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In their book on representation varieties, Lubotsky and Magid

give a useful characterization of orbit closure in representation

varieties [2, 1.24]. Here we adapt this characterization to arbi-

trary categories. Applying this characterization of orbit closure
, .

to the category of Lie algebras and to the category of 2-cocycles

for a fixed Lie algebra, we establish the following orbit space

homeomorphism. '

Let G be an n-dimensional Lie algebra over an algebraically

closed field k. Far each 2-cocycle B in Z2(Q ,kr), there is

a central extension §(B) of G by k r constructed as foliows.

On the vector space Q e k
r , define a Lie product ]B by:

[x+a,y+b]B = [x'Y]G + B(x,y) , x,y E G , a,b E k r .

Let B.l = {x E G B(x, ~) = O} . T.C' B.L n Z ( G) = 0, then_.l.

Z ( ~ (B) ) = k
r

. {B Z2 ( Q.,kr) 1-
Z ( Q.) = O} letLet B = E B n and

* . .
Th~s paper was wr~tten while the second author was a guest of
the Hax-Planck-Institut für Hathernatik.Travel for the second
author was funded by the University of Wisconsin Graduate Scheol
Research Prograrn.
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L = {Q (B) ! BEB}. Let G be th,= subgroup of GL ( G e k r )- -
consisting of elements of the form [: : ] I

where a E Aut G-
and tP E GL(k r ) .. G acts on B by:

(g·B) (x,y)
-1 -1 -1-1

= $B(a x,a y) + 8[a x,a y]
G

Skjelbred and Sund [5] established that the correspondence

B + ~ (B) induces a bijection between the G-orbits of Band the

isornorphisrn classes of L (see [4] also for a discussion of this

result). We show that this bijection is a horneomorphism of the

orbit :spaces. In Section 3 we apply this result to a specific

exarnple.

Ne would like to thank Andy Hagid for pointing out that the

orbit closure characterization for representations might carry

over to the setting of Lie algebras.
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§1. A characterization of orbit clQsure

Let k be an algebraically closed field. We consider functors

on the category of k-algebras, i.e. commutative associative

k-algebras with identity. The variety morphism defined by the

k-algebra homomorphism n: k[Y] ~ k[X] is denoted n: X ~ Y.

Let S be a functor from the category of k-algebras to the

category of sets; for a k-algebra homomorphism f: A ~ B, let

f*: S (A) ~ S (B) be the corresponding map of sets .. Assurne that

S satisfies the following conditions:

1) S (k) is a variety with coordinate ring Sand there is an

element 5 E S (S) such tha t for
u

homomorphism ~: S + A such that

S A E S (A) I

*S = <fl (s ).A u

there is a

2) Fer v E S(k) I "*ev (5 ) = v .
v u

Frofi this it follows that for any variety morphism ~: X + S (k) I

given by 4> : S + k [x ], wehave

*( '" * )ev '+' 5 •
X U

- * *q,(x) = ev (s) = (ev 04) (su) =
q,(x) u x

3) If A is the coordinate ring of an affine set and t and u

are elements of S (A) which satisfy

homornorphisms 4>: A ~ k I then t = u.

* *<P (t) = 1> (u) for all

4) There is a group scheme action of G on S where G is an

affine algebraic group scheme. In particular, the following

diagram cornmutes for all homomorphisrns f: A + B:
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G (A) x S (A) -+ S (A)

f*xf"* J ~ f*

G (B) x S (B) -+ S (B)

5) Let K be the quotient field of k [ Z ] , Z an affine variety, so

we have the inclusion5 k i: k[z]l K. Let 5 k E S(k) ,

5 E S (k[Z]), g E G ( K) 5atisfy g·«ji)*5 ) :=: '*5 Then forJ •z k z

all x E Z such that g (x) is defined and has non-zero determinant,

"*g (x) • 5 :=: ev (5 ).
k x z

Lemma 1.1. Let p: Y -+ X be a dominant morphisrn from an affine

set y to a variety X, inducing the injective ring homomorphism

p: k[X] -+ k[Y]. Then there is a finite extension K of k(X)

and a homomorphi5m q: k[Y] -+ K such that q p is the inclusion

of k[X] into K.

