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Abstract

We construct explicit quantization of closed conjugacy classes of the complex sym-

plectic group SP (2n) with non-Levi isotropy subgroups through an operator realization
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(
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1 Introduction

We construct a quantization of conjugacy classes of the complex algebraic group SP (2n)

whose isotropy subgroup is not of Levi type. Such classes are not isomorphic to adjoint orbits

in the Lie algebra sp(2n), and their Poisson structure is not exactly SP (2n)-invariant. This

quantization features a quantum group symmetry, which is a deformation of the conjugation

action of SP (2n) on itself.

The conjugacy classes of interest form a family that is as large as of Levi type: they

involve diogonalizable symplectic matrices whose eigenvalues include simultaneously +1 and

−1 (a Levi-type class may have at most one of them). Note that among the classical matrix

groups only symplectic and orthogonal admit classes of this type: for the special linear group

they are all isomorphic to adjoint orbits and have Levi isotropy subgroups.
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The Poisson structure on the conjugacy classes comes from a Poisson structure on the

group, which is analogous to the canonical invariant Poisson structure on the Lie algebra g =

sp(2n) (we assume the natural isomorphism of the adjoint and coadjoint representations of g).

Quantization of this structure is analogous to quantization of the Kostant-Kirillov-Souriau

bracket on the coadjoint orbits; with the difference that the former allows for quantum group

symmetry rather than classical.

Conjugacy classes with Levi isotropy subgroups have been quantized in [1] using the

representation theory of quantum groups. We should stress that the methods of [1] are

inapplicable, as they are, for the non-Levi classes, whose quantization is still an open problem.

In our recent paper [2] we have shown how to approach it on the simplest example of

SP (4)/SP (2)× SP (2). In this work, we develop those ideas further and cover all non-Levi

conjugacy classes of SP (2n). Along with the Levi type treated in [1], this is closing the

problem for all diagonalizable classes of SP (2n).

Further we explain our methods. It is natural to seek for a quantization of an affine

variety in terms of generators and relations, in other words, as a quotient of a free algebra.

Supposedly this projection factors through a projection from a quantized coordinate ring

C~[G] of the group G = SP (2n), which is well studied and whose explicit description in

generators and relations is available. To ensure that the deformation is flat, we seek to

realize it in an algebra that is flat over the ring of formal series in the deformation parameter

~. Due to certain module properties of C~[G], this would also yield the defining relations,

provided we have managed to find an ideal in the kernel turning to the defining ideal in

the classical limit (such an ideal shall automatically coincide with the kernel). Since C~[G]

can be realized as a subalgebra in the quantized universal enveloping algebra U~(g), one

can try to construct the quantization through a representation of C~[G] in the algebra of

endomorphisms of some U~(g)-module.

Conjugacy classes with Levi isotropy subgroups have been quantized with the help of

parabolic Verma modules. However, there is no immediate analog of parabolic Verma mod-

ules for non-Levi subalgebras in g, and the key step is to find their suitable replacement.

We take for it a quotient of a special auxiliary parabolic Verma module, which is chosen

as follows. Let K ⊂ G denote the stabilizer of the initial point of the class. It contains a

maximal Levi subgroup L ⊂ K (there are actually two such subgroups). At the Lie algebra

level, the isotropy subalgebra k ⊂ g is generated over the Levi subalgebra l by a certain pair

of root vectors eδ, fδ. We construct the parabolic Verma U~(g)-module M̂λ relative to U~(l),

where highest weight λ is conditioned by the presence of a singular vector of weight λ − δ.
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The quotient Mλ of M̂λ over the submodule generated by that singular vector is the module

were we realize the quantization of C[G/K].

The subalgebra C~[G] ⊂ U~(g) is generated by the entries of an invariant matrix Q ∈
End(C2n)⊗C~[G] canonically constructed of the universal R-matrix of U~(g). The problem

then boils down to determining the minimal polynomial of Q regarded as an operator on

C2n ⊗ Mλ. The matrix Q is semi-simple on C2n ⊗ M̂λ, and its eigenvalues are known.

Therefore, Q satisfies the same polynomial equation on C2n ⊗ M̂λ, which is however not

necessarily minimal. We prove that the extra eigenvalue drops from the spectrum of Q in

the transition from M̂λ to Mλ, in this way producing the minimal polynomials on C2n⊗Mλ

from that on C2n ⊗ M̂λ.

The above described effect is analogous to the transition from to G/L to G/K, where the

class G/L is obtained from G/K by splitting the eigenvalues −1 into the pairs of reciprocals

µ, µ−1 ̸= −1. In the limit µ → −1 the eigenvalues µ and µ−1 glue up, and the isotropy

subgroup jumps from L to K. The minimal polynomial of G/L acquires a non-simple factor

(x + 1)2, which should be reduced in the minimal polynomial of G/K. Similarly, we check

that the extra simple divisor of the minimal polynomial of Q is canceled on C2n ⊗Mλ, and

the classical limit of Q yields the minimal polynomial of G/K. This implies the second

essential step of our strategy being the analysis of the U~(g)-module C2n ⊗ Mλ and the

invariant operator Q on it.

Putting non-Levi conjugacy classes into a common quantization scheme with the classes

of Levi type implies several far reaching consequences. First of all, recall that the latter

(along with quantum semi-simple coadjoint orbits) gave rise to the theory of dynamical

Yang-Baxter equation over general non-Abelian base, [3]. To a large extent, that theory was

based on the properties of the parabolic Ol-category featuring the structure of a module

category over representations of the (quantum) group. We observe an analogous category

Ok associated with the non-Levi type quantum classes, which are generated (as a module

category) by Mλ with feasible weights λ. It is natural to expect that the category Ok should

result in a proper generalization of the dynamical Yang-Baxter equation. The parabolic

category Ol consists of U~(g)-modules that are parabolically induced from U~(l)-modules.

At the same time, the algebra U(k) is not quantized as a Hopf subalgebra in U~(g). It is

therefore interesting to understand its quantization, which will be a k-analog of the Levi

subalgebra U~(l). This might help to understand the category Ok.
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2 Classical conjugacy classes

Throughout the paper, G designates the algebraic group SP (2n) of symplectic matrices

preserving a non-degenerate skew symmetric form ||Cij||2ni,j=1 in the complex vector space

C2n; the Lie algebra of G will be denoted by g. We choose the realization corresponding

to Cij = ϵiδij′ , where δij is the Kronecker symbol, i′ = 2n + 1 − i, and ϵi = −ϵi′ = 1 for

i = 1, . . . , n.

The polynomial ring C[G] is generated by the matrix coordinate functions ||Aij||2ni,j=1,

modulo the set of 2n× 2n relations written in the matrix form as

ACAt = C. (2.1)

The right conjugacy action of G on itself induces a left action on C[G] by duality; the matrix

A is invariant as an element of End(C2n)⊗ C[G].
The group G is equipped with the Drinfeld-Sklyanin bivector field

{A1, A2} =
1

2
(A2A1r − rA1A2), (2.2)

where r ∈ g ⊗ g is a solution of the classical Yang-Baxter equation, [4]. This equation is

understood in End(C2n)⊗End(C2n)⊗C[G], and the subscripts label the natural embeddings

of End(C2n) in End(C2n)⊗ End(C2n), as usual in the quantum groups literature.

The bivector field (2.2) is skew-symmetric when restricted to the functions on G and

defines a Poisson bracket on C[G] making G a Poisson group. Of all possible solutions to

the classical Yang-Baxter equation we choose

r =
2n∑
i=1

(eii ⊗ eii − eii ⊗ ei′i′) + 2
2n∑

i,j=1
i>j

(eij ⊗ eji − ϵiϵjeij ⊗ ei′j′), (2.3)

which is the simplest factorizable r-matrix, [5]. At the end of the article, we lift this restric-

tion.

We regard the group G as a G-space under the conjugation action. The object of our

study is another Poisson structure on G,

{A1, A2} =
1

2
(A2r21A1 − A1rA2 + A2A1r − r21A1A2), (2.4)

in the matrix form. It is compatible with the conjugation action and makes G a Poisson

space over the Poisson group G with the Drinfeld-Sklyanin bracket (2.2).

A closed conjugacy class O ⊂ G consists of diagonalizable matrices and is determined

by the set of eigenvalues SO = {µi, µ−1
i }ni=1 plus 1 if N = 2n + 1. Every eigenvalue µ
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enters SO with its reciprocal µ−1, and, in particular, there may be µ = µ−1 = ±1. One

should distinguish two situations: a) SO contains either +1 or −1 or none and b) both +1

and −1 belong to SO. In the first case, O is isomorphic to an orbit in g via the Cayley

transformation, and its isotropy subgroup is of Levi type. A conjugacy class of second type

is not isomorphic to an adjoint orbit. In terms of Dynkin diagram, every Levi subgroup is

obtained by scraping out a subset of nodes, while for non-Levi isotropy subgroups one should

use the affine Dynkin diagram of g.

