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On Complex Projective Hypersurfaces which are Homology- Pn's

by Gottfried Barthel and Alexandru Dimca

Introduction. Taking into account the importance of the complex projective n-space

P n = P n(C) in algebraic geometry and topology, it is obvious that characterizing that.

space by algebro-geometric or topological properties always has been a matter of great

interest. Therefore, it is quite natural to investigate spaces that share some of these

properties. In this paper, we look for hypersurfaces in P n+l with normal or even isolated

singularities that have the integral homology of P n (where n ;::: 2). Such hypersurfaces

will be called bomology- P n 'so Dur main results are as follows:

Theorem 1. (Cohomology- P n 's are Hyperplanes.) Let V be a c10sed subvariety

of dimension dim V = n > 2 in some projective space P N whicb CM be described by a

system of at most N - 2 bomogeneous polynomials. H tbe cobomology rings H·(V, Z) and

H·(P n, Z) are isomorphie, tben Visa linear subspaee ofP N.

Actually, in the precise statement (see section 1 below), the condition on the cohomology

ring structure is slightly weakened. Note that the condition on the number of defining

equations is always satisfied for complete intersection varieties - and oo1y for these in the

surface case n = 2. As the example of the Veronese surface V C P 5 shows, that condition

is sharp, as V cau be described by 4 quadratic forms.

Theorem 2. (Examples of Homology- P n 's with Isolated Singularities.) For

any dimension n ;::: 2, degree d ~ 3, and integer a witb 1 < a < d - 1, we consider tbe

bypersurfaee V := V;,d : (fd,a = 0) in P n +1 deiined by

This bypersurface bas isolated singularites and satisnes

(i) H.(V, Q) "J H.(P n, Q) for (a, d) = 1;

(ii) H.(V,Z) "J H.(Pn,Z) for(a,d) = (a,d-1) = 1.

The proof (in section 2) makes use of results from ioeal singularity theory (monodromy

arguments) and provides examples for the following phenomena that may be of interest in

singularity theory and topology:
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(i) Examples of hypersurface singularities with one-dimensional singular locus and

having the monodromy operator equal to the identity (see section 2, Lemma 2 and Re

mark). This contrasts the situation for isolated hypersurface singularities, as described by

A'Campo [-].

(ii) Examples of hypersurface singularity links in all dimensions ~ 3 which are integral

homology spheres (and hence topological spheres), but which are not associated to poly

nomials of Pham-Brieskom type (see section 2, Corollary 1). This contrasts the situation

in dimension 2 (see section 3, Appendix).

(iii) Examples of projective hypersurfaces in odd dimensions ~ 3 with (at most two)

isolated singularities which are topological manifolds (see section 2, Corollary 2). These

varieties have the integral homology and the rational homotopy type of P n, but are not

homotopyequivalent to P n (e.g., by Theorem 1). Again, this contrasts the situation in

dimension 2: By a famous result of Mumford [-], a surface with normal singularities (e.g.,

a two-dimensional hypersurface with isolated singularities) never ia a topological manifold.

Note that the hypersurfaces V:,d admit a natural algebraic C·-action, as the affine

equations at (1 : 0 : 0 : ... : 0) and (0 : 1 : 0 : ... : 0) are weighted homogeneous. In

the case of surfaces (i.e., n = 2) with such a C· -action, there are no other examples of

homology planes (see section 3):

Theorem 3. (ClassiJ1cation, of Homology- P 2 '5 with C.....Action.) Let V be by

p·ersurfaee in P3 of degree d ~ 3 whieb has the integral bomology of P 2 and admits an

algebraic C*-action. Tben V is (isomorphie to) V2~d C P 3 for a unique integer a satisfying

1 < a < d - 1 and (a, d - 1) = (a, d) = 1.

Examples of homology- P n '8 in dimensions n > 3 with singular locus of positive

dimension can be obtained by more elementary methods than in the isolated singularity

case. Such examples will be presented in section 4 (see Theorem 4).

We mention that Theorem 1 in the hypersurface case and some of the examples in

Theorem 2 in the two-dimensional case (namely, the case a = 1, mildly disguised) have

already appeared in [ChDi].

It is a great pleasure for us to thank Ludger Kaup for his stimulating interest. In

particular, section 1 was strongly infiuenced by him through discussions with one of uso

Moreover, in sections 3 and 4, we closely follow ideas of earlier joint papers of his and the

first-named author. We think it quite appropriate to dedicate this paper to him on ws

50th birthday (with due delay).
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Both authors enjoy(ed) the hospitality of the "Max Planck -Institut für Mathematik"

in Bonn-the second one during the time when this was written, the first one at some

earlier occasions. It is our pleasure to thank that institution, its members.and staff, and

in particular its director, F. Hirzebruch.

Notations and Conventions: Most of the varieties to be considered in the sequel

are-in suitable affine coordinates-defined by weigbted bomogeneous (or quasihomoge

neaus) polynomials. Recall that by definition, such a polynomial p(Yo, Yb' .. ,Ym) sat

isfies an identity p(tqOyo, t q1 Yl, ... ,tqmYm) = tN . p(Yo, Yl, ... ,Ym) for a suitable vector

q = (qO, ql,"" qm) of integers qj and an integer N, the q-degree q-deg(p), so with respect

to the grading of the polynomial algebr.a C[yo, Yl,"" Ym] given by q-deg(Yj) = qj, it is a

homogeneous element of degree q-deg(p) = N. Note that the qj's are not necessarily posi

tive. We adopt here the convention to call the q/s the weights. They are just the weights

of the C·-action on C m +1 given by t.(yo, Yl,' .. , Ym) = (tqOyo, tqt Yl,' .. ,tqrn Ym) that is

associated to the grading. We aIways assUme that the action is effective or, equivalently,

that the weight vector q is primitive, i.e., gcd(qo, ql,"" qm) = 1. We sometimes call p a

q-homogeneous polynomial. The pair (q, q-deg(p)) is called the type of p.

