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MODULAR INVARIANCE AND UNIQUENESS

OF CONFORMAL CHARACTERS

\iVOLFGANG EIIOLZER AND NILS-PETER SKORUPPA

A I3STliACT. \Ve show that the confol'lnal characters of various rational models of W­
algebras ean be al ready llniquely determined if one merely knows the central charge
and the conformal dimensions. As a side result we deyclop seycral tools for stlldying
represcntations of SL(2 , Z) on spaccs of modular fllnct.ions. These methods, applied
hcre only (,0 ccrtain rational conformal field thcorics , may be llseful for thc analysis
of many othcrs.
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1. INTRODUCTION

In the last years two-dirnensional confonnal fie1cl theories p1ayecl a profoullcl ro1e
in theoretica1 physics as weH as in ruatheruatics. Starting \vith the v.,rork of A.A.
Belavin, A.M. Po1yakov aael A.B. Zarl101oelchikov [1] in 1984, luany l1e\V results
cOllnecting statistical 111echanics anel string theory with the theory of topologica1
invariallts of 3-luanifo1els 01' with ullruber theory were founel [2][3]. Iu ruathcrnatical
physics the classification of rational conforIua.l field theories (RCFT) becaluc oue
of the ill1portant outstanding problell1s.

Sincc Olle hopes that it is possible to consider all RCFTs as rational models of
W-algebras, special vertex operator algebras generalizing in a certain sense Kac­
Moody algebras, different lnethods for the investigation of these algebras allel their
representations have been devcloped (for a review see e.g. [4]).

An irnportant tool in the stuely of rational 1110dels of W-algebras are the asso­
ciated confonual characters. These conforIual characters Xh farn1 a finite set of
nlodular functions satisfying a transfofluation law

Xh(Ar) = LP(A)h,hIXhl(r).
h'

Typesct by A;VtS-'l)v,
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Here A runs through the fu11 luodular group r = 5L(2, Z) 01' through a certain
subgroup G(2) (accordingly as the unelerlying W-algebra is bosonic 01' fennionic),
anel p is a luatrix represelltation of r 01' G(2), which dcpends on the rational n10del
under cOllsideration.

It has already been noticed that cOllfonual characters are very distinguished
modular functions: First of a11, sinlilar to thc j-function, thcir Fourier cocfficients
are nonnegative integers and they have 110 poles in the upper half plane. They
sOluetitnes achnit interesting sunl formulas: These fonnulas, which allow an inter­
pretation as generating functions of the spectnllu of certain quasi-particles, can be
used to cleduce clilogarithul-identities (sec e. g. [5,6]). In S0111C cases the confor­
mal characters have sinlple procluct expansions. If one has both, sunl alld product
expansions, the resulting identities are what is known in cOlubinatorics as Roger­
Rarnanujan 01', Inore general, as Andrc\vs-Gordon ielentities.

In this paper we add one ruore piece to this theIne. "Ve show, for certain rational
n10dels, that the central charge anel the finite set of confornlal dilnensions uniquely
detenuine its confonnal characters. 1v10re precisely, we sha11 state a few general
and silnple axionlS which are satisfied by the confonnal characters of all kno\vn
rational luoclels of W-algebras. These axiolns state cssentia11y not luore than the
5L(2, Z)-invariance of thc space of functions spannecl by the confonnal characters,
the rationality of their Fourier eoefficients and an upper bound for thc order of their
poles. Thc only clata of the underlying rationallnoclel oeeurring in these axiorus are
the eentral charge anel the eonfornutl diIucnsions, which give thc upper bound for
the pole orders and a eertain restrietion on the 8L(2, Z)-invarianee. vVe then prove
that, for various sets of central charges and eonfonnal cliruensions, there is at rnost
one set of rlloclular functions which satisfies these axionlS (cf. the 1v1ain Theoreln
in § 4).

