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Abstract. In this paper, we prove a large sieve inequality for quartic Dirichlet characters. The result is

analogous to large sieve inequalities for the quadratic and cubic Dirichlet characters.

Mathematics Subject Classification (2010): 11L40, 11L99, 11T24

Keywords: large sieve, character sums, quartic Dirichlet characters

1. Introduction

The large sieve was an idea originated by J. V. Linnik [16] in 1941 while studying the distribution of
quadratic non-residues. Refinements and extensions in various directions of this idea were made by many
[1–9, 11, 12, 16, 18, 20–27]. Large sieve results for Dirichlet characters with a fixed order are particularly
useful in analytic number theory. We refer the readers to [10], Section 7, for some early large sieve-type
results on general r-th order characters. Let (an)n∈N be an arbitrary sequence of complex numbers, D. R.
Heath-Brown’s quadratic large sieve [12, Theorem 1] states that for any ε > 0,

(1.1)
∑∗

m≤M

∣∣∣∣∣∣
∑∗

n≤N

an

( n
m

)∣∣∣∣∣∣
2

�ε (MN)ε(M +N)
∑∗

n≤N

|an|2,

where the asterisks indicate that m,n run over positive odd square-free integers and ( ·m ) is the Jacobi symbol.

Similar to (1.1), Heath-Brown also established the following large sieve inequality involving the cubic
symbols [13, Theorem 2]:

(1.2)
∑∗

m∈Z[ω]
N(m)≤M

∣∣∣∣∣∣∣∣
∑∗

n∈Z[ω]
N(n)≤N

an

( n
m

)
3

∣∣∣∣∣∣∣∣
2

�
(
M +N + (MN)2/3

)
(MN)ε

∑
N(n)≤N

|an|2,

where the asterisks indicate that m,n run over square-free elements of Z[ω], ω = exp(2πi/3) that are con-
gruent to 1 modulo 3 and ( ·m )3 is the cubic residue symbol.

Using (1.2), S. Baier and M. P. Young [3, Theorem 1.4] proved the following large sieve inequality for
cubic Dirichlet characters:

∑
Q<q≤2Q

∑?

χ (mod q)

χ3=χ0

∣∣∣∣∣∣
∑∗

M<m≤2M

amχ(m)

∣∣∣∣∣∣
2

� (QM)ε min
{
Q5/3 +M,Q4/3 +Q1/2M,Q11/9 +Q2/3M,Q+Q1/3M5/3 +M12/5

} ∑∗

M<m≤2M

|am|2 ,

where the star on the sum over χ restricts the sum to primitive characters and the asterisks attached to the
sum over m indicates that m runs over square-free integers.
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It is our goal in this paper to prove a large sieve inequality for quartic Dirichlet characters. First we prove
the following theorem involving the quartic symbols.

Theorem 1.1. Let M,N be positive integers, and let (an)n∈N be an arbitrary sequence of complex numbers,
where n runs over Z[i]. Then we have

(1.3)
∑∗

m∈Z[i]
N(m)≤M

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N(n)≤N

an

( n
m

)
4

∣∣∣∣∣∣∣∣
2

�ε

(
M +N + (MN)3/4

)
(MN)ε

∑
N(n)≤N

|an|2,

for any ε > 0,where the asterisks indicate that m and n run over square-free elements of Z[i] that are
congruent to 1 modulo (1 + i)3 and ( ·m )4 is the quartic residue symbol.

Next we shall establish the following large sieve inequality for quartic Dirichlet characters.

Theorem 1.2. Let (am)m∈N be an arbitrary sequence of complex numbers. Then

∑
Q<q≤2Q

∑?

χ (mod q)

χ4=χ0,χ
2 6=χ0

∣∣∣∣∣∣
∑∗

M<m≤2M

amχ(m)

∣∣∣∣∣∣
2

� (QM)ε min
{
Q7/4 +M,Q11/8 +Q1/2M,Q5/4 +Q2/3M,Q+Q1/2M +M17/7

} ∑∗

M<m≤2M

|am|2 ,

(1.4)

where the star on the sum over χ restricts the sum to primitive characters and the asterisks attached to the
sum over m indicates that m runs over square-free integers.

Following the techniques of [12, 13], Theorem 1.1 is proved via recursive uses of the Poisson summation
formula. Theorem 1.2 follows, after some transformations, from Theorem 1.1. We note that (1.3) is used in
the (6.18). Mark that the characters involved in the second line of (6.18) are actually quadratic, since they
are squares of the quartic symbol. Therefore, it is conceivable that the bounds in (1.4) can be improved if a
large sieve inequality for quadratic characters in Z[i] is available.

Finally, we wish to mention that it is highly conceivable that these theorems will find applications in the
study of families of L-functions involving quartic characters, analogous to those results in [3] and [17].

1.3. Notations. The following notations and conventions are used throughout the paper.
e(z) = exp(2πiz) = e2πiz.
ẽ(z) = exp (2πi(z + z)).
f = O(g) or f � g means |f | ≤ cg for some unspecified positive constant c.

2. Preliminaries

2.1. Quartic symbol and the quartic Gauss sum. The symbol ( ·n )4 is the quartic residue symbol in
the ring Z[i]. For a prime π ∈ Z[i] with N(π) 6= 2, the quartic character is defined for a ∈ Z[i], (a, π) = 1
by
(
a
π

)
4
≡ a(N(π)−1)/4 (mod π), with

(
a
π

)
4
∈ {±1,±i}. When π|a, it is defined that

(
a
π

)
4

= 0. Then the
quartic character can be extended to composite n with (N(n), 2) = 1 multiplicatively.

Note that in Z[i], every ideal coprime to 2 has a unique generator congruent to 1 modulo (1 + i)3

([15, Lemma 7, page 121]). Such a generator is called primary. Recall that the quartic reciprocity law states
that for two primary primes m,n ∈ Z[i],(m

n

)
4

=
( n
m

)
4

(−1)((N(n)−1)/4)((N(m)−1)/4).
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Observe that a non-unit n = a+ bi in Z[i] with a, b ∈ Z is congruent to 1 modulo (1 + i)3 if and only if a ≡ 1
(mod 4), b ≡ 0 (mod 4) or a ≡ 3 (mod 4), b ≡ 2 (mod 4) by Lemma 6 on page 121 of [15].

For n ∈ Z[i], n ≡ 1 (mod (1 + i)3), we set

g(r, n) =
∑

x (mod n)

(x
n

)
4
ẽ
(rx
n

)
,

where here and after

(2.1) ẽ(z) = exp (2πi(z + z)) .

The quartic Gauss sum g(n) is then defined to be g(n) = g(1, n).

For gcd(s, n) = 1, we have

g(rs, n) =
( s
n

)
4
g(r, n).

It’s easy to see that the above equality in fact holds for any s when
( ·
n

)
4

is a primitive character.

It’s well-known that for square-free n’s,

|g(n)| =
√
N(n).

Suppose n ≡ ±1 (mod (1 + i)3) with no rational prime divisor, so (n, n̄) = 1. Let χn be a multiplicative
character on Z[i]/(n), we define

(2.2) τ(χn) =
∑

1≤x≤N(n)

χn(x)e
(

x

N(n)

)
.

