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In their book on representation varieties, Lubotsky and Magid
give a useful characterization of orbit closure in representation
varieties [2, 1.24]. Here we adapt this characterization to arbi-
trary categories. Applying this characterization of orbit closure
to the category of Lie algebrés and to the category of 2-cocycles
for a fixed Lie algebra, we establish the following orbit space

homeomorphism.’

Let G be an n-dimensional Lie algebra over an algebraically
closed field k. For each 2~cocycle B in 22(9 ,kr), there is

a central extension G(B) of G by k* constructed as follows.

On the vector space G ® kr, define a Lie product [ , ]B by:
[X+ary+b]B = [XIY]G + B(XIY)I X,y € _Cz ; a,b € kr-
Let B- ={x €6 | B(x, 6) =0}. TIf B nz(G) =0, then
r 2 b L
Z( G(B)) =k . Let B=1{B€z°(G,k") | B nz(G8 =0} and let

Frhis paper was written while the second author was a guest of
the Max-Planck-Institut fir Mathematik.Travel for the second
author was funded by the University of Wisconsin Graduate School
Research Program.



L=1{G(B) | BE€B}. Let G be the subgroup of GL(G ® x©)
a O

}, where o € Aut G
o ¥

consisting of elements of the form [

and ¥ € GL{k").. G acts on B by:

(g*B) (x,y) = wB(a-1x,a_1y) + B[a_1x,u-1y]G

Skjelbred and sund [5] established that the correspondence

B + G (B) induces a bijection between the G-orbits of B and the
isomorphism classes of L (see [4] also for a discussion of this
result}). We show that this bijection is a homeomorphism of the
orbit :spaces. In Section 3 we apply this result to a specific

example.

We would like to thank Andy Magid for pointing out that the
orbit closure characterization for representations might carry

over to the setting of Lie algebras.



§1. A characterization of orbit closure

Let k be an algebraically closed field. We consider functors
on the category of k-algebras, i.e. commutative associative
k-algebras with identity. The variety morphism defined by the

k-algebra homomorphism n: k[¥] = k[X] is denoted n: X * Y.

Let S Dbe a functor from the category of k-algebras to the
category of sets; for a k-algebra homomorphism £: A - B, let
*

£°: § (A) » S(B) be the corresponding map of sets. - Assume that

S satisfies the following conditions:

1) S (k) 1is a variety with coordinate ring S and there is an

element éu € S (8) such that for € s(a), there is a

Sa
*
homomorphism ¢: S + A such that Sy = $ (su).

N
2) For v & S(k), evvjsu) =v.

From this it follows that for any variety morphism &: x + S (k),

' - * ¥*

given by ¢: 8§ > k[x], we have o¢(x) = ev (s ) = (evxo¢) (s,) =

*, % &(X)

(o8 )
ev, )
3) I£f A 1is the coordinate ring of an affine set and t and u

. * *
are elements of S (A) which satisfy ¢ (t) = ¢ (u) for all

homomorphisms ¢: A + k, then &t = u.

4) There is a group scheme acticn of Gon § , where (¢ is an
affine algebraic group scheme. In particular, the following

diagram commutes for all homomorphisms £: A ~* B:



G (a) x S (a) » S (a)

*
1

x %
fxf\l, )£

G (B) x S (B) - S (B)

5) Let K be the quotient field of k[2Z], 2 an affine variety, so

we have the inclusions k > k(z1d K. Let €  S(k),

S
k
s, € S(k{z]), g € 6 (R) satisfy g+ ((31)7s))

j*Sz. Then for
all x € Z such that g(x) 1s defined and has non-zero determinant,'

g(x)°5k = evi(sz).

Lemma 1.1. Let p: Y - X be a dominant morphism from an affine
set Y to a variety ¥, inducing the injective ring homomorphism
p: k[X] - k{Y]. Then there is a finite e%tension K of k(X).
and a homomorphism g: k(Y] - K such that g p 1is the inclusion

of k{X] into K.