Proof: By considering p on irreducible components of Y, it

suffices to establish the lemma for the case that Y is a variety.

By the Noether Normalization Lemma, there are algebraically

independent elements x 1 ' .. "x
n

in k[X] such that k[X] is an

integral extension of k[x1 , ... /xn ]. Let y. :=: p(x.)
~ 1

and extend

the set {Y 1 "."Yn} to a separating transcendence basis

{ Y1/ •• ' ,Yr } of k (Y) in k[Y]. By the Noether Normalization

Lemma, k[Y] is an integral extension cf k[Y1/ ..• 'Yr]: Let

lp: k[Y1/ .. "Y ] -+ k[x1 / ... ,x] be the homomorphisrn defined byr ' n

x. ,
1

1 < i < n, and tri (v .) :=: 0,
'l' ... 1. i > n.
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The kernel of W, PO' is a prime ideal (since the image of ~

is an integral domain). By the Going Up Theorem, there is a prime

ideal P in k[Y] with

By construction, the quotient field K of k[Y]/P is a finite

extension of k(X). The map q: k[Y] ~ K given by the quotient

map k[Y] ~ k[Y]/p has the desired property.

algebra theorems, see [3J.)

(For the commutative

The following characterization of orbit closure is a. general-.

ization of a theorem cf Lubotsky and Magid [2, 1.24J for repre-

sentation varieties.

Theorem 1.2. Let 5
0

,5
1

be elements of S(k). Then So E O( 51)

if and only if there is a discrete valuation k-algebra A with

residue field k, whose quotient field K is finitely generated

over k of transcendence degree one, and an.element SA of

S (A) such tha t

'( * (5 )
A

for same g E G (K)

where n,T, and rr are the hornomorphisms shown:

k n
A

T
K-> ->

Irr
'V

A/N = k
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containing ane.
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Choose an irreducible curve

and let X' = X n O(s1).

v
~ ...

XI

in

is

an affine open subset of X. Let Y be an affine subset of

G (k) vlhose image is Za'riski dense in XI under the orbit map

p: G(k) ~ S(k) (p(g) = g. 5 1 ) • Let r: k -+ k[Y] be the inclusion

map and let Y .. E k[Y] be the matrix coordinates on G(k) re-
~J

stricted to Y. Then for 9 E Y, we have

ev* ([Y .. ] ·r* (5 1 » = g. s 1
g J.J

* *= ev (p (s »g u

by 4)

by 2)

It follows from 3) that [ ~ * *Y .. 1• r (5 1) = p (s ).
~J u

Let *s == p (s ).y u

Because the image of p is contained in X·1
~ , the diagrarn

below cornrnutes, where p(y) = p(y) and ~ is the inclusion map.

If we let 5
XI *= 1iJ (S u) , then

p * (5 X I) = 5
Y

*= [y. . ] • r (5 1 ) •
~J '

v P \.. S (k)

~ /~
P Xl

From Lemma 1.1, we have a finite extension K of k(X') and a

homomorphism q: k[Y] + K such that qop = e , where e is the

inclusion of k[X I
] into K. From the diagram below, ws have:
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* *e (sx,) ::; (qp) (sx')

q*([Y .. ]-r* s1)=
1.J

= (q* [Y .. ]) - ( (qr) * s 1 ) by 4)
J.J

* where * G (K) •= g - ( (ey) s1) g = q [Y .. ] E
J.J

r

k[X'] > k[Y]

el~
q

Since i: X' ~ X is a dominant rnorphism, i: k[X] ~ k[X' J

is an inelusion. Let k[Z] be the integral elosure of ei(k[X])

in K. Then the inclusion ~: k[X] ~ k[Z] induces a surjection

-ep: Z ~ x. (The rnorphism ~ is onto because k[Z] is the

integral closure of k[X].) B"ecause 1> is surjective, there is

an element

loeal ring of

in Z

Z at

such that ~(zO) = sO. Let A be the

2
0

, and let a: k[Z] ~ A and T: A ~ K

be the inclusion maps.
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S k

~ \~ I y
'V

k[X]

<.p t i

k[Z]

o I
e'V

A
,....

J
....