Now we specify χn to be
( ·
n

)
4
. On writing x = yn̄+ ȳn, where y varies over a set of representatives in Z[i]

(mod n), with n̄ being the complex conjugate of n, it’s easy to see that

τ(χn) =
∑

y (mod n)

(yn̄
n

)
4
e

(
y

n
+
y

n

)
=
( n̄
n

)
4
g(n).

It follows that for (n1, n2) = 1,

τ(χn1n2) =
(
N(n2)
n1

)
4

(
N(n1)
n2

)
4

τ(χn1)τ(χn2),

and that if n is square-free

|τ(χn)| =
√
N(n).

Similarly, we have for n square-free

|τ(χ2
n)| =

√
N(n).

2.2. Primitive quartic Dirichlet characters. The classification of all the primitive cubic characters of
conductor q coprime to 3 is given in [3]. Similarly, one can give a classification of all the primitive quartic
characters of conductor q coprime to 2. Every such character is of the form m → (mn )4 for some n ∈ Z[i],
with n ≡ 1 (mod (1 + i)3), n square-free and not divisible by any rational primes and N(n) = q.

3. Strategy for the proof of Theorem 1.1

Our proof of Theorem 1.1 uses the ideas in [12,13]. We first estimate

∑
1

=
∑∗

m∈Z[i]
M<N(m)≤2M

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

an

( n
m

)
4

∣∣∣∣∣∣∣∣
2

.
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We further simplify notation by supposing that the coefficients an are supported on such integers n ∈ Z[i]
satisfying N < N(n) ≤ 2N . We begin by defining the norm

B1(M,N) = sup

{∑
1

:
∑
n

|an|2 = 1

}
.

Therefore, we need to show

B1(M,N)�ε (MN)ε
(
M +N + (MN)3/4

)
.

Introducing a smooth weight function, we have

∑
1
�
∑
m

exp
(
−2π

N(m)
M

) ∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

an

( n
m

)
4

∣∣∣∣∣∣∣∣
2

,

the sum being over all m ∈ Z[i] for which m ≡ 1 (mod (1 + i)3). If we now expand the above expression we
obtain sums of the form

(3.1)
∑
m

exp
(
−2π

N(m)
M

)(n1

m

)
4

(n2

m

)
4
.

We note the following analogue of Lemma 2 of Heath-Brown and Patterson [14]. As the proof is similar, we
omit it here.

Lemma 3.1. Let χ be a character of modulus f 6= 1, not necessarily primitive. Then, for w ≤ 1, ε > 0,

θ(w,χ) =
∑

a≡1 mod (1+i)3

(a,f)=1

χ(a)e−2πN(a)w � E(χ)w−1 +N(f)1/2+ε,

where E(χ) = 1 if χ is principal, 0 otherwise. The implied constant depends only on ε.

Lemma 3.1 implies that each of these sums in (3.1) are O
(
N(n1n2)1/2+ε

)
, provided that the character

involved is non-principal. Since n1 and n2 are square-free,
(
n1
m

)
4

(
n2
m

)
4

is principle only if n1 = n2. It follows
that ∑

1
�ε N

ε

(
M
∑
n

|an|2 +N
∑
n1,n2

|an1an2 |

)
�ε N

ε
(
M +N2

)∑
n

|an|2.

We therefore have

(3.2) B1(M,N)�ε N
ε
(
M +N2

)
.

This will be the starting point for an iterative bound for B1(M,N).

Similar to the proof of [12, Lemma 1], using the duality principle (see for example, [19, Chap. 9]) and the
quartic reciprocity law by considering the case for n = a + bi with a ≡ 1 (mod 4), b ≡ 0 (mod 4) or a ≡ 3
(mod 4), b ≡ 2 (mod 4) (and similarly for m), we can establish the following lemma.

Lemma 3.2. We have B1(M,N) ≤ 2B1(N,M). Moreover, there exist coefficients a′n, a
′′
n with |a′n| = |a′′n| =

|an| such that

∑∗

m∈Z[i]
M<N(m)≤2M

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

an

( n
m

)
4

∣∣∣∣∣∣∣∣
2

≤ 2
∑∗

m∈Z[i]
M<N(m)≤2M

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

a′n

(m
n

)
4

∣∣∣∣∣∣∣∣
2

≤ 4
∑∗

m∈Z[i]
M<N(m)≤2M

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

a′′n

( n
m

)
4

∣∣∣∣∣∣∣∣
2

.
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Our next lemma is a trivial modification of Lemma 9 of [12], which shows that the norm B1(M,N) is
essentially increasing.

Lemma 3.3. There is an absolute constant C ≥ 1 as follows. Let M1, N � 1 and M2 ≥ CM1 log(2M1N).
Then

B1(M1, N)� B1(M2, N).

Similarly, if M,N1 � 1 and N2 ≥ CN1 log(2N1M). Then

B1(M,N1)� B1(M,N2).

Next, we define

B2(M,N) = sup

{∑
2

:
∑
n

|an|2 = 1

}
,

where

(3.3)
∑

2
=

∑
m∈Z[i]

M<N(m)≤2M

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

an

(m
n

)
4

∣∣∣∣∣∣∣∣
2

,

the summation over m running over all integers of Z[i] in the relevant range.

It follows directly from Lemma 3.2 that

(3.4) B1(M,N) ≤ 2B2(M,N).

For the other direction, we have the following.

Lemma 3.4. There exist X,Y � 1 such that XY 3 �M and

B2(M,N)� (logM)3M1/2X−1/2Y −3/2 min(Y B1(X,N), XB1(Y,N)).

Proof. To handle
∑

2 we write each of the integers m occurring in the outer summation of (3.3) in the form
m = ab2c3d, where a, b, c ≡ 1 (mod (1 + i)3) are square-free, and d is a product of a unit, a power of 1 + i,
and a fourth power (so that d can be written as d = u(1 + i)je4 where u is a unit, 0 ≤ j ≤ 3 and e ∈ Z[i]).
We split the available ranges for a, b, c and d into sets X < N(a) ≤ 2X,Y < N(b) ≤ 2Y,Z < N(c) ≤ 2Z
and W < N(d) ≤ 2W , where X,Y, Z and W are powers of 2. There will therefore be O(log3M) possible
quadruples X,Y, Z,W . We may now write∑

2
�

∑
X,Y,Z,W

∑
2
(X,Y, Z,W )

accordingly, so that ∑
2
� (log3M)

∑
2
(X,Y, Z,W )

for some quadruple X,Y, Z,W . However,

∑
2
(X,Y, Z,W ) ≤

∑
b,c,d

∑∗

a∈Z[i]
X′<N(a)≤2X′

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

an

(
b2c3d

n

)
4

(a
n

)
4

∣∣∣∣∣∣∣∣
2

,

where X ′ = X ′(b, c, d) = M/N(b2c3d). It is easy to see that X � X ′ � X, and hence by Lemma 3.2∑
2
(X,Y, Z,W )�

∑
b,c,d

B1(X ′, N)
∑
n

|an|2 � Y ZW 1/4 max {B1(X ′, N) : X � X ′ � X}
∑
n

|an|2,

since there are O(W 1/4) possible integers d.
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In the same way we have

