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Introduction. Basic examples

0.1. Wess-Zumino de Rham complex of the quantum plane. This paper is
devoted to an extension of the approach to quantum groups suggested in [Mal] and [Ma2].
Namely, we replace the category of associative algebras considered there by a category of
differential graded algebras treated as "de Rham complexes of quantum spaces".

This extension was explained in my Kyoto lectures in May 1990, and afterwaxds elabo
rated in several courses in Moscow, Utrecht, Cambridge, and at 1991 Bonn's Arbeitstagung.
When a preliminary version of these notes was written, I became aware of G. Maltsiniotis'
articIes [Mall], [Mal 2] who has suggested the same generalization. Some of the examples
were calculated independently by G. Maltsiniotis and participants of my Moscow seminar
E. Derrridov, E. Mukhin, D. Zhdanovich: see §3. The general structure results of §§2,3
seem to be new.

It was probably S. L. Woronowicz [Wo] who first developed a non-commutative differen
tial calculus of the type considered here. However, our treatment was principally motivated
by the preprint by J. Wess and B. Zurrrino [WeZu]. To explain its results, I shall start with
the basic example GLq (2).

Let k be a ground field, q E k*. By definition, the ring of polynornial functions F =
F[GLq(2)] is a Hopf algebra which can be described in the following way. As a k-algebra,.
it is generated by a, b, c, d and a formal inverse of a central element

D = DETq (~ ~) = ad- q-1bc,

where a, b, c, d satisfy the following commutation relations:

ab = q-1ba, ac = q-1ca, cd = q-1dc, bd = q-1db,

bc = cb, ad - da = (q-l - q)bc.

The comultiplication 6.: F --+ F (9 F is defined by

(0.1)

(0.2)

where the tensor product in the r. h. s. denotes the usual product of matrices in which
products like ab are replaced by a ® b. The counit is given by

(0.3)

Finally, the antipode map i: F --+ F is



i(a b) =D-1 (d -qb).
c d -c/q a

(0.4)

Although it can be checked directly that all these structures are weIl defined and satisfy
the Hopf algebra axioms, the computations are tedious and not very enlightening.

A more conceptual approach consists in introducing two quantum planes A~lo and A~12,
with function rings

F[A~IO] = k(x, y)/{xy - q-lyX),

F[A~12] = k(~, 7])/(~2 ,'12, ~7] + q7]~),

and obtaining (0.1) as solution of the following universal problem (for q2
coordinate change

( X') _ (a b) <9 (x) (e) _(a b) <9 (e)
y' - c d y' 7]' - c d '1]

(0.5)

(0.6)

-I -1:) the

(0.7)

should be compatible with (0.5), (0.6).

In this way, GLq(2) emerges as a "quantum automorphism group" of a pair of "non
commutative linear spaces" , and all its properties can be directly derived from this defini
tion. In particular, (0.2) expresses the composition of two "automorphisms", and D can
be calculated from the formula er)' = D~1J, exactly as in the c1assical definition of the
determinant via a volume form.

In [Ma2] (cf. also [Ma4], eh. iV) this construction was generalized: it was shown that

F[A~lo] can be replaced by an arbitrary quadratic algebra (or even arbitrary algebra with
a fixed system of generators) considered as a function ring on an abstract quantum linear
space (or rather cone).

Until recently, however, it was unclear, why do we need in this construction two quantum
spaces, and not just one.

A beautiful answer was given by J. Wess and B. Zumino ([WeZu]). Namely, they sug

gested to consider F[A~lo] and F[A~12] as parts of a differential graded algebra n[A;lo], the

quantum de Rham complex of the quantum plane A;lo.

More precisely, n[A;lo] is generated by (x, y,~, Tl) over k and graded by (~, Tl)-degree. To
the commutation rules (0.5), (0.6) Wess and Zumino add new cross-commutation relations
between (x, y) and (e, 7J) respectively:

X~ = q-2~x, X7] = q-1TlX + (q-2 - l)(y,

ye = q-l ~Y, YTl = q-21JY.

The differential d is uniquely defined by the conditions

(0.8)

dx = e, dy = 7], d2 = 0 (0.9)

and the usual (not quantized !) Leibniz formula d( f g) = df. 9 + (-1 )deg f f dg.
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Actually, there are two sets of good cross-commutation relations between coordinates
and differentials: the other one can be obtained from (0.8) by interchanging x t-+ y, ~ +-+ f],

and replacing q by q-l.

These sets are the only ones compatible with the action (0.7) of GLq(2) and satisfying
the Wess-Zumino condition

(WZ): The algebra 0/ the differential/orms as a k-space mu"t be the ten"or product 0/
the function algebra and algebra 0/ differential forms with con"tant coefficients.

Compatibility with the action of GLq(2) formally means that (0.7) defines a graded
differential algebra homomorphism

O[A;IO] ~ F[GLq(2)] 0 O[A~IO], (0.10)

(on F[GL q(2)], the differential vanishes).
Now the next step is almost obvious. In (0.10), the quantum plane is represented by its

de Rham complex, whereas the quantum group is represented only by its function ring. V!fe
would like to have also !1(GLq (2)) instead of F[GLq(2)J in the r. h. s. of (0.10). In order to
construct it, we must redo the theory of [Ma2] from scratch, starting with the differential
graded algebras (DGA) as abstract quantum de Rham complexes and constructing their
automorphism objects which will then be de Rham complexes of quantum groups, so that
e. g. (0.10) becomes replaced by a universal DGA-morphism

(0.11 )

Actually, this is a largely formal undertalcing, since it involves only work with tensor
algebra in more general rigid tensor categories than that of linear spaces. But it is not the
end of the story.

The point is that the universal DGA W obtained by this construction (before localization
making it Hopf) is not adeformation of the classical de Rham complex of the ring of
matrix coefficients. In fact, it has exponential growth order. We are thus facing the same
problem of "missing relations" in a new guise. However, it can now be solved without
introducing new objects: a calculation shows that W has a unique quotient which is a
bialgebra satisfying (WZ). We explain this calculation in some detail in §3, in a slightly
generalized setting, for the two-parametric deformation of GL(2). There are two more
quotients satisfying (WZ) which are not bialgebras; all in all, we obtain six de Rham
complexes of quantum matrices Mp ,q(2), because the same construction applies to the
second de Rham complex of Wess-Zumino.

This approach also enriches our understanding of quantum groups viewed as deforma
tions of the universal enveloping algebras (cf. [Dr]). In fact, classicaly Lie algebras consist
of vector fields, which can be defined algebraically as derivations of function algebras: lin
ear maps 8 satisfying 8(fg) = 8f.g + 18g. This form of Leibniz formula cannot, however,
be taken as adefinition of a vector field in non-commutative geometry: in the correct def
inition the second summand is badly twisted (see (2.5) below) because it is a by-product
of the usual Leibniz formula for the total differential and the cross-commutation relations
between functions and differentials. The role of the (WZ)-condition in this context is that
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it provides the necessary relations. We devote §§3 and 4 to the general study of their struc
ture. A somewhat unexpected outcome is the appearance of quantum matrix semigroups
classifying Wess-Zumino type "skew products": see Theorem 1.3.

