
Medvedev degrees of

2-dimensional subshifts of finite type

Stephen G. Simpson∗

Department of Mathematics

Pennsylvania State University

http://www.math.psu.edu/simpson/

simpson@math.psu.edu

May 1, 2007

Abstract

In this paper we apply some fundamental concepts and results from

recursion theory in order to obtain an apparently new counterexample in

symbolic dynamics. Two sets X and Y are said to be Medvedev equivalent

if there exist partial recursive functionals from X into Y and vice versa.

The Medvedev degree of X is the equivalence class of X under Medvedev

equivalence. There is an extensive recursion-theoretic literature on the

lattice of Medvedev degrees of nonempty Π0

1 subsets of {0, 1}N. This lat-

tice is known as Ps. We prove that Ps consists precisely of the Medvedev

degrees of 2-dimensional subshifts of finite type. We use this result to

obtain an infinite collection of 2-dimensional subshifts of finite type which

are, in a certain sense, mutually incompatible.

Definition 1. Let A be a finite set of symbols. The full 2-dimensional shift
on A is the dynamical system consisting of the natural action of Z

2 on the
compact set AZ

2

. A 2-dimensional subshift is a nonempty closed set X ⊆ AZ
2

which is invariant under the action of Z
2. A 2-dimensional subshift X is said

to be of finite type if it is defined by a finite set of forbidden configurations.
An interesting paper on 2-dimensional subshifts of finite type is Mozes [19]. A
standard reference for the 1-dimensional case is the book of Lind/Marcus [17],
which also includes an appendix [17, §13.10] on the 2-dimensional case.

Remark 1. In the study of 2-dimensional subshifts of finite type, it has been
useful to note that they are essentially the same thing as tiling problems in the
sense of Wang [38].
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On the one hand, if F is a finite set of Wang tiles, let TF be the set of tilings
of the plane by F . Identifying TF as a subset of F Z

2

, it is clear that TF is a 2-
dimensional subshift of finite type. Conversely, given a 2-dimensional subshift of
finite type, X , it is easy to construct a finite set of Wang tiles, F , such that TF is
recursively isomorphic to X . Namely, let r be a positive integer which is greater
than or equal to the diameters of all of the forbidden configurations defining X ,
and let F ⊆ A{1,...,r}2

be the set of r × r configurations which do not contain
any of the forbidden configurations. Our isomorphism of X onto TF associates
to each point x ∈ X a tiling t ∈ TF defined by t(m, n)(i, j) = x(m + i, n + j)
for all (m, n) ∈ Z

2 and (i, j) ∈ {1, . . . , r}2. The adjacency rules for τ1, τ2 ∈ F
are: (a) τ1 is allowed to occur immediately to the left of τ2 if and only if
τ1(i+1, j) = τ2(i, j) for all 1 ≤ i ≤ r− 1 and 1 ≤ j ≤ r, and (b) τ1 is allowed to
occur immediately below τ2 if and only if τ1(i, j + 1) = τ2(i, j) for all 1 ≤ i ≤ r
and 1 ≤ j ≤ r − 1.

Mozes [19, 20] and recently Hochman/Meyerovitch [15] have used the tiling
methods of Wang [38] and Robinson [23] to construct 2-dimensional subshifts
of finite type with interesting dynamical properties.

Definition 2. If X is a 2-dimensional subshift, the shift operators S1, S2 : X →
X are defined by S1(x)(m, n) = x(m + 1, n) and S2(x)(m, n) = x(m, n + 1) for
all x ∈ X and (m, n) ∈ Z

2. If X and Y are 2-dimensional subshifts, a shift
morphism of X into Y is a continuous function f : X → Y which commutes
with the shift operators, i.e., f(S1(x)) = S1(f(x)) and f(S2(x)) = S2(f(x)) for
all x ∈ X . It follows that f commutes with the action of Z

2 on X and Y . A
shift isomorphism of X onto Y is a shift morphism of X one-to-one onto Y , i.e.,
a homeomorphism of X onto Y which commutes with S1 and S2. We say that
X and Y are shift isomorphic if there exists a shift isomorphism of X onto Y .