Proof: By considering p on irreducible components of Y , it

suffices to establish the lemma £for the case that Y 1is a variety.

By the Noether Normalization Lemma, there are algebraically

independent elements Ryrononr X in k[{X] such that k[X] is an
integral extension of k[x1,...,xn]. Let y, = p(xi) and extend
the set {y1,...,yn} to a separating transcendence basis

{y1,...,yr } of k(Y) in k[Y¥]. By the Noether Normalization
Lemma, k([Y] is an integral extension of k[y1,...,yr]; Let

VE k[y1,...,y ] -+ k[x1,...,xn] be the homomorphism defined by

T

¢(yi) =x,, 1 <i<n, and w(yi) =0, i > n.



The kernel of V¥, PO’ is a prime ideal (since the image of V¥
is an integral domain). By the Going Up Theorem, there is a prime

ideal P in k(Y] with

P n k[y1l--'lyr] = PO.

By construction, the quotient field K of k(Yl/P is a finite
extension of k(X). The map q: k{Y] - KX given by the quotient
map k{Y] - k[(Y]/p has the desired property. (For the commutative

algebra theorems, see [3].)

The following characterization of orbit closure is a general-.
ization of a theorem of Lubotsky and Magid [2, 1.24] for repre-

sentation varieties.

Theorem 1.2, Let 5_,S be elements of S(kY. Then s

0’54 o € 00sy]

if and only if there is a discrete valuation k-algebra A with

residue field Kk, whose quotient field K 1is finitely generated

over k of transcendence degree one, and an .element SA of

S (A) such that

T*(SA) = g-((tnﬁé1) for some g € G (K)
£
S = S
U (A) q
where n,7, and 7w are the homomorphisms shown:
k l) A —» K



Proof: Suppose sg € O(s,). Choose an irreducible curve X in

GTE?T containing s, and s, and let X' =X NO0(sy). X' s
an affine open subset of X. Let Y be an affine subset of

G (k) whose image is Zariski dense in X' under the orbit map
p: Gk) + S(k) (plg) = g*s,). Let r: k= k{y] be the inclusion
map and let Yij € k{yY] be the matrix coordinates on  G(k) re-

stricted to Y. Then for g € Y, we have

* *
evg([Yij] r (51)) = 9'51 by 4)
* *
= evg(p (Su)) by 2)
It foll £ 3) th [v,.]°r7(5,) =p (s ). Let s. =p (s )
t follows from 3) at ijJ r 4) =P ul et y = p ).

Because the image of p» 1is contained in ¥', the diagram

below commutes, where o(y) = p(y) and ¥ is the inclusion map.
*
If we let SX' = 1 (Su), then
* *
s — S —1 .
0" (Sy) Y [Yij] r (s,)
v P S
v 5 5 (k)
\\\\ ///)zw
3 A
p X1

From Lemma 1.1, we have a finite extension K of Xk (X') and a
homomorphism g: k[¥Y] =+ K such that gep = e, where e 1is the

inclusion of k[X'] into K. From the diagram below, we have:



wn
[l

(Gp) ¥ (sy4)

*

*
d ([Ylj].r 51)

(q*[Yij])'((qr)*s1) by 4)

g~((ey)*s1) where g = q*[Yij] € G(X).

3
r
Yl\
X P
g

-

X']

> k[Y]
e

v
K

Since I: X' » X is a dominant morphism, i: k[X] -+ k{X']
is an inclusion. Let k([Z] be the integral closure of ei(k([X])

in K. Then the inclusion ¢é: k{X] -+ k[2Z] induces a surjection

$: 2 » X. (The morphism ¢ is onto because k[z] is the

integral closure of k{X].) Because ¢ 1is surjective, there is

an element z, in 2 such that $(20) = s,. Let A be the

local ring of 2 at Y and let o¢: k(2] - A and <t: A + K
be the inclusion maps.