This chapter of non-commutative differential geometry can be profitably compared with
Connes' approach based upon his universal de Rham complex and "cycles"([Co)). Calcu
lating the cohomolgy of our de Rham complexes in the simplest examples, one sees that
Connes' definition of a cycles can and should be quantized, by replacing in his condition
f[w, w'] = 0 the usual commutators by twisted ones. However, "Y"e have 00 universal defi
nition for the latters: practically speaking, they are calculated each time anew using the
Wess-Zumino type arguments. It is possible that that the correct framework for this type
of complexes is the tensor algebra over braided (instead of tensor) categories where a new
version of the cyclic cohomology might be defined.

Before turning to the general formalism, we will give the basic formulas of one-dimensional
quantum differential geometry which are both amusing and instructive.

0.2. Oue-dimensional de Rham complex. This is the complex induced by the
cross-commutation rules (0.8) on the "axex" of our quantum plane:

n = k[x, dx]v; (dx)2 = 0; vdx.x = v-1x.dx (0.12)

(we replaced q-l by v 2 in order to conform with notation in Lusztig's papers on represen
tations of quantum groups). For n ~ 1, we have

(0.13)

where [n]v = v;~vv~ln are Gaussian, or quantized, integers. If we put [O]v = 0 and [-n]v =
-(n]v for positive n, the same formula (0.13) will describe the natural extension of d to
k[x, X-I, dx]v. (If v = ±1, we of course put vn-I(n]v = n).

0.3. Cohomology. If v is not a root of unity, [n]v f=. 0 for n f=. O. Assume in addition
that all (n]v, n i= 0, are invertible in the ground ring k. Then (0.13) shows that, as in the
classical case,

(0.14)

Notice that this may happen also in finite characteristics, namely, when v is transcen
dental over Fp , and when k contains Fp[[n];1 In E Z \ {Oll.

For w = dx./, / E k[x, x-I], consider the residue functional

It satisfies two relations:

Jdg = 0; J[dx.x
R

, xml.~ = 0,
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where, by definition, [x, Y]w = wxy-w-Iyx. It is the presence of such twisted commutators
in the second formula that distingwshes (k[x, X-I, dx]v, I) from a usual Connes' cycle.

We shall often meet such commutators later on. Notice that the last relation in (0.12)
is [dx, xlv = o.

Now, let v2 be a primitive root of unity of degree 1> 1. Then

[l]v f:. 0, ... ,[1- l]v f= 0; [/]v = 0; [n + Im]v = v'm[n]v'

Therefore, assuming again that non-vanishing [n]v are invertible, we have

(0.15)

(0.16)

In the classical case, such is the structure of the de Rham cohomology in characteristic
I. In the quantum context, k may have any characteristic, including zero.

This is probably the simplest example of a general phenomenon: quantizarion at spe
cial parameter values tends to reproduce some effects that we are accustomed to see as
characteristic-dependent, in all characteristics. Here is one more example: characteristic
independent Frobenius.

0.4. Gauss binomial coefficients. Assume that

[x, Y]v = 0 (0.17)

for certain elements x, y of an associative k-algebra Then the following binomial formula
is valid:

where for 0 ::; j :S n we put

[~] = [']l [[n]!~ '] [n]!v = [1]v'" [n]v, [OlIv = 1.
J v J 'v n J v

0.4.1. Proof of (0.18). Using (0.19), we can directly check that

Multiplying this by t j and summing over j = 0, ... ,n + 1, we get

where

Fn(t) := t [~] t j
.

j=o J v

5
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Hence by induction

n-l

Fn(t) = II (1 + v2k
-

n+1t).
k=O

Replacing t by vn-1t, we get

Now, if [x, Y]v = 0, by fonnally inverting x we obtain

which leads to (0.18) because (x-1y)i = V-i(j-l)X-iyi.

Assume now that v2 is a primitive root of unity of degree I > 1. Then from (0.15) and
(0.18) we obtain a simple Frobenius type formula valid for [x, Y]v = 0 :

(0.20)

Notice also that if I is odd, we have

(xy)' == v'(l-l)x'y' == x'y' = y'x' .

On a deeper level, these formulas lead to:

a). Existenee of "unramified coverings" of classical simple groups in the category of
quantum groups, icluding lifts of Frobenius morphisms to ehaxacteristie zero. This can be
vaguely interpreted as existence of hidden fundamental groups of the classical algebraic
groups, which become visible only in non-eommutative geometry.

b). A paxallelism between the representation theory of quantum groups in characteristic
zero at roots of unity , and that of classical groups in finite ehaxacteristic, investigated by
Lusztig.

0.5. Frobenius map for GLq(2). In this subsection, we return to the notation of O.!.
Let q be a primitive root of unity of odd degree I, a, b, c, d the matrix elements of GLq(2).
Then we have ([PW]):

i). a' , b' , c', d' are eentral in F[GLq(2)].

ii). Ll (:: ~:) = (:: ~:) ® (:: ~: ) .

iii). det (:: ~:) = [DETq (: ~)r
In the language of non-commutative geometry, this ean be rewritten aB an exact sequenee

of quantum groups
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1 ---+ Hq ---+ GL q(2) ---+ GLI (2) = GL(2) ---+ 1, (0.22)

where the third arrow is the Frobenius morphism q.,. The kernel Bq is a finite-dimensional
Hopf algebra defined by relations (0.1) to which are added

a' = d' = 1, b' = c' = O.

It is Hat over Z[q, q-I] which is a natural definition ring for the whole setting. If 1 is an
odd prime, (0.22) can be reduced modulo its prime divisor in this ring, and q., reduces to
a usual Frobemus morphism of GL(2).

We sketch here a proof of i) and ii). Obviously, b' and c' commute with a, b, c, d, and
a' commutes with b, c. It takes slightly more efforts to check that a'd = da'. Since the
determinant D is central (for all q), we have

a'd = a'-I(D + q-Ibc) = Da'-I + ql-2'bca'-1 =

(D + qbc)a'-I = da'.

One can treat d' similarly.

In order to check ii), that is, to prove that, say, ~(a') = ~(al, one applies (0.20) to the

matrix elements of 11 (~ ~). This is possible, because 11(a) = a ® a + b® c, and

(a ® a)(b ® c) = q-2(b 0 c)(a 0 a),

where q-2 is still a primitive root of degree 1.

After this digression, we return to one-dimensional differential geometry.

0.6. Differential operators. Define 8v : A = k[x, x-I] -t A by df = dx.8v f. When
[n]v for all n =I=- 0 are invertible, the ring of differential operators can be defined as the
ring geenrated by 8v and multiplications. Otherwise "quantized divided powers" 8~/[i]!v

should be introduced as primary objects.