Levi
±1a × a a . . . a × a a<

Non-Levia >a × a . . . a × a< a±1∓1

Informally, the non-Levi subgroup necessarily contains two symplectic blocks rotating

the eigenspaces of eigenvalues ±1.
We associate with a class O an integer valued vector n = (n1, . . . , nℓ,m, p) and a complex

valued vector µ = (µ1, . . . µℓ,−1, 1) assuming µi, i = 1, . . . , ℓ, all invertible, pairwise distinct

and not a square root of 1. The initial point o ⊂ O will be fixed to the diagonal matrix with

entries

µ1, . . . , µ1︸ ︷︷ ︸
n1

, . . . , µℓ, . . . , µℓ︸ ︷︷ ︸
nℓ

,−1, . . . ,−1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
P

,−1, . . . ,−1︸ ︷︷ ︸
m

, µ−1
ℓ , . . . , µ−1

ℓ︸ ︷︷ ︸
nℓ

, . . . , µ−1
1 , . . . , µ−1

1︸ ︷︷ ︸
n1

,

so that
∑ℓ

i=1 ni + m + p = n. We reserve the integers m = nℓ+1, p = nℓ+2 to denote

respectively, ranks of the blocks corresponding to −1 = µℓ+1 and +1 = µℓ+2 (we view ±1
as degeneration of the parameters µℓ+1 and µℓ+2). The specialization n1 = . . . = nℓ = 0 is

formally encoded by ℓ = 0 and referred to as the symmetric case, because it corresponds to

a symmetric conjugacy class.

The stabilizer subgroup of the initial point o is the direct product

K = GL(n1)× . . .×GL(nℓ)× SP (2m)× SP (P ) (2.5)

and it is determined by the vector n. The positive integer ℓ counts the number of GL-blocks

in K. In the symmetric case, (2.5) reduces to SP (2m)× SP (P ), and the class O ≃ G/K to

a symmetric space.

LetMK denote the moduli space of conjugacy classes with the fixed isotropy subgroup

(2.5), regarded as Poisson spaces. The set of all ℓ + 2-tuples µ with invertible components

such that µ2
ℓ+1 = µ2

ℓ+2 = 1 and µi ̸= µj, µ
−1
j for distinct i, j parameterize MK albeit not

uniquely. Multiplication by the scalar matrix −1 ∈ G preserves this set and swaps µℓ+1 with
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µℓ+2. This transformation is an automorphism of G as the adjoint G-space and preserves

the Poisson structure (2.4). Therefore, the subset M̂K of µ with fixed µℓ+1 = −1 and

µℓ+2 = 1 can also be used for parameterization ofMK . Its residual ambiguity is related to

permutations of components µi ̸= ±1 with equal multiplicities.

The class O associated with µ and n is determined by the set of polynomial equations

(A− µ1) . . . (A− µℓ)(A+ 1)(A− 1)(A− µ−1
1 ) . . . (A− µ−1

ℓ ) = 0, (2.6)

Tr(Ak) =
ℓ∑
i=1

ni(µ
k
i + µ−k

i ) + 2m(−1)k + 2p, k = 1, . . . , 2n, (2.7)

on the entries of the matrix A. In fact, the ideal in C[G] generated by this set of relations is

radical and therefore coincides with the defining ideal of C[O] in C[G]. This is a consequence

of the following general fact.

Consider a smooth variety X in affine space Y of dimension dim(Y ). Suppose that X

is defined by a system of polynomial equations Fi(x) = 0, i ∈ I, where I is a finite set of

indices. The ideal J ′ = (Fi)i∈I is contained in the defining ideal J of X, i.e. the ideal of

all polynomial functions vanishing on X. In general, J ′ might be less that J , and then the

quotient C[Y ]/J ′ cannot be regarded as a ring of functions on X, as containing nilpotent

elements. It is essential for our approach to quantization to make sure that the ideal J ′

is exactly J , because the latter obeys certain maximality requirements. We will use the

following criterion of radicality of J ′.

Proposition 2.1. Suppose that at every point x ∈ X the rank of the differential {dFi}i∈I
is equal to dim(Y )− dim(X). Then the ideal J ′ in C[Y ] generated by {Fi}i∈I coincides with
the defining ideal J of X.

Proof. Denote by A′ = C[Y ]/J ′ and A = C[Y ]/J the quotient algebras and consider their

affine schemes with the structure sheafs O′ and O, respectively. Since J is the radical of J ′,

the natural embedding Spec(A′)→ Spec(A) is an isomorphism making O a subsheaf in O′.

The condition on the rank of {dFi}i∈I implies, by the Jacobian criterion of smoothness, [6],

that Ox and O′
x are regular local rings at every point x ∈ Spec(A′), and Ox = O′

x. As the

two sheafs coincide locally, they coincide globally. Hence A′ ≃ A, and J ′ = J .

Proposition 2.1 provides a convenient test for verifying if a particular system of equations

gives rise to the defining ideal. That is especially so for homogeneous varieties, as it suffices

to look at the initial point only. Remark that the condition on the rank can be replaced by

a more practical condition on the kernel: dim(∩i ker dFi) = dim(X).
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Theorem 2.2. Let G̃ be the general linear group of the vector space CN and let Õ ⊂ G̃ be the

conjugacy class of matrices with distinct eigenvalues (µ1, . . . , µl) of multiplicities (n1, . . . , nl).

The system of polynomial equations

(A− µ1) . . . (A− µl) = 0, Tr(Ak) =
l∑

i=1

niµ
k
i , k = 1, . . . , N (2.8)

has rank N2 − dim(Õ) everywhere on Õ, hence it generates the defining ideal of Õ.

Proof. Take o = diag(µ1, . . . , µ1, . . . , µl, . . . , µl) ∈ Õ as the initial point in Õ. Denote by SO

the set of eigenvalues of o and let Pi : CN → Cni be the projector to the µi-eigenspace.

The matrix o can be then written as o =
∑l

i=1 µiPi. Denote by Eij, i, j = 1, . . . , l, the

subspace of matrices PiEnd(CN)Pj. We have End(CN) = ⊕li,j=1Eij for the matrix algebra,

and k̃ = ⊕li=1Eii for the Lie algebra k̃ of the stabilizer of o. The tangent space To(G̃) is

naturally identified with m̃ = ⊕li,j=1
i̸=j

Eij. The class Õ is the zero locus of equations (2.8). To

prove the statement, it is sufficient to check the rank of the system (2.8) at the point o.

Denote by F the matrix polynomial
∏l

i=1(A − µi) and by ϑk the trace Tr(Ak), k =

1, . . . , N . The system of relations involves N × N functions Fij and N differences ϑk −∑l
i=1 niµ

k
i . It is easy to check that

dF (ξ) = 0, dϑk(ξ) = 0, k = 1, . . . , N,

for all ξ ∈ Eij with i ̸= j and

dF (ξ) =
l∏

i=1
i̸=j

(µj − µi) ξ, dϑk(ξ) = kµkjTr(ξ), k = 1, . . . , N,

for all ξ ∈ Ejj. Note that the right equations are redundant as ker(dF ) ⊂ ker dϑk: to see

this, one should differentiate the trace of F (ξ). The left equation tells us that im dF = k̃, as

the numerical coefficient before ξ does not vanish. This proves the assertion.

Based on Theorem 2.2, we use Proposition 2.1 to describe the defining ideals of closed

conjugacy classes of the symplectic group.

Theorem 2.3. The system of polynomial relations (2.6) and (2.7) along with the defining

relations of the group (2.1) generate the defining ideal of class O ⊂ SP (2n).

Proof. As shown in the proof of Theorem 2.2, the differential of the trace functions is lineally

dependent of the differential of the minimal polynomials. Therefore, the essential part of the
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Jacobian comes from the minimal polynomial and the equation of the group. The tangent

space To(G) is the set of fixed points of the liner endomorphism σo : ξ 7→ −oσ(ξ)o, where σ
is the involutive anti-automorphism ξ 7→ −CξtC. Clearly it can be presented as To(G) = og.

The map σo is a linear involution, so the tangent To(G) space is the image of the projector
id+σo

2
. Using the same notation as in the proof of Theorem 2.2, we present To(G) as a direct

sum og = ko ⊕mo, where ko = og ∩ k̃ and mo = og ∩ m̃. This is possible because the spaces k̃

and m̃ are stable under multiplication by o.

We need to find the rank at o of the mapping End(C2n) → End(C2n) ⊕ End(C2n),

A 7→ H(A) ⊕ F (A), were H(A) = ACAtC + 1. Equivalently we can find its kernel, which

is the intersection ker dHo ∩ ker dFo. The tangent space To
(
End(C2n)

)
splits into the direct

sum og⊥ ⊕ og. The kernel of dHo is exactly og so ker(dHo ⊕ dFo) is just ker dFo|og. In the

course of the proof of Theorem 2.2 we saw that mo ⊂ ker dFo|og. This inclusion is, in fact,

an equality. Indeed, ko ⊂ k̃, and dFo is injective on k̃. Hence it is injective on ko. Thus, the

kernel of the differential dHo ⊕ dFo is exactly mo. But mo ≃ To(O), and the rank of the

map dHo ⊕ dFo : End(C2n)→ End(C2n)⊕ End(C2n) is equal to the codimension of G. This

completes the proof.