K

·Let *5 = }.1.' (5 )
X u

and we have:

and let Then

* *-r (SA) == (-r04» (5
X

)

== * ( . *5 )e ~ X

= *(5 )e Xl

*= 9 - ( (ey) 51) from above.

Therefore

04>0..

* *-r (S ) = g-((-rn) 51)'
A

vlhere n is the inclusion

From the inclusion {zO} c Z, we have the homomorphisrn

ev k[Z] ~ AlM and the diagram below:
2

0

ev

S~ k[X]-i k[Z] _2
0 A/I·l

~/TI
A
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* '*= ev ( (4) ~.d 5 )
2

0
U

by 2)

Therefore

= *5
TI' A

Suppose there is a discrete valuation k-algebra "A with

residue field k, whose quotient field K is finitely generated

over k of transcedence degree one, and an element

for some g E G (K)

5
A

and

of S (A)

By property 1), there is a ho~omorphism f: S ~ A such that

*f (su) = sA·

such that A

Choose an affine curve Z

is the Ioeal ring of k[Z]

with

at

feS) C k[Z] c A

Z00 (Then k(Z) = K. )

Let ~: Z + S (k) be the variety morphisrn defined by

f: S ~ k[Z], and let j: k[Z] ~ A and T: A + K be the inelu5ion

rnaps. From the diagram below, we have:

~ (2
0

) * (q,* ) by 2)= ev r 5
2

0
U

= n*(jQ) *s
u

= *c STI J..
U

*= TI' SA

= So
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evz
S ~> k[Z] --~ A/H

~:/
T t

K

Let

is some g

*5 = <P (s ).z u

in G(K)

~hen s = j*(S ). By hypothesis, there
A z

such that T*sA = g- «Tn)*s1) .. Then

* *= T 5 = (1" j) '5 •
A z

Let .."
"-l be the dense 5ubset of z consisting of points x such

that g(x) is defined and det g(x) is not zero. Then for

x E Z', we have:

g(x) -51 * by 5)= ev 5
x z

= ev *( ep *5 )
X U

= ~ (x) by 2)

Since Z' i5 dense in Z and ~(Z') c 0(5 1 ), it follows that

So is in 0 ( 51 ) .

o
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§2. Equivalence cf orbit closure for 2-cocycles and Lie algebras

In the introduction, we described the construction of a

central extension G (b) of an n-dimensional Lie algebra G

by kr defined by a 2-cocycle b. Ne also described the action

f G b t B f Z 2 (Q ,kr) •o a group on a su se 0 For the convenience

of the reader, we present here the proof of the theorem which

appears in [5].

Theorem 2.1. The correspondence b + g (b) induces a bijection

between G-orbits of Band isomorphism classes of Lie algebras

\'1 i thout direct abelian factor \'lhich are central extensions of G

by k r and have r-dimensional center.

Proof: PrOfi the construction of ~ (b) I i t is easy to see that

for b E B, Q(b) has no direct abelian factor and the center of

G(h) has dimension r.

Suppose b 1 = ~.b2 for some ~ E G,

Then we see that ~(b1) is isomorphie to

[x+a/y+c]~. G(h )
- 2

-1 -1
= 4> [rp (x+a) , <fl (Y+c)] G(b )

.- 1

for
. r

x,y E Q., a,e E k

-1 -1 -1-1
= 1> ([Ci X,Ci Y] G + b

2
(Ci X,a y))

-1 -1 -1 -1 -1-1
= a [a x I a. Y ) Q + e [a x , a y ] §. + lP b 2 (Ci X I a. Y )
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[ -1 -1 ~ -1-1= [x,y] G + 8 Ci x,Ci yJ G + ~b2(a. x,Ci y)

since CI. E Aut Q

= [x'Y]G(b )
- 1

Suppose Q. (b 1 ) is isomorphie to G (b 2) via an isornorphism

$. Sinee b
1

anc b
2

are in B, the centers of Q (b
1

) and

G (b 2) have dimension r, so ~ induees

By the construetion of 52- (bi)' we see that Q. (bi) /Z (~ (bi»)

is isomorphie to Q. Thus ~ is an automorp~ism of G Fix

a basis {e1 , ••• ,e n } for G and a basis {e
n

+ 1 , ... ,en+ r } for

k
r

. Then the matrix of $ relative to this basis is

[:
0 ], E Aut G E GL (k), Horn (Q. r

Ci , IP e E , k ).- r
W

Let [ , ] . denote the Lie produet G (b. ) on Q.e k
r

. For
~ ~

x,y E Q., \.;e have

Also '.f'le have
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ep [X'Y]1 ::::: <P ([x,y] G + b 1 ~x,y»

::::: a[x,y] G + 8[x,y] G + tVb 1 (x,y)

From these two equations, it follows that

-1 -1]
b

2
(x,y) ::::: 8 [a x,Ci Y G

-1 -1
+ ~b1 (Ci X,Ci y).