‘ S P a _~k
M y Y
k{X] > k[(X']
© | =
k[(Z]
g |
v e
A
y
Let S, = u®(S ) and let S. = (0¢) (s,). Then s., = i (s
X u A X" X!
and we have:
+* *
= S
T (sA) (tod) ( x)
* #*
= { S
e (i x)
= e*(sx')
= g-((ey)*31) £rom above.
Therefore T*(SA) = g°((Tn)*S1), where n 1is the inclusion

apo.

From the inclusion {ZO} € 7, we have the homomorphism

ev, : k{2] - &A/M and the diagram below:
0

ey
s % kix]2 [z A/l

] .0
;\\\ ////;zﬂ
£
a



Then
- * »
So = ¢(zo) = evzo((¢u) s, by 2)
= * *S
m (odp) u
= %5
*5 = S
Therefore = a o

Suppose there is a discrete valuation k-algebra A with
residue f£ield k, whose quotient field K 1is finitely generated

over k of transcedence degree one, and an element SA of S(a)

such that T*SA = g-((Tn)*s1) for some g € G (K) and ﬁ*

SA SO-

By property 1), there is a homomorphism £: S + A such that
*(su) = 5;. Choose an affine curve Z with £(s) ¢ k[Z] ¢ A

such that A 1is the local ring of k[Z] at Zq - (Then k(zZ) = K.)

£

Let 6: 7 > S(k) be the variety morphism defined by
£: S ~» k[Z]; and let 3j: k[Z] ~+~ A and T: A > K be the inclusion

maps. From the diagram below, we have:

- % *
¢(zo) = ev, (¢ Su) by 2)
]
R *
=7 (39) 54
- = g%f s
u
*
=T s,
= s



29
S —> k[z] > A/M
I
£ JA gl
T
K
* *
= m S = 9 S i
Let s, o (su). Then S, j | z). By hypothesis, there
. . * * .
is some g in G(K) such that Tt S, = g-({tn) S,). Then
* * *
. = S = Y S
g+ (tn) s, T Sy (t3) s_.
Let 2' Dbe the dense subset of Z consisting of points x such

that g(x) is defined and det g(x) is not zero. Then for

X € 2', we have:

g(x)-s1'= ev, S by 5)
= ev;%¢*5 )
= ¢ (x) by 2)

Since Z' is dense in 2 and $(z') C 0(51), it follows that

Sy is in O(S1).



§2. Equivalence of orbit closure for 2-cocycles and Lie algebras

In the introduction, we described the construction of a
central extension E'(b) of an n-dimensional Lie algebra G
by x* defined by a 2-cocycle b. We also described the action
of a group G on a subset B of 22{§ ,k¥). For the convenience
of the reader, we present here the proof of the theorem which

appears in [5].

Theorem 2.1. The correspondence b - G (b) induces a bijection

between G-orbits of B and isomorphism classes of Lie algebras

without direct abelian factor which are central extensions of G

r

by k and have r-dimensiconal center.

Proof: From the construction of G (b), it is easy to see that
for b € B, G(b) has no direct abelian factor and the center of

G(b) has dimension r.

Suppose b1 = ¢-b2 for some ¢ € G,

-1

Then we see that G(b,) is isomorphic to G (b

g (b, ) via ¢

2

- -1, =1
EX+aly+C]¢’, .C-;-(b?_) - ¢['!’ (x+a) ) (YTC) ] Q(b1)

for x,y € G, a,c € x*



-1 -1 - -1 -1
[x,y]G + 9(a 'x,o yJG-!- lsz(ct X,0 v)

— —

since o € Aut G

= [X’Y]G(b1)

Suppose G (b
$. Since b1 and b2 are in B, the centers of Q.(b1)

G (bz) have dimension r, so ¢ induces

9: 6 (0)/2(G (b)) » G(b,)/Z2(GDb,)).

4) is isomorphic to gi(bz) via an isomorphism

and

By the construction of G (b;), we see that § (b,)/Z(G (b;))

is isomorphic to G . Thus ¢ is an automorphism of G
a basis {e1,...,en} for € and a basis {en+1""’en+r}
r . . X .