Concerning the notion of "weight", there are different conventions used in the liter

ature, especially in the case of a strictly positive grading (i.e., all qj > 0, corresponding

to a "good" C·-~ction). In addition to those discussed in [TRCS: eh. 7, §1}, we mention

the 'one adopted by 1tIilnor, Orlik, and some others, where the positive rational numbers

Wj := q-deg(f)/qj are called weights. Instead, we will call these W j the coweigbts in the

sequel. Ta emphasize that we are in the case of a strictly positive grading, we sometintes

call a q-homogeneous polynomial positively weigbted homogeneous.

1. Projective Varieties which are Cohomology- P n 's. In this section, we prove

the result mentioned in the introduction above: Cohomology- P n 's are hyperplanes. The

actual-slightly more general-statement is as follows.

Theorem 1. Let V be a c10sed subvariety of dimension dim V = n ~ 2 in some projective

space P N wbich can be described by a system of at most N - 2 bomogeneous polynomials.

H tbe cobomology group H'2(V, Z) is generated (up to torsion) by a dass u such tbat u n

generates H'2n(v, Z), then V js a linear subspace ofPN.

PraoE. Denote with j : V t...+ P N the indusion mapping and with w E H 2 (P N) the

canonical generator. Then there is an integer a (w.l.o.g. a > 0) such that j·w = au and

hence j·wn = anun holds in H'2(V) (up to torsion) and in H2n(v), respectively. By a weil
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known property of the degree (see, e.g., (PAG: pp. 171]), we have

(j·w 7
\ [V]) = {w n , j. (V]) = deg V = an

4

(where (... , ...) denotes the usual pairing, sometimes called "Kronecker product"). In

order to show that Q = 1, look at the exact cohomology sequence of the pair (P N, V):

By Lefschetz duality, the last group is isomorphie to H2N - 3(P N \ V). As V can be defined

by at most N - 2 equations (li = 0), the complex manifold P N \ V is the union of at most

N - 2 affine open subsets (fi i= 0) and hence is topologically (N - 3)-complete (see [FiKPt:

§1 and 2.3] for the definition and for the result). It follows from the theorem stated. in

the introduction of (FiKp2] that H 2N-3(P N \ V) has no torsion. By the exactness of the

sequence, j·w = au is a generator of H2(V). It follows that Q = 1 and hence deg V = 1. •

The notion of a topologically q-complete space is modeled after the topological prop

erties of analytically q-complete spaces. In fact, by a theorem of Hamm. [-], an analytically

q-complete complex space of dimension n is of the homotopy type of a CW-complex of

(topologieal) dimension at most n + q. The topological completeness has a much nieer
, .

behaviour and better pennanence properties with respect to standard operations; in par-

ticular, it is a homeomorphy invariant.

'2. Projective Hypersurfaces with IsoIated Singularities which are Homology

P n '8. In this section, we prove Theorem 2 as stated in the introductio~. In order to'

show that those hypersurfaces V = V':,d : (Id,a = 0) in Pn+l (with n ~ 2) of degree

d > 3 with isolated singularities have the integral homology of P n, we first use duality and

monodromy arguments to check that they are rational homology- P n 's (see paragraphs

i)-iii)). In paragraph iv), we state conclitions (in terms of Milnor lattices) for a rational

homology- P n with isolatecl singularities to be an integral homology- P n0 Finally, using

results of Milnor, Orlik, and Randell on the monodromy of certain weighted homogeneous

singularities, we show in paragraphs v)-vii) that our examples satisfy these conditions.

i) We begin with a characterization of rational homology- P n 's in terms of the mon

odromy operator of the defining equation. Let V : (I = 0) be a hypersurface of degree

d ~ 2 in Pn+l'

Lemma 1. The following statements are equivalent:

(a) H.(V, Q) = H.(P n, Q);
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(ß) Let F : (/ - 1 = 0) C C n +2 be tbe MiInor /ibre associated to f, and let hj :

jje(F, Q) -t jj-(F, Q) be tbe monodromy operator. Tben a1l eigenvalues oE hj are

diJIerent from 1.

ProoE. By a reasoning completely analoguous to that of section 1 (replacing Lefschetz by

Alexander), statement (0:) is equivalent to the vanishing of jj-(Pn+1 \ V, Q). This affine

variety P n+1 \ V is easily identified with the quotient F / (hf) (where hf : F -t F is the

geometrie monodromy): By the homogeneity of f, the group !-'d of d-th roots of unity aets

freely on F by multiplieation, and the orbit space is P n+1 \ V. The action of the standard

generator ( := ex:p(2tri/d) of !-'d on F c C n+2 given by (xo, ... , Xn+l) ~ «(xo, ... , (Xn+l)

is the geometrie monodromy hf . Henee, the eohomology under consideration is isomorphie

to jj-(F, Q)hj, the fixed part Wlder hj, ~d the latter is ker(id - hj), the eigenspace of

1. •.

ii) To obtain polynomials f(xo, xl," . ,Xn , Xn+1) satisfying property (ß) above, we

consider first the homogeneous polynomial

( ) a d-a + d-l d-l9 = gd,tI XO, X}, •. . , X n := XOX I XIX 2 + ... + Xn-IX n

of degree d ~ 3 with n ~ 2 and 1 :5 a < d - 1.