Therefore b
1

ane b
2

are in the same G-orbit.
o

In order to show that the bijection between orbits of

2-cocycles and isomorphism classes of,Lie algebras preserves orbit

closure, we introduce two functors with group scheme actions and

apply Theorem 1.2.

Let ~ be an n-dimensional Lie algebra over an algebraically

closed field k. Define the functor B r
G

from the category of

k-algebras to the category of sets by

Fix a basis {e.}~ 1 for G. Then a 2-cocycle b in
1. 1.=

is given by its values on the pairs of basis elements

B~ (A)

(e. 0 1
A

,e.
1. J

For a homomorphism

given by
s r

([a .. ]) 1
1.J =

define *f (b) by

5 r
= ([f(a·,)])s 1"

1. J =
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B
r = r (k)' 1 d ub . t f H (A 2 G k r ) 1 t B-G Bg J.S a c ose s varJ.e y 0 om H _' ; e

5 .
denote its coordinate ring and let {X. '}1 .. 1 s be the

J. ] .::J. , J'::n , .::. .::r

matrix coordinates. Let b in
u

Sr(B) be the 2-cocycle giveng
by ([X~j])~=1. If Ais· a k-algebra and

given by ([a~j])~=1' define 11: B + A by

b = ~ * (b ).
u

b in

l1(X~.)
J..J

is

Then

Let G be the closed sub-group scheme of Gi n+r given by

G(A) = {(o.
8

:] I r n r}'+' a E Au t (52 0 A), 4J E G.t (A ), e E Hom (A , F.. ) .

G(A) acts on SQ(A) by

o ]. b (x, y ) = Wb (a -1 x , a -1 y ) + e[ a- 1x, Ct -1 Y ] G
lp

It is easy to see that ~~e functor with this action of

the group scheme G satisfies the condi tions listed in Section 1 ..

By "n-dimensional Lie algebra over All we mean a Lie product

on the free A-module on n { A}ng enera tors e. . l'
]. ].=

Then the Lie

talgebra is uniquely deterrnined by its structure constants (a,.)
J.J

A}n A ~ n t Arelative to the generators {e .. 1 (L(e. ,e",) = E a .. e
t
).

]. 1= 1 J t=1 J.J

BIf f: A + B is a k-algebra homomorphism, identify e. with
].

Let L
n

be the functor from the category of k-algebras

'to the ca tegory of sets defined by
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L (A) = {n-dimens iona.1. Lie algebras over Al.
n

If f: A -+ B is a k-algebra homornorphisffi, let

If the structure constants for L relative to {e~}~ 1 are
1. 1.=

t(a .. ), then, via the identification above, the structure constants
1.J

*for f (L) relative to {e~l~ 1 are
1. 1.=

t(f(a .. » .
1.J

L = L (k)-n n is a closed subvariety of 2 n nHom(A k ,k ); let

L denote its coordinate ring and let L be the element of
u

tL (L) with structure constants (X .. ). As above, for each
n 1.J

M E L (A), there is a hornomorphism cf>: L -+ A such tha t M = 4J * (L ).
n u

Ge: (A) ac ts on
n

L (A) by change of basis:
n

The functor L tllith this action of G-t satisfies the conditions
n n

listed in Section 1.

{e.}r: 1 be bas"is for G let
" n+r beLet a and {e.l. +1 a

1. 1.= 1. 1.=n

basis for k r
. For k-algebra A, let A e.0

k
1

A
beany e. =

1. J.

generators for t.l-te free A-modules 2A = ~ o kA and Ar = k
r

{9 k A.

