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Abstract. In the recent paper [13] was shown that any solution of “the poly-

nomial moment problem”, which asks to describe polynomials P, Q satisfy-

ing
R b

a P idQ = 0 for all i ≥ 0, may be obtained as a sum of some “re-

ducible” solutions related to “compositional right factors” of P . However,
the methods of [13] do not permit to estimate the number of necessary re-

ducible solutions or to describe them explicitly. In this paper we prove a

version of “the second Ritt theorem” about polynomial solutions of the func-
tional equation P1 ◦W1 = P2 ◦W2 for the more general functional equation

P1 ◦ W1 = P2 ◦ W2 = P3 ◦ W3, and on this base show that any solution of

the polynomial moment problem may be obtained as a sum of at most two
reducible solutions. We also describe these solutions in a very explicit form.

1. Introduction

About a decade ago, in the series of papers [2]–[5] the following “polynomial
moment problem” was posed: for a given complex polynomial P and complex
numbers a, b describe polynomials Q satisfying the system of equations

(1)
∫ b

a

P i dQ = 0, i ≥ 0.

Despite its rather classical and simple setting this problem turned out to be quite
difficult and was intensively studied in many recent papers (see, e. g., [3]–[6], [9],
[13]–[20]).

The main motivation for the study of the polynomial moment problem is its
relation with the center problem for the Abel differential equation

(2)
dy

dz
= p(z)y2 + q(z)y3.

with polynomial coefficients p, q in the complex domain. For given a, b ∈ C the
center problem for the Abel equation is to find necessary and sufficient conditions
on p, q which imply the equality y(b) = y(a) for any solution y(z) of (2) with y(a)
small enough. This problem is closely related to the classical Center-Focus problem
of Poincaré and has been studied in many recent papers (see e.g. [1]-[9], [23]).

The center problem for the Abel equation is connected with the polynomial
moment problem in several ways. For example, it was shown in [4] that for the
parametric version

dy
dz

= p(z)y2 + εq(z)y3
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of (2) the “infinitesimal” center conditions with respect to ε reduce to moment
equations (41) with

P (z) =
∫
p(z)dz.

On the other hand, it was shown in [7] that “at infinity” (under an appropriate
projectivization of the parameter space) the system of equations on the coefficients
of p and q describing the center set of (2) reduces to (1) with

P (z) =
∫
p(z)dz, Q(z) =

∫
q(z)dz.

Many other results relating the center problem and the polynomial moment problem
can be found in [7].

There exists a natural condition on P and Q which reduces equations (1), (2) to
similar equations with respect to polynomials of smaller degrees. Namely, suppose
that there exist polynomials P̃ , Q̃, W with degW > 1 such that

(3) P = P̃ ◦W, Q = Q̃ ◦W,
where the symbol ◦ denotes a superposition of functions: f1 ◦ f2 = f1(f2). Then
after the change of variable w = W equations (1) transform to the equations

(4)
∫ W (b)

W (a)

P̃ idQ̃ = 0, i ≥ 0,

while equation (2) transforms to the equation

(5)
dỹ
dw

= P̃ ′(w)ỹ2 + Q̃′(w)ỹ3.

Furthermore, if the polynomial W in (3) satisfies the equality

(6) W (a) = W (b),

then it follows from the Cauchy theorem that (4) and therefore (1) holds. Similarly,
since any solution y(z) of equation (2) is the pull-back

y(z) = ỹ(W (z))

of a solution ỹ(w) of equation (5), if W satisfies (6), then equation (2) has a center.
This justifies the following definition: a center for equation (2) or a solution of
system (41) is called reducible if there exist polynomials P̃ , Q̃, W such that con-
ditions (3), (6) hold. The main conjecture concerning the center problem for the
Abel equation (“the composition conjecture for the Abel equation”) states that any
center for the Abel equation is reducible (see [7] and the bibliography therein).

By analogy with the composition conjecture it was suggested (“the composition
conjecture for the polynomial moment problem”) that any solution of (1) is re-
ducible. This conjecture was shown to be true in many cases. For instance, if a, b
are not critical points of P ([9]), if P is indecomposable that is can not be repre-
sented as a composition of two polynomials of degree greater than one ([15]), and
in some other special cases (see e. g. [4], [18], [19], [20]). Nevertheless, in general
the composition conjecture for the polynomial moment problem fails to be true.

A class of counterexamples to the composition conjecture for the polynomial
moment problem was constructed in [14]. These counterexamples use polynomials
P which admit “double decompositions” of the form

(7) P = P1 ◦W1 = P2 ◦W2,
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where P1, P2, W1, W2 are non-linear polynomials. If P is such a polynomial and,
in addition, the equalities

W1(a) = W1(b), W2(a) = W2(b)

hold, then any polynomial Q, which can be represented as

Q = E ◦W1 + F ◦W2

for some polynomials E,F, satisfies (1) by linearity. On the other hand, it can be
shown (see [14]) that if degW1 and degW2 are coprime, then condition (3) is not
satisfied already for

Q = W1 +W2.