Then the matrix of ¢ relative to this basis is

k
a O r

[ }, o« € Aut G, § € GL_(k), & € Hom(G ,k7).
8 v

Let [ , ]i denote the Lie product G (bi) on G ® kr.

X,y € G, we have

olx,yly = Dox,ov],

= [ax,ay]G + b

-—

2(ax,ay)

Also we have

Fix

for

For



=
)
=
Y
I

o ([x,vy] ¢ * by {x,y))

—

U

aix,y] ¢ ¥ S[X.y]G + b, (x,y)

- —

From these two equations, it follows that

b, (x,y) = 8[a"1x,a'1y16 + $b1(ﬂ_1x,d_1y).

—

Therefore b1 and b2 are in the same G-orbit.

In order to show that the bijection between orbits of
2-cocycles and isomorphism classes of Lie algebras preserves orbit
closure, we introduce two functors with group scheme actions and

apply Theorem 1.2.

Let G be an n-dimensional Lie algebra over an algebraically

closed field k. Define the functor B E from the category of

——

k-~algebras to the category of sets by

B5(a) = (b €2°(G © 2) = o}.

——

a,a%) bt nz(g e

k k

Fix a basis {ei}?=1 for G . Then a 2-cocycle b in BE(A)

is given by its values on the pairs of basis elements

Q ] N D) = S r 1
(ei 1A’ej 1A)’ b(ei 1A,ej o) 1A) (aij)s=1' For a homomorphism
£: A+ C, let f£'(b) =b © C. Thatis, for b in Z°(G @ A,A")

2
, define £ (b) in z°(G @ c,c’) by

, S . r
given by ({aij])



gi;= Bg(k) is a closed subvariety of Hom(AZQ ,kT): let B

= = s .
denote its coordinate ring and let {Xij}1ii,jin,1isir be the
matrix coordinates. Let bu in Bg(B) be the 2-cocycle_given

S r PR s - - . r .

by ([Xij])5=1' If A is a k-algebra and b in BG(A) is

. S r . . [ =—-S
given by ([aij])s=1, define ¢: B + A by ¢(Xij) aij' Then

*

b=1¢ (b).

Let G be the closed sub-group scheme of G£ ner given by

o O
Ga) = {[ } la € Aut(G @An), ¢ € GﬁiAr), 5 € Hom(An,Ar)}.
8 vy

G(A) acts on B3 (a) by

—1y) + 9&f1x,a-1y]6 .

-—

a 0 -1
*b{x,y) = ¥vblae x,a¢
8

It is easy to see that the functor BE with this action of

the group scheme G satisfies the conditions listed in Section 1. -

By "n-dimensional Lie algebra over A" we mean a Lie product

on the free A-module on n generators {e?}g_ Then the Lie

T

algebra is uniquely determined by its structure constants (az‘)

J
n
. A,n A A, _ t A
relative to the generators {ei}i=1 (L(ei,ej) = ti1 aijet).
If f£f: A+ B 1is a k-algebra homomorphism, identify e? with
€; 9,1y

Let L 0 be the functor from the category éf k-algebras

to the category of sets defined by



L (a) = {n-dimensional Lie algebras over Al.

If f£f: A+ B is a k-algebra homomorphism, let f*(L) = LcaAB.

If the structure constants for L relative to {ei}2_1 are
(azj), then, via the identification above, the structure constants