∑
2
(X,Y, Z,W ) ≤

∑
a,b,d

∑∗

c∈Z[i]
Z′<N(c)≤2Z′

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

an

(
ab2d

n

)
4

(
c3

n

)
4

∣∣∣∣∣∣∣∣
2

=
∑
a,b,d

∑∗

c∈Z[i]
Z′<N(c)≤2Z′

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

an

(
ab2d

n

)
4

(
c3

n

)
4

∣∣∣∣∣∣∣∣
2

=
∑
a,b,d

∑∗

c∈Z[i]
Z′<N(c)≤2Z′

∣∣∣∣∣∣∣∣
∑∗

n∈Z[i]
N<N(n)≤2N

an

(
ab2d

n

)
4

( c
n

)
4

∣∣∣∣∣∣∣∣
2

�
∑
a,b,d

B1(Z ′, N)
∑
n

|an|2

� XYW 1/4 max {B1(Z ′, N) : Z � Z ′ � Z}
∑
n

|an|2,

where Z ′ = Z ′(a, b, d) = M/N(ab2d). As Y �M1/2X−1/2Z−3/2W−1/2, we see that

B2(M,N)� (logM)3M1/2X−1/2Z−3/2W−1/4 min(ZB1(X,N), XB1(Z,N)).

The assertion of the lemma now follows on replacing Z by Y above. �

As in [12], we introduce an infinitely differentiable weight function W : R→ R, defined by

(3.5) W (x) =

{
exp

(
−1

(2x−1)(5−2x)

)
, if 1

2 < x < 5
2 ,

0, otherwise.

We now have

(3.6)
∑

2
�

∑
m∈Z[i]

W

(
N(m)
M

) ∣∣∣∣∣∣∣∣
∑
n∈Z[i]

N<N(n)≤2N

an

(m
n

)
4

∣∣∣∣∣∣∣∣
2

,

where we recall that we can drop the conditions on an on the inner sum above of the right-hand side expres-
sion by supposing that the coefficients an are supported on square-free integers n ≡ 1 (mod (1 + i)3) ∈ Z[i]
lying in the range N < N(n) ≤ 2N .

Expanding the sum on the right-hand side of (3.6), we obtain∑
2
�
∑
n1,n2

an1an2

∑
m∈Z[i]

W

(
N(m)
M

)(
m

n1

)
4

(
m

n2

)
4

.

We set ∑
3

=
∑

3
(M,N) =

∑
(n1,n2)=1

an1an2

∑
m∈Z[i]

W

(
N(m)
M

)(
m

n1

)
4

(
m

n2

)
4

and define

B3(M,N) = sup

{∑
3

:
∑
n

|an|2 = 1

}
.

Similar to [12, Lemma 7; 13], we have the following
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Lemma 3.5. Let ε > 0 be given. Then there exist positive integers ∆2 ≥ ∆1 such that

B2(M,N)�ε N
εB3

(
M

∆1
,
N

∆2

)
.

We complete the chain of relations amongst the various norms by giving the following estimate for
B3(M,N) in terms of B2(M,N).

Lemma 3.6. Let N ≥ 1. Then for any ε > 0 we have

B3(M,N)�ε MN4ε−1 max
{
B2(K,N) : K ≤ N2/M

}
+M−1N3+4ε

∑
K>N2/M

K−2−εB2(K,N),

where K runs over powers of 2.

This bound uses the Poisson summation formula and is the key in the proof of Theorem 1.1. Note that
it does not cover the case in which N = 1/2, say, for which we have the trivial bound

(3.7) B3(M,N)�ε M, (N ≤ 1).

Section 4 will be devoted to the proof of Lemma 3.6.

4. Proof of Lemma 3.6

Our proof of Lemma 3.6 requires the application of the Poisson summation formula. We shall write

χ(m) =
(
m

n1

)
4

(
m

n2

)
4

,

which is a primitive character (on the group (Z[i]/(n1n2))×) to modulus q = n1n2, provided that n1, n2 and
2 are pair-wise coprime and n1 and n2 are square-free.

Lemma 4.1. With the above notations we have∑
m∈Z[i]

W

(
N(m)
M

)
χ(m) =

χ(−
√
−4)g(n1)g(n2)M

N(q)

(
n2

n1

)
4

(
n1

n2

)
4

(
−1
n2

)
4

∑
m∈Z[i]

W̃

(√
N(k)M
N(q)

)
χ(k),

where

W̃ (t) =

∞∫
−∞

∞∫
−∞

W (N(x+ yi))ẽ
(
t(x+ yi)√
−4

)
dxdy,

for non-negative t. Here ẽ(z) is defined in (2.1) and g(n) is the Gauss sums defined in Section 2.1.

Proof. This lemma is analogous to Lemma 10 in [13] and the proof is very similar. The differences include
we need to start with the Poisson summation formula for Z[i], which takes the form.∑

j∈Z[i]

f(j) =
∑
k∈Z[i]

∞∫
−∞

∞∫
−∞

f(x+ yi)ẽ
(
k(x+ yi)√
−4

)
dxdy.

We omit the details of the rest of proof as it simply goes along the same lines as the proof of Lemma 10 in
[13]. �

Our next result will be used to separate the variables in a function of a product, which is Lemma 12 of
[12].

Lemma 4.2. Let ρ : R→ R be an infinitely differentiable function whose derivatives satisfy the bound

ρ(k)(x)�k,A |x|−A

for |x| ≥ 1, for any positive constant A. Let

ρ+(s) =

∞∫
0

ρ(x)xs−1dx, ρ−(s) =

∞∫
0

ρ(−x)xs−1dx.
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Then ρ+(s) and ρ−(s) are holomorphic in <(s) = σ > 0, and satisfy

ρ+(s), ρ−(s)�A,σ |s|−A,

in that same domain, for any positive constant A. Moreover if σ > 0 we have

ρ(x) =
1

2πi

σ+i∞∫
σ−i∞

ρ+(s)x−sds and ρ(−x) =
1

2πi

σ+i∞∫
σ−i∞

ρ−(s)x−sds

for any positive x.

We are now ready to prove Lemma 3.6.

Proof of Lemma 3.6. In the notation of Lemma 4.1 we have∑
3
(M,N) =

∑
(n1,n2)=1

an1an2

∑
m∈Z[i]

W

(
N(m)
M

)
χ(m).

We proceed to evaluate the inner sum using Lemma 4.1, whence

(4.1)
∑

3
(M,N) = M

∑
k∈Z[i]

∑
(n1,n2)=1

cn1cn2

(
n2

n1

)
4

(
n1

n2

)
4

(
−1
n2

)
4

W̃

(√
N(k)M
N(n1n2)

)
χ(k),

where

cn = an

(
−
√
−4
n

)
4

g(n)
N(n)

.

Note by the law of quartic reciprocity, we have(
n2

n1

)
4

(
n1

n2

)
4

= (−1)((N(n1)−1)/4)((N(n2)−1)/4).

Now we let

S1 = {n ∈ Z[i] : N < N(n) ≤ 2N,n square-free, n = a+ bi, a, b ∈ Z, a ≡ 1 (mod 4), b ≡ 0 (mod 4)},

and

S2 = {n ∈ Z[i] : N < N(n) ≤ 2N,n square-free, n = a+ bi, a, b ∈ Z, a ≡ 3 (mod 4), b ≡ 2 (mod 4)}.