Lemma 2. Tbe monodromy operator h; associated1to 9 = gd,tI is tbe"identity operator jE

a and d are coprime (i.e., if ged(a, d) = "1).

ProoE. We denote with G : (g - 1 = Q) the Milnor fibre of 9 in C n +1
. We will def1ne a

C*-action on C n +1 such that G is invariant and the geometrie monodromy hg : G ~ G
I •

is given by "multiplieation" (with respeet' to that action) by some element .x E C·. Sinee

C* is eonneeted, this implies that hg is homotopy equivalent to the identity, thus proving

the lemma.

As 9 is homogeneous of degree d, the geometrie monodromy takes the same nice form

hg(xo, ... , xn ) = ((xo, ... , (x n ) with ( := ex:p(21t'i/d) as above. The C··aetion will be

given by a veetor q = (qo, ... ,qn) of integral weights qj = q-deg(xj)' As G is invariant

under that action, q has to be chosen such that 9 is q-homogeneous with q-deg(g) = O.

Hence, we have the eondition

aqo + (d - a )ql = q1 + (d - 1)q2 = ... = qn-1 + (d - 1)qn = 0

which is clearly satisfied by taking qn = a, qn-1 = (1 - d)a, ... , ql = (1 - d)n-1 a and

qo ~ (1-d)n-l(a-d). As a and d are coprime by assumption, we can find an integer b with

ab =1 (modd). Sinee all weights satisfy qi =a(modd), the element.x:= exp(21t'ib/d) has

the required property that .xe(XO" .. ,xn ) = hg(xo, . .. ,xn ) as claimed at the beginning.•
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Remark. Note that the affine hypersurface (g = 0) in C n +1 has a one-dimensional singular

locus. For isolated hypersurface singularities, the monodromy operator is the identity only

in the case of an odd-dimensional A 1-singularit,Y, as follows from the results of A'Campo

[-: Thme. 2].

ili) Using the polynomials 9 = gd,a from above, we now introduce the homogeneous

polynomials 1 := Id,a that define our hypersurfaces.

Lemma 3. Denote with 1 := Id,a the polynomial

and with V := V:. d the projective bypersurface (I = 0) in P n+1' Then Visa rational

bomology- Pn, i.e., we bave H.(V: d' Q) ~ H.(P n , Q), if a and d are copnme..
Proof. By Lemma 1, it suffices to show that all eigenvalues of the monodromy operator

hj are different from 1 (condition (ß). That follows from Lemma 2: By results of Oka

(-: Thm.1 , Cor.2], the ~lilnor fibre F of 1 is homotopy equivalent to the join G * fJd

of the Milnor fibres of 9 and X~+l' and the monodromy operator hj on jj·(F, Q) ""

(ii·(G, Q) ® ii·(fJd, Q») is induced from the join of the geometrie monodromies. Hence,

we have the equality h*! = h; 09 h*( d ) (generalized Thom-Sebastiani Theorem). As
Zn+l

h; = idli. (G,Q) by Lemma 2 and all eigenvalues of h(:Z::+l) on H·(fJd, Q) are different from

1, we are done. .'

Remark. Any hypersurface V C P n+1 that is p. rational ho:r:p.ology- P n also has the

same rational cohomology ring as P n, .so in particular, rational Poincare duality holds.

Ir V has isolated singularities, then it follows from L. I(aup's long exact Poincare duality

sequence (see the introduction in [Ka1]) that V is a rational homology manifold, i.e., all the

singularities of V have links that are rational homology spheres (see also [Di2 : Cor.(2.9)J).

Moreover, a rational homology- P n has the same rational homotopy type as P n, as the

latter is determined by the rational cohomology ring (see (Bab: §2]).

iv) To show that we can actually obtain integral homology- P n 's among these vari

eties V: d , we use results of [Di1 J. For an arbitrary hypersurfaee V c P n+1 with isolated,
singularities, (-: Thm. 2.1] says that we get isomorphisms Hj(V, Z) ~ Hj(P n, Z) ffi K j for

j = n, n + 1, where K n denotes the cokernel and 1(n+1 the kernel of a naturallattice ho

momorphism <pv : EBi Li --+ L associated to V C P n+1' The source of this homomorphism

is the (orthogonal) direct sum of the Nlilnor lattices Li at the singular points of V; the

target is the reduced Milnor lattice L := L/Rad L of X, the affine cone associated to a
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smooth hyperplane section of V, at the origin. Recall that the Milnor lattice of an iso

lated affine hypersurface singularity ia the integral homology of the correaponding Milnor

fibre, endowed with the intersection form. It is symmetrie if the dimension n ia even, and

skew-symmetric if n ia odd. Note that H n+1(V, Z) ia torsion free (see [-: Cor. 2.3]). In the

ease where V is a rational homology- P n, it c1early follows that <pv ia a monomorphism

and that ita cokernel K n ia a finite torsion group of order (Ili det Li) / det L. Note that

the target lattice L ia unimodular if n ia add; if n ia even, it has determinant ±d (see [-:

Rem. 2.4 and Cor. 1.4, 1.5]). Henee, we state the following

Observation: Let V be a rational bomology- P n' Tbe following conditions are equivalent:

(a) V is an integral bomology- P n;

(ß) tbe cokernel K n of tbe lattice bomomorphism CPv is trivial;

(,..,.) TI det Li = det L = {±d ifn is even,
i ±l if n is odd.