Although non-Levi conjugacy classes are of our main concern, Theorem 2.3 holds true for

any semi-simple conjugacy class. It generalizes in the obvious way for the orthogonal groups,

with the only stipulation for the D-series: the traces of matrix powers are not enough to fix

a class, and one needs one more condition on the invariants of G, see e.g. [1].

3 Quantum group U~
(
sp(2n)

)
Recall the definition of the quantum group U~

(
sp(2n)

)
, which is a deformation of the univer-

sal enveloping algebra U
(
sp(2n)

)
along the formal parameter ~ in the class of Hopf algebras,

[4]. Let R and R+ denote respectively the root system and the set of positive roots of the

Lie algebra g = sp(2n). Let Π+ = (α1, α1, . . . , αn) be the set of simple positive roots. We

also reserve special notation β for the long root αn. By ( . , . ) we designate the canonical

inner form on the linear span of Π+. The set Π+ can be conveniently expressed through an

orthogonal basis (εi)
n
i=1 by αi = εi − εi+1, i = 1, . . . , n− 1, β = 2εn.

The inner product establishes a linear isomorphism between the linear span CΠ+ and

its dual h. We define hλ ∈ h for every λ ∈ h∗ = CΠ+ as its image under this isomorphism:

µ(hλ) = (λ, µ) for all h ∈ h. In particular, we set hρ for the half-sum of all positive roots

ρ = 1
2

∑
α∈R+

α.
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The quantum group U~(g) is a C[[~]]-algebra generated by simple root vectors (Chevalley

generators) eµ, fµ, and the Cartan generators hµ ∈ h, µ ∈ Π+. The vector space h generate

the Cartan subalgebra U~(h) in U~(g), which commutes with the simple root vectors by the

rule

[hµ, eν ] = (µ, ν)eν , [hµ, fν ] = −(µ, ν)fν .

Note that only the following inner products here do not vanish:

(αi, αi) = 2, (αi−1, αi) = −1, (β, β) = 4, (β, αn−1) = −2,

where i takes all admissible values in the range 1, . . . , n− 1.

Positive and negative Chevalley generators commute to U~(h):

[eµ, fν ] = δµ,ν
qhµ − q−hµ
qµ − q−1

µ

, µ ∈ Π+,

where qµ = q = e~ for µ ̸= β and qβ = q2.

Non-adjacent positive Chevalley generators commute. Adjacent generators satisfy the

Serre relations

e2µeν − (q + q−1)eµeνeµ + eνe
2
µ = 0, for ν ̸= β,

e3µeβ − (q2 + 1 + q−2)e2µeβeαn−1 + (q2 + 1 + q−2)eµeβe
2
µ − eβe3µ = 0, for µ = αn−1.

Similar relations holds for the negative Chevalley generators fµ.

The Cartan involution ω : eµ ↔ fµ and ω(hµ) = −hµ, µ ∈ Π+, extends to an algebra

automorphism of U~(g)

The comultiplication ∆ and antipode γ are defined on the generators by

∆(hµ) = hµ ⊗ 1 + 1⊗ hµ, γ(hµ) = −hµ,

∆(eµ) = eµ ⊗ 1 + qhµ ⊗ eµ, γ(eµ) = −q−hµeµ,

∆(fµ) = fµ ⊗ q−hµ + 1⊗ fµ, γ(fµ) = −fµqhµ ,

for all µ ∈ Π+. The counit homomorphism ε : U~(g)→ C[[~]] annihilates eµ, fµ, hµ.
Besides the Cartan subalgebra U~(h), the quantum group U~(g) contains the following

Hopf subalgebras. The positive and negative Borel subalgebras U~(b
±) are generated over

U~(h) by {eµ}µ∈Π+ and {fµ}µ∈Π+ , respectively. For any root subsystem in R the associ-

ated Levi subalgebra U(l) is quantized to a Hopf algebra U~(l), along with the parabolic

subalgebras U~(p
±) generated by U~(b

±) over U~(l).

9



The quantum version of higher root vectors in g reads:

eµ = eνeσ − q(ν,σ)eνeσ, fµ = eσeν − q−(ν,σ)eσeν , ν, σ, µ = ν + σ ∈ R+.

The ordered sets (eµ)µ∈R+ ⊂ U~(b
+) and (fµ)µ∈R+ ⊂ U~(b

−) generate a Poincare-Birkgoff-

Witt basis over U~(h). Further on we redefine some root vectors to adapt them for our

needs.

The triangular decomposition g = n−l ⊕ l⊕ n+l gives rise to the triangular factorization

U~(g) = U~(n
−
l )U~(l)U~(n

+
l ), (3.9)

where U~(n
±
l ) are subalgebras in U~(b

±) generated by the positive or negative root vectors.

This factorization makes U~(g) a free U~(n
−
l ) − U~(n

+
l )-bimodule generated by U~(l). A

special case of this decomposition is relative to l = h, in which case we use the notation

U~(n
±) = U~(n

±
h ). Note that, contrary to the classical case, U~(n

±
l ) are not Hopf subalgebras

in U~(g).

We shall also deal with the Hopf subalgebra Uq(g) ⊂ U~(g) generated by the Chevalley

generators and the exponentials t±αi
= q±hαi , αi ∈ Π+. This algebra can be considered over

the ring C[q, q−1] and its extensions by fractions over the multiplicative system {ql − 1}l∈Z.
The other mentioned subalgebras of U~(g) have their counterparts in Uq(g), and we use the

subscript q for their notation. The roles of quantum groups U~(g) and Uq(g) are different in

what follows. While Uq(g) is a source of non-commutative functions on quantum geometric

spaces, U~(g) is a measure of their symmetry. This difference is somewhat camouflaged in

the classical geometry but becomes more distinctive in quantum.

4 Quantum subgroup U~
(
gl(n)

)
The quantum group U~

(
sp(2n)

)
contains quantum subgroup U~

(
gl(n)

)
with positive simple

roots (α1, . . . αn−1) ⊂ Π+. We need a few technical facts about this subalgebra, which we

use in the sequel.

Fix a pair of integers i < j < n and put µ = αi + . . .+ αj ∈ R+. Define the root vectors

fµ = [fαi
, . . . [fαj−1

, fαj
]q]q . . .]q, f̃µ = [fαi

, . . . [fαj−1
, fαj

]q−1 ]q−1 . . .]q−1 .

Here are some commutation relations involving these vectors.
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Lemma 4.1. Suppose positive integer i, j, and k are such that i < k < j. Then

[eαk
, fµ] = 0, [eαk

, f̃µ] = 0.

Further,

[eαi
, fµ] = fµ′q

−hαi , [eαj
, fµ] = −qfµ′′qhαj , [eαi

, f̃µ] = f̃µ′q
hαi , [eαj

, f̃µ] = −q−1f̃µ′′q
−hαj ,

where µ′ = αi+1 + . . .+ αj and µ
′′ = αi + . . .+ αj−1.

Proof. It is sufficient to check only the group of equalities involving fµ, as the other equalities

can be obtained by formal replacement q → q−1. Let us start with the special case j = i+2,

k = i+ 1:

[eαi+1
, fµ] ∼ [fαi

, [qhαi+1 − q−hαi+1 , fαi+2
]q]q ∼ [fαi

, fαi+2
q−hαi+1 ]q = [fαi

, fαi+2
]q−hαi+1 = 0.

The general case is verified in a similar way based on the formula fµ = [fµ1 , [fαk
, fµ2 ]q]q,

where the roots µ1, µ2 are determined by the decomposition µ = µ1 +αk + µ2. This formula

is an elementary corollary of the definition of fµ. Further,

[eαi
, fµ] = [

qhαi − q−hαi

q − q−1
, fµ′ ]q = −

1

q − q−1
[q−hαi , fµ′ ]q = fµ′q

−hαi ,

[eαj
, fµ] = [fµ′′ ,

qhαi − q−hαi

q − q−1
]q =

1

q − q−1
[fµ′′ , q

hαj ]q =
(1− q2)
q − q−1

fµ′′q
hαj = −qfµ′′qhαj ,

as required.

Lemma 4.2. Suppose µ = αi + . . . + αj and g is a monomial (word) in the simple root

vectors {fαk
}jk=i that contains fαi

and fαj
at most once. Then

1. [g, fµ] = 0 if both fαi
and fαj

enter g or none,

2. [g, fµ]q−1 = 0 if g contains only fαi
,

3. [g, fµ]q = 0 if g contains only fαj
.

In particular, [f̃µ, fµ] = 0, [f̃µ′ , fµ]q = 0, and [f̃µ′′ , fµ]q−1 = 0.