Let er be the automorphism of A over k with a(x) = v2 x. Then

fdx = dx.a(f)

so that

(0.23)

In particular, 8v 0 x - v2 x o8v = 1, or

(0.24)

as operators on A. This is a quantized version of the Heisenberg commutation relation.

From (0.23) one easily deduces that if [i]v are invertible for i =I=- 0, then the ring of
differential operators is a free A-module freely generated by 1, 8v,~,' ...
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0.7. Vector ftelds. The space of vector fields A8v is spanned by Ln = vxn+18v . The
usual commutation relations llOW deforrn to

(0.25)

(apply both parts to x r
).

Notice that the parameter v n
-

m of quantized commutator in (0.25) varies with n, m. A
quantized version of the Virasoro algebra with zero central charge may be defined as an
associative algebra generated by abstract symbols Ln subject to (0.25). However, if we
want to define on it a comultiplication, we fiuSt take ioto account one more complication.
Namely, the usual coalgebra structure upon U(g), where 9 is a Lie algebra of vector fields,
6.(X) = X ~ 1 +1 \8) X, is just a translation of the Leibniz rule X(fg) = Xf.g + fXg. But
in our case it is replaced by (0.23):

Ln(fg) = Lnf·g + a(f)·Lng, a(fg) = a(f)a(g).

This means that to obtain a closed formula for 6., we must add a to {Ld. But then one
can delete {Lo} which can be expressed via K o = .JU:

( r) r[] r KJ - 1 rL o x = v r ti X = -1 X •
v-v

Summarizing, we have (assuming v and v - V-I invertible) the following commutation
relations and comultiplication mIes:

2 .
fl(Ld = Li ® 1 + K o ~ Li; fl(Ko) = K o ® K o.

{
(m - n]vLn+m, for n + m f=. 0

[Ln, Lm]v n - rn = K2-1
-[2n]v v-\-i , for n + m = O.

KoLnKo1 = vnLn.

(0.26)

(0.27)

(0.28)

One fiuSt also check that relations are eompatible with eomultiplieation. See §2 below
for a more general discussion of tbis problem.

0.8. Twisted U(sl(2)). For v = 1, {Ln, Lo, L_ n} generate a Lie subalgebra isomorphie
to sl(2). In our case, we take {Ln, Ko, L_ n}. In order to get the eommutation relations in
a more symmetrie form, put (for a fixed n > 0):

- -n/2[2 ]-IL f - K-1L k - Ke - -v n v n, - 0 -n, - 0

(in this subsection, k has this meaning, and not that of a ground ring). Then we have

k - k- 1

[e, f]v 3n / 2 = -1 ;
v-v

8
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ö,(e) = e C9 1 + k2 ® ej Ö,(f) = f ® k -1 + k tg) f.

Trus should be compared with the usual Uv2(sl(2» :

K-K-1

[E,F] = -1 ;
V-V

Ö,(E) = E ® 1 +]( rj9 Ej Ö,(F) = F ® K- 1 + 1 ® F; Ö,(K) = K 6!J K.

(0.30)

(0.31 )

(0.32)

(0.33)

(0.34)

The principal difference is between (0.29) and (0.32): the commutator in (0.32) is twisted.
We can also obtain a usual commutator in our setting, hut then the r. h. s. of (0.32)
becomes spoiled: put

" [2 ]-IK- 2 L f" K- 2L k"" K 2
e = - n von, = 0 -n, = 0 j

then

" ic- 2 -1
[e, f] = -1 j

v-v
(0.35)

(0.36)

(0.37)

0.9. The standard Uv'J(9A)' For reader's convenience, we reproduce here the Drinfeld
Jimbo presentation of UV 2 (gA), where 9A is the Lie algebra corresponding to a symmetriz
ahle generalized Cartan matrix A.

Recall that A = (aij), 1 ::; i, j ::; n, aii = 2, aij :s 0 for i f:. j; diaij = djaji, di E
Z; gcd(dd = l.

We need n tripies (Ei, Fi, Kt 1
, i = 1, ... ,n. They satisfy analogues of (0.32)-(0.34), and

more generally

K ·K· -K·K··I J - J I'

But the most essential novelty is the deformed Serre's relations:

L (-1 t [1 -sa
ij

] d' EiEjE; = 0, i f:- j;
r+,,=I- a ij v I

and similarly for {Fd.

9
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We cannot, of course, "explain" these relations using only one-dimensional de Rham
complex. A very intriguing new approach to them was recently developed by A. A. Beilin
son et al. in Duke MJ.

It is based upon the observation that, for q = v2 a prime power, v n
-

1 [n]v coincides with
the number of F q-points of pn-l. A sophisticated version of this simple remark gives a
geometrie interpretation of (0.41) in tenns of the geometry of Hag manifolds over finite
:f:i.elds. This suggests a new kind of relations between the finite charaeteristie geometry and
non-eommutative geometry.

Acknowledgement. Parts of this work were done when the author had financial support
of the Netherlands Mathematieal Soeiety, Utreeht University, aod the Max-Planek Institut
für Mathematik in Bonn. I am grateful to these institutions for support and the exeellent
working conditions.
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§1. Skew products

1.0. Notation. We denote by k a Z2-graded supercommutative ring. All k-modules
are Z2-gradedj ä denotes the Z2-degree) or parity, of a. All morphisms are homogeneous;
we consider also odd morphisms of k-modules. All k-modules are assumed to be free; we
consider mostly direct free submodules. All k-algebras axe (super-)central. The tensor

product of two k-algebras is endowed with multiplication (a® b)(a' ® b') = (-l)ä'b aa' ® bb'.

1.1. Skew products. Let A, B C C br two subalgebras of an associative k-algebra C.
We shall say that they are skew-commuting if the multiplication maps induce injections of
k-modules m: A 0 B --+ C, m: B 0 A --+ C with the same image.

This image is then a subalgebra of C denoted AB = BA. If it coincides with C, we say
that C is a skew product of A and B. Obviously, A ® B is a skew product. Given A, B,
we want to classify their skew products. Intuitively, this amounts to classifying "good"
cross-commutation relations between elements of the type a ® 1 and 1 ® b in A ® B defining
new multiplication on A 0 B.

1.2. Basic construction. Assume that a skew product C = AB = BA is given. It
defines (and is defined by) the k-linear isomorphism r = rc: B ® A --+ A 0 B induced by
multiplication in C. Consider for every bEB two operators Tb: A --+ A 0 B, (Tb: A--+
B 0 A defined by

Clearly, Tb and (Tb are left k-linear in a, of parity b. Their dependence of b is even left
k-linear.

We want to consider Tb (resp. Ub) as elements of k-algebras
Endk-mod(A) 0 B (resp. B 0 Endk-mod(A)OP) where End is the algebra of both even
and odd endomorphisms.