We can then recast the inner sum in (4.1) as∑
(n1,n2)=1

· · ·

=
∑

(n1,n2)=1
n1∈S1,n2∈S1

· · · +
∑

(n1,n2)=1
n1∈S1,n2∈S2

· · · +
∑

(n1,n2)=1
n1∈S2,n2∈S1

· · · +
∑

(n1,n2)=1
n1∈S2,n2∈S2

· · · − 2
∑

(n1,n2)=1
n1∈S2,n2∈S2

· · ·

=
∑

(n1,n2)=1

cn1cn2

(
−1
n2

)
4

W̃

(√
N(k)M
N(n1n2)

)
χ(k)− 2

∑
(n1,n2)=1

c′n1
c′n2

(
−1
n2

)
4

W̃

(√
N(k)M
N(n1n2)

)
χ(k),

where we let c′n = cn if n ∈ S2 and 0 otherwise. Due to similarities, it suffices to estimate

M
∑
k∈Z[i]

∑
(n1,n2)=1

cn1cn2

(
−1
n2

)
4

W̃

(√
N(k)M
N(n1n2)

)
χ(k),

Note that k = 0 may be omitted if N ≥ 1, since then N(n1n2) > 1 and χ(0) = 0, the character being
non-trivial. We may now apply Lemma 4.2 to the function ρ(x) = W̃ (x), which satisfies the necessary
conditions of the lemma, as one sees by repeated integration by parts. We decompose the available k into
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sets for which K < N(k) ≤ 2K, where K runs over powers of 2, and use σ = ε for K ≤ N2/M , and σ = 4+ε
otherwise. This gives

∑
3
�ε M

∑
K

(KM)−σ/2
∞∫
−∞

|ρ+(σ + it)||S(σ + it)|dt,

where

S(s) =
∑

K<N(k)≤2K

∣∣∣∣∣∣
∑

(n1,n2)=1

bn1b
′
n2

(
−1
n2

)
4

χ(k)

∣∣∣∣∣∣ , with bn = cnN(n)s/2, b′n = cnN(n)s/2.

We use the Möbius function to detect the coprimality condition in the inner sum of S(s), giving

S(s)�
∑
d

∑
K<N(k)≤2K

∣∣∣∣∣∣
∑

d|(n1,n2)

bn1b
′
n2

(
−1
n2

)
4

χ(k)

∣∣∣∣∣∣
=
∑
d

∑
K<N(k)≤2K

∣∣∣∣∣∣
∑
d|n

bn

(
k

n

)
4

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
d|n

b′n

(
−k
n

)
4

∣∣∣∣∣∣ ≤ S1/2
1 S

1/2
2 ,

by Cauchy’s inequality, where

S1 =
∑
d

∑
K<N(k)≤2K

∣∣∣∣∣∣
∑
d|n

bn

(
k

n

)
4

∣∣∣∣∣∣
2

and satisfies the bound

S1 ≤
∑
d

B2(K,N)
∑
d|n

|bn|2 ≤ B2(K,N)
∑
n

d(n)|an|2N(n)σ−1 �ε N
ε+σ−1B2(K,N).

S2 can be treated similarly. It follows then

S(s)�ε N
ε+σ−1B2(K,N),

and since
∞∫
−∞

|ρ+(σ + it)|dt�ε 1,

we infer that ∑
3
�ε M

∑
K

(KM)−σ/2Nε+σ−1B2(K,N).

This completes the proof of Lemma 3.6. �

5. The Recursive Estimate and the Proof of Theorem 1.1

Lemmas 3.4, 3.5 and 3.6 allow us to estimate B1(M,N) recursively, as follows.

Lemma 5.1. Suppose that 3/2 < ξ ≤ 2, and that

(5.1) B1(M,N)�ε (MN)ε
(
M +Nξ + (MN)3/4

)
.

for any ε > 0. Then

B1(M,N)�ε (MN)ε
(
M +N (9ξ−6)/(4ξ−1) + (MN)3/4

)
.

for any ε > 0.
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Proof. By the symmetry expressed in Lemma 3.2 the hypothesis (5.1) yields

B1(M,N)�ε

(
Mξ +N + (MN)3/4

)
(MN)ε.

It follows from (3.2) that the above estimation is valid with ξ = 2. We now feed this into Lemma 3.4, whence

(5.2) B2(M,N)�ε (MN)2εM1/2X−1/2Y −3/2 min(Y f(X,N), Xf(Y,N)),

where
f(Z,N) = Zξ +N + (ZN)3/4.

If X ≥ Y we bound the minimum in (5.2) by Y f(X,N), whence

B2(M,N)�ε (MN)2εM1/2X−1/2Y −3/2
(
Y Xξ + Y N + Y (XN)3/4

)
.

Here we have
M1/2X−1/2Y −3/2Y Xξ �MξY 1−3ξ

since X �MY −3. On recalling that ξ > 3/2 > 1/3 and Y � 1 we see that this is O(Mξ). Moreover

M1/2X−1/2Y −3/2Y N = M1/2X−1/2Y −1/2N �M1/2N.

Finally

M1/2X−1/2Y −3/2Y (XN)3/4 = M1/2X1/4Y −1/2N3/4 �M3/4N3/4 �M1/2N +M3/2 ≤M1/2N +Mξ,

since ξ > 3/2. It follows that

(5.3) B2(M,N)�ε (MN)2ε
(
M1/2N +Mξ

)
when X ≥ Y .

In the alternative case we bound the minimum in (5.2) by Xf(Y,N), whence

B2(M,N)�ε (MN)2εM1/2X−1/2Y −3/2
(
XY ξ +XN +X(Y N)3/4

)
.

Here
M1/2X−1/2Y −3/2XY ξ �M1/2X1/2Y 1/2 �M �Mξ

since ξ ≤ 2 and XY �M . Moreover

M1/2X−1/2Y −3/2XN = M1/2X1/2Y −3/2N �M1/2N

since we are now supposing that Y ≥ X. Finally

M1/2X−1/2Y −3/2X(Y N)3/4 = M1/2X1/2Y −3/4N3/4 �M1/2Y −1/4N3/4 �M1/2N3/4 �M1/2N +Mξ,

as before. It follows that (5.3) holds when Y ≥ X too. It will be convenient to observe that (5.3) still holds
when M < 1/2 , since then B2(M,N) = 0.

We are now ready to use (5.3) (with a new value for ε) in Lemma 3.6, to obtain a bound for B3(M,N).
We readily see that

max
{
B2(K,N) : K ≤ N2/M

}
�ε N

ε
(
M−1/2N2 +M−ξN2ξ

)
and ∑

K>N2/M

K−2−εB2(K,N)�ε N
ε
(
M3/2N−2 +M2−ξN2ξ−4

)
.

Thus, if N ≥ 1, we will have

B3(M,N)�ε N
5ε
(
M1/2N +M1−ξN2ξ−1

)
.
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When this is used in Lemma 3.5 we find that when N/∆2 ≥ 1,

B3

(
M

∆1
,
N

∆2

)
�ε N

5ε
(
M1/2N +M1−ξN2ξ−1∆ξ−1

1 ∆1−2ξ
2

)
≤ N5ε

(
M1/2N +M1−ξN2ξ−1∆−ξ2

)
≤ N5ε

(
M1/2N +M1−ξN2ξ−1

)
.