Proof. It is known that fαk
commutes with f̃γ if i < k < j, see e.g. [7]. Further, the higher

order Serre relations

fαi
fµ = fαi

[fi, fµ′ ]q = q−1[fi, fµ′ ]qfαi
= q−1fµfαi

,

fαj
fµ = fαj

[f ′′
µ , fj]q = q[f ′′

µ , fj]qfαj
= qfµfαj

.

in U~
(
gl(n)

)
readily imply the statement.
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5 Generalized Verma module Mλ

We need to set up a few conventions about representations of quantum groups. We assume

that they are free modules over the ring of scalars and their rank will be referred to as dimen-

sion. We call a Uq(g)-module irreducible if it is so for specialization at generic q. Similarly,

a U~(g)-module is called irreducible if it is irreducible over U(g) in the classical limit. As

Uq(g) and U~(g) have different Cartan subalgebras, their sets of weights are different. Still

we prefer to use additive language for Uq(g)-weights, which are then parameterized by the

assignment λ 7→ qλ.

We shall be dealing with weight modules of highest weights, i. e. containing a weight

vector v annihilated by positive Chevalley generators. Under our convention, all weights in

such modules belong to −ZΠ+ + λ, where λ is the highest weight. To construct represen-

tations of Uq(g) as a C[q, q−1]-algebra, we should include weights from ~−1h∗ ⊕ h∗ (the first

summand is defined up to 2πZ
√
−1

~ , and the second summand can be restricted to the integral

weight lattice). Of course, such modules need to be extended over Laurent series, in order

to facilitate the extension from Uq(g) to U~(g). However, we are eventually interested in

the algebra of endomorphisms of the regular parts, which can be shown to carry the action

of U~(h). With all this said, we shall understand by weight an element of the vector space

~−1h∗ ⊕ h∗.

Let L denote one of the two maximal Levi subgroups in K, which is

L = GL(n1)× . . .×GL(nℓ)×GL(m)× SP (2p)

for K as in (2.5). The difference between L and K is only one Cartesian factor GL(m) ⊂
SP (2m). By l we denote the Lie algebra of L. It is a reductive subalgebra in g of maximal

rank n.

By cl ⊂ h we denote the center of l. In the presence of inner product, we identify its dual

c∗l with a subspace in h∗. Any element λ ∈ ~−1c∗l ⊕c∗l defines a one-dimensional representation

of Uq(l) denoted by Cλ. This representation extends to Uq(p
+) by setting it trivial on the

subalgebra Uq(n
+
l ). Denote by M̂λ = Uq(g) ⊗Uq(p+) Cλ the parabolic Verma Uq(g)-module

induced from Cλ, [8]. We are interested in λ for which M̂λ admits a singular vector of weight

−δ + λ, where δ = 2αn−p + . . .+ 2αn−1 + β ∈ R+ (in the classical limit, the root vectors eδ

and fδ generate the isotropy subalgebra k, over l).

For the sake of technical convenience, we assume that ℓ = 0, m = 1, n = 1 + p. This

restriction will be relaxed later on. In this setting, the root α1 is distinguished, as fα1 is the

only negative Chevalley generator which does not kill v.
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Lemma 5.1. Put δ′ = α1 + 2α2 + . . . + 2αp + β. The subspace of weight −δ′ + λ in M̂λ is

spanned by the vector fα2
<. . . fαpfβfαp

>. . . fα2fα1v.

Proof. As all negative Chevalley generators but fα1 kill the highest weight vector, fα1 must

be next to v. Further, we conclude that all non-zero vectors should be combinations of

ϕσ = gσfαp
>. . . fα2fα1v with gσ = σ(fα2

<. . . fαpfβ), where σ is a permutation of the factors.

Suppose that fβ is not rightmost in gσ. Then ϕσ reads

. . . fαk
fαp

>. . . fα2fα1v = . . . fαk
fαk+1

fαk
>. . . fα1v ∼ . . . (f 2

αk
fαk+1

+ fαk+1
f 2
αk
)fαk−1

>. . . fα1v,

for some k > 1. In the last transition we have used the Serre relations. The first term in the

brackets disappears, because fαk+1
goes freely to the right, where it kills v. In the second

term, one factor from f 2
αk

percolates through fαk−1
to the right due to the Serre relations,

where it reaches v and annihilates it.

Thus, the permutation σ leaves fβ in the rightmost position in gσ. Suppose gσ =

. . . fαi
fαk

<. . . fαpfβ for some k = 2, . . . , p + 1 and i < k − 1 (we assume formally that

fαi
stands next to fβ if k = p+ 1). Then fαi

can be pushed through to the right of fβ, and

this situation has been already treated above. Thus, the factors in gσ are all ordered, and

the permutation σ is identical.

Finally, the vector of concern is not zero. Indeed, the subspace of weight −δ′ + λ in

M̂λ has the same dimension as the subspace of weight −δ′ in Uq(n−l ), which is exactly 1, by

virtue of the Poincaré-Birkgoff-Witt theorem.

Put γ = α1 + . . .+ αp, δ = 2γ + β and introduce the vector

fδ = [fγ, [f̃γ, fβ]q−2 ]q2 = [f̃γ, [fγ, fβ]q2 ]q−2 ,

were we use the standard notation [x, y]a for the combination xy − ayx in any associative

algebra and any scalar a. Remark that the right equality holds by virtue of Lemma 4.2.

Lemma 5.2. The vector fδ is presentable in the form

[fα1 , [fα2 , . . . [fαp , [fα1 , . . . [fαp−1 , [fαp , fβ]q2 ]q . . .]q]q−1 . . .]q−1 ]q−2 .

Proof. First of al, remark that p internal commutators amount to [fγ, fβ]q2 . Further, fix

i = 2, . . . , p+1 and define the root ν from the equality γ = ν +αi+ . . . αp (if i = p+1 then

ν is simply γ.) Suppose we have proved that fδ is presentable in the form [[fν , fαi
]q−1 , z]q−2 ,

where z = [fαi+1
, . . . [fαp , [fγ, fβ]q2 ]q−1 . . .]q−1 . In particular, this is true for i = p + 1. The
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vector fν commutes with everything in z but fγ. All Chevalley generators constituting fν

excepting fα1 commute with fγ, and fα1 enters fν exactly once. Applying Lemma 4.2, we

conclude that [fν , z]q−1 = 0. Using the ”Jacobi identity”

[x, [y, z]a]b = [[x, y]c, z]ab
c
+ c[y, [x, z] b

c
]a
c
, (5.10)

which holds true in any associative algebra for any a, b and invertible c, we write

[fν , [fαi
, z]q−1 , ]q−2 = [[fν , fαi

]q−1 , z]q−2 + q−1[[fν , fαi
]q−1 , z]

for a = c = q−1, b = q−2. The second term vanishes, and we come to the equality

[[fν , fαi
]q−1 , z]q−2 = [fν , [fαi

, z]q−1 , ]q−2 . Descending induction on i = p + 1, . . . , 2 completes

the proof.

Now we lift the assumption ℓ = 0, m = 1 and work out the case of general k and l:

k = gl(n1)⊕ . . .⊕ gl(nℓ)⊕ sp(2m)⊕ sp(2p), l = gl(n1)⊕ . . .⊕ gl(nℓ)⊕ gl(m)⊕ sp(2p).

Consider the subalgebra Uq
(
sp(2+2p)

)
⊂ Uq(g) with the positive simple roots (αn−p, . . . αn).

The root vectors fγ, f̃γ, fδ ∈ Uq
(
sp(2 + 2p)

)
are carried to Uq(g), where we use the same

notation for them. This relates the case ℓ = 0, m = 1 to the general setting. The root αn−p

plays the same role as α1 in the symmetric case with m = 1. We will denote it by α when

we wish to emphasize the global meaning of formulas with it.

Proposition 5.3. Suppose that q2(λ,α) = −q−2p. Then fδv is a singular vector in M̂λ.

Proof. To begin with, return to the symmetric case ℓ = 0 with m = 1. Further, as the case

p = 1 have been studied in [2], we assume p > 1.

Applying eβ to fδv we obtain, up a non-zero scalar factor,

[fγ, [f̃γ, q
hβ − q−hβ ]q−2 ]q2 ∼ [fγ, [f̃γ, q

−hβ ]q−2 ]q2 ∼ [fγ, f̃γq
−hβ ]q2 = [fγ, f̃γq

−hβ ]q2 = [fγ, f̃γ]q
−hβ .

The last commutator is zero, by Lemma 4.2. If 1 < i < n − 1, then eαi
commutes with fγ

and f̃γ by Lemma 4.1, and hence with [fγ, [f̃γ, fβ]q−2 ]q2 . It is therefore annihilates fδv. Thus,

we only need to check that fδv is annihilated by eα = eα1 and eαp = eαn−1 .

The action of eαp is considered in the following two cases: p = 2 and p > 2. Using

[eαp , fγ] = −qfγ′′qhαp , [eαp , f̃γ] = −q−1f̃γ′′q
−hαp

we get

q[fγ′′q
hαp , [f̃γ, fβ]q−2 ]q2 + q−1[fγ, [f̃γ′′q

−hαp , fβ]q−2 ]q2 .
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The second term disappears, because [f̃γ′′q
−hαp , fβ]q−2 ∼ [f̃γ′′ , fβ]q

−hαp=0. Let us check that

the first term vanishes too.