We will work everything out in coordinates. Choose a Z2-graded free k-basis {bd,i E
I, of B. For variable a E A, denote by Tb,j( a) coefficients in the following equivalent
expressions:

Tb(a) = r(b 0 a) = 2::( -1)bjäTblj(a) 0 bj

j

(in A ® B),

ba = 2::(-l)bj ä Tb ,j(a)bj
j

and write (1.1) symbolically as

Tb = 2:: Tb,j 0 bj.
j

Similarly, put

11
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meaning that for all a E A,

(-I) äb O"b(a) = r- 1 (a ® b) = L(-1)äb bi @ O"b,i(a),
i

(1.3)

(1.4)

The sums (1.2), (1.3) are generally infinite. However, they are finite, if B is finite
dimensional, or if B is graded by finite dimensional submodules B n, ABn = BnA, and
{bi} is homogeneous with respect to this grading. In the sequel, we shall assurne one of
these conditions.

1.2.1. LEMMA. Tb,j and O"b,j are k-mod morphisms A --+ A of parity b+ bj .

PROOF: For c E k, we have from (1.1):

Tb(ca) = r(b ® ca) = (-I)bccr(b ® a) = (_I)bCc L(-1)b;äTb ,j(a) ® bj .

j

On the other hand,

Tb(ca) = L(-l)b;(c+ä)rb,j(ca) 0 bj ,
j

so that Tb,j( ca) = (-1 )(b+~; )crb,j(a).

Similarly, from (1.4),

and from (1.3)

O"b(ca) = L bi ® O"b,i(ca),
i

so that

12



(1.5)

(1.6)

1.2.2. LEMMA. The maps

T: B ---+ Endk-mod(A) 0 B : b 1---+ Tb,

a: B ---+ B 0 Endk_mod(A)OP : b I---t ab

are Z2-graded ring homomorphisms, such that for c E k, Tc = 1 0 c = c 01 = a c .

PROOF: We first remark that these maps are invariantly defined. In the definition of
cop for a Z2-graded ring C, we of course introcluce signs: cop has the same additive
group as C, and multiplication Cl * C2 = (-1)C1C2C2Clo

Now, identifying via multiplication B 0 A and A 0 B with their images in C, we have
in view of (1.1):

Tb'b(a) = r(b'b 0 a) = b'ba = L(-l)b/äb'Tb
l
l(a)bl =

I

L(-1)b1ä L(-l)bjTb,da)Tb/,i(Tb,l(a)) ® bjb,.
I j

On the other hand, by (1.2):

L(-1)bjiaub'/(Tb',jTb,10 bjbI)(a) =
j,l

L(-l)bj(b-tb/)+ä(bj+b,)Tbl,jTb,l(a) 0 bjb,.

i,l

It remains to compare signs:

Similarly, by (1.4),

ab'b(a) = (_l)ä(b+b')r-l(a ® b'b) = (-1)ä(b+b')(ab')b =

(-1 )ä(b+b' )(-1 )iib' L bi(ab/,i(a)b) =
i

L(-l)(b'+bdbb i bj 0 Ub,jUb/,i(a).
i,j

Finally, by (1.3), taking into account the reverse multiplication in End(A)OP:
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L (-1 )bj(bi +bi) bibj C9 (-1 )(b'+bi )(b+bj)Ub,jUb', i(a).
i,j

1.2.3. Structural action. Consider now the two universal algebra morphisms, which
are automatically universal bialgebra coactions, linear (and homogeneous) upon {bi}:

0,: B -. E,(B) C9 B: o,(bi ) = L Zij ® bj ,
j

or: B -. B ® Er(B): or(bd = L bj (6) Zji'
j

Here Zij E E,(B) (resp. Zji E Er(B)) are algebra generators arranged in a format of a
multiplieative matrix. In particular, the parity of Zij, Zji is bi + bj .

There exists a natural map

" (1)(;;"+;;');;'Zji t---+ - J I J Zij

("supertransposition") whieh is an isomorphism of bialgebras

where.6r, ~, are the respective comultiplieations.

Using (1.5), (1.6), and universalitYl one sees that instead of T, U one can give the two
algebra homomorphisms .

A : E,(B) -. Endk-mod(A);

p : Er(B)OP -. Endk-mod(A).

This means that, starting with a skew product of A and B, we have eonstrueted aetions
of E,(B) and Er(B)OP upon the left k-module A. We shall eall them Jtructural actionJ.

The comultiplication map ~r: Er(B) -. Er(B) ® Er(B) is also a comultiplieatuon
map for Er(B)OP. Using it, we can define the action t/J of Er(B)OP upon A ® A : for
e E Er(B)OP, cE A ® A, put

t/J(e)(c) = (p C9 p)(~(e))(c).

1.2.4. LEMMA. The multiplication morpmsm m
E r ( B)op - modules.

PROOF: For a basis {bj} of B, put as above
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(1. 7)

and

Comparing (1.7) and (1.3) one sees that Zij acts upon A by the operator p(Zij) = Uij.
To prove the Lemma, we must check that for every z E E(B)OP, cE A ~ A, we have

m[~r(Z)(C)]= z(m(c)) (1.8)

(we should have written here p(z) instead of z, and (p ~ p)(~(z) instead of ~(z)).

First, it suffices to verify (1.8) for generators z = Zij. In fact, both sides are linear in z,
and if (1.8) holds for Zl, Z2 and all c, it holds also for Zl Z2 and all c:

m[~(zlz2)(C)) = m[~(zl)(~(Z2)(C))] =

zl(m[~(z2)(C)]) = ZlZ2 m(C).

Second, it suffices to check (1.8) for decomposable c = f ~ g, because both sides are
biadditive in c. Now,

~(Zij) = 2: Zik ® Zkj.

k

Therefore, (1.8) reduces to the equality of the following two expressions:

m[ß(Zij)(J ® g)) = m [ (~Zik ® Zkj ) (J ® g)] =

2:(_l)<bJ:+bj )]aik(f)ukj(g),
k

zij(m(f C9 g)) = aij(fg)·

To this end we apply (1.4) in turn to the cases b = bj , and a = g, f, /g :

(fg)(bj ) = f(gbj ) = 2:(-1)9bj(!bk)ukj(g) =
Je

2:(-1 )9b
j 2:(-1 )fi>Jc biuik (/)akj (g)j

k i

(fg)b j = 2:(-1)(1+9) bj bi aij(/g).
i

Remark. For operators T, one can prove a similar identity (but notice different orders
of /, g in two sides):

15



1.2.5. LEMMA. Put

Tben we bave

L (1kjTji = 8ki idA,
j

L Tkj(1ji = OkiidA.
j

PROOF: Rewrite bia by first applying (1.1) and then (1.4):

bia = L(-1)bjärij(a)bj = L(-1)bjä L(-1)bj(ä+b i +bj)bk(1kj(Tij(a)).
j j k

This gives (1.9).

Similarly, rewrite abi by first applying (1.4) and afterwards (1.1):

abi = L(-1)äbi bjO"ji(a) =
J

L(_1)üb i L(-1)b ll (ü+b i +b j )TjA;O"ji(a)bk •

j k

This gives (1.10).