Note that when M ≥ N , we have M1/2N ≤ (MN)3/4 and when M ≤ N , we have (MN)3/4 ≤M1−ξN2ξ−1

since ξ > 3/2. Thus we conclude that

B2(M,N)�ε N
6ε
(

(MN)3/4 +M1−ξN2ξ−1
)
,

provided that N/∆2 ≥ 1. In the alternative case (3.7) applies, whence

B2(M,N)�ε (MN)6ε
(
M + (MN)3/4 +M1−ξN2ξ−1

)
,

In view of Lemma 3.3 and (3.4) we may now deduce that

B1(M,N) ≤ B1(M ′, N)� B2(M ′, N)�ε (M ′N)6ε
(
M ′ + (M ′N)3/4 +M ′

1−ξ
N2ξ−1

)
,

for any M ′ ≥ CM log(2MN). Note that when M4ξ−1 ≤ N8ξ−7, we have

(MN)3/4 ≤M1−ξN2ξ−1.

We shall now choose

M ′ = C max
{
M,N (8ξ−7)/(4ξ−1)

}
log(2MN),

so that when M ≥ N (8ξ−7)/(4ξ−1), we have

M ′ + (M ′N)3/4 +M ′
1−ξ

N2ξ−1 � (MN)ε
(
M + (MN)3/4

)
,

while when M ≤ N (8ξ−7)/(4ξ−1), we have

M ′ + (M ′N)3/4 +M ′
1−ξ

N2ξ−1 � (MN)ε
(
N (8ξ−7)/(4ξ−1) +N (8ξ−7)(1−ξ)/(4ξ−1)N2ξ−1

)
� (MN)εN (9ξ−6)/(4ξ−1).

We then deduce that

B1(M,N)�ε (MN)20ε
(
M + (MN)3/4 +N (9ξ−6)/(4ξ−1)

)
.

Lemma 5.1 now follows. �

We now proceed to prove Theorem 1.1.

Proof of Theorem 1.1. We note that it follows from (3.2) that the estimation given in Lemma 5.1 is valid
with ξ = 2. We further observe that

9ξ − 6
4ξ − 1

< ξ,

for ξ > 3/2. Therfore, the infimum of the fraction above is 3/2. We therefore arrive at the following bound

B1(M,N)�ε (MN)ε
(
M +N3/2 + (MN)3/4

)
,

for any ε > 0. Using Lemma 3.2 we then have

B1(M,N)�ε (MN)ε min
{
M +N3/2 + (MN)3/4, N +M3/2 + (MN)3/4

}
�ε (MN)ε

(
M +N + (MN)3/4

)
,

where the last estimation follows since when N ≤ M,N3/2 = N3/4N3/4 ≤ (MN)3/4 and similarly when
N ≥M,M3/2 ≤ (MN)3/4. This establishes Theorem 1.1. �
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6. The Quartic large sieve for Dirichlet Characters

We now proceed to prove Theorem 1.2. It is easy to reduce the expression on the left-hand side of (1.4)
to a sum of similar expressions with the additional summation conditions (q, 2) = 1 and (m, 2) = 1 included.
Thus it suffices to estimate

∑
Q<q≤2Q
(q,2)=1

∑?

χ (mod q)

χ4=χ0,χ
2 6=χ0

∣∣∣∣∣∣∣∣
∑∗

M<m≤2M
(m,2)=1

amχ(m)

∣∣∣∣∣∣∣∣
2

=
∑′

n∈Z[i]
Q<N(n)≤2Q

n≡1 (mod (1+i)3)

∣∣∣∣∣∣∣∣
∑∗

M<m≤2M
(m,2)=1

amχn(m)

∣∣∣∣∣∣∣∣
2

=
1
2

∑′

n∈Z[i]
Q<N(n)≤2Q

n≡±1 (mod (1+i)3)

∣∣∣∣∣∣∣∣
∑∗

M<m≤2M
(m,2)=1

amχn(m)

∣∣∣∣∣∣∣∣
2

,

(6.1)

where the apostrophe indicates that n is square-free and has no rational prime divisor and χn(m) =
(
m
n

)
4

is the quartic residue symbol. We shall use this notation for all n ∈ Z[i] and m ∈ Z.

6.1. Definition of certain norms. In the following, we shall estimate the expression in the last line of
(6.1). We begin by defining a norm corresponding to the double sum in the last line of (6.1) by

B1(Q,M) := sup
(am)

‖am‖−2
∑′

n∈Z[i]
Q<N(n)≤2Q

n≡±1 (mod (1+i)3)

∣∣∣∣∣∣∣∣
∑∗

M<m≤2M
(m,2)=1

amχm(n)

∣∣∣∣∣∣∣∣
2

,

where
‖am‖2 =

∑
m

|am|2,

and where by convention we suppose that (am) is not identically zero.

We further define a norm B2(Q,M) in the same way as B1(Q,M) except removing the condition that n
has no rational prime divisor. Similarly, we define a norm B3(Q,M) by further removing the condition that
n is square-free.

We now use the function W (x) defined in (3.5) to see that

B3(Q,M)� sup
(am)

‖am‖−2
∑
n∈Z[i]

W

(
N(n)
Q

) ∣∣∣∣∣∣∣∣
∑∗

M<m≤2M
(m,2)=1

amχm(n)

∣∣∣∣∣∣∣∣
2

.

Expanding the sum on the right-hand side, we obtain∑∗

M<m1≤2M
M<m2≤2M
(m1m2,2)=1

am1am2

∑
n∈Z[i]

W

(
N(n)
Q

)
χm1(n)χm2

(n).

As in [12], it turns out that we may restrict our attention to the case in which m1 and m2 are coprime. We
define another norm B4(Q,M) corresponding to the above sum with the restriction (m1,m2) = 1 included
by

B4(Q,M) := sup
(am)

‖am‖−2
∑∗

M<m1,m2≤2M
(m1m2,2)=1
(m1,m2)=1

am1am2

∑
n∈Z[i]

W

(
N(n)
Q

)
χm1(n)χm2

(n).
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Moreover, we define a norm C1(M,Q) dual to B1(Q,M) by

C1(M,Q) := sup
(bn)

‖bn‖−2
∑∗

M<m≤2M
(m,2)=1

∣∣∣∣∣∣∣∣∣∣∣
∑′

n∈Z[i]
Q<N(n)≤2Q

n≡±1 (mod (1+i)3)

bnχn(m)

∣∣∣∣∣∣∣∣∣∣∣

2

.

By the duality principle, we have

(6.2) B1(Q,M) = C1(M,Q).

Furthermore, we define a norm C2(M,Q) by extending the summation over m in the definition of C1(M,Q)
to all integers m with M < m ≤ 2M . Trivially, we have

(6.3) C1(M,Q) ≤ C2(M,Q).

6.2. Comparison of the norms. For the proof of our Theorem 1.2, we need the following lemma on the
norms defined in the previous section.