Suppose first that p = 2. Then the first term is proportional to

[fαp−1q
hαp , [f̃γ, fβ]q−2 ]q2 = q[fαp−1 , [f̃γ, fβ]q−2 ]qq

hαp = q[[fαp−1 , f̃γ]q, fβ]q−2qhαp = 0,

as [fαp−1 , f̃γ]q = 0.

If p > 2, we present fδ as fδ = [f̃ν , [fαp−1 , [fαp , [fγ, fβ]q2 ]q−1 ]q−1 ]q−2 , where the ν =

γ − αp−1 − αp. Then [eαp , fδ] (as we saw, we can focus only on commutation with f̃γ)

is proportional to

[f̃ν , [fαp−1 , [q
hαp − q−hαp , [fγ, fβ]q2 ]q−1 ]q−1 ]q−2 = [f̃ν , [fαp−1 , [q

hαp , [fγ, fβ]q2 ]q−1 ]q−1 ]q−2 = 0,

because

[fαp−1 , [q
hαp , [fγ, fβ]q2 ]q−1 ]q−1 ∼ [fαp−1 , [fγ, fβ]q2q

hαp ]q−1 = [fαp−1 , [fγ, fβ]q2 ]q
hαp = 0.

Thus we have shown that fδv is annihilated by eαi
∈ Uq

(
sp(2p)

)
⊂ Uq(g). Next we check

that it is killed by eα1 .

Based on Lemma 4.1, we find eαfδv to be equal to

[fγ′q
−hα1 , [f̃γ, fβ]q−2 ]q2v + [fγ, [f̃γ′q

hα1 , fβ]q−2 ]q2v =

= q1−(α,λ)[fγ′ , [f̃γ, fβ]q−2 ]qv + q(α,λ)[fγ, [f̃γ′ , fβ]q−2 ]qv.

With the help of Lemma 5.1, we develop the commutators in fδ and find eαfδv proportional

to

(q1−(α,λ)q−2−p+1 + q(α,λ)+p)fα2
<. . . fαpfβfαp

>. . . fα2fαv.

It turns zero if and only if q2(α,λ) = −q−2p. This completes the proof for ℓ = 0, m = 1.

The vector fδv ∈ M̂λ has been shown to be singular with respect to the cental block

subalgebra Uq
(
sp(2 + 2p)

)
. Therefore it is singular with respect to entire Uq(g), as the

negative root vectors participating in fδ all commute with the complementary positive root

vectors.

Proposition 5.4. The singular vector fδv is a linear combination of vectors

fαi
<. . . fαn−1fβfαi−1

>. . . fαfαn−1
>. . . fαv, i = n− p+ 1, . . . , n.
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Proof. Directly follows from the definition fδ = [fγ, [f̃γ, fβ]q−2 ]q2 .

We need to define certain weight subspaces in order to formalize further presentation. Let

c∗l,reg denote the set of all weights in c∗l that cannot be extended to characters of any reductive

subalgebra in g containing l. We denote by c∗k the subset in c∗l such that q2(α,λ) = −1 for

λ ∈ ~−1c∗k ; its intersection with c∗l,reg is designated by c∗k,reg. It follows that c
∗
k is an affine space

whose associated vector space is c∗
l̂
, where l̂ ⊃ l is the Levi subalgebra ⊕ℓi=1gl(ni)⊕ sp(2m+

2p). Finally, we denote by C∗
k and C∗

k,reg the vector subspace in respectively ~−1c∗k ⊕ c∗l and

~−1c∗k,reg ⊕ c∗l of weights λ satisfying q2(α,λ) = −q−2p.

Definition 5.5. Assuming λ ∈ C∗
k , we denote by Mλ the quotient of the parabolic Verma

module M̂λ by the submodule generated by fδv.

The weight subspaces introduced above can be explicitly described as follows. Introduce

ℓ+ 2 weights Ei ∈ h∗ by setting

E1 = ε1 + . . .+ εn1 , E2 = εn1+1 + . . .+ εn1+n2 , . . . , Eℓ+2 = εn−p+1 + . . .+ εn.

Then c∗l is formed by
∑ℓ+1

i=1 ΛiEi with complex coefficients Λi, whilst c∗
l̂
assumes zero Λℓ+1.

The subset c∗l,reg consists of combinations with pairwise distinct Λi ̸= 0. The subset c∗k is

characterized in c∗l by the condition Λℓ+1 =
√
−1 π
2

. Then we can write C∗
k = ~−1c∗k +c∗

l̂
−pEℓ+1

and C∗
k,reg = ~−1c∗k,reg + c∗

l̂
− pEℓ+1.

6 Module C2n ⊗Mλ: the symmetric case

In this section we set ℓ = 0 and work with the Levi subalgebra Uq
(
gl(m)

)
⊗ Uq

(
sp(2p)

)
,

m+ p = n. In this setting, the distinguished root α is αn−p = αm. It is the scraped root of

the Dynkin diagram of g, which complement is the Dynkin diagram of (semi-simple part of)

l.

Consider the defining vector representation of Uq
(
sp(2n)

)
in C2n and denote by (wi)

2n
i=1 ⊂

C2n, the standard basis carrying weights (ε1, . . . εn, −εn, . . . ,−ε1). In this basis, the matrices

assigned to the generators of Uq
(
sp(2n)

)
are constant (independent of q) and coincide with

the representation of U
(
sp(2n)

)
in the classical limit q → 1.

For generic weight λ ∈ C∗
l,reg, the tensor product C2n ⊗ M̂λ is the direct sum of three

submodules of weights ν1 = ε1 + λ, ν2 = εm+1 + λ, ν3 = εn+p+1 + λ. We aim at proving

the direct sum decomposition C2n⊗Mλ =M1⊕M2, where Mi are submodules in C2n⊗Mλ

of highest weights νi. We begin with finding singular vectors uνi generating submodules
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M̂i ⊂ C2n ⊗ M̂λ of weights νi, i = 1, 2. Obviously uν1 = w1 ⊗ v. The singular vector uν3 is

not interesting for us, as it drops from C2n ⊗Mλ. This effect is studied in detail in [2] for

the simplest case g = sp(4).

Lemma 6.1. The vector

q(α,λ) − q−(α,λ)

q − q−1
wm+1 ⊗ v + (−q)−1wm ⊗ fαmv + . . .+ (−q)−mw1 ⊗ fα1

<. . . fαmv, (6.11)

is singular of weight εm+1 + λ.

Proof. Straightforward.

Further we develop a diagram technique which will help us study the module C2n ⊗Mλ.

Introduce the monomials by ψi = fαi
<. . . fαm ∈ Uq(n−), i = 1, . . . ,m. In these terms, the

singular vector uν2 reads

q(α,λ) − q−(α,λ)

q − q−1
wm+1 ⊗ v +

m∑
i=1

(−q)i−m−1wi ⊗ ψiv.

The defining representation restricted to the Levi subalgebra splits C2n into three irreducible

sub-representations, C2n = Cm ⊕C2p ⊕Cm. The action of fα1 , . . . , fαm on the highest block

Cm ⊗Mλ can be conveniently illustrated by the triangular diagram

D0

fα1 fα2 fα3 fαm−1 fαm

w1⊗ψ1v ← w1⊗ψ2v ← w1⊗ψ3v ← ... ← w1⊗ψmv ← w1⊗v

↓ ↓ ↓ ↓ fα1

w2⊗ψ2v ← w2⊗ψ3v ← ... ← w2⊗ψmv ← w2⊗v

↓ ↓ ↓ fα2

w3⊗ψ3v ← ... ... ...

. . . ↓ ↓ ↓ fαm−2

wm−1⊗ψm−1v ← wm−1⊗ψmv ← wm−1⊗v

↓ ↓ fαm−1

wm⊗ψmv ← wm⊗v

↓ fαm

wm+1⊗v

The nodes on the diagram designate one dimensional subspaces in Cm ⊗Mλ spanned by

the corresponding vectors. The horizontal arrows symbolize the action of the Chevalley
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generators on the Mλ-tensor factor while vertical arrows on the Cm-tensor factor. The

horizonal give the action on the whole Cm ⊗Mλ when it is distinct from the vertical arrow.

When both arrows applied to a node coincide, the corresponding generator sends the node to

the two dimensional space spanned by the nodes down and on the left. In the given diagram,

this is exactly the m-th diagonal (above the principal). Note that rightmost arrows but fαm

amount to the action on Cm ⊗Mλ, as they kill v.

It is easy to see that the sub-triangle above the principal diagonal belongs to M1. It is

so for the rightmost column, which elements are obtained from w1⊗ v through the sequence

of vertical arrows. The following induction on the column number proves it for the entire

sub-triangle. Suppose it is checked for some column. Then all nodes in it except for the

lowest are sent by the horizontal arrow leftward plus maybe to a node downward, which

lies in M1 by induction assumption. For the illustration, see the diagram in the proof of

Theorem 6.3.

Applying fαi
to wi ⊗ ψi+1v ∈M1 (which lies on the diagonal of the sub-triangle) gives

wi ⊗ ψiv + wi+1 ⊗ q−1ψi+1v, i < m, wm ⊗ ψmv + wm+1 ⊗ q−(αm,λ)v, i = m. (6.12)

From this we derive

Lemma 6.2. The singular vector (6.11) is equal to q−mq(α,λ)+m−q−(α,λ)−m

q−q−1 wm+1 ⊗ v modulo

M1.