We can now state the main result of this section.

(1.9)

(1.10)

1.3. THEOREM. The construction described above establisbes a bijection between the
Eollowing two sets:

(SP) Skew products oE A and B (compatible with the gradation oE B).
(EA) Actions oE Er(B)OP upon A, defined byan invertible operator-valued matrix (O"kj),

such that m : A ® A ----7 A is a morpbism oE E r(B)OP- modules. Here (Er(B), .6r) is the
universal coalgebra coacting upon B (compatibly with gradation).

PROOF: We have already constructed the map (SP)~(EA). It is injective because the
knowledge of an Er(B)OP-action allows one to reconstruct 0" and then the crosscommuta
tion relations in B ® A corresponding to the given skew product structure.

It remains to show that this map is surjective. This means that, starting with an action,
we must define an associative multiplication, say, on B ® A, and to check that it defines a
skew product. Obviously, the multiplication must be defined by the formula

16



where a is reconstructed from the action. The rest of the proof consists of checks that
have essentially be made already in the course of proving our Lemmas 1.2.1 - 1.2.4. We
will only show associativity in some detail.

It suffices to establish that the product of three elements of the type bj ® a does not
depend on the bracket configuration. We will omit the tensor product sign. Take the three
elements bja', b,a", bna"'. We can assume that bj = 1, a'" = 1, because they will cancel
in the identity. So finally we want

(a' b,att )bn = a' (b,a" bn).

First calculate the l.h.s. expression:

(a'b,a")bn = L(-1)ä'b1 bka kl(a')a"bn =
k

L(-1 )ä'b/ bk L(-1 )bn(ä" +bk+bl+ä') bmamn [au(a')a"]
k m

and take into account that

amn[akl(a')a"] = L(-1 )(bi+bnHä'+61:+b,) (amiakl)(a')ain (a").
i

Second, calculate the r.h.s. expression:

a' (bla" bn) = a'b, L(-1 )ä"bnbiain(a") =
I

L(-1 )ä'61bkakl(a') L (-1 )ä"bnbiain (a").
k i

It remains to pass bi to the left beyond akl(a'). We will obtain a surn of mernbers of the
type bm(amiak,)(a')ain(a") with some signs. A mrect verification shows that signs will be
the same as for the 1.h.s.

1.4. Remarks. The following questions deserve a further study.

a). In the eontext of de Rham complexes of the type eonsidered here, A and B are
usually both graded so that the same skew product can be obtained dually from the action
of Er(A)OP on B. A particularly symmetrie situation arises if the same coalgebra aets and
coacts upon A and B simultaneously. (Notice however that the differential breaks the
symmetry).

b). If the action of Er(B)OP factorizes through the Hopf envelope, the matrix (aij)
is automatically invertible (apply the antipode map). The case when this Hopf algebra
is eommutative, Le. consists of functions on a group scheme acting on B is especially
interesting.

c). The quantization parameters in our examples ean be viewed as describing the struc
tural action. Hence intuitively introduction of Er(B)OP ean be imagined as "a quantization
of Planek's constant".

17



§2. Quantum de Rham complexes
and differential operators

2.0. Notation. In this section, we study differential (Z, Z2)-graded k-algebras f!.
We call the Z2-degree parity, and the Z-degree dimension, denote by ni the k-module
of elements of dimension i, and assume that 0 0 = k, 0<0 = O. We denote sometimes n°
by A ("functions").

Differential d is of degree (1,1), and is left k-linear in the sense of superalgebra. The
Leibniz formula d( ab) = (da)b + (_l)äadb involves panty rather than dimension.

We assume also gjven a bigraded k-submodule B = EB:'oB i ("differential forms with
constant coeficients") where all Bi are free of finite rank. The strongest condition we
impose on B is that it is a quadratic subalgebra of f! consisting of elosed elements, such
that 0 is a skew product of A and B. Weaker conditions sufficient for establishing some of
the algebraic properties of n are stated at appropriate places below, aod marked Cl etc.

2.1. Differentials and vector flelds. Here we assume the following.

Cl. Multiplication in n induce~ linear iJomorphiJm" BI ® A -t 0 1
f- A ® BI.

Let {bd be a homogeneous basis of BI. Then, as in §1, we ean define operators Uij, Tij :
A --+ A by

bif = 2:(-1 )ibj Tij(f)b j .
j

(2.1)

(2.2)

where f E A.
Moreover, we can define a family of "quantum veetor fields" Bi : A -t A dual to {bi} by

n

df = 2: biDif, ! E A.
i=1

Clearly, Di is left k-linear of parity bi +1. From the Leibniz formula for d,

d(wv) = dw.v + (-l)Wwdv

and (2.1), (2.3) one obtains the twisted Leibniz formulas for Di : if f, 9 E A,

Di(fg) = Bif·g +2:(-1 )iäj Uij (f)8j (g).
j

We supplement (2.5) by the respective "Leibniz formulas" for Uij and Tij:

Uij(fg) = 2:(_l)(b j +bJr )iUik(!)Ukj(g);
k
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Tij(fg) = L( -l)(bj+bll)ÜTij(f)Tjk(g).
. k

They folow from the identities

(2.7)

2.2. Basic problem. In the setting of 2.0,2.1, we can construct an algebra U of opera
tors on A generated by Bi, Uij and possibly also Tij and some left or right multiplications by
elements of A. It is natural to consider such algebras as areplacement in non-commutative
geometry of Lie algebras generated by vector fields, and generally of rings of differential
operators. We want to understand the following problems.

a). What are the relations between Uij, Tij, Bi? (The relations between these operators
and multiplications are given by Leibniz formulas).

b). Is it possible to define the structure of a coalgebra upon U in such a way that
its comultiplication ~ on the generators would be given by the formulas compatible with
(2.5), (2.6):

~(8d = Bi ~ 1 + LUij ®8j .

j

(2.8)

(2.9)~(Uij) = L Uik ® Ukj'

k

In other words, we want m: A ~ A --t A to be a morphism of U -modules, the structure
of an U-module upon A ® A being defined via ß.

The results of §1 give a partial answer to these questions. Namely, if n is a skew product
of A and B, we have described the "universal part" of the relations between Uij. More
precisely, we know the relations between generators of Er(B)OP, and they are universal in
the sense that they do not depend neither on A nor on the particular choice of the skew
product structure AB. And (2.9) actually defines a comultiplication compatible with the
Leibniz formulas (Lemma 1.2.4).

We proceed now to describe relations between Bi themselves, and cross-commutation
relations between Bi, and Uij, Tij, again trying to understand only the universal part, and
mostly assuming quadraticity. In 2.6 we will address U direcHy.

2.3. Quadratic relations between vector fields. In the setting of 2.1, denote by D
a free k-module given together with an odd non-degenerate pairing (I): BI '?Jk D --t k.
The sign rules are:

(abI8) = a(bIB) = (_lyi(b+I)(bla8); a E k, bE BI, 8 E D

(mnemonically, 1 is odd). Parity of (bI8) is b+ä+1.