To check that condition ('Y) holds in suitable cases, we have to investigate the aingular

ities of our hypersurfaces V = V:,d more in detail. Denote with 0i (for i = 0, ... ,n+ 1) the

origin of the standard affine coordinate system (x i = 1) on P n+1' The affine equation for

V at 00 is 10 = xt-a + X1Xg-1 +... +Xn_lX~-l +X~+l' so 00 is always an isolated singular

point. At 01, we have the affine equation /1 = .xö + xg-1+ x2xg-1 + ... + Xn-l X~-l + X~+l'

SO 01 is a singular point if (and only if) a > 1. It is easy to see t.hat there are no other

singularities. Hence, condition (,) takes the following form:

·Condition: Tbe product of tbe determinants of tbe Milnor lattices Li at 0i is

t ,

d L cl L {
±d if n is even,

et O' et 1 =
±l if n is odd.

Note that both 10 and 11 are (positively) weighted homogeneous. The explicit weighta

cau be computed using the formulae given in the next paragraph.

v) Let p(Yo, Y1,"" Ym) be a positively weighted homogeneous polynomial that has an

isolated singularity at the origin. Essentially following Milnor and Orlik [-: §4], we define

the integers

~(p) := dim ker(I - h;), and p(p):= det(I - h;) .

(Actually, our pis the ß(l) of Milnor and Orlik, so it agrees with their definition of p if it is

non-zero, the only case of interest.) Obviously, K.(p) is the multiplieity of 1 as an eigenvalue

of the monodromy operator, so we have It = 0 <=> p t:- O. Moreover, It(p) is the Betti
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number bm- 1 (K) of tbe singularity link K := (p = 0) n S2m+l, and byone of Milnor's

classical results (SPCH: Thm. 8.5], the latter is an integral bomology sphere if (and only

if) pCp) = ±l. Let L(p) denote the MÜnor lattice. It follows from the relation between

the intersection form and the "variation operator" (or Seifert form-see Lamotke's paper

(-: §6, Hauptsatz] or (SDM 11: 2.5] for that relation) that ±p(p) equals tbe determinant

det L(p) of tbe intersection form, so L(p)·is nondegenerate iff K vanishes.

Now let p' be another positively weighted homogeneous polynomial with an isolated

singularity in a new set of variables. Then tbe sum p+ pi (sometimes denoted with p ffi p')

is ag~n weighted homogeneous. (lf p has type (q, N) and pi has type (cl, N'), tben in tbe

case gcd(N, N') = 1 to be considered below, the type of p EB p' is (lV' q ffi lVq, N . N').)

According to Milnor and Orlik (-: §4, Lemma 3], we bave tbe following formula:

(1) Ii(p + pi) = KCp) . K(p') and pep + p') = p(p)'C(pl) . p(p')IC(p) if (N, N') = 1

(vvith 00 := 1).

vi) To apply these fonnulae to the affine equations 10 and 11 in our case, we make use

of tbe following decomposition. For b 2: 2 and m 2: 1, denote with p := Pb the polynomial

(2)

Then we have

( ) &+ d-l + + d-lPb Yo, Y1, .•• ,Ym := Yo YOY1 . .. Ym-l Ym .

(3)

Tbe polynomial Pb introduced above belangs to tbe class of the weighted homogeneous

1 .al ( ) ao a1 -1 + a -1 ( . th > .,po ynoffil sp =Pa o,a1, ... ,I1", Yo, Yl,"" Ym := Yo +YOYl .. ·+Ym-1Ym'" W1 aO _ ..-

and m 2: 1) investigated by Orlik and Randell in (-: 2]. The type (q, IV) of Pa o ,a11 .•• ,am

is easily expressed by rneans of the integers TI; := 0;=0 aj defined in that paper (-: p.

203]: Witb the alternating surn 8k := 2:;=-1 (-l)k- j rj (= rk - rk-l + rk-2 ± ... ± 1 =
(_l)k+l (1 - ao(l - a1(." (1 - ak-l(l - ak)) .. .»)) for k 2: 0 and 8-1 = r-l = 1), we have

lV = Tm and (for k = 0, ... l m) .

In the special case p = Pb to consider (with ao = band al = ... = a m = d -1), the explicit
k (d-·1).II +1_( -1) .11+1 k

values are rk = b(d - 1) and 8k = b· d - (-1)' (far k = 0, ... , m), so the
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type (q,N) of Pb is given by q/l: = 8k-l . (d - l)m-k and N = b(d - l)m. Next, we can

apply the formula

for the characteristic polynomial of the integral monodromy operator given by Orlik and

Randall [-: (2.12)]. That yields immediately the multiplicity K(p) of 1 as eigenvalue of the

monodromy operator, namely,

(4) K.(p) = {O if m is even,
1 if m is odd.

vi) In order to apply formula (1) from above to the decomposition (3) of 10 and 11,.
we need the values of K. and p for the "remainder" . Simple direct computation yields

(5)

as weil as

(6)

We now assume that the condition (a, d - 1) = (a, d) = 1 holds. This allows to apply

formula (1), as the respective degrees N and N' are eoprime. It follows immediately that

we have K(/o) = ",(11) = 0, so both Ioeal equations have nondegenerate Milnor Iattices L j •

Using (6), the eomputation of P yields P(/l) =1, so LI is always unimodular. By (4) and

(5), we get two different values for p(/o) = ±det(Lo), according to the parity of n, namely

p(/o) = {d ~f n ~s even,
1 1f n 15 odd.

