .

tu,tv,Eu,Ev)] , here [Aznuiwo] and [Aznvlmol denote the

classes of cohomology of [Aznulw
n_2'2

2 .
0] and [A nv+w0] in

H c H“(M,m) , hamely [Aznulm

_ 2
0] = [H(A nuiwo)] .

Proof: From (2.4.1) and the fact that

. So

V., _ v v, 2 v, 3 .
e, (t7) = n t" + wo,z‘t )T+ wv,B(t ) + ... we get that
dw,u
£t U - a2 u, 2 -
(2.8.1) T nulw0+2t (wu’zimo A nulmo) + 3(t7) (wv,3lw0
- @ An Llw, - A3n lw,) +
v,2 v 0 v 0 Tt
Clearly we have:
v, _ v v, 2 v, N
mv(t ) = nvt + wv,2(t | wv,N(t )+
dw, v
£t _ v _a2 v, 2 g
(2.8.1) " = n,twg * 2t (mv’zlmo A nvLm0)+3(t ) (wv,3lw0

3
- wv,zhnvlw - A nviwo) + ...

So we have
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n(n+t) —_
- —_— _ dw,_u W, v
(2.8.2) h =(t,B) = (-1 2 ("7 Loyt
H M at¥ at
n(n+1)
T2 .. n-2 — —
='(-1) (i)n [é(nuimo)A(nvlmo)+2tu£(wulélmo)ﬂ(nviw0) +

+

-y - u v a2 A2 '
26] (nyluag) A0, lig) +4E7E] (@ plig=hm ding) Al lsg=hm, plusg)

+

370

p, 2 : TV 2 :
3(t7) Iﬂ“"u,f‘*’ow”\)mo) + 3(tY) I{[(”ul“’o”‘(‘pv, lw ) +

+ (terms of order 2 3 )

Since lw for K 2 1 and the fact thét for.rany

(wv,K 0) = awu,K

H nulwo is a harmonic form by 1.2.2 and so d(nvlm =0 =

o)
= B(HULmO) = S(nulwo) we get that for any rt1,0 and KX 2 2

(”Tl“o)h(wa,nlwo) = d((nTLwO)Awa'n) and

(2.8.3)
(wa'KLmO)A(nTLmO) =d(wa’KA(nTLwo))

From Stroke's theorem and 2.8.3 we get that

(2.8.4) £(”leo)ﬁtwa,xlwo)=£d((”rlwo)Awa,K)=I(wa,xlwo)A(”rlwo) =

= éd(wa,Kh(nleO) =0

Next we must prove that

2 2
(2.8.5) &t(wu,zlwo)-h'“plwo)h(wv,leo_ﬂ nylwy) =

= fIH(Azn 1w )Aim(ﬂzn lw,) , where M is the harmOnié
M o ‘ v 0
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projection with respect to Calabi-Yau metric.

Proof of 2.8.5.: We know that
K(X-1)
= (- 2 K My - H
(2.8.5.1) wt“ wy +-1(=1) Mo (£7) = wy + thn Loy +
CH, 2 2 . 3
+ .- (th) (wu’szo A nulmo) + of(t") ™)

and dw " = 0 , so we get that each coefficient, which is a
t

complex valued form, in front of (tu)N must bé closed, namely

2 _ = _ 2 _ . ]
d(mu’szo A nulwo) = B(wurzlwo) d (A nulmo) = 0 . This is so
since a(wu,zlwo) = 3¢u'2 = 0, g(Aznulwo) = 0 . From Hodge theorem
and the fact that M 1is a Kihler variety, i.e. by = % gs = % UB

we get that

2 _ _ 2 _ 2
(2.8.5.2) IH(wu'ZLwO)-A nulwo) —Iﬂwu'zlw H(A niLmO) = H(A ﬂulm

0 1 0)

since LD]J GJ.LUO = 2

7

awp,Z and so :mawu’ =0

So we have

2

_ 2
(2.8.5.3) lwg = A numo) = H(A nulmo) + df1J

(‘Du,Z 2

where fp 2 is (n-1) complex valued form on M . From (2.8.5.3)
’ .

and Stoke's theorem (2.8.5) follows

(2.8.5) proves lemma 2.8.