Next, introduce an even pairing
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by the formula

(b ® b', 8 ® ()') = (-1)(8+;;')(8'+1) (bla')( b' 18). (2.11)

It is weIl defined. In fact, using (2.10) we check first that the r.h.s actually depends only
on b® b' and a® &' that is , gives the same result when evaluated upon ba ® b' and b~ ab'
etc. Moving a from b to b' at the r.h.s. we get an extra sign:

[(_1)ö(8'+I)]2 = 1.

Similarly, replacing aa ® &' by a® a&':

(_1)ö(8'+I)+ö(8+b')(_l)ö(ä+l+b'+ä') = 1.

Notice that (2.11) is k-linear in b ® b' but only semilinear in 8 ® ß':

(2.12)

We can make it bilinear by considering instead t D@2 which is D02 as an additive group,
but has a twisted left k-module structure:

a8 ® ß' (in t D02) = (-1 )Ooa ® a' (in D02 ).

Clearly, t D02 and D02 have the same lattices of submodules and the same sets of bases
of submodules.

Let now {bd, {D j } be dual bases of BI, D: (b.IDj) = b.j . Then, from (2.11),

(b. ®bj),Dk ®D,) = (-1/'i8. ,8jk . (2.13)

Denote by R C (BI )02 the k-submodule of quadratic relations, that is, the kernel of
the multiplication map (BI )02 -+ f2. Assume that R is a free direct submodule, and define
Rn c D02 as orthogonal complement to R W.r.t. (2.11). Denote by B2 the image of
(BI )02 in n and impose the next condition:

C2. Multiplication in n induce" a linear injection B 2 ® A -+ n.
Then we have:

2.3.1. PROPOSITION. Choose dual bases (b.1D j ) = 8'j as above. Assume that db. = O.
Define aj : A -+ A by (2.3). Then every element oE R D vanishes (as an operator on A)
when evaluated on {ß.} instead oE {Dt}.

Comment. Assume that B is a quadratic graded superalgebra generated by BI. Denote
by BT the "odd dual opposite" quadratic superalgebra which is defined as T(D)/(RD)
where T(D) is the tensor algebra of D. Dur Prop. 2.3.1 says that the operator algebra
generated by {aj} is a quotient of BT.

On the other hand, Er(B)OP in this case can be described as (B! • B)OP where B! is
the even dual quadratic superalgebra, and the "black product" • is defined via tensor
multiplication of relation modules (see [Ma1]-[Ma3]). For the sake of completeness, and
in order to fix all signs in the presence of odd variables and constants, we shall reproduce
below in 2.4 a coordinate description.

20



The simplest classical case is A = k[XI' ... , X r ], B = A[dxl, ... , dx r ]. Proposition 2.3.1
generalizes the fact that 8j8xi pairwise commute whereas dXi anticommute.

PROOF: From (2.3) we see that for every / E A

(2.14)

Choose a free Z2-graded k-graded right k-basis r o E (BI )02 of R, and complement it by
elements sp E (BI )02 such that {ro , sp} form a right k-basis of (BI )02; Q' = 1, ... , mj ß =
m + 1, ... ,n2

•

Denote by {80' R p } the dual left basis of t D02 such that

(ro , Rp) = (80 , sp) = 0;

(rOl' 802 ) = 001,02j (SPl' Rp2) = Dpt,P2· (2.15)

In particular, Rp form a basis of RD C D02. Then we have in (BI )02 ® t D02 :

L(-1)bi bi ® bj 0 Dj ® Di = L r o 080 + Lsp 0 Rp (2.16)
ij 0 ß

because of (2.13) and (2.15). Denote by So(8) (resp. Rp(8) ) the operators obtained by
replacing Di's by 8i 's. Similarly, denote by ro(b) (resp. sp(b)) the image of r o (resp. sp)
in B 2 • Then ro(b) = 0, and sp(b) are right linearly independent over A. From (2.14) and
(2.16) we see that

L sß(b)Rp(8)f = 0
ß

for all /, so that Rp(8) = o.
2.4. Quadratic relations between Tij, and Gij. Keeping notation of 2.3, put

r o = Lc~bi 0 bj, c~ E k.
ij

(2.17)

Denote by B I * the right even dual BI, given together with an even non-degenerate scalar
product with the obvious sign conventions. Extend it to an even scalar product (BI )02 0
(B I *)02 ---+ k by the rule

(bI 0 b2, bl 0 b2) = (_1)b
1
b2 (bl, bl )(~, b2).

Denote by B' the quadratic algebra T(B 1*)j(RC) where RC is the orthogonal complement
to R.

Let {bi}, {bi} be dual bases in BI, BI*. As above, choose a free basis {ro , sp} of B I 0Bt,
and let {SO, rP} be the dual basis of B I * 0 B I *. Then {rP} is a basis of Re. Put

r ß = L bk 0 blc~l' c:1 E k.
kl
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We have then for every k, 1

bk ({) b, = L(-1)bkbIC~lSP mod R.
p

To see it, take the scalar product of both sides with all r P• Put now

(2.19)

This algebra has generators bi ({) 1Ji = Zij satisfying relations S(23)(ra (() r P), or explicitely

""'.. 66 8L., c~ (-1) ; I: ZikZjlC'kl = O.
ijkl

(2.20)

Put B = T(B 1 )/(R). Then the map {;: B -? E ({) B transforming {bi} by (Zij) is the
universalieft coaction.

2.4.1. PROPOSITION. {Tik} satisfy (2.20), whereas {O"ik} satisfy the opposite super
transposed relations.

PROOF: We have, using (2.19):

o= ra(b)f = L cijbibjl = L cijbi L(-1)fblTjl(/)b, =
I} ij I

ij

L L(_1)16, L( -1)(1+Tj,)6I:TikTj,(!)bkb, =
alk

L cij(-1 )1(6k +6, )+6j 61: Tik Tjl(!)C~, sp(b).
ijklP

It remains to simplify the sign using

and to take into account that sp are right A-independent. One can treat a similarly.

Finally, I state relations between Tij and ßk. Unfortunately, I was unable to interpret
them conceptually.

2.5.1. PROPOSITION. For i, ß fixed, f E A, we have

L(-1)j6j+(äll+6i+j)bITkl(8k(Tij(!)))c~=
jkl

L (-1 )b i +bk (J+8; )+(bj +8; + J)bl Til( Tjk (8j (I)) )C~k'

jkl

There are similar relations for 0". Ta prove them, one should differentiate (2.1) and (2.2).
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2.6. BiaJgebra structures on operator rings. Returning now to the setting of
2.2, let us deiscuss the comultiplication problem in relation to Leibniz fonnula. This is
well-known, and we include it for the sake of completeness.