It follows that the eondition of paragraph iv) ia satisfied, so V = V: d has the integral,
homology of P n'

That compietes the proof of Theorem 2 as stated in the introduction.•' •.

We mention explicitely the following consequences of the proof, as announced in the

introduction.

Corollary 1. Farn;::: 3, d ~ 3, and b ;::: 2, consider tbe weigbted bomogeneous polynomials

h := hd,a and h := h.d,b given by

h"" ( ) a d-l d-l d-l d
d,a Xo,· .• , X n := Xo + Xl + XlX 2 + ... + X n -2 X n _l + X n ;

h
w

( ) b d-l d-l d-l d
d,b Xo,··· ,Xn := Xo + XOX I + XIX 2 + ... + X n -2 X n _l + Zn
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witb an isolated singularity at tbe origin. The corresponding singularity links i( and f<
are (2n - l)-dimensional homology spberes (and hence actually topological spheres) if the

following conditions hold:

for hd,a: n is arbitrary, and a, d - 1, and d are pairwise coprime;

for hd,b : n is odd, and b and d are coprime.

Proof. With the notations of (2), the polynomials are hd,a = Pd-l (Xl,'" ,Xn-l) +Xn +X~

and kd,b = Pb(?=a, ... ,Xn-l) + X~. The claim now follows from our computation of p, as

p = ±1 implies that the link is a homology sphere (see [SPCH: Lemma 8.3]). - Note

that in general, these equations have fractional coweights, so they are not equivalent to

polynomials of Pham-Brieskorn type. Gf course; the construction can be generalized to

yield more examples.

Corollary 2. If tbe dimension n > 3 is odd and if tbe bypersurface V := V: d : Cld,a = 0)
I

of the theorem is an integral homology- P n, then it is a topological manifold. For n = 3,

that manifold even admits a smooth structure.

Proof. By the previous corollary, the singularities are integral homology manifold points

and hence even topologjcal manifold points. The smooth structure for n = 3 comes from

the non-existence of exotic spheres of (real) dimension 5: if the link K is a homology sphere,

than it is ·h-cobordant to S~ (see [KeMi:§1]). - Note that these topological manifolds are

not of the same homotopy type as P n, though they have the integral homology and the

rational homotopy type of P n'

3., Normal H01?'0logy Planes in P 3 with C·-action. Gur examples V:,d ofhomology

P n 's with isolated singularities constructed in section 2 admit a natural algebraic C·

action, as their affine equations 10 and 11 are both weighted homogeneous. Assuming the

existence of such an action, we can give a classification in the case of homology planes, i.e.,

in the two-dimensional case. It turns out that for degree d ;::: 3, the oo1y such surfaces are

our examples V = V211d' For simplicity, we omit the dimension index n = 2 in this section,
and just write Vl.

Theorem 3. Let V be anormal surface of degree d in P3 wbicb bas tbe same Z-bomology

groups as P 2 (i.e., a homolog)' plane) and whicb admits an algebraic C· -action. Tben V

is one of tbe following surfaces.

(d = 1) V = Vi is the projective plane P2;

(d = 2) V = V2 is tbe quadratic cone (x 2 + y2 + z2 = 0);

(d ;::: 3) V = Vl for a positive integer a < d - 1 relatively prime to d - 1 and d.

These surfaces are pairwise non homeomorpbic.
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Proof. As the quadratic cone is the only surface of degree d = 2 in Pa satisfying the assump

tions, we may restrict to the case d ;:: 3. The C·4action on V is induced from an action on

the ambient space, so in a suitable system (xQ : Xl : X2 : X3) of homogeneous coordinates,

it is of the form t.x := (xo : t qt Xl : t q, X2 : tqa X3) for a triple q := (qlt q2, q3) of integral

weights with ql 2: q2 ;:: q3 > 0 and gcd(ql , Q2, q3) = 1 (e.g., see [Bar3: 1.1]). The corre

sponding affine equation 1(1, Xl, X2, X3) defining V n (XQ = 1) is q.-(quasi- )homogeneous of

some q-degree N. It is easy to see (e.g., in [Bars: 1.4]) that, up to the only exeption of

the smooth quadric, every normal C*4surface in P3 has an elliptic fixed point, Le., a fixed

point that lies in the closure of every orbit passing through a suitable neighbourhood. By

taking that point as centre of the in~ant affine chart (x 0 = 1), we mayassume qa > 0

(up to reversing the action, i.e., replacing t by t- I ). Then the affine equation 1 is (posi

tively) weighted homogeneous of type (q, N) (recall our conventions from the beginning),

and lV ;::: d.

We note first that this affine equation f is not homogeneous: Otherwise, V would be

the cone over the smooth plane curve (xQ = f = 0) of degree d and hence have the third

Betti number ~(V) = (d - 1)(d - 2) stri~tly positive (as d > 2). The proof of the claim

is an easy consequenee of the following lemma and Theorem 3A in the appendix to this

section.