Notice that polynomial solutions of (7) are described by the following statement
which is a bit more general form of the so called “second Ritt theorem” (see Sec-
tion 2 below): if P1, P2,W1,W2 are polynomials satisfying (1), then there exist
polynomials U, V , where

degU = GCD(degP1,degP2), deg V = GCD(degW1,degW2),

and polynomials σ1, σ2 of degree one such that up to a possible replacement of P1

to P2 and W1 to W2 either

P1 = U ◦ zn ◦ σ−1
1 , W1 = σ1 ◦ zsR(zn) ◦ V

P2 = U ◦ zsRn(z) ◦ σ−1
2 , W2 = σ2 ◦ zn ◦ V,

where R is a polynomial and GCD(s, n) = 1, or

P1 = U ◦ Tn ◦ σ−1
1 , W1 = σ1 ◦ Tm ◦ V,

P2 = U ◦ Tm ◦ σ−1
2 , W2 = σ2 ◦ Tn ◦ V,

where Tn, Tm are the Chebyshev polynomials and GCD(m,n) = 1.
It was conjectured in [16] that actually any solution of (1) can be represented

as a sum of reducible ones and recently this conjecture was proved in [13]. More
precisely, it was proved in [13] that non-zero polynomials P, Q satisfy system (1) if
and only if Q can be represented as a sum of polynomials Qj such that

(8) P = P̃j ◦Wj , Qj = Q̃j ◦Wj , Wj(a) = Wj(b)

for some polynomials P̃j , Q̃j ,Wj .
In general, a polynomial P may have many compositional right factors Wj . For

example, if P = Tn, then for any divisor d of n the equality

Tn = Tn/d ◦ Td

holds. Therefore, an important problem is to prove or disprove the existence of
a number s such that any solution of the polynomial moment problem may be
obtained as a sum of at most s reducible solutions, and somehow to describe these
solutions. However, the methods of [13] do not permit to solve this problem and
this fact makes a practical use of representation (8) rather difficult. In the paper
we eliminate this defect and show that the number of different Wj necessary for
constructing any solution always may be reduced to one or two. As a corollary
of this result and the second Ritt theorem we obtain a very precise description of
solutions of the polynomial moment problem. Our principal result is the following
theorem.
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Theorem 1.1. A non-zero polynomials P, Q satisfy system (1) if and only if either
there exist polynomials P̃ , Q̃, W such that

P = P̃ ◦W, Q = Q̃ ◦W, and W (a) = W (b);

or there exist polynomials Q1, Q2, R, W, U such that

P = U ◦ zmnRn(zn) ◦W, Q = Q1 ◦ zn ◦W +Q2 ◦ zmR(zn) ◦W,

and
Wn(a) = Wn(b), R(Wn(a)) = 0,

where n > 1, GCD(m,n) = 1; or there exist polynomials U, W and Chebyshev
polynomials Tn, Tm, Tnm such that

P = U ◦ Tnm ◦W, Q = Q1 ◦ Tn ◦W +Q2 ◦ Tm ◦W,

and
Tn(W (a)) = Tn(W (b)), Tm(W (a)) = Tm(W (b)),

where n > 1, m > 1, and GCD(m,n) = 1.

Our main technical tool for proving Theorem 1.1 is the decomposition theory of
polynomials. In more details, we prove a version of the second Ritt theorem for the
equation

(9) P = P1 ◦W1 = P2 ◦W2 = P3 ◦W3

and on this base show that if a polynomial P has three compositional right factors
W1,W2,W3 such that Wi(a) = Wi(b), 1 ≤ i ≤ 3, then there exists a polynomial W
such that W is a common compositional right factor of at least two of W1,W2,W3,
and W (a) = W (b). This permits to reduce in a recursive way the number of sum-
mands in the representation Q =

∑
Qj of a solution of the polynomial moment

problem to one or two. Notice that our analogue of the second Ritt theorem seems
to be interesting by itself and to the best of our knowledge is new.

The paper is organized as follows. In the second section we recall the description
of polynomial solutions of equation (7) and prove some other related results. In
the third section we establish an analogue of the second Ritt theorem for equation
(9). Finally, in the fourth section on the base of the results obtained we prove
Theorem 1.1.

2. Polynomial solutions of P1 ◦W1 = P2 ◦W2

2.1. The second Ritt theorem. In this subsection we collect some results con-
cerning polynomial solutions of the equation

(10) P1 ◦W1 = P2 ◦W2.

For more detailed account of the theory of decompositions of polynomials we refer
the reader to the classical paper [21] as well as to the recent papers [12], [24] and
the bibliography therein.

Polynomial solutions of equation (10) may be described by means of two theorems
given below. The first one provides conditions implying that a solution of (10) can
be obtained from a “smaller” solution by the operation of composition.
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Theorem 2.1. ([10], [22]) Let P1, P2,W1,W2 be polynomials such that (10) holds.
Then there exist polynomials U, V,A,B,C,D, where

degU = GCD(degP1,degP2), deg V = GCD(degW1,degW2),

such that

P1 = U ◦A, P2 = U ◦B, W1 = C ◦ V, W2 = D ◦ V,

and

(11) A ◦ C = B ◦D. �

Notice that since the monodromy group of a polynomial of degree n contains
a cycle of length n, Theorem 2.1 follows from the fact that for a permutation
group G of degree n, containing a cycle of length n, the lattice of imprimitivity
systems of G is isomorphic to a sublattice of the lattice of divisors of n (see e.g.
Theorem 2.3 of [11]). In particular, Theorem 10 remains true for any “double
decompositions” (10) of a meromorphic function with a single pole on a Riemann
surface into compositions of meromorphic functions. Besides, it extends in an
obvious way to polynomial solutions of the functional equation

(12) P1 ◦W1 = P2 ◦W2 = P3 ◦W3

(see Theorem 3.1 below).
The second theorem, known as “the Second Ritt theorem”, describes solutions

of (10) which cannot be reduced to solutions of smaller degrees via Theorem 2.1.

Theorem 2.2. ([21]) Let A,B,C,D be polynomials such that (11) holds and

(13) GCD(degA,degB) = 1, GCD(degC,degD) = 1.