Generally, let A be a k-algebra, and U c Endk(A) a k-module of left linear operators
upon A. Assume that A admits an augmentation map f: A ----+ k, and for u E U, / E A
put

(u, /) = f(u(f)). (2.21)

2.6.1. PROPOSITION. Assume that for every u E U, there exist Ui, Vi E U, i = 1, ... , n
sucb that for a11 f, 9 E A

(2.22)

Assume also that (2.21) has trivia11eft kernel. Then U admits a unique comultiplication
map ß: U ---t U ® U with the property

(D,,(u), f ® g) = (u, /g) (2.23)

for a11 /, 9 E A. It is coassociative, and admits a counit fU: u 1-+ f(ul). H, in addition, U
is an algebra, then (U, ß, fU) is abialgebra.

SKETCH OF PROOF: Existence follows from (2.22): put D,,(u) = E tti ® Vi. Uniqueness
follows from non-degeneracy. We leave the rest to the reader.

2.6.2. Example. For A = k[x, x-I, dx]v (see sec. 0.2), U = ffiii:okLi (see sec. 0.6),
(u, f) has trivialieft kernel precisely when v is not a root of unity.
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§3. Examples continued:
de Rham complexes of quantum spaces and GLQ,).(n)

3.1. Two-parametric family of (2,2)-quantum matrices. Here we assume k pure
eveu. Choose two invertible even elements p, q E k. The ring of polynomial functions E on
the non-commutative quantum space Mp,q(2) is generated by even variables a, b, c, d with
the following commutation relations:

ab = p-1ba; ac = q-1ca; ad = da + (q-l - p)cb;

bc = pq-1cb; bd = q-1db; cd = p-1dc. (3.1)

This ring is abialgebra with the standard comultiplication and coumt. For pq i= -1,
it can be defined as universally coacting algebra on the function algebras of two quantum
planes:

Aq : k(x, y)/(xy - q-lyX); X, Y even;

B p : k(~,7J)/(~2,7J2,~7J + P7J~); ~,7J odd.

(3.2)

(3.3)

Adding the relation ad - p-1bc = 1, we get the coordinate ring of SLp ,q(2).

Order the generators by d < b < c < a. The Diamond Lemma is applicable, and shows
that monomials dkc1brnan form a k-basis of E. (Of course, a similar statement is true and
can be easily checked also for A q , Bp .)

A slight generalization of the Wess-Zumino construction gives the following result.

3.2. PROPOSITION. There are precisely two skew products n oE A q and B p , admitting
a differential with dx =~, dy = 1], such that a11 these structures are compatible with the
coaction oE E (with zero differential).

SKETCH OF PROOF: We actually prove slightly more: the skew product property should
be postulated only on forms of degree two and three in (x, y,~, 7]); the full strength then
follows from the Diamond Lemma.

Comparing dimensions, we see that we fiust find a system of four cross-commutation re
lations expressing x~, X7], Y~, Y7J linearly via ~x, ~Y, 7]X, 7]Y. (Actually, one relation is known:
d(xy - q-lyX) = 0). We have sixteen indeterminate coefficients which are successively
eonstrained by the rest of conditions. It is eonvenient to use them in the following order.

i). Apply the differential to the cross-commutation relations. The result should be a
consequence of (3.3). This eliminates about half of coefficients.

ii). Use compatibility with the coaetion of E. This leaves one parameter free. Of course,
this ean also be explained conceptuallYl by analyzing the decomposition of the spaee

(kx EB ky) ® (k~ EB k1]) EB (k~ EB k7]) ® (kx EB ky)

with respect to the coaction of E. The result is:
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(3.4)

where r is the last undetermined coefficient.

iii). Constraint r by checking linear relations between cubic monomials. In practice,
it suffices to resolve the "overlap ambiguity" XT/~, that is, to reduce this monomial first
as x (1]~) and second as (XT/)~. In both cases, the result is proportional to ~T/ x, but the
coefficients coincide Hf r 2 - (p-l + q)r + qp-l = 0, that is, r = p-l or r = q. The net result
lS:

Variant 1: n~~~

Variant!l: n~~~

X~ = (pq)-l ~Xj Y7J = T/Y;

xT/ = (p-lq-l - l)~y + q-1T/x; y~ = p-l~y.

X~ = pq~x; YT/ = pq1]y;

X'fJ = PTJXj y~ = q~y + (pq - 1)T/x.

(3.5)

(3.6)

Notice that (3.5) and (3.6) are connected by the isomorphism interchanging x and y, ~

and 7], p and p-l, which is compatible with the isomorphism interchanging a and d, b and
c.

iv). Finally, one checks that the combined relations (3.2), (3.3) and either (3.5), or (3.6),
satisfy all the conditions of the Diamond Lemma, that is, all ambiguities of cubic monomials
are resolvable (with respect to any of the orders ~ < T/ < x < Y or x < y < ~ < 7].

We now turn to the calculation of the de Rham complex of M p,q(2). We start with de

termining the universal differential quadratic algebra W;:~ left coacting upon n~:~. Denote
0', ß", fJ the differentials of a, b, c, d respectively. We assume pq f= -l.

3.3. PROPOSITION. W;~J is defined by tbe relations (3.1) and tbe following ones:
a). Relations between differentials oE matrix coefIicients:

0'2 = ß2 = ,2 = 02 = 0;

ßO' = -q-1O'ßj ,0' = _p-1O',;

0, = _q-l,o; oß = _p-l ßo;

pqoO' +PIß = -0'0 - qß,.

b). Cross-commutation relations:

aa. = (pq)-l aaj

aß = (p-lq-l - l)O'b +p-l ßUj

a, = q-l,a + (p-lq-l - l)ac;
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bß = (pq)-l ßbj

b8 = q- 18b + (p-Iq_1 - l)ßd;

ca = p-IaCj

c, = (pq)-l,c;

c8 = p-Ibc + (p-Iq-l - 1}yd;

dß = p-l ßd;

dy = q-l,dj

d8 = (pq)-18d; (3.9)

(3.10)

a8 + pcß = (p-Iq-l - 1)ad + (q-l - p),b + p-l ßc + 8aj

pqda + qlry = ad + ]Y'fbj

pqda + pcß = ad + qßCj

w~~i can be obtained from bere by the involution described above.

Comment. The proof consists of direct calculations which we will omit. The answer
is not quite satisfactory because we want the de Rham complex of M p,Q(2) to be of the same
size a.s that of the commutative polynomial ring of four variables. For this to hold in degree
two, we miss one quadratic relation between differentials and one cross-comutation relation.
They are supplied by the following result, again stressing the role of skew products.

3.4. THEOREM. For pq f=. 1, W;:~ has precisely three quadratic differential quotients for
whicb quadratic and cubic components are freely spanned by the lexicographically ordered
monomials in a < ß < ')' < 8 < d < c < b < a. Every such quotient is a skew product of
k(a, b, c, d] and k(a, ß, " 8] (modulo relations), and tbeir Hilbert series are the same as in
the commutative case. For pq = 1, these quotients coincide.