for £ (L) relative to {e?}?=1 t

lj))-

are (f(a

En = i_n(k) is a closed subvariety of Hom(Azkn,kn): let

L denote its coordinate ring and let Lu be the element of

Ln(L) with structure constants (ij). As above, for each
ME j_n(A), there is a homomorphism ¢: L - A such that M= ¢*(Lu)
G&n(A) acts on Lh(A) by change of basis:
-1 -1
(g°L) (x,y) = g(L{g x,9 y)).
The functor L_1 with this action of Gﬁn satisfies the conditions
listed in Section 1.
n . ' n+r
Let {e;},_, be a basis for G and let {e;j}/__ , bea
. r A _
basis for k7. For any k-algebra A, let e, = e;® k‘IA be
generators for the free A-modules §A =G ® KA and a’ = x%p B
The A-module Q,A has the Lie product given by G . For
bA € BE {a), let G (b.) be the Lie product [ , | on aAPTT =
2 ATA ) bA
G A ® AT defined by
A A A A A A -
[el,ej]bA [el,ej] . + bA(ei'ej) if 1 <i, j <n



[e?, ) =0 otherwise.
1"79°b

For a k-algebra homomorphism f: A = C, it is easy to see that

%G = G ® = G, (£°
£ (_A(bA)) —'A(bA) AC Lo (£ (b ).

As we have seen in Theorem 2.1, the correspondence
from 2% to L ,. 9iven by b - G (b) induces a bijection
between orbits in E% .and isomorphism classes of central exten-
sions of G by k* with no direct abelian factor and r-dimensional

center. Using Theorem 1.2, we show that orbit closure is preserved

under this correspondence.

Theorem 2.2.

For b, and b, in Bg, by €0(b

0 ) 1if and only if

6 (by) €0(G (b))).

Proof: If bO € O(b1), then from Theorem 1.2, we Xnow that

there is a discrete valuation k-algebra A with residue field

k and quotient field X and an element b, of B% (A) such that

b.® _ a/M =b

A A and bAG X = g*(b,? K) for some g e G (K).

0 A Tk

From the remarks above, we have

)o K= G, (b 8,K = G, (g:(b,e,K).

K

, then g+*G K(b1® _K) has Lie product

k




-1 -1 r
gllg "(x+s),q (y.+t)]G (b1®]{K)) for x,y € Gk’ s,t € K

- X

g([a_1x,a-1y]G + (b1c9kK)(G-1x,a_1y))

-~ K

I

k) (@™ 'x,a”1y)

-1 -1
[x,y]g + 8la 'x,a y]Q + w(b1®

K k

K

because o € Aut G K

[x+ s, y+t] .
G (g° (b, 8, K)

Therefore G A(bA) ® 7K =g° (G (by) & K.
Because bO = bAéiAA/M, we have
Gby) = Gb,® A/M) = G (b )6 , A/M

It follows from Theorem 1.2 that G.(b,) € O(G (by)).

Suppose that Qﬂ%ﬂ 0(&k,)). By Theorem 1.2; there is

a discrete valuation k-algebra A with residue field k and

duotient field X and L € L n(A) such that

~

® - =
L® X * G (b,)®,X and LO  A/M = G (by).

Let ¢: LO R Q_(b1)@ K be the isomorphism and let
n+r
i i=1

{x be a basis for L. Let M be the A-submodule of

n+r

'9.(b1)® K generated by {¢xi}i=1

Because ¢ 1s an isomorphism

of Lie algebras, we have



S - s . - )
[¢xi,¢xj] = ¢in,xj] = ¢(g cf 4% ) = g cij¢(xs),

where cgj € A. Thus M 1is a Lie algebra over A which is

isomorphic to L. Since K 1s the quotient field of A, there

is an element a in A such that {a¢(xi)}2:f is a basis for
QA(b1® kA) o 1K' Therefore QA(b1® kA) ®A 1A C M. But
d:l.mAM = cumA QA(b1® kA) , SO M =G A(b1® kA)@ 1,. It follows

A 'K
that ¢ induces an isomorphism between L and G ,(b,®  a).