Then there exist polynomials σ1, σ2, µ, ν of degree one such that, up to a possible
replacement of A to B and C to D, either

A = ν ◦ zn ◦ σ−1
1 , C = σ1 ◦ zsR(zn) ◦ µ,(14)

B = ν ◦ zsRn(z) ◦ σ−1
2 , D = σ2 ◦ zn ◦ µ,(15)

where R is a polynomial and GCD(s, n) = 1, or

A = ν ◦ Tn ◦ σ−1
1 , C = σ1 ◦ Tm ◦ µ,(16)

B = ν ◦ Tm ◦ σ−1
2 , D = σ2 ◦ Tn ◦ µ,(17)

where Tn, Tm are the Chebyshev polynomials and GCD(m,n) = 1. �

Notice that in distinction with Theorem 2.1 the proof of Theorem 2.2 essen-
tially uses the fact that the functions in (10) are polynomials, and reduces to the
calculation of the genus g of the curve

(18) A(x)−B(y) = 0,

since the condition GCD(degA,degB) = 1 implies that this curve is irreducible,
and that, in case if g = 0, it may be parametrized by polynomials.

Is is convenient to combine Theorem 2.1 and Theorem 2.2 as follows.
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Theorem 2.3. Let P1, P2,W1,W2 be polynomials such that (10) holds. Then there
exist polynomials U, V,A,B,C,D, where

degU = GCD(degP1,degP2), deg V = GCD(degW1,degW2),

such that
P1 = U ◦A, P2 = U ◦B, W1 = C ◦ V, W2 = D ◦ V,

and, up to a possible replacement of A to B and C to D, either

(19) A = zn ◦ σ−1
1 , C = σ1 ◦ zsR(zn), B = zsRn(z) ◦ σ−1

2 , D = σ2 ◦ zn,

where R is a polynomial and GCD(s, n) = 1, or

(20) A = Tn ◦ σ−1
1 , C = σ1 ◦ Tm, B = Tm ◦ σ−1

2 , D = σ2 ◦ Tn,

where Tn, Tm are the Chebyshev polynomials and GCD(m,n) = 1. �

Notice that although above theorems give a description of polynomial solutions
of equation (10), they do not immediately imply a similar description of polynomial
solutions of equation (12) since the functions U, V from Theorem 2.1 are different
for different pairs of equations appearing in (12).

Let us mention the following well known corollary of Theorem 2.1.

Corollary 2.4. Let P1, P2,W1,W2 be polynomials such that (10) holds. Assume
additionally that degP1 = degP2. Then there exist a polynomial µ of degree one
such that the equalities

P1 = P2 ◦ µ, W1 = µ−1 ◦W2

hold. In particular, if P1,W1 are polynomials such that P1 ◦W1 = zn, then there
exists a polynomial µ of degree one such that

P1 = zd ◦ µ, W1 = µ−1 ◦ zn/d

for some d|n. Similarly, if P1 ◦W1 = Tn, then there exists a polynomial µ of degree
one such that

P1 = Td ◦ µ, W1 = µ−1 ◦ Tn/d

for some d|n.

Proof. The first part of the corollary follows directly from Theorem 2.1. The second
part follows from the first part since for any d|n, the equalities

zn = zd ◦ zn/d, Tn = Td ◦ Tn/d

hold and hence the equality P1 ◦W1 = Tn (resp. P1 ◦W1 = zn) implies the equality
P1 ◦W1 = Td ◦ Tn/d (resp. P1 ◦W1 = zd ◦ zn/d), where d = degP1. �

2.2. Double decompositions involving Chebyshev polynomials or powers.
In this subsection we provide a description of solutions of (10) in the case where
one of polynomials involved is a Chebyshev polynomial or a power. Since this
description is closely related to Theorem 2.2, it is convenient to keep the notation of
this theorem and to use the lettersA,B,C,D instead of the letters of P1, P2,W1,W2,
writing (10) in form (11). Recall that two polynomials U , V are called linearly
equivalent if U = µ ◦ V ◦ ν for some polynomials µ, ν of degree one.

We start from collecting some basic properties of the Chebyshev polynomials.
First, it follows easily from the formula

(21) Tn(cosϕ) = cosnϕ
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that if n > 2, then Tn has exactly two finite critical values 1 and −1, and local
multiplicities of Tn at preimages of these points are 1, 1, 2, 2, . . . 2 and 2, 2, . . . , 2, if
n is even, and 1, 2, 2, . . . 2 and 1, 2, 2, . . . , 2, if n is odd. Furthermore, this property
characterizes Chebyshev polynomials up to the linear equivalence. Indeed, any
polynomial P of degree n which has only two finite critical values c1, c2 and local
multiplicities at P−1{c1}, P−1{c2} as above satisfies the equation

n2(y − c1)(y − c2) = (y′)2(z − a)(z − b),
where a, b are distinct complex numbers and y(b) is equal either to c1 or to c2. On
the other hand, (21) implies that that Tn satisfies the differential equation

(22) n2(y2 − 1) = (y′)2(z2 − 1), y(1) = 1.

Therefore for appropriate polynomials µ, ν of degree 1 the polynomial µ◦P ◦ν also
satisfies the equation (22) and hence µ ◦ P ◦ ν = Tn by the uniqueness theorem for
solutions of differential equations. Notice that this characterization of Chebyshev
polynomials implies in particular that Tn is not linearly equivalent to zn unless
n = 2.

Further, (21) implies that Chebyshev polynomials satisfy

(23) Tn(−z) = (−1)nTn(z), n > 1.