Lemma. For a surfaee V as in Theorem 3, there is a system of homogeneous coordinates

(w : x : y : z) witb the following properties:

a) Tbe origin 0 := (1 : 0 : 0 : 0) oE the affine chart (w = 1) is an elliptic nxed point oE

tbe action;

b) tbe second integrallocal bomology 11.2 ,0 at 0 is trivial;

c) tbe curve at inJinity Voo := V n (w = 0) is a projective line.

Now the second loeal homology group 'H.2,o at 0 is isomorphic to the first homology of the

corresponding singularity link [(, so the latter is an integral homology sphere. Henee, by

Theorem 3A below, the affine equation in the chart (w = 1) of the lemma is x a +yb +ZC = 0,

where the exponents a, b, c are pairwise coprime. To complete the proof of the theorem,

we only have to observe that the affine surfaee defined by a polynomial of Pham-Brieskorn

type has anormal projective closure (i.e., isolated singularities at infinity) if and oo1y if the

two highest exponents differ by at most 1. Assuming a :5 b :5 c = d (w.l.o.g.) and d > 1,

we must thus have b = d - 1. It follows that V has the equation w d- a x a +wyd-I + zd =

fd,a(X, w, y, z) = o.•'

ProoEof the Lemma. We may again restriet to the case d ~ 3. As the affine equation in the

coordinate system (xo = 1) chosen above is not homogeneous, we may apply the results of
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[Bar1]' First, by [-: (3.5.4)(i)}, we have b2(V) = ~(V) + ~(A) and henee b2(A) = 1 for the

curve A := V n (xo = 0), so A is irredueible. The argument preeeeding [-:(3.5.5)] yields

that A is not only homeomorphic to a projective line, but that, interchanging the roles of

Xo and Xl if necessary, we may even assume that A actually is a projective line. (Note

that the condition of (-: (2.3.1)] only cancerns the affine singularities.) Then [-: (3.5.5)(i)]

yields H 2(V) = Z EB rt2,O and henee rt2,O = 0 for the local homology at the affine origin,

so we have proved our claim. •

Remark. It is easy to see that the surfaces Vd of [ChDi] and our Vi are isomorphie. In fact,

after renaming the coordinates for Pa so that Vd is defined by w d- l x +w d +wyd-l +zd,

the linear transformation (w : x : y : z) ~ (w : x - w : y : z) takes Vd into VJ. 
The fact that the surfaees Vi have the integral homology of the projective plane has been

mentioned in [Bar2: 2].)

Appendix: Weighted Homogeneous Surface Singularity Links that are Homol

ogy Spheres. In this appendix, we discuss a theorem from two-dimensional singularity

theory. Though a more general state~ent can be found in the literature, the result is

apparently not widely known. For that reason, the discussion has been included here.

,Theorem 3A. Let p(x, y, z) be a positive1y weighted bomogeneous polynomial with an

,isolated singularity at the origin. Assume that the link K oE the singularity is an integral

,bomology spbere. Then (up to scalar factars), we have p(x, y, z) = xa + yb + zC, wbere the

exponents a, b, c (wbich agree with the coweigbts in that case) are pairwise coprime.
I

ProoE. In the dass of weighted homogeneous polynomials with integral coweights, the

result is a. special case of Brieskorn'g characterization of homology spheres (see [Bri: 2,

Satz 1]). For a thorough discussion of that dass of surface singularity links, we refer to

NIilnor's article [Mil]. To exdude the various dasses of weighted homogeneous polynomials

with at least one fractional coweight, we give three arguments.

Maybe the simplest-but also the least illuminating-way is by checking that for

polynomials in these classes, the group H := HI(K) ~ rt2,O never vanishes. That group

can be computed using a general formula given by Orlik (see (-: 2.6, 3.3, 3.4]), which is

made explicit in our case as follows: Write the coweights Wj of P(XllX2,X3) as reduced

fractions 'Uj/Vj. Then the rank K. := bl(K) = ~,o of H is
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To compute the torsion subgroup T of H, introduce the numbers

13

and define integers c, Ci, and Cij by the factorization of the denominators tLj as follows:

Let

and
Uk

Cij:= -
CCiCj

for {i , j, k} = {l, 2, 3}

(so tLi = CCjCkCjk). Finally, introduce the integers

. tl:= II Cij for 1 ~ I ~ m := max{~ii}'
~ij ~l

Then the torsion subgroup is the direct sum of cyclic groups

Explicit fonnulae in tenns of the exponents of typical monomials for the different classes

of weighted homogeneous polynomials are listed in [TSCC: pp. 285-286].'

The next approach is somewhat more conceptual-in fact, it shows the background

of the formulae above. For every weigh~ed homogeneous surface V in C 3 with an isolated

singularity, the link K = V n 5; ~ (V \ O)/R>o is a closed oriented three-dimensional

manifold with a fixed point free SI-action. As such, it has the strncture of a Seifert fiber

space (see, e.g., Orlik's Lecture Notes [SM]). It follows from Seifert's computation of the

fundamental group [SM: 5.3] that if H1(K) vanishes, then necessarily, the genus 9 of the

"decomposition surface" K/S l ~ (V \ O)/C· vanishes, the number of exceptional orbits

is at least three (unless K ::::: 53, Le., V ::: C 2
), and their orders are pairwise coprime

(see [Sei: §12, Satz 12], where such homology spheres are called "Poincaresche Räume",

or [OrWal: p. 280]). Now all the exceptional orbits lie in the intersection of V with the

coordinate hyperplanes (Xi = 0). Orlik and Wagreich show in [-2: 3.5] how the orders

of such orbits and the numbers of orbits of a given order can be expressed explicitely in

terms of the type (q, N). Prom their results, it follows that for weighted homogeneous

polynomials with fractional coweights, the necessary condition for !{ to be a homology

sphere is never fulfilled.