Proof. All entries above the main diagonal of the diagram D0 belong toM1. Formulas (6.12)

imply that wi⊗ψiv = −q−1wi+1⊗ψi+1v moduloM1, for i 6 m, if we set ψm+1 = 1. Therefore

wi⊗ψiv = −(−q)i−mq−(α,λ)wm+1⊗v moduloM1, for i = 1, . . . ,m. Hence the singular vector

equals (q(α,λ) − q−(α,λ)

q − q−1
+ q−(α,λ)−1

m−1∑
i=0

q2(i−m)
)
wm+1 ⊗ v mod M1.

This implies the statement immediately.

We have studied the action of the Chevalley generators on the highest block Cm⊗Mλ of

the tensor product C2n ⊗Mλ. Next we move further down through the block C2p ⊗Mλ in

order to reach the vector wn+p+1 ⊗ v of weight ν3. For generic λ, it is proportional to the

singular vector uν3 , modulo M̂1 + M̂2. We will show that wn+p+1⊗ v ∈M1 +M2 for λ ∈ C∗
k .

This is the key step in proving the direct decomposition C2n ⊗Mλ =M1 ⊕M2.

To that end, we need to develop further the diagrammatic technique used above. Intro-

duce monomials ϕi ∈ Uq(n−), i = 1, . . . , p + 1, of degree 2p + 1 by the formulas (recall that
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m = n− p in this section)

ϕi := (fαm+i−1
<. . . fαn−1fβfαm+i−2

>. . . fαm)(fαn−1
>. . . fαm), i = 1, . . . , p+ 1.

According to Proposition 5.4, the root vector fδ can be written as a linear combination of

ϕi.

Denote by f li , l = 1, . . . , 2p + 1, the l-th factor in ϕi counting from the right. If follows

that f li = fαl+m−1
for 1 6 l 6 p and all i. Thus, every i corresponds to a reordering of the

leftmost n−m terms of the sequence

fαm , . . . , fαn−1 , fβ, fαn−1 , . . . , fαm . (6.13)

Denote by ϕli the product f
l
i

>. . . f 1
i for all l = 1, . . . , 2p+1. In particular, ϕli = fαl−1+m

>. . . fαm

for all 1 6 l 6 p, and ϕ2p−1
i = ϕi. It is also convenient to put ϕ0

i := 1 for all i.

With every i = 1, . . . , p+ 1, we associate a diagram Di of p+ 1 rows if i > 1 and 2p+ 2

rows if i = 1. The lengths of the rows vary from 2p + 2 to 1 in D1 and to p + 2 if i > 1,

from top to bottom. The rows are leveled on the right, so D1 is a full triangle and Di are

trapezoids for i > 1. In fact, Di can be extended further down to triangular diagrams as

D1, but we need only first p+ 1 rows in them.

The rightmost column is formed by the vectors wm+l−1⊗ v, where l runs from 1 to p+1

if i > 1 and to 2p + 2 in D1. The intersection of l-th row and j-th column is the vector

wm+l−1 ⊗ ϕj−1
i v. As before, the nodes of the diagrams span one-dimensional subspaces in

C2n ⊗Mλ and the arrows designate the action of negative Chevalley generators: horizontal

on the Mλ-factors and vertical on the C2n-factors. When the vertical and horizontal arrows

are distinct, the horizontal arrow gives the action on entire C2n⊗Mλ, otherwise the node is

sent to the span of the two nodes: next down and next to the left.

In all diagrams the vertical arrow applied to the j-th row is labeled with f j1 , i.e. the

j-th term of the sequence (6.13) from the right. The horizontal arrows form the reordered

sequence (6.13) making up ϕi.

Di, i > 1

f2p+1
i f2pi . . . fpi . . . f1i

wm⊗ϕ2p+1
i v ← wm⊗ϕ2pi v ← wm⊗v

↓ ↓ f11

wm+1⊗ϕ2pi v ←
. . .

...

↓ ↓ fp1

wm+p⊗ϕm+p+1
i v ← . . . ← wm+p⊗v
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D1

f2p+1
1 f2p1 . . . f21 f11

wm⊗ϕ2p+1
1 v ← wm⊗ϕ2p1 v

↓ f11

wm+1⊗ϕ2p1 v ←
...

↓ f2p−1
1

wn+p−1⊗ϕ21v ← wn+p−1⊗ϕ11v

↓ f2p1

wn+p⊗ϕ11v ← wn+p⊗v

↓ f2p+1
1

wn+p+1⊗v

We present the diagrams D1, D2, D3 in Appendix, in order to illustrate the formalism in

the case m = 1, p = 2, n = 3.

Theorem 6.3. Suppose that q−2p+2m ̸= −1. Then the Uq(g)-module C2n⊗Mλ is isomorphic

to the direct sum M1 ⊕M2.

Proof. Obviously, the modules M1 and M2 have zero intersection, as they carry different

eigenvalues of the invariant matrix Q, see Section 8. We must show that the sum M =

M1⊕M2 exhausts all C2n⊗Mλ. To that end, it is sufficient to show that C2n⊗ v lies in M .

The symbol ≡ below will mean ≡ mod M .

First of all, it follows from the proof of Lemma 6.1 that wi⊗ v ∈M1 for i = 1, . . .m. By

Lemma 6.2, the vector wm+1 ⊗ v belongs to M if q2(α,λ)+2m = −q−2p+2m ̸= 1. This implies

wl ⊗ v ∈M for l = m+ 2, . . . n+ p, by the analysis of the diagram D1, see below.

The crucial step is to show that wn+p+1 ⊗ v ∈M . In the diagram D1 the triangle above

the principal diagonal lies in M1 +M2. This is checked by induction on column number

as for the diagram D0 above. The left diagram below displays schematically the induction

transition.

20



D1

@
@

@
@
@
@

@
@
@
@

@
@
@
@
@

@
@
@@

?
�

�

Di, i > 1

@
@

@
@@�

�
f p+1
i

The only nodes in question are on the main diagonal, which are wm+l ⊗ ϕ2p+1−l
1 v, l =

0, . . . , 2p+ 1. Applying the arrows to the diagonal of sub-triangle we get

a1wm ⊗ ϕ2p+1
1 v + wm+1 ⊗ ϕ2p

1 v ≡ 0, . . . , a2p+1wn+p ⊗ ϕ1
1v + wn+p+1 ⊗ ϕ0

1v ≡ 0,

where ai ̸= 0 are non-zero scalars. Thus, all the diagonal terms are proportional, modulo

M .

Now turn to the diagram Di, i = 2, . . . , p + 1, see the right diagram above. As was

mentioned, the square of size p+1 on the right is the same as in D1 and therefore belongs to

M . If we extend the diagram further down, we shall have f p+1
1 ̸= fp+1

i , therefore the operator

f p+1
i is sending the bottom node in p + 1-the column to bottom node in the p + 2-th. This

implies that the entire rectangle supported on the bottom line of Di belongs toM . A simple

induction proves that the p + 1 × p + 1-triangular left part of Di also belongs to M . In

particular, the vertex node wm ⊗ ϕ2p+1
i lies in M1.

Summing up the equality a1wm ⊗ ϕ2p+1
1 v + wm+1 ⊗ ϕ2p

1 v ≡ 0 and the equalities wm ⊗
ϕ2p+1
i v ≡ 0 for i = 2, . . . , 2p + 1 with appropriate coefficients, we replace wm ⊗ ϕ2p+1

1 v with

wm ⊗ fδv, which belongs to M . Hence wm+1 ⊗ ϕ2p
1 v ≡ 0, and moving down the diagonal we

eventually find wn+p+1 ⊗ v ≡ 0.

To complete the proof, we must check that wj ⊗ v ∈ M for j > n+ p+ 1. This readily

follows from the action fαm−i
(w2n−m+i ⊗ v) = −w2n−m+i+1 ⊗ v, i = 1, . . . ,m − 1. Thus,

C2n ⊗ v is contained in M , and therefore M = C2n ⊗Mλ.

The direct sum decomposition is a strong property and hard to prove for general k. For

our purposes, it is possible to relax it and consider an increasing filtration, which construction

is easier. Now we rephrase the above result for the symmetric case in this milder setting,

which will be a part of construction for general k further on.

Set V1 = M1 to be the Uq(g)-module generated by w1 ⊗ v and denote by V2 the Uq(g)-

module generated by {w1 ⊗ v, wm+1 ⊗ v}. Thus, V1 ⊂ V2. While wm+1 ⊗ v is not a singular
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vector, it is so modulo V1. Identified with its projection to V2/V1 ≃M2, it is a highest weight

vector in the quotient V2/V1.

Proposition 6.4. The module V2 coincides with C2n ⊗Mλ, and V2/V1 ≃M2.

Proof. Using similar reasoning as in the proof of Theorem 6.3, we show that C2n ⊗ v and

hence C2n ⊗Mλ lies in V2. The only difference is that the inclusion wm+1 ⊗ v ⊂ V2 holds

now by the very construction, and this is a simplification.