The A-module G has the Lie product given by G . Far-A

b
A E Sr (A) , let QA (bA) be the Lie product ]b on An+r

:::G
A

Q A lB Ar defined by

A A
[e.,e·]b

1. J A

A A A A
== [e., e . ] + b

A
(e . , e . )

1. J G;:. 1. J- ...
'.c1.J.. 1 < i, j < n
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o therwise 0

For a k-algebra homomorphism f: A ~ CI it is easy to see that

-f*(_GA(b
A

» = G (b)0 C G (.c*(b»- -, A A A = -C J.. A 0

As we have seen in Theorem 2.', the correspondence

sions of G by

between orbits . and isomorphism classes of central e~ten-

from to L n+r given by b ~ G (b) induces a bijection

in B
r

-G

k r with no direct abelian factor and r-dimensional

center. Using Theorem 1.2, we show that orbit closure is preserved

under this correspondence.

Theorem 2. 2 .

Far bO and b 1 in ~G' bO E O(b 1 ) if and only if

Q (bo) E 0 (G (b 1 ) ) ·

Proof: If b O E O(b,)1 then from Theorem 1.2, we know that

there is a discrete valuation k-algebra A with residue field

k ane quotient field K and an element b
A

of BG(A) such tha t

b
A

0 A AlB = b
O

and b
A

0 A :\ =

Prom the remarks above, we have

go(b 0 K)
1 k

for same 9 E G (K).

If g = [: ,:1 t..'rten g- Q K (b 1 0 k K ) has Lie product



17

r -1 -1 ]
g ( ~ g (x+ 5) , g (y+ t) (b 1:\ K» f 0 r X, Y E g K;

QK 1·<Jk

-1 -1] -1 -1= g([et x,et Y G + (b 1 0 k K) (a x, Ci. y»
-K

-1 -1 -1 -1
= [x,y] G + e Ca. x, Ci. y] G + ~ eb 1 0 k K ) (a X,CL y)

-K -K

t E K
rs ,

because a. E Aut Q K

= [x+ 5, y+ t] QK (g. (b 1 0 k K) )

Because b
O

= b
A

0 AA/N, we have

I t follows from Theorem 1. 2 tha t Q . (ba) E 0 (Q. (b 1 ) ) •

Suppose that o (Q(b 1 ) ). BY Th e 0 rem 1. 2 i the re i s

a discrete valuation k-algebra A with residue field k and

quotient field K and L E L (A)
n

such that

Let cf>: L 0 AK ..... ~ (b 1 ) 0 k K be the isomorphism and let

n+r
{X i !i=1 be a basis for

. Q. (b
1

) (9 K genera ted by

of Lie algebras, we have

L. Let H

} n+r
{,-hxo . 1 •

't' ~ ~=

be the A-submodule of

Because ~ is an isomorphism
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[<Px.,<Px.] = <PLx.,x.] = i{> 0:: c·~.x
~ J ~ J s ~J

= L c~. ~ (XS) ,
s ~J

where c~. E A. Thus M is a Lie a~gebra over A which is
~J

isomorphie to L. Since K is the quotient field of A, there

is an element a in A such that {a<P(x.)}~+r1 is a basis for
J. J.=

QA(b 10 kA) 0A 1Ko Therefore 2A (b 10 kA) 0A 1A C M. But

dimAH = dimA QA(b 10 kA), so N = §. A(b 10 kA)0 A 1K. It follows

that <P induces an isomorphism between Land G A(b 10 kA).

Beeause L is isomorphie to QA(b 10 kA), the dimension

of Z(L) is Let G L
= L/Z(L) and define b' : G Lx G L Arro -T

A - A - A

as folIows. Let LI be a subspace af L cornplementary ·to

Z (L) and let 7T: LI G;l Z (L) -T Z(L) be the projection. Far

x,y E L, define b' by

Then L = ~ ~(b') w

Because ~ is a Lie algebra isomorphism from Q ~(bl) to

QA(b
1

0 kA), ~(Z( g~(b'» = Z(Q A(b 1 0 kA» and so 4J induces an

isomorphism Identify G L wi th
A

via so

Then QA(b) is isomorphie to

the center, the matrix of 9 is of the form
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is a basis for