The most satisfactory argument comes from a result of vV. Neumann, and we axe

grateful to him for pointing this out to uso H the genus of the decomposition surface
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K/SI vanishes, then the homology group H is a finite abelian group. There is a cor

responding finite-sheeted unramified covering K' of !(, the "universal abelian covering" ,

having H as group of decktransfonnations. This can be extended to a covering V' --+ V of

normal weighted homogeneous surlaces, ramified only at the fixed point. By Neumann's

result [-: Thm.1}, that universal abelian covering surfaee V' is always a eomplete inte~ee-

tion Va1, ... ,aN : (L:~1 AijXii = 0)j~I, .."N-2 defined by Pham-Brieskorn type polynomials,

where the integers ai are the orders and N is the number of the exceptional orbits of

V. If K is a homology sphere, then, of course, the covering is trivial, i.e., K = K' and

V = V'. Henee, if in the esse V C C 3 under consideration, the link K is a homology

sphere, then the defining polynomial is of Pham-Brieskom type X~l + X~2 + X;3 = 0 and

there are exactly three exeeptional orbits, so the exponents ai are pairwise eoprime. - An

explicit (and earlier) referenee for the characterization of Seifert fibred homology spheres

as complete intersections Va1 .... ,aN with coprime exponents ai is Theorem 4.1 in the article

by Neumann and Raymond [-].

4. Homology of "Asymptotically Linear" Hypersurfaces in P n+l with C ... 

Action and Examples of Homology- P n 's. In the two--dimensional ease, the affine

equation of our examples V:,d at 01 is xg + xg-1 + x;, so the leading form (i.e., the

homogeneous part of the highest degree d) is the d-th power of a 'coordinate function. Ac~

cordingly, the corresponding (redueed) hyperplane section V n(Xl = 0) "at infinity" is the

linear subspace (Xl = X3 = 0). By the natural good C*-action, the affine part Vn(Xl = 1)

is contraetible. Using singular duality theory, this decomposition ioto topologically sim

ple pieees allowed to reduce the homology computation in seetion 3 to the study of the

singularity link at Ot.

This observation leads to a rather straightforward generalization to the higher-dimen

siona! case. For X = (Xl"," Xn+l) (With n ~ 2), let p(x) be a weighted homogeneous

polynomial of degree d > 2 with an isolated singularity at the affine origin 0 E C n + l

and assume that the leading form is Pd = X~+l (up to a non-zero scalar factor). Denote

with ß(xo, ... , Xn+l) := x3 .p(x/xo) the (usual) homogenization of p and with V = V(p) :

(ß = 0) C P n+l the projective closure of the normal affine weighted homogeneous variety

U : (p = 0) C C n+1
. The (redueed) part at infinity Voo := V \ u = V n (xo = 0) is

the projective subvariety (Pd = 0) of the hyperplane (xo = 0) at infinity that is defined

by the leading form, so it is the linear subspace (xo = Xn+l = 0) "V P n-l' (!ts points

correspond to the asymptotic directions on U, henee the name "asymptotically linear".)

The singularities at infinity are in general non-isolated. If the "sub-Ieading form" Pd-l is

not divisible by X n +ll however, they have codimension at least two and are thus normal.
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The projective variety V is invariant under the C·-action on P n+l given by t.(xQ : Xl :

... : Xn+l):= (xQ: tq1XI: ... : t qn+1 Xn+l) that extends the natural C"'-action on C n +1 ~

(xo = 1) corresponding to the weight vector q of p. The (co-)homology of these projective

hypersurfaces is determined by that of the the affine singularity link..The ring structure

is very similar to that of a hyperplane, i.e., of P n.

Theorem 4. For V as above, tbe integral cobomology is

Here, K denotes tbe singularity link K := U n s;n+l at the affine origin o.

Tbe cobomology ring structure is described by the bomomorphism jk : Hk(p n+l) -+

Hk(V) induced by inclusion:

• For k #- 2n + 2, that mapping is injective..

• For k =F n, n + 1, 2n, 2n +2, it is an isomorpbism.

• For k = n, n+1, tbe subgroup jk(Hk(Pn+l)) bas a direct complement, namely, ker(i k :

Hk(V) -+ Hk(Voo )) ~ H2n- k(K), and a11 cup products witb positive-dimensional

classes vanisb on tbat complement:

• For k = 2n, tbe canonical generator w n of H 2n(p n+l) is mapped onto d· Un, wbere

U n E H2n(v) is the canomcal generator (dual to tbe fundamental dass).

Complement. If tbe link !( js a rational bomology sphere, tben V has the rational

cohomology ring and bence also tbe rational homotopy type of P n.

That holds in particular for the homology- P n 's in our dass, whieh are obtained in

the obvious manner:

Corollary. H tbe singularity link ]( := U n s;n+l at tne affine origin 0 is an integral

bomology spbere, tbe variety V bas tne integral homology of P n.