Definition 3. Recall that two sets X and Y are Medvedev equivalent (see
Rogers [24, §13.7] and Medvedev [18]) if there exist partial recursive functionals
which map X into Y and Y into X . Also, X and Y are recursively homeomorphic
if there exists a partial recursive functional which maps X one-to-one onto Y
whose inverse is a partial recursive functional which maps Y one-to-one onto X .
Finally, X and Y are Muchnik equivalent (see Muchnik [21]) if (a) each point
in X is carried by some partial recursive functional to some point in Y , and (b)
each point in Y is carried by some partial recursive functional to some point
in X . Obviously recursive homeomorphism implies Medvedev equivalence, and
Medvedev equivalence implies Muchnik equivalence. However, the converses do
not hold. The equivalence classes under Medvedev equivalence and Muchnik
equivalence are known as Medvedev degrees and Muchnik degrees respectively.

Remark 2. We shall now show that the Medvedev degree, Muchnik degree,
and recursive homeomorphism type of a 2-dimensional subshift X depend only
on the shift isomorphism type of X .

Theorem 1. All shift morphisms f : X → Y are given by partial recursive
functionals. If X and Y are shift isomorphic, then X and Y are recursively
homeomorphic, hence Medvedev equivalent, hence Muchnik equivalent.
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Proof. Let A and B be finite sets of symbols such that X and Y are subshifts
of the full 2-dimensional shifts AZ

2

and BZ
2

respectively. Let f : X → Y be
a shift morphism. By the Curtis/Hedlund/Lyndon Theorem (see Boyle [7] or
Lind/Marcus [17]) f is a block code, i.e., we can find an integer r ≥ 0 and a

projection π : A{−r,...,r}2

→ B such that

f(x)(m, n) = π(Sm
1 Sn

2 (x) � {−r, . . . , r}2)

for all x ∈ X and (m, n) ∈ Z
2. In particular f is given by a partial recursive

functional. If moreover f is a shift isomorphism of X onto Y , it follows that f
is a recursive homeomorphism of X onto Y . This completes the proof.

Definition 4. A closed set P is said to be Π0
1 (see Rogers [24, Chapter 15])

if it is effectively closed, i.e., P is the complement of the union of a recursive
sequence of basic open neighborhoods. Let Ps (respectively Pw) be the lattice
of Medvedev degrees (respectively Muchnik degrees) of nonempty Π0

1 sets P ⊆
{0, 1}N. It is known that the lattices Ps and Pw are distributive. There is a
lattice homomorphism of Ps onto Pw obtained by mapping the Medvedev degree
of P to the Muchnik degree of P . The lattices Ps and Pw are mathematically rich
and have been studied extensively. See Alfeld [1], Binns [2, 3, 4], Binns/Simpson
[5], Cenzer/Hinman [9], Cole/Simpson [11], and Simpson [26, 27, 29, 30, 31, 32,
33, 34, 35, 36].

Remark 3. An open problem is to characterize the recursive homeomorphism
types of 2-dimensional subshifts of finite type. Obviously every 2-dimensional
subshift of finite type is a Π0

1 subset of AZ
2

and is therefore recursively home-
omorphic to, hence of the same Medvedev degree and Muchnik degree as, a
Π0

1 subset of {0, 1}N. We shall now prove a theorem in the opposite direction.
Namely, every Π0

1 subset of {0, 1}N is of the same Medvedev degree as, hence of
the same Muchnik degree as, some 2-dimensional subshift of finite type. This
characterization of the Medvedev degrees and Muchnik degrees of 2-dimensional
subshifts of finite type appears to be new.

Theorem 2. Given a nonempty Π0
1 set P ⊆ {0, 1}N, we can find a 2-dimensional

subshift of finite type which is of the same Medvedev degree as P .

Proof. Our proof uses the tiling constructions of Robinson [23] and Hanf [14]
and Myers [22].