In particular, if n odd, then

(24) Tn(z) = zEn(z2)

for some polynomial En. Notice that for n odd, Tn satisfies the identity

(25) Tn = θ ◦ zE2
n(z) ◦ θ−1,

where θ = 2z − 1. Indeed,

zEn(z2) ◦ θ ◦ z2 = Tn ◦ T2 = T2 ◦ Tn = θ ◦ T 2
n = θ ◦ zE2

n(z) ◦ z2

implying the equality
zEn(z2) ◦ θ = θ ◦ zE2

n(z)
which is equivalent to (25).

Finally, observe that Tn may not be represented in the form

(26) Tm = σ ◦ zsR(zn) ◦ µ, s ≥ 0, n ≥ 2,

where R is a polynomial and σ, µ are polynomials of degree one, unless n = 2.
Indeed, if ζ is a critical point of the polynomial zsR(zn), then for any i, 1 ≤ i ≤ n,
the number εiζ, where ε is nth primitive root of unity, also is its critical point. On
the other hand, formula (21) implies that all critical points of Tm are on the real
line. Therefore, all critical points of zsR(zn) = σ−1 ◦ Tm ◦ µ−1 also are on a single
line implying that n = 2 and µ = ±z. In particular, if

(27) Tn = σ ◦ Tn ◦ µ,
for some polynomials of degree one σ, µ, then µ = ωz and σ = ωnz, where ω = ±1.

Proposition 2.5. Let A,B,C,D be polynomials such that (11) holds.

a) If D = zn, then there exist a polynomial σ of degree one and polynomials S,U,
degU = GCD(degA,degB), such that

(28) A = U ◦ zn/e ◦ σ−1, C = σ ◦ zsS(zn), B = U ◦ zs/eSn/e,

where s ≥ 0 and e = GCD(degC,degD),
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b) If A = zn, then there exist a polynomial σ of degree one and polynomials S, V,
deg V = GCD(degC,degD), such that

(29) C = zs/eS(zn/e) ◦ V, B = zsSn ◦ σ−1, D = σ ◦ zn/e ◦ V,

where s ≥ 0 and e = GCD(degA,degB).

Proof. It follows from Theorem 2.1 taking into account the second part of Corollary
2.4 that it is enough to prove the proposition under the assumption that polynomials
A,B,C,D satisfy (13). Furthermore, for n = 1 the proposition is obviously true so
we may assume that n ≥ 2.

Suppose that D = zn. Then it follows from Theorem 2.2 that for polynomials
A,B,C,D either (14), (15) or (16), (17) holds. Furthermore, for n > 2 the only first
case is possible since for such n polynomials zn and Tn are not linearly equivalent.
Observe now that the equality

zn = σ2 ◦ zn ◦ µ

implies the equalities
σ2 = αz, µ = βz, α, β ∈ C.

Therefore, if (14), (15) holds, then setting

U = ν, σ = σ1, S(z) = βsR(βnz)

we obtain (28).
On the other hand, if n = 2 and (16), (17) holds, then taking into account that

the equality
z2 = σ2 ◦ T2 ◦ µ = σ2 ◦ θ ◦ z2 ◦ µ

implies the equalities

σ2 ◦ θ = αz, µ = βz, α, β ∈ C,

and using identity (25), we can rewrite (16), (17) in the form

A = (ν ◦ θ) ◦ z2 ◦ σ−1
1 , C = σ1 ◦ (zEm(z2) ◦ βz),

B = (ν ◦ θ) ◦ zE2
m ◦ z/α, D = (αβ2z) ◦ z2

and hence (28) holds for

U = ν ◦ θ, σ = σ1, S(z) = βEm(β2z).

Similarly, if A = zn and (14), (15) holds, then ν = αz, α ∈ C, and setting

S = α1/nR, V = µ, σ = σ2,

we obtain (29). On the other hand, if n = 2 and (16), (17) holds, then

ν ◦ θ = αz, σ1 = βz, α, β ∈ C,

and writing (16), (17) in the form

A = z2 ◦
√
αz/β, C = βz ◦ Em(z2) ◦ µ,

B = zαE2
m ◦ (θ−1 ◦ σ−1

2 ), D = (σ2 ◦ θ) ◦ z2 ◦ µ

we conclude that (29) holds for

σ = σ2 ◦ θ, V = µ, S(z) =
√
αEm. �
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Proposition 2.6. Let A,B,C,D be polynomials such that (11) holds. Assume
additionally that degC is not a divisor of degD, and degD is not a divisor of
degC.

a) If C = Tm then there exist a polynomial µ of degree one and a polynomial U ,
degU = GCD(degA,degB), such that either

(30) A = U ◦ εm/dTn/d, B = U ◦ Tm/d ◦ µ, D = µ−1 ◦ εTn,

where d = GCD(degC, degD) and ε = ±1, or

(31) A = U ◦ z + 1
2

R2(
z + 1

2
), B = U ◦ z2 ◦ µ, D = µ−1 ◦ zR(z2) ◦ Tm/2,

where R is a polynomial,

b) If B = Tm, then there exist a polynomial µ of degree one and a polynomial U,
degU = GCD(degC,degD), such that either

(32) A = εmTn ◦ µ, C = µ−1 ◦ Tm/d ◦ U, D = εTn/d ◦ U,

where d = GCD(degA,degB) and ε = ±1, or

(33) A = Tm/2 ◦ (2zR2(z)− 1) ◦ µ, C = µ−1 ◦ z2 ◦ U, D = zR(z2) ◦ U,

where R is a polynomial.

Proof. As in Proposition 2.5 we may assume that condition (13) holds. Further-
more, the requirement imposed on degrees of A and C implies that n ≥ 2. If D = T2

(resp. A = T2), then it follows from Proposition 2.5, taking into account the equal-
ity T2 = θ◦z2 and the requirement imposed on degrees of A and C, that (31) (resp.
(33)) holds. For n > 2 the proposition is proved in the paper [24], Lemma 3.16.
Below we give an alternate proof. Denote the polynomial defined by the equality
(11) by F .