To give two simple examples, note that ]( is an integral homology sphere if f is regular

at 0 or has integral eoweights Wj which are pairwise eoprime. In the first ease, the affine

variety V is isomorphie to C n
, and V is a singular eompactification with P n-l as part at

infinity. In the seeond case, the polynomi~pis ofthe Pham-Brieskorn typep(x) = ~xjj.

Of course, there are much more sueh examples, e.g., those obtained by Pham-Brieskorn

type polynomials satisfying the conclitions of [Bri: 2, Satz 1], or by moclifying the results

of seetion 2, Corollary 1.
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Proof oE Tbeorem 4. The result is a rather straightforward applieation of the "APL"

(Alexander-Poineare-Lefsehetz) type duality theory for singular varieties, as developped

by L. Kaup in his papers [-1,2], and of J. Milnor's classieal results on the topology of

hypersurfaee singularities in his book [SPCH]. Essentially, the proof follows the lines of

[BaKa: 3.5]. The affine part U = V \ Voo is either smooth, or it has an isolated singularity

at the origin 0 of Cn +l
. Henee, the pair (V, V00) is a "relative variety with isolated

singularities", so relative (Lefschetz type) duality theory yields a long exact sequenee

o --+ HI(V, Voo ) --+ H 2n - I (U) --+ H 2n - I ,O --+ H 2 (V, Voo ) --+ H 2n - 2(U) --+ .••

... --+ H2n-k+I(U) --+ H 2n -k+I,O -+ Hk(V, VocJ -+ H2n-k(U) -+ ...

• • • --+ HI(U) -+ HI,a --+ H 2n (V, Voo ) --+ Ho(U) --+ HO,O --+ 0

(see (Ka1: Bsp. 2.1, p. 14]), where 'H"o is the 1-th integral loeal homology at the affine

origin o. As U is contraetible, that long exaet sequenee yields H I (V, Voo ) = 0 and breaks

iuto isomorphisms HI:(V, Voo ) ~ 'H2n -I:+I,O for 2 ::; k ::; 2n - 1. As the affine variety U

is loeally near 0 (and even globally) isomorphie to the open real cone over the singularity
-link K, there is an isomorphism 'H',a :::: H,-I(K). By (SPCH: Thm. 5.2, .p. 45], an n-

dimensional hypersurface singularity link is (n - 2)-connected, so the homology groups

'H',o ~ E,_I(K) vanish for 1 =1= n, n + 1, 2n. It follows that Hk(V, Voo ) vanishes for all k

with 2 :5 k :5 2n ....:. 1 and k =1= n, n + l.

We now eonsider the long exact cohomology sequence

H k( V) r- k() j- k( ) 6- k+l( )... --+ V, 00 --+ H V --+ H Voo -+ H V, Voo -+ ...

of the pair (V, Voo )' The part at infinity Voo := V n (XQ = 0) is the linear subspace

(xQ = Xn+l = 0) ~ p n-l' It follows that the composed map i k jl: : Hk(P n+l) --+ Hk(V) --+

HI:(Voo ) is an isomorphism of free cyclic groups in al1 even dimensions k < 2n, whereas

Hk(Voo ) vanishes in all other cases. In particular, the homomorphism i* : Hk(V) --+

Hk(Voo ) is always split surjective, so the exact cohomology sequence breaks into split

short exact sequences

Now the result on the eohomology group strueture and on the homomorphism j* follows

easily.

Ta prove the vanishing of ~'higher" cup products on k~r Ci k : Hk (V) --+ Hk (V00) =

im (r k : Hk(V, Voo ) -+ Hk(V) for k = n, n + 1, we use again singular duality theory: By
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(Kat: Thm. 2.1, p. 10], the long exact sequences of (V, Voo ) in cohomology ancl of (V, U)

in homology are joined to a "ladder" , i.e., there is a commutative diagram

where the vertical arrows are singular duality homomorphisms. Hence, by the contractibil

ity of U, the image of Hk(V, Voo ) lies in the kernel of the "absolute" Poincare duality

homomorphism Hk(V) --+ H2n - k (V). That homomorphism is nothing but the cap prod

uct with the fundamental homology dass (see (BaKa: 2.5]). \JVith the standard relations

between cup and cap product, that proves the result.

The complement is just arestatement of the remark in section 2, paragraph iii).•

Remarks. (i) Most of the results on the (co-)homology of the varieties V are already

contained in (Ka2: I(or. 3.6, 3.7, pp. 502/503] as special case: put r = 0 and interchange

the rales of Xo and X n+l' Note that the variety oFn - 1 occuring there is just Pn-l'

(ii) It is immediate to see that for 0 < 2k < 2n, the Poincare duality homomorphism

maps j2kw k outo d·i2n-2kln-k, where 1m E H 2m (V00) is .the canonical generator represented

by [Pm]: With m := n - k, one has j2m(j2kwk n [V]) = wk n j2n(VJ = wk n d . Zn =
j2mi2m(d ·lm)' To see that the image of the Poincare homomorphism lies in the image of

i2m-wherefore the restriction of j2m to the image is injective-, one uses the analoguous

~'ladder" to the aue above where the roles of U and V00 are changed.-In the general duality

theory of (Kal], ODe has to be careful about supports. H n? supports are explicitely noted,

compact supports are understood in homology and closed supports in cohomology. As

these two families agree on the compact varieties V and Voo , there is no problem in our

case.
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