7 Module C2n ⊗Mλ: general case

For general Levi subalgebra l, the vector space C2n is decomposed in the direct sum of

irreducible l-submodules

C2n = W1 ⊕ . . .⊕Wℓ+1 ⊕Wℓ+2 ⊕Wℓ+3 ⊕ . . .⊕W2ℓ+3

of dimensions n1, . . . , nℓ, p, 2m, p, nℓ, . . . , n1. The highest weights νi of the blocks are

ε1, εn1+1, . . . , εn1+...+nℓ+1, εn1+...+nℓ+m+1, −εn1+...+nℓ+m, −εn1+...+nℓ
, . . . ,−εn1 . (7.14)

The highest weight vectors wνi , i = 1, . . . , 2ℓ+ 3, belong to the standard basis in C2n.

For generic weight λ ∈ c∗l,reg this decomposition induces decomposition

C2n ⊗ M̂λ = ⊕2ℓ+3
i=1 M̂i (7.15)

of Uq(g)-submodules. The blocks are generated by singular vectors of weights νi + λ, where

νi are given by (7.14).

Under the transition to the subalgebra k ⊂ l, the l-modules Wℓ+1 and Wℓ+3 are merged

into a single irreducible k-module. The other l-modules Wi remain so with respect to k.

Denote by Mi the images of M̂i under the projection C2n⊗ M̂λ → C2n⊗Mλ. One should

expect that M̂ℓ+3 is annihilated by the projection, and decomposition (7.15) turns into

C2n ⊗Mλ =M1 ⊕ . . .⊕Mℓ+1 ⊕Mℓ+2 ⊕Mℓ+4 ⊕ . . .⊕M2ℓ+3.

However, this is not an easy thing to prove in the general case. On the other hand, it is

sufficient for our purposes to replace the direct sum with a suitable filtration, which is much

easier.

Denote by Vj the submodule in C2n ⊗Mλ generated by {wνi ⊗ v}i=1,...,j assuming j =

1, . . . , 2ℓ+ 3. We have the obvious inclusion Vi−1 ⊂ Vi. It is convenient to set V0 = {0}.
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Proposition 7.1. The submodules {0} = V0 ⊂ V1 ⊂ . . . ⊂ V2ℓ+3 form an ascending filtration

of C2n ⊗Mλ. For each k = 1, . . . 2ℓ + 3, the graded component Vk/Vk−1 is either {0} or it

is generated by (the image of) wνk ⊗ v, which is the highest weight vector in Vk/Vk−1. In

particular, Vℓ+2 = Vℓ+3.

Proof. We will show that ⊕ki=1Wi ⊗ v ⊂ Vk meaning C2n ⊗ v ⊂ V2ℓ+3 for k = 2ℓ + 3. This

will imply that eα(wνk ⊗ v) = 0 mod Vk−1, i.e. wνj ⊗ v is a singular vector in Vk−1/Vk if not

zero. Since Vk−1/Vk is generated by wνk ⊗ v, it is the highest weight vector. This will imply

C2n ⊗ v ⊂ V2ℓ+3 and V2ℓ+3 = C2n ⊗ v ⊂Mλ.

Thus, our next goal is to prove thatWj⊗v ⊂ Vj. This is true for j = 0 if we setW0 = {0}.
Suppose we have done this for some j > 0. By construction, wνj+1

⊗v ∈ Vj+1. Consecutively

applying the negative Chevalley generators from the appropriate block of Uq(l) we conclude

that Wνj+1
⊗ v ⊂ Vj+1. Induction on j proves Wj ⊗ v ⊂ Vj for all j.

Finally, the equality Vl+2 = Vl+3 follows from Wl+3⊗v ⊂ Vl+2, and this boils down to the

symmetric case studied in Proposition 6.4: it is sufficient to apply the negative Chevalley

generators corresponding to the centered block sp(2 + 2p) ⊂ sp(2n) to wn−p ⊗ v ∈ Vl+2 in

order to get wn+p+1⊗v. The latter generates Vl+3 modulo Vl+2 This completes the proof.

Remark that for our purposes we need not prove that Vi ̸= Vi+1 for i other than ℓ+ 2.

8 The matrix of quantum coordinate functions

The classical description of semi-simple conjugacy classes is formulated in terms of operations

(multiplication, transposition, trace functional) with the matrix A of coordinate functions

on End(C2n). The matrix A is G-invariant, and its entries generate the polynomial algebra

of the class. A similar description of the quantum conjugacy classes involves a matrix A

with non-commutative entries or its image Q ∈ End(C2n)⊗Uq(g), which should be regarded

as ”restriction” of A to the quantum group Gq. In this section we study algebraic properties

of Q.
The operator Q is defined through the universal R-matrix of U~(g), which is an invertible

element of (completed) tensor square of U~(g), conventionally denoted by R:

Q = (π ⊗ id)(R12R) ∈ End(C2n)⊗ Uq(g).

Regarded as an operator on C2n ⊗ M̂λ, it satisfies a polynomial equation with the roots

q2(λ+ρ,ν)−2(ρ,ε1) = q2(λ,ν)+2(ρ,ν−ε1),
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where ν are the highest weights of the irreducible l-submodules in C2n.

Assuming λ ∈ C∗
l,reg, put Λi = (λ, εn1+...+ni−1+1) = (λ, εn1+...+ni

) for i = 1, . . . ℓ+ 2 (recall

that nℓ+1 = m and nℓ+2 = p). The weight λ depends on the parameters (Λi) with Λℓ+2 = 0.

Define the vector µ by

µi = q2Λi−2(n1+...+ni−1), i = 1, . . . , ℓ+ 2. (8.16)

The eigenvalues of Q on End(C2n ⊗ M̂λ) are expressed through µ by

µi, µ−1
i q−4n+2(ni−1), i = 1, . . . ℓ+ 1, µℓ+2. (8.17)

We call a weight λ ∈ C∗
k,reg admissible if the vector µ belongs to M̂K modulo ~. Recall

that M̂K parameterizes the moduli spaceMK of classes with given K. By definition, this

property is determined by the meromorphic part ~−1c∗k,reg ⊂ C∗
k,reg. Clearly admissible weights

are dense in C∗
k,reg.

Proposition 8.1. For admissible λ ∈ C∗
k,reg the operator Q satisfies a polynomial equation

of degree 2ℓ+ 2 on C2n ⊗Mλ with the roots

µi, µ−1
i q−4n+2(ni−1), i = 1, . . . ℓ, µℓ+1, µℓ+2. (8.18)

Proof. The proof is based on the following fact: a linear operator in a complex vector space

is semi-simple if and only if it satisfies a polynomial equation with simple roots.

It is known that Q satisfies on C2n ⊗ M̂λ a polynomial equation of degree 2ℓ + 3 with

2ℓ + 3 roots (8.17), see [1]. Its eigenvalues are pairwise distinct in the classical level, apart

from limq→1 µℓ+1 = limq→1 µ
−1
ℓ+1q

−4n+2(m−1), which are equal to −1. However, for q ̸= 1 this

coincidence is no longer the case, and the eigenvalues (8.16) become pairwise distinct for q in

a neighborhood of 1: ”quantization eliminates degeneration”. This implies that Q is semi-

simple on C2n ⊗ M̂λ for all q close to 1 and hence for generic q. Therefore it is semi-simple

on the quotient C2n⊗Mλ, where µ
−1
ℓ+1q

−4n+2(m−1) is no longer its eigenvalue, by Proposition

7.1. This proves the proposition for generic q and therefore for all q.

The matrix Q produces the center of U~(g) via the q-trace construction. Recall that for

any invariant matrix X ∈ End(C2n)⊗A with the entries in a U~(g)-module A one can define

an invariant element

Trq(X) := Tr
(
q2hρX

)
∈ A. (8.19)

This construction, when applied X = Qk, k ∈ Z+, gives a series of elements of U~(g) that

are invariant under adjoint representation and hence central. First 2n traces generate the
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center, which is isomorphic to a polynomial algebra in n elements. We will use the shortcut

notation τk for Trq(Qk), k ∈ Z+.

A moduleM of highest weight λ defines a one dimensional representation χλ of the center

of U~(g), which assigns a scalar to each τℓ:

χλ(τk) =
∑
ν

q2k(λ+ρ,ν)−2k(ρ,ν1)
∏
α∈R+

q(λ+ν+ρ,α) − q−(λ+ν+ρ,α)

q(λ+ρ,α) − q−(λ+ρ,α)
, (8.20)

where the summation is taken over weights ν ∈ {±εj}nj=1 of the module C2n. Restriction

of λ to C∗
k,reg makes the right hand side a function of µ defined in (8.16). We denote this

function by ϑkn,q(µ), where n = (n1, . . . , nℓ,m, p) is the integer valued vector of multiplicities.

In the limit ~ → 0 the function ϑkn,q(µ) goes over into the right hand side of (2.7), where

µi = limh→0 q
2(λ,νi) with νi being the highest weights of the k-submodules in the upper part

Cn+p ⊂ C2n.