Suppose that C = Tm. Observe that in order to prove the proposition it is
enough to show that F is linearly equivalent to a Chebyshev polynomial. Indeed,
in this case the second part of Corollary 2.4 implies the equalities

A = ν1 ◦ Tn ◦ σ, Tm = σ−1 ◦ Tm ◦ ν2, B = ν1 ◦ Tm ◦ µ, D = µ−1 ◦ Tn ◦ ν2,

where ν1, ν2, σ, µ are polynomials of degree one. Therefore, ν2 = ωz, σ = ωmz,
where ω = ±1 and hence (30) holds for ε = ωn.

If (16), (17) holds, then F clearly is equivalent to a Chebyshev polynomial.
Otherwise, taking into account that zn and Tn are not linearly equivalent for n > 2,
we should have (14), (15). As it was observed above the equality

(34) Tm = σ1 ◦ zsR(zn) ◦ µ

implies that n = 2. Hence m is odd and Tm = zEm(z2). Further, since zEm(z2)
has no terms of degree m − 1 and 0, it follows from equality (34) that σ1 = αz,
µ = βz, α, β ∈ C. It follows now from (14) and (34) that

F = ν ◦ z2 ◦ zsR(zn) ◦ µ = ν ◦ z2 ◦ z/α ◦ Tm ◦ z/β ◦ µ =

= ν ◦ z/α2 ◦ θ−1 ◦ T2 ◦ Tm ◦ z/β ◦ µ
implying that F is linearly equivalent to a Chebyshev polynomial.
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Suppose now that B = Tm. Again we only must show that F is linearly equivalent
to a Chebyshev polynomial, and in case if (16) (17) holds this is obviously true.
Otherwise, we should have (14), (15). Furthermore, the equality

Tm = ν ◦ zsRn(z) ◦ σ−1
2

implies that n = 2 for otherwise Tm would have critical points of the multiplicity
greater than 2. Therefore, degA = 2. In particular, A has a unique finite critical
value c, and m is odd. The calculation of the genus g of curve (18) (see e.g. Lemma
8.2 of [12]) shows that for such A and B the equality g = 0 holds if and only if
c = ±1. In its turn, the equality c = ±1 implies that A = ±T2 ◦ σ−1

1 for some
polynomial σ1 of degree one. Furthermore, since (18) may be parametrized by the
polynomials

C̃ = σ1 ◦ Tm, D̃ = ±T2,

any other polynomial parametrization C, D of (18) such that

degC = deg C̃, degC = deg C̃,

has the form
C = C̃ ◦ µ, D = D̃ ◦ µ,

where µ is a polynomial of degree one. Therefore, F is a linearly equivalent to a
Chebyshev polynomial. �

3. Polynomial solutions of P1 ◦W1 = P2 ◦W2 = P3 ◦W3

As it was mentioned above Theorem 2.3 of [11] implies immediately the following
generalization of Theorem 2.1 to the equation

(35) P1 ◦W1 = P2 ◦W2 = P3 ◦W3.

Theorem 3.1. Let Pi,Wi, 1 ≤ i ≤ 3, be polynomials of degrees pi, wi, 1 ≤ i ≤ 3,
respectively such that (35) holds. Then there exist polynomials U, V, W, and P̂i, Ŵi,
1 ≤ i ≤ 3, where

degU = GCD(p1, p2, p3), deg V = GCD(w1, w2, w3),

such that
Pi = U ◦ P̂i, Wi = Ŵi ◦ V, 1 ≤ i ≤ 3,

and
P̂1 ◦ Ŵ1 = P̂2 ◦ Ŵ2 = P̂3 ◦ Ŵ3. �

Theorem 3.1 reduces the problem of describing of solutions of (35) to the case
where

(36) GCD(p1, p2, p3) = 1, GCD(w1, w2, w3) = 1.

Notice that if the degree of one of P1, P2, P3 is one, then (35), (36) imply that the
degree of one of W1,W2,W3 is also one, and vice versa. It is easy to see that in
this case solutions of (35) have the form

µ ◦ (U ◦ V ) = (µ ◦ U) ◦ (V ◦ ν) = (U ◦ V ) ◦ ν,
where U, V are arbitrary polynomials and µ, ν are polynomials of degree one. So,
below we will assume that polynomials Pi,Wi, 1 ≤ i ≤ 3, are non-linear.

The following statement essentially is proved in [24], Lemma 3.22. Since however
the formulation given in [24] uses some additional restrictions on n, s, n̂, ŝ we provide
an independent proof.
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Proposition 3.2. Let F , R, R̂ be polynomials and δ, γ be polynomials of degree
one satisfying the equality

(37) F = zsR(zn) = δ ◦ zbsR̂bn ◦ γ,
where n - s and n̂ - ŝ. Then either δ(0) = 0 and γ(0) = 0, or F is linearly equivalent
to a Chebyshev polynomial Tf of odd degree.

Proof. Set f = degF and write

δ = αz + β, γ = α̂z + β̂,

where α, β, α̂, β̂ ∈ C.
Assume that β 6= 0. Then equality F (εz) = εsF (z), where ε is nth primitive

root of unity leads to the equality

(38) zbsR̂bn ◦ γ ◦ εz + ω1(zbsR̂bn ◦ γ) = ω2,

where ω1, ω2 are non-zero complex numbers. Clearly, the function

U = δ−1 ◦ F = zbsR̂bn ◦ γ
has at most (f − 1)/2 + 1 zeros and the equality attains if and only if

(39) n = 2, s = 1,

and R is a polynomial with no multiple roots such that R(0) 6= 0. Furthermore, it
follows from (38) that the number of ω2/ω1-points of U also is at most (f−1)/2+1.