Lemma 6.3. Let Q,M ≥ 1 and C be a sufficiently large positive constant. Then we have the following
inequalities:

(6.4) C2(M,Q)� (QM)ε
(
M +Q7/4

)
;

(6.5) C2(M,Q)�MεQ1−1/v
v−1∑
j=0

C2(2jMv, Q)1/v, for each fixed positive integer v;

(6.6) B1(Q1,M)� B1(Q2,M), if Q1,M ≥ 1 and Q2 ≥ CQ1 log(2Q1M);

(6.7) B2(Q,M)� (log 2Q)3Q1/2X−1/2B1(XQε,M), for some X with 1 ≤ X ≤ Q;

(6.8) B3(Q,M)� (log 2Q)3Q1/2X−1/2B2(XQε,M), for some X with 1 ≤ X ≤ Q;

(6.9) B3(Q,M)�MεB4

(
Q

∆1
,
M

∆2

)
, for some ∆1,∆2 ∈ N with ∆2

2 ≥ ∆1;

(6.10) B4(Q,M)� Q+QMε−2 max
{
B3(K,M) : K ≤M4Q−1

}
+Q−1M6+ε

∑
K>M4/Q

K−2−εB3(K,M),

where the sum over K in (6.10) runs over powers of 2.

Since the proofs of (6.5)-(6.10) are essentially the same as those of (31)-(36) of Lemma 4.1 in [13], we
omit the proofs here.

We note that it follows from (6.2)-(6.5), we have

(6.11) B1(Q,M)� (QM)ε
(
Q1−1/vM +Q1+3/(4v)

)
for any v ∈ N.



14 PENG GAO AND LIANGYI ZHAO

6.4. Estimating C2. In this section we prove (6.4). Recall C2(M,Q) is the norm of the sum

(6.12)
∑

M<m≤2M

∣∣∣∣∣∣∣∣∣∣∣
∑′

n∈Z[i]
Q<N(n)≤2Q

n≡±1 (mod (1+i)3)

bnχn(m)

∣∣∣∣∣∣∣∣∣∣∣

2

,

where the apostrophe indicates that n is square-free and has no rational prime divisor.

The sum in (6.12) is obviously bounded by

(6.13) �
∑
m∈Z

W
(m
M

) ∣∣∣∣∣∑′

n

bnχn(m)

∣∣∣∣∣
2

,

where the weight function W is defined as in (3.5). Expanding out the sum in (6.13) we get∑′

n1,n2∈Z[i]
Q<N(n1),N(n2)≤2Q

n1,n2≡±1 (mod (1+i)3)

bn1bn2

∑
m∈Z

W
(m
M

)
χn1χn2

(m).

Now we extract the greatest common divisor ∆ of n1 and n2, getting∑′

N(∆)≤2Q

∆≡±1 (mod (1+i)3)

∑′

n1,n2∈Z[i]
Q

N(∆)<N(n1),N(n2)≤ 2Q
N(∆)

n1,n2≡±1 (mod (1+i)3)
(n1,n2)=1

(n1n2,∆∆)=1

bn1∆bn2∆

∑
m∈Z

(m,N(∆))=1

W
(m
M

)
χn1χn2

(m).

Now we write δ = (n1, n2) and change variables via n1 → δn1, n2 → δn2 to get∑′

N(∆)≤2Q

∆≡±1 (mod (1+i)3)

∑′

N(δ)≤ 2Q
N(∆)

δ≡±1 (mod (1+i)3)
(N(δ),N(∆))=1

∑′

n1,n2∈Z[i]
Q

N(δ∆)<N(n1),N(n2)≤ 2Q
N(δ∆)

n1,n2≡±1 (mod (1+i)3)
(N(n1),N(n2))=1

(n1n2,δδ∆∆)=1

bn1∆δbn2∆δ

×
∑
m∈Z

(m,N(∆))=1

W
(m
M

)
χn1χn2

χ2
δ(m),

(6.14)

where we use that for m ∈ Z, χδχδ(m) = χ2
δ(m) = χ2

δ(m). Next we remove the coprimality condition in the
sum over m by the Möbius function, getting∑

m∈Z
(m,N(∆))=1

W
(m
M

)
χn1χn2

χ2
δ(m) =

∑
l|N(∆)

µ(l)χn1χn2
χ2
δ(l)

∑
m∈Z

W

(
m

M/l

)
χn1χn2

χ2
δ(m),

which by the Poisson summation formula is∑
l|N(∆)

µ(l)χn1χn2
χ2
δ(l)

M

lN(n1n2δ)

∑
h∈Z

Ŵ

(
hM

lN(n1n2δ)

)

×
∑

r (mod N(n1n2δ))

χn1χn2
χ2
δ(r)e

(
rh

N(n1n2δ)

)
,

(6.15)
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where

Ŵ (x) =

∞∫
−∞

W (y)e(−xy)dy.

When h = 0, the expression in (6.15) vanishes unless n1 = n2 = δ = 1. Hence, the contribution of h = 0
to (6.14) is

(6.16) �MQε
∑′

Q<N(∆)≤2Q

∆≡±1 (mod (1+i)3)

|b∆|2 �MQε‖bn‖2.

In the sequal, we assume that h 6= 0. The sum over r in (6.15) can be computed by writing r =
r1N(n2δ) + r2N(n1δ) + r3N(n1n2) to get

∑
r (mod N(n1n2δ))

χn1χn2
χ2
δ(r)e

(
rh

N(n1n2δ)

)

=
∑

r1 (mod N(n1))

χn1(r1N(n2δ))e
(

r1h

N(n1)

) ∑
r2 (mod N(n2))

χn2
(r2N(n1δ))e

(
r2h

N(n2)

)

×
∑

r3 (mod N(δ))

χ2
δ(r3N(n1n2))e

(
r3h

N(δ)

)
= χn1

(h)χn2χ
2
δ(−h)χn1(N(n2δ))χn2

(N(n1δ))χ2
δ(N(n1n2))τ(χn1)τ(χn2)τ(χ2

δ),

(6.17)

where τ(χ) is defined as in (2.2).

Using quartic reciprocity and the identity

(m
n

)
4

=
(
m

n

)
4

following from the definition of the quartic residue symbol, we get the identities

χn(N(m))χm(N(n)) =
(
N(m)
n

)
4

(
N(n)
m

)
4

=
(m
n

)2

4
= χ2

n(m)

χn(N(m))χ2
m(N(n)) =

(
N(m)
n

)
4

(
N(n)
m

)2

4

=
(
N(m)
n

)
4

= χn(N(m))

and

χn(N(m))χ2
m(N(n)) =

(
N(m)
n

)
4

(
N(n)
m

)2

4

=
(
N(m)
n

)
4

= χn(N(m)),

valid for all m,n ∈ Z[i] with m,n ≡ ±1 (mod (1 + i)3). We use them to simplify the last line of (6.17),
obtaining

χn1
(h)χn2χ

2
δ(−h)

(
n2

2N(δ)
n1

)
4

(
N(δ)
n2

)
4

τ(χn1)τ(χn2)τ(χ2
δ).
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Now, changing n2 → n2, the contribution of h 6= 0 to the sum in (6.14) takes the form

SW (M,Q) = M
∑′

N(∆)≤2Q

∆≡±1 (mod (1+i)3)

∑′

N(δ)≤ 2Q
N(∆)

δ≡±1 (mod (1+i)3)
(N(δ),N(∆))=1

τ(χδ)
N(δ)

∑
l|N(∆)

µ(l)
l
χ2
δ(l)

∑
h 6=0

χ2
δ(h)

×
∑′

n1,n2∈Z[i]
Q

N(δ∆)<N(n1),N(n2)≤ 2Q
N(δ∆)

n1,n2≡±1 (mod (1+i)3)
(N(n1),N(n2))=1

(n1n2,δδ∆∆)=1

Ŵ

(
hM

lN(n1n2δ)

)
c∆,δ,l,h,n1c

′
∆,δ,l,h,n2

(
n1

n2

)2

4

,

where

c∆,δ,l,h,n := χn(l)χn(h)
(
N(δ)
n

)
4

τ(χn)
N(n)

bn∆δ and c′∆,δ,l,h,n := χn(l)χn(h)
(
N(δ)
n

)
4

τ(χn)
N(n)

bn∆δ.