A n+r
{ei}i=n+1 is a basis for Ar. For x,y E ~ A' we have

[<PX'<PY]G (b €I A)
- A 1 k

So a.[X'Y]G + (q,[x'Y]G + 1jJb(x,y))
- A - A

= [ a x , Cf. Y ] G + (b 1 0 k A) (ax, a.y ) ·
-A

It follows that a[x'Y]G = [ax,aY]G for all x,y E G A'
- A - A

i.e. a. E Aut QA' and b 1 0kA = 1J-b. Therefore

considering

of GI + (K).n r

-1
1J as an element

Because L 0 ... A/!-l,
h

we have

~ (b0) = L e A AlB = Q A (b) {9 A AlM = G (b (> A AlM) •

Therefore b O = b 0 A A/r-l.

It follows frorn Theorem 1.2 that b o E O(b
1
).

o
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§3. An application of the orbit closure characterization for

2-cocycles and Lie algebras

By comparing invariants like the dimensions of the upper

and lower central series, one can often establish that a Lie

algebra L is not in the closure of the orbit of a Lie algebra

M (see [1] for examples). One case where this methqd fails is

the case of the two central extensions of Q = Q3 x Q1 by k 2

whose structure is given in Table I.

3-dimensional nilpotent Lie algebra and

abelian Lie algebra.) In this case L =

93 is the non-abelian

~1 is the 1-dimensional

§(BO) and M = G (B1 )

where BO and B1 are given in Table II.

Proposition 3.1. L is not in the clos ure of the orbi t of N.

Proof: By Theorem 2.1, L is in the closure of the orbit of M

if and only if BQ is in the closure of the orbit of B
1

•

Suppose BO is in the closure of the orbit of B1 • Then

by Theorem 1.2, there is -a coordinate ring k[Z] for seme affine

set Z, an element g in G (k(Z», and an element x E Z

such that Ba is the evaluation of g- B 1 at x.

The element g is of the form
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a b 0 s

[: :) . ,.,here -1 d 0 t and t+J

[: :]Ci. = c =

e .c ,., U....

g h 0 v

Ne have:

If g-n
1

evaluated at x is then \'le have:

1 = p(x)c(x)w(x) = q(x)d(x)w(x)

o = p(x)d(x)w(x)

It follows that 0 = p(x)d(x)w(x) = d(x)/c(x), so d(x) = 0;

but this contradicts the statement 1 = q(x)d(x)w(x).

Therefore L is not in the closure of the orbit of M.

o
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Table I

L(e
1

/e
2

) = e 4 M(e
1

/e
2

) = e
4

G 3 (e
1

/e
2

) = e
3

L(e
1

/e
3

) = eS M(e
1

/e
4

) = eS G..,(e./e.) = 0
..J ~ ]

L(e
2

/e
4

) = es N(e
2

/e
4

) = e
6

other i < j

L(e
2

/e
3

) = e
6

M(e
2

/e
3

) = eS

L(e./e.) = a M(e. /e.) = a
~ J ~ J

other i < j other i < j

Table II

Ba (e1 / e 3 ) = x
1

B
1

(e
1

/e
4

) = x
1

Bo (e
2

/e
3

) = x B
1

(e
2

/e
3

) = x
12

BO (e 2 / e 4) = x
1

3
1

(e
2

/e
4

) = x
2

BoCe. /e.) = 0 B
1

(e./e.) = 0
~ J J. ]

other i < j other i < j



23

References

[1] F. Grunewald and J. O'Halloran, Varieties of nilpotent

Lie algebras of dimension less than six, J. Algebra, to appear.

[2] A. Lubotsky and A. Magid, Varieties of representations of

finitely generated groups, Memoirs of the AMS, No. 336, ANS,

Providence, Rhode Island, 1985.

[3] M.F. Atiyah and I.G. Macdanald, Introduction to .Cammutative

Algebra, Addisan Wesley Publ. Camp., 1969.

[4J L.J. Santharoubane, Infinite families of nilpotent Lie

algebras, J. Math. Soc. Japan 35, No. 3 (1983), 515·- 519.

[5] T. Skelbred and T. Sund, On the classification of nilpotent

Lie algebras, Preprint no. 8, Matematik rnstitutt Universitet

i 0510, Narway, 1977.