By the Riemann-Hurwitz formula, the preimage U−1{a1, a2, . . . , ak} of the set
of all finite critical values a1, a2, . . . , ak of a polynomial U of degree f contains
(k − 1)f + 1 points. Therefore, the preimage U−1{a, b} of arbitrary points a, b
contains at least f+1 points and the equality attains if and only if U has no critical
values distinct from a, b. Thus, the assumption β 6= 0 implies that F = δ◦U has only
two finite critical values and local multiplicities of F at preimages of these values
are 1, 2, 2, . . . 2 implying that F is linearly equivalent to a Chebyhsev polynomial
Tf of odd degree.

Further, if β = 0, then ω2 = 0 in equality (38) implying that the linear function
κ = γ ◦ εz ◦ γ−1 transforms the set of zeros of the polynomial zbsR̂bn to itself. Any
linear function transforming a finite set of points of the complex plane to itself is
a rotation. Furthermore, since all roots of the polynomial zbsR̂bn distinct from zero
have the multiplicity which is divisible by n̂ while the multiplicity of zero is not
divisible by n̂ we conclude that κ(0) = 0 implying β̂ = 0. �

In order to lighten the notation below we will call a pair a polynomial B,D by “a
right Ritt pair of the exponential type” (resp. by “a right Ritt pair of the dihedral
type”) if the degrees of B,D are coprime and, possibly after switching B and D,
equalities (15) (resp. (17)) hold. Left Ritt pairs are defined similarly.

Our main result related to equation (35) is the following one.

Theorem 3.3. Let Pi,Wi, 1 ≤ i ≤ 3, be non-linear polynomials of degrees pi, wi,
1 ≤ i ≤ 3, respectively satisfying (35) and (36). Then at least one Pi, 1 ≤ i ≤ 3, is
linearly equivalent to a Chebyshev polynomial or to a power, and at least one Wi,
1 ≤ i ≤ 3, is linearly equivalent to a Chebyshev polynomial or to a power.

Proof. Applying Theorem 2.3 to the equality

P1 ◦W1 = P2 ◦W2
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we can find polynomials X1, Y1, A1, B1, C1, D1 such that

(40) degX1 = GCD(p1, p2), deg Y1 = GCD(w1, w2),

(41) P1 = X1 ◦A1, P2 = X1 ◦B1, W1 = C1 ◦ Y1, W2 = D1 ◦ Y1,

(42) A1 ◦ C1 = B1 ◦D1,

and either (19) or (20) holds.
Similarly, applying Theorem 2.3 to the equality

P1 ◦W1 = P3 ◦W3

we can find polynomials X2, Y2, A2, B2, C2, D2 such that

(43) degX2 = GCD(p1, p3), deg Y2 = GCD(w1, w3),

(44) P1 = X2 ◦A2, P3 = X2 ◦B2, W1 = C2 ◦ Y2, W3 = D2 ◦ Y2,

(45) A2 ◦ C2 = B2 ◦D2,

and either (19) or (20) holds.
Finally, applying Theorem 2.3 to the equality

P2 ◦W2 = P3 ◦W3

we can find polynomials X3, Y3, A3, B3, C3, D3 such that

(46) degX3 = GCD(p2, p3), deg Y3 = GCD(w2, w3),

(47) P2 = X3 ◦A3, P3 = X3 ◦B3, W2 = C3 ◦ Y3, W3 = D3 ◦ Y3,

(48) A3 ◦ C3 = B3 ◦D3,

and either (19) or (20) holds.
Set xi = degXi, ai = degAi, 1 ≤ i ≤ 3. Notice that (36) implies that

(49) GCD(xi, xj) = 1, 1 ≤ i, j ≤ 3, i 6= j.

Suppose at first that for at least one of equalities (42), (45), (48) condition (20)
holds for some m,n > 1. Changing if necessary the numeration of Pi,Wi, 1 ≤ i ≤ 3,
without loss of generality we may assume that

(50) A1 = Tm ◦ µ1, C1 = µ−1
1 ◦ Tn, B1 = Tn ◦ µ2, D1 = µ−1

2 ◦ Tm,

where µ1, µ2 are polynomials of degree one, GCD(n,m) = 1, and the number m is
odd.

Consider the equality

(51) P1 = X1 ◦A1 = X2 ◦A2.

Since x1, x2 are coprime, if a1|a2, then x2 = 1 and hence P1, P3 form a left Ritt
pair. Similarly, if a2|a1, then x1 = 1 and hence P1, P2 form a left Ritt pair. In both
case at least one of P1, P2, P3 is linearly equivalent to a Chebyshev polynomial or
to a power. On the other hand, if a1 - a2, a2 - a1, then applying Proposition 2.6, a)
to (51) and taking into account that m is odd and x1, x2 are coprime we conclude
that P1 is linearly equivalent to a Chebyshev polynomial. Analyzing now in the
same way the equation

(52) W2 = C3 ◦ Y3 = D1 ◦ Y1
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we conclude that at least one of W1,W2, W3 is linearly equivalent to a Chebyshev
polynomial or to a power.