Because L 1is isomorphic to QA(b1® kA), the dimension
of Z(L) is r. Let G i = L/2(L) and define b': G & x g_i + AY
as follows. .Let L' be a subspace of L complementary to
Z(L) and let 7: L' ® 2Z(L) + 2(L) be the projection. For
X,y € L, define Db' by

bl(}-{f§) - ﬁ[XIY]L°
Then L = G Z(b')
--A -
: . L,
Because ¢ is a Lie algebra isomorphism from G A(b ) to
L .
= duces an

Gy (b,@ ), ¢(2( G (")) =12(G ,(bye  A)) and so ¢ indu
isomorphism &: G i + G .. Identify G i with G, via &, so
that b: G, x G. - A" is given by

-4 =A

b(x,y) =b' (3 '%,3'y) and L= g, (d).

Then G, (b) is isomorphic to G,(b,@ (A). Since ¢ preserves

k

the center, the matrix of ¢ is of the form



relative to a basis {e%}?ir where {ea}?_ is a basis for
i“i=1 i"i=1
A n+r . . r .
Ga and {ei}i=n+1 is a basis for A". For X,y € Q-A’ we have
pilaylg py) = Doyl o a
— A — A1 k
So alx,yl + (o [x,v] + ¥b(x,y)) = [ax,ay] + (b,® ,A) (ax,ay)
G G G _ 17k
- A — A - A
It follows that colx,v] = [ax,ay] for all x,y € G _,
€a €a - A
i.e. a € Aut sz, and b @kA = ¢*b. Therefore
bQAK = ¢>—1 * (b, 9 «K), considering ¢-1 as an element
of Gln+r(K).
Because (G (b.) = Le ., A/M, we have
= 0 A
G (by) =Le, A/M= G, (b)o, A/M = G(b®, A/M).
Therefore b, = b®A A/M.

It follows from Theorem 1.2 that bo € O(b1).



§3. An application of the orbit closure characterization for

2-cocycles and Lie algebras

By comparing invariants like the dimensions of the upper
and lower central series, one can often establish that a Lie
algebra L 1is not in the closure of the orbit of a Lie algebra

M (see [1] for examples). One case where this method fails is

the case of the two central extensions of ¢ = G3 x §1 by kz

—

Whose structure is given in Table I. ( G

3 is the non-abelian

3-dimensional nilpotent Lie algebra and is the 1-dimensional

&
apelian Lie algebra.) In this case L = G(By) and M = G (B,)

where B and B

o are given in Table II.

1

Proposition 3.1. L 1is not in the closure of the orbit of M.

Proof: By Theorem 2.1, L 1is in the closure of the orbit of M

if and only if B is in the closure of the orbit of B..

0] 1
Suppose BO is in the closure of the orbit of B1. Then
by Theorem 1.2, there is .a coordinate ring k[2] <for some affine
set 2, an element g in G (k(2)), and an element x € Z

such that BO is the evaluation of g*B, at x.

The element ¢ 1s of the form



a b 0 s
a O 1 P Y
. where « = c d ¢ t and y = )
8 v g z
e £ w u
g h O v
We have:
g-B1(e1,e3) = w(cwx1) = powXx, + qewx,
g-B1(e2,e3) = w(dwxq) = pdwx, + qdwx2
If g-B1 evaluated at x is EO, then we have:
1T = pxlec(xlw(x) = qlx)d(x)wix)
0 = p(x)d(x)w(x)
It follows that O = p(x)d(x)w(x) = d{(x)/c(x), so d(x) = 0;
but this contradicts the statement 1 = g(x)d(x)w(x).

Therefore L is not in the closure of the orbit of M.



Table I
L(e1,e2) = e, M(e1,e2) = e, G3(e1,e2)
L(e1,e3) = eg M(e1.e4) = eg G3(ei,ej)
L{e,,e,) = e Mle,,e,) = e other i <
L(ezre3} = e6 M(eZ’e:’;) = 65
L(ei,ej) = Q M(ei,ej) =0
other 1 < j other 1 < j

Table IT
Bo(e1,e3) = X, B‘I (e1,e4) = x
Bo(ez,e3) = %, 81(e2,e3) = X
Bo(ez,e4) = X, B, (ez,e4) = X
Bo(ei,ej) = 0 B1(e ,ej) =0
other i < j other 1 < j
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