For w;~, l the missing relations are as fallows:

Variant 1:

Variant 2:

Variant 9:

da = adj 8a = -a8.
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(3.13)

SKETCH OF PROOF: we start with writing a missing cross-commutation relation, say,
for bf as a linear combination of the lexicographically ordered monomials, and then check
the resolution of overlaps in cubic monomials. Differentiating the answer, we get a missing
relation between the differentials. Finally, we check the conditions of the Diamond Lemma
for eubie overlaps.

3.5. Remarks. The long ealculations needed to eheck the Theorem 3.4 were made
by D. Zhdanovich and the author. The Proposition 3.3 was independently proved by G.
Maltsiniotis [Mal 1], who has also discivered the missing relations (3.11), but not (3.12),
'(3.13). The reason was that Maltsiniotis was only looking for the DGA-quotients of W~,1J
compatible \vith the coalgebra structure, and thus leading to the de Rham complex of
GLp ,q(2). Only (3.11) satisfy this eondition. (The existence of W;;J also is not mentioned
by Maltsiniotis).

D. Zhdanovich remarked that (3.7), (3.8), and (3.11)0,0 determine the algebra of the
differential forms with constant coefficients whieh is naturally isomorphie to Mq,p(2)' (even
quadratic dual). This does not hold for the other two quotients.

The following remark is also due to D. Zhdanovich. Relations (3.12) and (3.13) can be
obtained by imitating the Wess-Zumino approach. More precisely, let us ~tart with an
algebra of functions determined by (3.1), and its differentials defined by (3.7), (3.8), and
either (3.12)",8 or (3.13)",8' Let us then construct the universal bialgebra Fcoacting upon
these algebras {by the same (4,4)-matrix on coordinates and their differentials). Then
the cross-commutation relations (3.9), (3.l0), and (3.12)c,ß (resp. (3.14h,,) are uniquely
defined by the Wess-Zumino type conditions.

Question. 1s F a flat deformation of the polynomial algebra of four variables?

3.6. n-dimensional Wess-Zumino de Rham complex. The following generaliza
tion of the DGA (3.5) was considered by several people, among them G. Maltsiniotis, E.
Demidov, E. Mukhin, after the discovery by M. Artin, J. Tate, A. Sudbery et. al. of
the correct pair of n-dimensional quantum spaces leading to the construction of many
parametric quantum group GL P,Q (n) by the universal coaction method. This algebra is
generated by Xi, i = 1, ... ,n; ~i = dXi' subject to the following commutation relations:

-1 ,.
XiXj = qji XjXi, z < J;

~; = (i~j + )..jqj/(j~i = 0, i < j;

(iXi = )..iXi(i;

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Here qij{i < j), Aj are invertible quantization parameters. One can check without sen
ous difficulties that this DGA f!Q,>' is weil defined and is a Bat deformation of the de
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Rham complex of the polynomial ring in n variables. In fact, the lexicographically ordered
monomials in x, ~ form its free k- basis.

G.Maltsionitis has applied the universal coaction construction in the DGA-category to
11Q,>. and established the following result ([Mal2]):

3.7. THEOREM. The universal coacting DGA-algebra for 110 ,,\ has a quotient wmch is a
Bat deformation of the standard de Rham complex of the polynomials in matrix entries iff
Aj = A does not depend on j. This quotient is then unique, and is a skew product of two
subalgebras, generated by matrix entries, and their differentials, respectively.

For a list of relations, see [Mal2].

3.8. Question. Do there exist other quotients, with the standard Hilbert function,
generalizing (3.12) and (3.13) to general n? Up to know, problems of this type have been
treated by a direct application of the Diamond Lemma. G. Maltsiomtis says it took hirn
eghty pages of calculations to prove Theorem 3.7. About forty pages were spent to the
discovery of (3.12) and (3.13). Clearly, a more intelligent approach is highly desirable.

3.9. Exercise. Calculate operator algebras discussed in §2 in the examplea above. In
particular, calculate the algebras generated by (J'ij and xi8j as possible analogs of U(gl(n)).
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§4. Cohomology of elementary extensions

4.1. Elementary extensions. Let U C V be an embedding of differential algebras,
t E V an even element, dt its differential. We shall say that V is an elementary exten"ion
0/ V by (t, dt), if the following conditions are satisfied:

i). {ti; dt. ti } for i, j ~ 0 form a free basis of V as a right U-module.

ii). (dt)2 = Oj tdt = v2dt.t for an invertible element v E k.

We cau then slightly generalize the calculations of 0.2,0.3 and prove the following result.

4.2. THEOREM. Assume tbat a11 non-vanishing [i]v are invertible in k.
a). H' v is not a root oE unity, tben tbe embeding U -+ V defines tbe isomorphism oE the

cohomology spaces H*(U) -t H*(V).
b). H' v is a primitive root oE unity oE degree 1, then H*(V) as a right H*(V)-module

is Ereely generated by the cohomology classes oE cocycles t i1 , j ~ 0, and dt.t i1- 1 , j ~ 1.

PROOF: Write a generic element of V as

s = f +I: tigj +I: dt.tihi ; f, gj, hi E U.
i~l i~O

Then, by (0.13)

ds = df +I: tidgi +I: dt.ti(vi(j + 1]v9i+l - dhi )·
j~l i~O

Hence s is a cyde iff f, 9i (i ~ 1) are cycles, and

(4.1)

(4.2)

(4.3)

Now, if all [j +l]v for j ~ 0 are non-vanishing and hence invertible, then the last summands
of (4.1) add up to a boundary, because

ti+1gi+1 + dt.tihi = v-i[j + 1];;lti+1dhi + dt.tihi =

v-i[j + 1];:-ld(ti+1 hi )·

Hence the cohomology dass of s coincides with that of f, a cycle in U, and from (4.2)one
easily sees that H*(U) -+ H"'(V) is also injective.

If (j +l]v = 0 precisely for j +1 _ 0 mod 1, tbe same argument shows that s is equivalent
to

where f, g'i, h'i-l are cycles in U.

Then (4.2) shows that these cycles are defined uniquely modulo boundaries in U.
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4.3. Application to the n-dimensional Wess-Zumino-de Rham complex. Let
On be the DGA described in 3.6. One easily checks that the natural embedding On-1 C On
(with compatible sets of quantization constants) makes On a left elementary extension of
On-I, for which v~ = A~l, which allows us to calculate H"'(On)' From the Theorem 3.7
one infers that On is "quantum homogeneous" exactly when ).1 = ... An = A, so that the
cohomology of On is then determined by this unique parameter.

Actually, On is a skew product of 0n-1 and k[xn, dxnl vn ' To check this, it suffices to
prove that the standard ordered monomials in Xi, ~i can be expressed as linear combinations
of monomials ordered by decreasing indices. To put ~n to the leftmost place, one should
use (3.18) successively.

4.4. Question. Can oue apply a similar reasoning to the de Rham complexes of matrix
bialgebras described in §3?
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