9 Quantum conjugacy classes of non-Levi type

By quantization of a commutative C-algebra A we understand a C[[~]]-algebra A~, which is

free as a C[[~]]-module and A~/~A~ ≃ A as a C-algebra. Note that we do not require ~-adic
completion because algebras of our interest are direct sums of U~(g)-submodules, which we

prefer to preserve under quantization. Below we describe the quantization of C[G] along the

Poisson bracket (2.4).

Recall from [9] that the image of the universal R-matrix of the quantum group U~(g) in

the defining representation is equal, up to a scalar factor, to

R =
2n∑
i,j=1

qδij−δij′eii ⊗ ejj + (q − q−1)
2n∑

i,j=1
i>j

(eij ⊗ eji − qρi−ρjϵiϵjeij ⊗ ei′j′),

where ρi = −ρi′ = (ρ, εi) = n+ 1− i for i = 1, . . . n.

Denote by S the U~(g)-invariant quantum permutation PR ∈ End(C2n) ⊗ End(C2n),

where P is the ordinary flip of C2n ⊗ C2n. This matrix has three invariant projectors to

its eigenspaces, among which there is a one-dimensional projector κ to the trivial U~(g)-

submodule, proportional to
∑2n

i,j=1 q
ρi−ρjϵiϵjei′j ⊗ eij′ .

Denote by C~[G] the associative algebra generated by the entries of a matrix A =

||Aij||2ni,j=1 ∈ End(C2n)⊗ C~[G] modulo the relations

S12A2S12A2 = A2S12A2S12, A2S12A2κ = −q−2n−1κ = κA2S12A2. (9.21)
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These relations are understood in End(C2n)⊗End(C2n)⊗C~[G], and the indices distinguish

the two copies of End(C2n), in the usual way. Note that the factor −q−2n−1 before κ is

missing in [1]. Due to dilation symmetry of the left equation, this factor can be taken

arbitrary for C~[G], however it is fixed by the correspondence Aij 7→ Qij, below.
The algebra C~[G] is a quantization of C[G], [10], which is different from the RTT -

quantization and not a Hopf algebra. It carries a U~(g)-action being a deformation of the

conjugation action of U(g) on C[G]. This action can be characterized by the requirements

that A commutes with (π ⊗ id) ◦∆U~(g) in the tensor product End(C2n) ⊗ C~[G] o U~(g),

where π : U~(g) → End(C2n) is the defining representation. It is important that C~[G] can

be realized as a U~(g)-invariant subalgebra in U~(g) (and even in Uq(g)), where the latter is

regarded as the adjoint module. The embedding is implemented by the assignment

A 7→ (π ⊗ id)(R21R) = Q ∈ End(C2n)⊗ U~(g).

The following properties of C~[G] will be of importance. Denote by I~(G) ⊂ C~[G] the

subalgebra of U~(g)-invariants. It coincides with the center of C~[G] and generated by the q-

traces Trq(A
l), l = 1, . . . 2n, which go over to τl under the embedding to U~(g). Not all traces

are independent, as I~(G) is a polynomial algebra in n variables, but that is immaterial for

our presentation.

The algebra C~[G] is freely generated over I~(G) by a U~(g)-module whose isotypic com-

ponents are finite dimensional, [10]. This is a quantum version of the Kostant-Richardson

theorem, see [10].

Our approach to quantization is based on the following strategy that is similar to [1].

Suppose we have constructed two U~(g)-algebras S~ and T~ along with an equivariant ho-

momorphism φ : S~ → T~ possessing the following properties. 1) all isotypic components in

S~ are C[[~]]-finite, 2) T~ has no ~-torsion (multiplication by ~ has zero kernel), 3) there is

an ideal J~ ⊂ kerφ such that the image J ♭0 of J0 = J~/~J~ in S0 = S~/~S~ is a maximal g

invariant ideal in S0, 4) S0 is commutative. Then a) the kernel of φ coincides with J~, b)

φ(S~) is a quantization of the algebra S0/J
♭
0. Remark that if S0 is the coordinate ring of a

g-variety, maximal proper g-invariant ideals are exactly the radical ideals of orbits in it.

In our situation, T~ = End(Mλ) is the algebra of linear endomorphisms of the Uq(g)

module Mλ and S~ is the quotient of C~[G] by the central ideal annihilated in Mλ. Note

that we cannot take simply C~[G] for S~, because isotopic components of C~[G] are not

finite due to large center I~(G). However, the quantum Richardson theorem allows us to

use the aforementioned quotient. Explicitly the central ideal is generated by the relations
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(8.20). The homomorphism φ is the composition of the embedding C~[G]→ Uq(g) and the

representation homomorphism Uq(g) → End(Mλ). The defining ideal of a class in G is a

maximal G-invariant proper ideal in C[G], therefore its projection to S0 will be maximal G-

invariant proper ideal too. Thus, to construct quantization, it is sufficient to check that the

φ annihilates an ideal that turns into the defining ideal of the class in the classical limit. As

the kernel of central character is factored out in S~, this reduces to checking the polynomial

equation on Q. That is already done in Proposition 8.1.

There is a subtle issue about the action of U~(g) as mentioned in Section 5. The quantum

group U~(g) cannot act on the Uq(g)-module Mλ because the operators from h are irregular

in ~ for admissible λ ∈ C∗
k,reg. We have to extend Mλ by the Laurent series, to incorporate

the action of U~(g). The subalgebra of endomorphisms of the regular part of this extended

module is U~(g)-invariant, and it is that subalgebra where we represent C~[G].

Theorem 9.1. Suppose that λ = C∗
k,reg is admissible, and let µ be as explained in (8.16).

The quotient of C~[G] by the ideal of relations

ℓ∏
i=1

(Q− µi)× (Q− µℓ+1)(Q− µℓ+2)×
ℓ∏
i=1

(Q− µ−1
i q−4n+2(ni−1)) = 0, (9.22)

Trq(Qk) = ϑkn,q(µ) (9.23)

is an equivariant quantization of the class µ0 = M̂K, where µ0 = lim~→0 µ. It is the image

of C~[G] in the algebra of endomorphisms of the Uq(g)-module Mλ.

Theorem 9.1 describes quantization in terms of the matrix Q, which is the image of the

matrix A. To obtain the description in terms of A, one should replace Q by A and add the

relations (9.21).

The constructed quantization is equivariant with respect to the standard or Drinfeld-

Jimbo quantum group U~(g). Other quantum groups are obtained from standard U~(g)

by twist, [11]. Formulas (9.22) and (9.23) are valid for any quantum group U~(g) upon

the following modifications. The matrix Q is expressed through the universal R-matrix

as usual. The q-trace should be redefined as Trq(X) = q1+2ρ1Tr
(
π
(
γ−1(R1)R2

)
X
)

=

q1+2nTr
(
π
(
γ−1(R1)R2

)
X
)
. This can be verified along the lines of [12].
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10 Appendix

Below we present the diagrams D1, D2, D3 to illustrate the formalism of Section 6 for the

case m = 1, p = 2, n = 3.

D1

fα1 fα2 fβ fα2 fα1

w1⊗ϕ51v ← w1⊗ϕ41v ← w1⊗ϕ31v ← w1⊗ϕ21v ← w1⊗ϕ11v ← w1⊗v

↓ ↓ ↓ ↓ ↓ fα1

w2⊗ϕ41v ← w2⊗ϕ31v ← w2⊗ϕ21v ← w2⊗ϕ11v ← w2⊗v

↓ ↓ ↓ ↓ fα2

w3⊗ϕ31v ← w3⊗ϕ21v ← w3⊗ϕ11v ← w3⊗v

↓ ↓ ↓ fβ

w4⊗ϕ21v ← w4⊗ϕ11v ← w4⊗v

↓ ↓ fα2

w5⊗ϕ11 ← w5⊗v

↓ fα1

w6⊗v

D2

fα2 fβ fα1 fα2 fα1

w1⊗ϕ52v ← w1⊗ϕ42v ← w1⊗ϕ32v ← w1⊗ϕ22v ← w1⊗ϕ12v ← w1⊗v

↓ ↓ ↓ ↓ ↓ fα1

w2⊗ϕ42v ← w2⊗ϕ32v ← w2⊗ϕ22v ← w2⊗ϕ12v ← w2⊗v

↓ ↓ ↓ ↓ fα2

w3⊗ϕ32v ← w3⊗ϕ22v ← w3⊗ϕ12v ← w3⊗v

D3

fβ fα2 fα1 fα2 fα1

w1⊗ϕ53v ← w1⊗ϕ43v ← w1⊗ϕ33v ← w1⊗ϕ23v ← w1⊗ϕ13v ← w1⊗v

↓ ↓ ↓ ↓ ↓ fα1

w2⊗ϕ43v ← w2⊗ϕ33v ← w2⊗ϕ23v ← w2⊗ϕ13v ← w2⊗v

↓ ↓ ↓ ↓ fα2

w3⊗ϕ33v ← w3⊗ϕ23v ← w3⊗ϕ13v ← w3⊗v
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