Assume now that for all equalities (42), (45), (48) up to a possible replacement
of Ai to Ci and Bi to Di, 1 ≤ i ≤ 3, condition (19) holds. Then without loss of
generality we may assume that

A1 = zn ◦ µ1, B1 = µ−1
1 ◦ zs1Rn

1 (z), C1 = zs1Rn
1 (z) ◦ µ2, D1 = µ−1

2 ◦ zn,

where µ1, µ2 are polynomials of degree one, R1 is a polynomial, and n, s1 satisfy
GCD(n, s1) = 1. If a1|a2 or a2|a1, then we conclude as above that at least one of P1,
P2, P3 is linearly equivalent to a Chebyshev polynomial or to a power. So assume
that a1 - a2, a2 - a1. In particular, this implies that n > 1. Applying Proposition 2.5,
a) to (51) and taking into account that x1, x2 are coprime we conclude that

(53) X1 = µ ◦ zs2/dR
n/d
2 , X2 = µ ◦ zn/d ◦ δ, A2 = δ−1 ◦ zs2R2(zn) ◦ µ1,

where δ, µ are polynomials of degree one, R2 is a polynomial, and d = GCD(n, s2).
Notice that n - s2 since otherwise a1|a2.

By the assumption either

(54) A2 = zbn ◦ ν1, C2 = ν−1
1 ◦ zbsR̂(zbn), B2 = zbsR̂bn ◦ ν2, D2 = ν−1

2 ◦ zbn,
or

(55) A2 = zbsR̂bn ◦ ν1, C2 = ν−1
1 ◦ zbn, B2 = zbn ◦ ν2, D2 = ν−1

2 ◦ zbsR̂(zbn),

where R̂ is a polynomial, ν1, ν2 are polynomials of degree one, and GCD(n̂, ŝ) = 1.
Assume that (54) holds. Then it follows from (53), (54) that

(56) zs2R2(zn) = δ ◦ zbn ◦ γ,
where γ = ν1 ◦ µ−1

1 . Since n > 1, the polynomial in the left part of equality (56)
has no term of degree a2− 1 implying γ(0) = 0. On the other hand, it follows from
n - s2 that s2 > 0 implying δ(0) = 0. Therefore,

P1 = X2 ◦A2 = µ ◦ zn/d ◦ δ ◦ zbn ◦ ν1
is linearly equivalent to a power.

Further, if (55) holds, then it follows from (53), (54) that

zs2R2(zn) = δ ◦ zbsR̂bn ◦ γ,
where γ = ν1 ◦ µ−1

1 . Moreover, n̂ - ŝ since GCD(n̂, ŝ) = 1. Therefore, if A2 is not
linearly equivalent to a Chebyshev polynomial of odd degree, then by Lemma 3.2
the equality δ(0) = 0 holds, and

P3 = X2 ◦B2 = µ ◦ zn/d ◦ δ ◦ zbn ◦ ν2
is linearly equivalent to a power. On the other hand, if A2 is linearly equivalent to
a Chebyshev polynomial of odd degree, then applying Proposition 2.6, a) to (51)
we conclude as above that P1 is linearly equivalent to a Chebyshev polynomial.

Similarly, applying Proposition 2.5, b) to equation (52) and taking into account
that y1, y3 are coprime we conclude that

(57) C3 = µ−1
2 ◦ zs3Rn

3 (z) ◦ κ, Y3 = κ−1 ◦ zn/e ◦ ν, Y1 = zs3/eR3(zn/e) ◦ ν,
where κ, ν are polynomials of degree one, R3 is a polynomial, and e = GCD(n, s3).
Furthermore, either

(58) A3 = zen ◦ η1, C3 = η−1
1 ◦ zesR̃(zen), B3 = zesR̃en ◦ η2, D3 = η−1

2 ◦ zen,
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or

(59) A3 = zesR̃en ◦ η1, C3 = η−1
1 ◦ zen, B3 = zen ◦ η2, D3 = η−1

2 ◦ zesR̃(zen),

where R̃ is a polynomial, η1, η2 are polynomials of degree one, ñ > 1, and ñ - s̃.
Assume that (58) holds. Then it follows from (57), (58) that

zs3R3(zn) = γ ◦ zesR̃en ◦ κ−1,

where γ = µ2 ◦ η−1
1 . If C3 is not linearly equivalent to a Chebyshev polynomial of

odd degree, then by Lemma 3.2 the equality κ−1(0) = 0 holds, and

W3 = D3 ◦ Y3 = η−1
2 ◦ zen ◦ κ−1 ◦ zn/e ◦ ν

is linearly equivalent to a power. On the other hand, if C3 is linearly equivalent
to a Chebyshev polynomial of odd degree, then we conclude as above that W2 is
linearly equivalent to a Chebyshev polynomial.

Further, if (59) holds, then it follows from (57), (59) that

zs3R3(zn) = γ ◦ zen ◦ κ−1,

where γ = µ2 ◦ η−1
1 implying as above that κ−1(0) = 0. Hence

W2 = C3 ◦ Y3 = η−1
1 ◦ zen ◦ κ−1 ◦ zn/e ◦ ν

is linearly equivalent to a power. �

Remark. Notice that Theorem 3.3 reduces the study of equation (35) to the study
of the equations

(60) zn ◦A = B ◦ zm = U ◦ V

zn ◦A = B ◦ Tm = U ◦ V
Tn ◦A = B ◦ zm = U ◦ V
Tn ◦A = B ◦ Tm = U ◦ V,

and using Proposition 2.5 and Proposition 2.6 one can obtain a description of
solutions of these equations in the spirit of Theorem 2.2. For examples, one can
show that any solution of (60) has the form

U = z
r2m
d2 Rn

2 (z
m
d2 ), V = z

r1n
d1 R

n
d1
1 (zm),

A = z
r1r2m
d1d2 R

r2m
d1d2
1 (zm)R2(z

r1nm
d1d2 R

mn
d1d2
1 (zm))), B = z

r1r2n
d1d2 R

n
d1
1 Rn

2 (z
r1n

d1d2R
mn

d1d2
1 ),

where R1, R2 are polynomials, GCD(r1,m) = 1, GCD(r2, n) = 1, and d1d2 =
GCD(n,m). However, we do not need this more precise version of Theorem 3.3 for
our purposes.