Let F be a finite set of Wang tiles, and let τ ∈ F be a distinguished tile in F .
We write T τ

F = {t ∈ TF | t(0, 0) = τ}. The tilings in T τ
F are said to be origin-

constrained. Given a Π0
1 set P ⊆ {0, 1}N, Hanf [14] shows how to construct an

origin-constrained tiling system F, τ and a projection π : F → {0, 1} such that

P = {〈π(t(n, 0)) | n ∈ N〉 | t ∈ T τ
F }.

Namely, F and τ are such that each origin-constrained tiling t ∈ T τ
F describes a

non-halting run of a particular deterministic Turing machine M starting with

〈π(t(n, 0)) | n ∈ N〉 ∈ {0, 1}N
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inscribed on the right half of the Turing machine tape. The distinguished tile τ
represents the initial internal state of M . Since M is deterministic, t is uniformly
recursive relative to 〈π(t(n, 0)) | n ∈ N〉. It follows that T τ

F and P are recursively
homeomorphic.

Now, starting with F and τ as above, Myers [22] shows how to construct a
finite set of tiles F ′ and a projection π′ : F ′ → F with the following properties:

1. F ′ is a Robinson set of tiles.

(Unexplained terms are defined in Myers’ paper [22].)

2. For each tiling t′ ∈ TF ′ , the π′-images of the center rows of the finite
boards of t′ are synchronized.

3. For each tiling t′ ∈ TF ′ , the result of piecing together the π′-images of the
center rows of the finite boards of t′ is 〈t(n, 0) | n ∈ Z〉 for some t ∈ T τ

F .
It follows that t is uniformly recursive relative to t′.

4. Given an origin-constrained tiling t ∈ T τ
F , we can find a tiling t′ ∈ TF ′

such that 〈t(n, 0) | n ∈ Z〉 is the result of piecing together the π′-images of
the center rows of the finite boards of t′. Moreover t′ is uniformly recursive
relative to t.

Properties 3 and 4 imply that TF ′ is Medvedev equivalent to T τ
F . Therefore,

TF ′ is Medvedev equivalent to P . Since TF ′ is a 2-dimensional subshift of finite
type, our theorem is proved.

Remark 4. Actually Hanf [14] and Myers [22] deal only with Π0
1 sets P ⊆

{0, 1}N of the form

P = S(I, J) = {p ∈ {0, 1}N | p separates I, J}

where I and J are recursively enumerable subsets of N. However, their con-
structions work just as well for arbitrary Π0

1 sets P ⊆ {0, 1}N.

Definition 5. Let S2 be the set of all 2-dimensional subshifts. For X, Y ∈ S2

we write X ≥ Y if there exists a shift morphism f : X → Y . Obviously ≥ is
transitive and reflexive. We write X ≡ Y if X ≥ Y and Y ≥ X . Obviously ≡ is
an equivalence relation on S2. Obviously X ≡ Y whenever X and Y are shift
isomorphic, but the converse does not hold. Let S2/≡ be the set of equivalence
classes of S2 modulo ≡. There is an obvious partial ordering of S2/≡ induced
by ≥. It is easy to verify that, under this partial ordering, S2/≡ is a distributive
lattice. Let S2

fin
be the subset of S2 consisting of the 2-dimensional subshifts of

finite type. It is easy to verify that S2

fin
/≡ is a sublattice of S2/≡.

Theorem 3. There is a natural lattice homomorphism of S2

fin
/≡ onto Ps.

Namely, for each X ∈ S2

fin
we map the ≡-equivalence class of X to the Medvedev

degree of X.
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Proof. The greatest lower bound and least upper bound operations in each of
the lattices S2/≡, S2

fin
/≡, Ps, Pw are given by disjoint union and Cartesian

product respectively. In particular, our mapping of S2

fin
/≡ to Ps is a lattice

homomorphism. By Theorem 2 this homomorphism is onto Ps.