Q.E.D.
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Cor. 2.8.6. The Weil-Petersson metric on the moduli space of

SU(n 2 3) manifolds is a Kdhler metric, moreover huG are real

1

analytic functions with respect to (t ,..,tK,t1,..,tK) .

Proof: It is a well known fact, that if (gug) is a Hermitian

metric on a complex manifold M and if around any point m € M

we can find local coordinates (t1,...,tK) such that

_ Ty - _ _ _-407B i
gpv(t,t) = Gpv + Ehuv,aB t t"” + (terms of order 2 3 )

where h - =
Hv,aB

metric. Cor. 2.8.6 follows directly from 2.8 using this criterium.

are constants, then guG(t’E) will be a Kihler

Q.E.D.

Theorem 2.9. a) We have the following formulas for the curvature

tensor of the Weil-Petersson metric on the moduli space of

SU(n 2 3) manifolds

(2.9.1) 0 1f o #nu or B # v

.
I
I
il

n(n-1)
2 (i)n_28I[Aznaiwo]ﬂ[ﬁznelwo] )

o]
i
|
i

+(=1)

b) The biholomorphic sectional curvature of the Weil-Petersson

metric on the moduli space of SU(n 2 3) manifolds is negative.

Proof of a): From lemma 2.8 and the fact that Weil-Petersson

metric is a Kdhler metric we get that

2
>hyg
(2.9.1.1) R = - = + —_ = 0 if a + or B #+ v
- aBuv o o HEEY
3%h - n(n-1)
- .n-2 2 [,2
R- - = +—2B = +(=1) 2 it 8I[A n_ 1w }A An, 1w ] .
aB,aB 25¢%5E8 " a0 BT0
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So 2.9.a is proved.
Q.E.D.

Proof of 2.9.b. From the definition of biholomorphic sectional

curvature it follows that we need to prove'that for any two

vectors (51,...,£K) and (n1,...,nK) we have

(2.9.1.2) +8IR < ég“'g'ﬁn“ﬁ“ <0

aB,o

Proof of (2.9.1.2): First we will prove that [AanLQO] for any
U are primitive classes of cohomology with respect to the
polarization class L = [Im(gag)] . So we need to show that

[AznuLwo] can not be represented as, i.e.

(2.9.1.2.1) [Aznulwol = LA[w] , where [¢] € Hn_3’1

Suppose that (2.9.1.2.1) holds then from the formula

- H B, 2,2
(2.9.1.2.2) [wtp] = [wO] + t Enplwol + (") (A npimol + ...

= [mO] + tu[nplwol + (t”)z[w]AL + ...

Follows that w U is not a primitive class of cohomology, this
th
contradicts the fact that w I is a form of type (n,0) on
t

M " ~.and so " is a primitive form. Notice that we use the fact
t t

that L is (1,1) class of cohomology for all M

s

n-2,2

S8 we- have proved that the sﬁbspadé E cH which is

spanned by {[Aznulwo]} is contained in the space of all primitive
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classes of cohomeology of type (n-2,2) , which we will denote

by

(2.

it

(2.

is

we

Hg—z'z . From this fact and the following formula:
9.1.2.3) if a € 22 | then
n(n+1)
a= (-1 2 1)

follows that the Hermitian form on thz'z
nin+1)
: 2 ., -4 )
9.1.2.4) <a,b> = (-1) (i) f anb = faA*JD
M .
definite positive and so comparing (2.9.1) and (2.9.1.2.4)
get that

+8 7 Raé,aégagB”aﬁB = +8 § EanaHaBEBﬁB

nin+1)

Ao 2 .\ n- a 2 2 \gB=8)
=8 (-1} (1) :%Zg n (&[A naLwO]A[AlnBLwO])E n ) < 0

where Haé = RaE,aE .
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