4. Proof of Theorem 1.1

We start by proving the following statement.

Proposition 4.1. Let P and Pi,Wi, 1 ≤ i ≤ 3, be polynomials such that

P = P1 ◦W1 = P2 ◦W2 = P3 ◦W3

and

(61) W1(a) = W1(b), W2(a) = W2(b), W3(a) = W3(b).
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Then there exist distinct i1, i2, 1 ≤ i1, i2 ≤ 3, and polynomials W̃i1 , W̃i2 , W such
that

Wi1 = W̃i1 ◦W, Wi2 = W̃i2 ◦W, and W (a) = W (b).

Proof. It follows easily from Theorem 3.1 that without loss of generality we may
assume that conditions (36) hold. Furthermore, in view of condition (61) the poly-
nomials Wi, 1 ≤ i ≤ 3, are non-linear implying by (36) that the same is true for
the polynomials Pi, 1 ≤ i ≤ 3. Finally, observe that if wi, 1 ≤ i ≤ 3, is a divisor of
wj , 1 ≤ j ≤ 3, i 6= j, then the theorem is true. Indeed, in this case it follows from
Theorem 2.1 that the polynomial Wj is a polynomial in Wi and we may set i1 = i,
i2 = j, W = Wi. Thus, in the following we may assume that wi, 1 ≤ i ≤ 3, is not
a divisor of wj , 1 ≤ j ≤ 3, unless i = j.

We will keep the notation of Theorem 3.3. By Theorem 3.3 without loss of
generality we may assume that either W1 = Tm or W1 = zn. If W1 = Tm, then
Proposition 2.6, a) implies that there exists polynomials δi, i = 2, 3, of degree one
such that either

(62) Wi = δi ◦ zRi(z2) ◦ Tm/2,

where Ri is a polynomial, or

(63) Wi = δi ◦ Tmi
.

If for at least one i, i = 2, 3, equality (62) holds, then we must have

Tm/2(a) = Tm/2(b)

since otherwise (61), (62) imply equalities

T2(â) = T2(b̂), âRi(â2) = b̂Ri(b̂2),

where â = Tm/2(a), b̂ = Tm/2(b), which are clearly impossible. Therefore, if for at
least one i, i = 2, 3, equality (62) holds, we can set i1 = 1, i2 = i, W = Tm/2. On
the other hand, if for both i, i = 2, 3, equality (63) holds, then an easy calculation
(see e.g. [17], p. 281) shows that the statement of the proposition is true.

Suppose now that W1 = zn. Observe that we may assume that the right Ritt
pair C3, D3 from (48) is of the exponential type. Indeed, the degree of at least one
of C3, D3 is odd. Therefore, if the pair C3, D3 is of the Chebyshev type, then as in
the proof of Theorem 3.3 we conclude that either W2 or W3 is linearly equivalent
to a Chebyshev polynomial, and in this case the statement of the proposition is
already proved. So, assume that C3 = µ ◦ zr where µ is a polynomial of degree one
(the case of switched C3, D3 may be considered similarly).

Applying Proposition 2.5, a) to the equality P1 ◦W1 = P2 ◦W2 we conclude that
there exists a polynomial S and a polynomial δ of degree one such

(64) W2 = δ ◦ zsS(zn).

Since W2 = C3 ◦ Y3, this implies that for any primitive nth root of unity ε the
equality

δ−1 ◦ C3 ◦ Y3(εz) = εsδ−1 ◦ C3 ◦ Y3

holds and therefore by Corollary 2.4

δ−1 ◦ C3 = εkδ−1 ◦ C3 ◦ γ, Y3(εz) = γ−1 ◦ Y3
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for some polynomial γ of degree one. Since C3 = µ ◦ zr, the first of the equalities
above implies easily that γ(0) = 0 and then the second equality implies that

Y3 = zeF (zn), W2 = C3 ◦ Y3 = µ ◦ zreF r(zn)

for some polynomial F and e > 0. It follows now from (61) that

an = bn = c, areF r(c) = breF r(c).

Therefore, either GCD(n, re) = d > 1 and ad = bd, or F (c) = 0. In the first case
we can set i1 = 1, i2 = 2, W = zd. In the second case Y3(a) = Y3(b) = 0 and we
can set i1 = 2, i2 = 3, W = Y3. �

Proposition 4.1 permits to reduce the number of reducible solutions in the repre-
sentation Q =

∑
j Qj , where Qj satisfy (8), to one or two. Indeed, in the notation

of Proposition 4.1 we may replace the sum of two reducible solutions Qi1 Qi2 ,
1 ≤ i1, i2 ≤ 3, by the unique reducible solution

(Q̃i1 ◦ W̃i1 + Q̃i2 ◦ W̃i2) ◦W
and continuing in the same way we will eventually represent Q =

∑
j Qj as a sum of

only two reducible solutions. Furthermore, if Q itself is not reducible, then Theorem
2.3 implies that, possibly after switching W1 and W2, either

W1 = σ1 ◦ zsR(zn) ◦W, W2 = σ2 ◦ zn ◦W,
or

W1 = σ1 ◦ Tm ◦W, W2 = σ2 ◦ Tn ◦W,
where W,R are polynomials, σ1, σ2 are polynomials of degree 1, and GCD(s, r) = 1.
Moreover, it easy to see that in the first case the equalities

W1(a) = W2(b), W2(a) = W2(b)

imply that c = Wn(a) = Wn(b) is a root of R.
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