We now estimate the sum over n1 and n2 directly using (1.3). We denote the inner sum in the definition of
SW (M,Q) above to be U(∆, δ, l, h) so that

U(∆, δ, l, h) =
∑′

n1,n2∈Z[i]
Q

N(δ∆)<N(n1),N(n2)≤ 2Q
N(δ∆)

n1,n2≡±1 (mod (1+i)3)
(N(n1),N(n2))=1

(n1n2,δδ∆∆)=1

Ŵ

(
hM

lN(n1n2δ)

)
c∆,δ,l,h,n1c

′
∆,δ,l,h,n2

(
n1

n2

)2

4

.

To separate the variables n1, n2, we remove the coprimality condition (N(n1), N(n2)) = 1 in the standard
way using the Möbius function to obtain

U(∆, δ, l, h) =
∑
e′∈Z

e≡1 (mod 4)

µ(|e′|)
∑′

n1,n2∈Z[i]
Q

N(δ∆)<N(n1),N(n2)≤ 2Q
N(δ∆)

n1,n2≡±1 (mod (1+i)3)
e′|N(n1),e′|N(n2)

(n1n2,δδ∆∆)=1

Ŵ

(
hM

lN(n1n2δ)

)
c∆,δ,l,h,n1c

′
∆,δ,l,h,n2

(
n1

n2

)2

4

.

Due to the presence of (n1
n2

)4 and the restrictions that n1, n2 are square-free and have no rational prime
divisors, we can recast the above as

U(∆, δ, l, h) =
∑′

e∈Z[i]

e≡1 (mod (1+i)3)
(N(e),N(δ∆))=1

µ(N(e))
∑′

n1,n2∈Z[i]
Q

N(δ∆)<N(n1),N(n2)≤ 2Q
N(δ∆)

n1,n2≡±1 (mod (1+i)3)
e|n1,e|n2

(n1n2,δδ∆∆)=1

Ŵ

(
hM

lN(n1n2δ)

)
c∆,δ,l,h,n1c

′
∆,δ,l,h,n2

(
n1

n2

)2

4

=
∑′

e∈Z[i]

e≡1 (mod (1+i)3)

N(e)≤ 2Q
N(δ∆)

(N(e),N(δ∆))=1

µ(N(e))χN(e)(l)χN(e)(h)
(
N(δ)
N(e)

)
4

τ(χe)
N(e)

τ(χe)
N(e)

(e
e

)2

4

×
∑′

n1,n2∈Z[i]
Q

N(eδ∆)<N(n1),N(n2)≤ 2Q
N(eδ∆)

n1,n2≡±1 (mod (1+i)3)

(n1n2,eeδδ∆∆)=1

Ŵ

(
hM

lN(n1n2eeδ)

)
c∆,δ,l,h,e,n1c

′
∆,δ,l,h,e,n2

(
n1

n2

)2

4

.
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where

c∆,δ,l,h,e,n := χn(l)χn(h)
(
N(δ)
n

)
4

(
N(e)
n

)
4

(
N(n)
e

)
4

(n1

e

)2

4

τ(χn)
N(n)

bne∆δ

and

c′∆,δ,l,h,e,n := χn(l)χn(h)
(
N(δ)
n

)
4

(
N(e)
n

)
4

(
N(n)
e

)
4

(
e

n2

)2

4

τ(χn)
N(n)

bne∆δ.

Next observe that we may freely truncate the sum over h for

|h| ≤ Q2l

N(δ)N(∆)2M
(QM)ε =: H

since Ŵ has rapid decay. More precisely, if we let SW (M,Q) = S′W (M,Q) + E where S′W (M,Q) is the
contribution to SW (M,Q) from 0 < |h| ≤ H, then E � (MQ)−100‖b‖2.

It remains to bound S′W (M,Q) and we have

S′W (M,Q)�M
∑′

N(∆)≤2Q

∆≡±1 (mod (1+i)3)

∑′

N(δ)≤ 2Q
N(∆)

δ≡±1 (mod (1+i)3)
(N(δ),N(∆))=1

1
(N(δ))1/2

∑
l|N(∆)

1
l

×
∑′

e∈Z[i]

e≡1 (mod (1+i)3)

N(e)≤ 2Q
N(δ∆)

(N(e),N(δ∆))=1

1
N(e)

∑
0<|h|≤H

|U ′(∆, δ, l, e, h)| ,

where

U ′(∆, δ, l, e, h) =
∑′

n1,n2∈Z[i]
Q

N(eδ∆)<N(n1),N(n2)≤ 2Q
N(eδ∆)

n1,n2≡±1 (mod (1+i)3)

(n1n2,eeδδ∆∆)=1

Ŵ

(
hM

lN(n1n2eeδ)

)
c∆,δ,l,h,e,n1c

′
∆,δ,l,h,e,n2

(
n1

n2

)2

4

.

We now remove the weight Ŵ in U ′(∆, δ, l, e, h) by applying Lemma 4.2 to the function ρ(x) = Ŵ (x), which
satisfies the conditions of that lemma, as one sees by repeated integration by parts. We may assume h > 0
here, since the contribution of the negative h’s can be treated similarly and satisfies the same bound. We
use σ = ε to see that

U ′(∆, δ, l, e, h)�ε

(
lN(ee∆)
hM

)ε ∞∫
−∞

|ρ+(ε+ it)||V (ε+ it)|dt,

where

V (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑′

n1,n2∈Z[i]
Q

N(eδ∆)<N(n1),N(n2)≤ 2Q
N(eδ∆)

n1,n2≡±1 (mod (1+i)3)

(n1n2,eeδδ∆∆)=1

dn1d
′
n2

(
n1

n2

)2

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

with
dn = c∆,δ,l,h,e,nN(n)s and d′n = c′∆,δ,l,h,e,nN(n)s.