Remark 5. A consequence of Theorem 3 is that there is a natural lattice
homomorphism of S2

fin
/≡ onto Pw, obtained by mapping the ≡-equivalence class

of X ∈ S2

fin
to the Muchnik degree of X . In particular we have a new invariant,

the Muchnik degree, associated to (shift isomorphism types of) 2-dimensional
subshifts of finite type. Obviously this invariant is qualitatively different from
other such invariants which have been considered previously in the symbolic
dynamics literature. Moreover, this new invariant is of clear interest, inasmuch
as Pw is known to contain many specific, natural Muchnik degrees which are
closely related to significant topics in the foundations of mathematics. Among
these topics are algorithmic randomness [32, 36], almost everywhere domination
[35], reverse mathematics [28, 32], the hyperarithmetical hierarchy [11], and
Kolmogorov complexity [16].

Remark 6. We shall now present an application which is stated purely in terms
of 2-dimensional subshifts, with no reference to Medvedev degrees or Muchnik
degrees. Namely, we shall construct an infinite collection of 2-dimensional sub-
shifts of finite type which are, in a certain sense, mutually incompatible.

Definition 6. If X and Y are 2-dimensional subshifts on k and l symbols
respectively, let X+Y and X×Y be the disjoint union and Cartesian product of
X and Y . These are 2-dimensional subshifts on k+l and kl symbols respectively.
If X = (X, S1, S2) is a 2-dimensional subshift on k symbols, and if a, b, c, d are
integers such that ad − bc 6= 0, let X [a, b, c, d] = (X, Sa

1Sb
2, S

c
1S

d
2 ). This is a

2-dimensional subshift on k|ad−bc| symbols.

Definition 7. If U is a collection of 2-dimensional subshifts, let cl(U) be the
closure of U under the operations of Definition 6. In other words, cl(U) is the
smallest collection of 2-dimensional subshifts with the following properties:

1. For all X ∈ U , X ∈ cl(U).

2. For all X ∈ cl(U) and Y ∈ cl(U), X + Y ∈ cl(U) and X × Y ∈ cl(U).

3. For all X ∈ cl(U) and all a, b, c, d ∈ Z with ad−bc 6= 0, X [a, b, c, d] ∈ cl(U).

Theorem 4. We can find an infinite collection of 2-dimensional subshifts of
finite type, W, such that for all partitions of W into two subcollections, U and
V, there is no shift morphism of X into Y for any X ∈ cl(U) and Y ∈ cl(V).

Proof. By Binns/Simpson [5] let Pi, i = 1, 2, . . ., be nonempty Π0
1 subsets of 2N

whose Medvedev degrees are independent, i.e., Pii
+ · · · + Pim

is not Medvedev
reducible to Pj1 ×· · ·×Pjn

provided {i1, . . . , im}∩{j1, . . . , jn} = ∅. By Theorem
2, for each i = 1, 2, . . . let Xi be a 2-dimensional subshift of finite type which
is Medvedev equivalent to Pi. Let W be the collection Xi, i = 1, 2, . . ., and let
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U ,V be a partition of W . By induction on X ∈ cl(U) and Y ∈ cl(V) we can
easily show that neither of X and Y is Medvedev reducible to the other. Hence
by Theorem 1 there is no shift morphism of X into Y or vice versa. Q.E.D.

Remark 7. In this paper we have dealt only with 2-dimensional subshifts.
What about the 1-dimensional case? Clearly Theorem 1 holds in this case. On
the other hand, Theorems 2 and 3 fail, because all 1-dimensional subshifts of
finite type contain periodic points and are therefore of Medvedev degree zero
and of Muchnik degree zero. An open problem is to characterize the Medvedev
degrees, Muchnik degrees, and recursive homeomorphism types of 1-dimensional
Π0

1 subshifts. In this direction Cenzer/Dashti/King [8] have constructed a 1-
dimensional Π0

1 subshift which is of nonzero Muchnik degree, hence of nonzero
Medvedev degree. We do not know whether Theorems 2, 3, and 4 hold for
1-dimensional Π0

1 subshifts. We do not know whether Theorem 4 holds for
1-dimensional subshifts of finite type, or for 1-dimensional subshifts in general.
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