Note that dn1 and d′n2
depend on ∆, δ, l, h, e, n and s, and

|dn| �
(
N(eδ∆)

Q

)1/2−ε

|bne∆δ| , |d′n| �
(
N(eδ∆)

Q

)1/2−ε ∣∣bne∆δ∣∣ .
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Now, using the Cauchy-Schwarz inequality and the estimate (1.3) upon noting that this estimate remains
valid if the summation conditions m,n ≡ 1 (mod (1 + i)3) therein are replaced by m,n ≡ ±1 (mod (1 + i)3)

and
(
n
m

)
4

replaced by
(
n1
n2

)2

4
, we bound V (ε+ it) by

V (ε+ it)

�


∑′

n1∈Z[i]
Q

N(eδ∆)<N(n1)≤ 2Q
N(eδ∆)

n1≡±1 (mod (1+i)3)

(n1,eeδδ∆∆)=1

|dn1 |2



1/2
∑′

n1∈Z[i]
Q

N(eδ∆)<N(n1)≤ 2Q
N(eδ∆)

n1≡±1 (mod (1+i)3)

(n1,eeδδ∆∆)=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑′

n2∈Z[i]
Q

N(eδ∆)<N(n2)≤ 2Q
N(eδ∆)

n2≡±1 (mod (1+i)3)

(n2,eeδδ∆∆)=1

d′n2

(
n1

n2

)2

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

1/2

� (QM)4ε

(
N(eδ∆)

Q

) 1
4−2ε ∑′

Q/N(e)<N(n)≤2Q/N(e)

n≡±1 (mod (1+i)3)
(N(n),N(e))=1

|ben|2.

(6.18)

Since
∞∫
−∞

|ρ+(σ + it)|dt�ε 1,

we deduce that

S′W (M,Q)�M(QM)7ε
∑′

N(∆)≤2Q

∆≡±1 (mod (1+i)3)

∑′

N(δ)≤ 2Q
N(∆)

δ≡±1 (mod (1+i)3)
(N(δ),N(∆))=1

1
(N(δ))1/2

∑
l|N(∆)

1
l

∑′

e∈Z[i]

e≡1 (mod (1+i)3)

N(e)≤ 2Q
N(δ∆)

(N(e),N(δ∆))=1

1
N(e)

×
∑

0<|h|≤H

(
N(eδ∆)

Q

) 1
4−2ε ∑′

Q/N(e)<N(n)≤2Q/N(e)

n≡±1 (mod (1+i)3)
(N(n),N(e))=1

|ben|2

� Q7/4+2ε(QM)8ε
∑′

N(∆)≤2Q

∆≡±1 (mod (1+i)3)

1
N(∆)7/4+2ε

∑′

N(δ)≤ 2Q
N(∆)

δ≡±1 (mod (1+i)3)
(N(δ),N(∆))=1

1
(N(δ))5/4+2ε

∑
l|N(∆)

1

×
∑′

e∈Z[i]

e≡1 (mod (1+i)3)

N(e)≤ 2Q
N(δ∆)

(N(e),N(δ∆))=1

1
N(e)3/4+2ε

∑′

Q/N(e)<N(n)≤2Q/N(e)

n≡±1 (mod (1+i)3)
(N(n),N(e))=1

|ben|2

� Q7/4+2ε(QM)8ε
∑′

Q<N(n)≤2Q

n≡±1 (mod (1+i)3)

|bn|2
∑′

e∈Z[i]

e≡1 (mod (1+i)3)
e|n

1
N(e)3/4+2ε

� Q7/4+2ε(QM)9ε
∑′

Q<N(n)≤2Q

n≡±1 (mod (1+i)3)

|bn|2.

(6.19)

Combining (6.16) and (6.19), we deduce that (6.14) and hence (6.12) is bounded by

� (QM)ε
(
M +Q7/4

)
‖bn‖2
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which implies the desired bound (6.4).

7. Completion of the proof of Theorem 1.2

We start with (6.11) with any v ≥ 2 (as one checks easily that v = 1 does not lead to any improvement)
as an initial estimate. From (6.7) and (6.11), it follows that

B2(Q,M)� (QM)εQ1/2X−1/2(X1+3/(4v) +X1−1/vM)

for a suitable X with 1 � X � Q. The worst case is X = Q which shows B2(Q,M) also satisfies (6.11).
Repeating the argument, we have

B3(Q,M)� (QM)ε
(
Q1+3/(4v) +Q1−1/vM

)
.

Combining this with (6.10), we obtain

B4(Q,M) � Q+ (QM)9εQM−2 max
{
K1+3/(4v) +K1−1/vM : K ≤M4Q−1

}
+(QM)9εM6Q−1

∑
K≥M4/Q

K−2−ε(K1+3/(4v) +K1−1/vM)

� Q+ (QM)10ε(Q−3/(4v)M2+3/v +Q1/vM3−4/v),

where the sum over K runs over powers of 2. From this and (6.9), we deduce that

B3(Q,M)� Q

∆1
+ (QM)ε

((
Q

∆1

)−3/(4v)(
M

∆2

)2+3/v

+
(
Q

∆1

)1/v (
M

∆2

)3−4/v
)

for some positive integers ∆1, ∆2 with ∆2
2 ≥ ∆1. From this and the trivial bound

B1(Q,M)� B3(Q,M),

we deduce that

(7.1) B1(Q,M)� Q+ (QM)ε
(
Q−3/(4v)M2+3/v +Q1/vM3−4/v

)
.

Combining (7.1) with (6.6), we deduce that

(7.2) B1(Q,M)� (Q̃M)ε
(
Q̃+ Q̃−3/(4v)M2+3/v + Q̃1/vM3−4/v

)
if Q̃ ≥ CQ log(2QM). We choose Q̃ := max(Q1+ε,M4−4v/7). Then (7.2) implies that

(7.3) B1(Q,M)� (QM)ε
(
Q+Q1/vM3−4/v +M17/7

)
.

It’s easy to see that the choice v = 2 is optimal and a further cycle in the above process does not lead to
an improvement of our result. Combining (6.11) with v = 1, 2, 3 and (7.3) with v = 2, we obtain our final
estimate

(7.4) B1(Q,M)� (QM)ε min
{
Q

7
4 +M,Q

11
8 +Q

1
2M,Q

5
4 +Q

2
3M,Q+Q

1
2M +M

17
7

}
.

which together with (6.1) (noting that the last expression in (6.1) is � B1(Q,M) by the law of quartic
reciprocity) implies Theorem 1.2. 2
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Calculating the right-hand side of (1.4) for various ranges of Q and M , we obtain that it is bounded by

� (QM)ε‖am‖2 ·



M if Q ≤M4/7,

Q7/4 if M4/7 < Q ≤M4/5,

Q1/2M if M4/5 < Q ≤M8/7,

Q11/8 if M8/7 < Q ≤M24/17,

Q2/3M if M24/17 < Q ≤M12/7,

Q5/4 if M12/7 < Q ≤M68/35,

M17/7 if M68/35 < Q ≤M17/7,

Q if M17/7 < Q.

For convenience, we enclose a table displaying the estimates for B1(Q,M) that we get for various ranges.
This table should be read as follows. If the fractions α and β are the (n−1)-th and n-th entries, respectively,
in the first row, and the term T is the n-th entry in the second row, then the estimate B1(Q,M)� (QM)εT
holds in the range Mα < Q ≤Mβ .

Range 4/7 4/5 8/7 24/17 12/7 68/35 17/7 ∞
Bounds M Q7/4 Q1/2 Q11/8 Q2/3 Q5/4 M17/7 Q

It can be easily checked that (6.11) with v ≥ 3 does not lead to an improvement of (7.4).
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