This result has several iruplieations. First, it shows that the silllpie constraints
ilnposed on lllodular fllnctions by the inelicated axiolns are surprisingly restrictive.
Apart fronl giving an aesthetical satisfaction this observation gives further evidenee
that eonfonnal eharacters are ruodular funetions of a rather special nature, whieh
may clcserve further studies, evcn indcpcndcntly of thc thcory of W-algebr3S.

Secondly, it ituplics that, in the casc of the rational 1110elels considered in this
article, the confonual characters do apriori not give ruore infonnation about the
underlying rational ruodel than thc eentral charge and the conforn1al diluensions.
This is in perfeet accordanee with thc luorc general belief that these data alreacly
cletenuine cOluplctely thc rationalluodcls of W-algebras which do not contain eu1'­

rents (eurrents are nonzero elen1ents of dinlension 1; see §2). In general one expeets
that a unique charactcrization of rational lllocleis can be obtainecl if one takes into
account certain additional quantulll nurnbers which can be defined in tenns of the
Lie algebra spanned by the zero ruodes of the currents.

Thirdly, our lllain result has a. useful practical consequence for the cornputation
of eonfornlal characters. Apart fronl several well-understooel rationalluoclels where
one has sirnple closecl fonnulas for the confonnal characters, it is in general difficult
to COlupute thelll dircctly. Any attclnpt. to obtain the first few Fourier coefficients
by the so-ca11ed direct calculations in the W-algebra, the so far only known lllethocl
in the case where uo closed fonnulas are available, requires eonsiderable eon1puter
power. Our result indicates a way to avoid the clirect calculations: Onee the eentral
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charge allel confonnal dilnensions are eletenuined the COI1lputation of the confonual
characters can be viewed as a problenl which belangs solely to the theory of nlodular
fonus, i.e. a problelll whose solution affords no further data of the rational nlodel in
question. Vle sha11 show elsewhere how one can indeed solve this problenl in luany
cases using theta serics, anel, in particular, how one abtains in this way explicit
closed fonnulas for the confonnal characters of certain nontrivial ll10dels which
could not be cOlnputed using known lnethods [7].

In this paper we restrict our attention to rational models of W-algebras where the
associated representation p turns out to be irreducible. This restriction is luainly
of technical nature: It simplifies thc identification of p. Howcver, wc believe that
thc IvIain Theorenl holds true in Ill0re generality, i.e. that it can be extended to
rational luodels with COIllposite p, possibly with a slightly larger set ofaxioI1ls.

Vle have organized our article as fo11ows: In §2 we give (axiomatic) definitions
of the basic notions concerning W-algebras since there seenlS t.o be no satisfactory
reference for this. In §3 \ve give a short overvie\v of those rational l1l0dels for which
we prove our Ivlain Theorenl. \\Te do not feel conlpetent to judge the literature cited
in this section to be acceptable by a physicist as weH as a lllatheluatician in view
of its mathenlatical cleanness, and there nlight be a dispute whether the existence
of various rationalluodels lucntioncd in §3 is rigorously provecl or not. Our policy
here is that we siluply cite what is asserted in the literature. '~That is actually
needed froln this (short) section are solely the Tables 1 and 2. In §4 we state anel
prove our luain result. The sections §4.2 anel §4.3, where we develop tbe nccessary
tools neecled for the proof of the 1vIain Theorelu, Inay be of independent interest
for those stuclying representations p arising fronl confonual characters.

Notation. \\Te use f) for the conlplex upper half plane, T as a variable In f),

q _ e21'l'iT- ,

T=(11)
o 1 '

r for thc group SL(2, Z), ancl

s = (0 -1)
I 0 '

ren) = {A E SL(2, Z) I A == icl (Iuod n)}

for the principal congruence subgroup of SL(2, Z) of level n. \".Te use 17 for thc
Declekind eta function

17( T) = el'l'iT/12 rr (1 - qn).
n;:::l

2. VERTEX OPERATOR ALGEBIlAS, W-ALGEßRAS AND RATIONAL MODELS

W-algebras are a. special kind of vertex operator algebras. For the reader's conve­
nicnce wc repeat the definition of vertex operator algebra.s and their representations
(see e.g. [8,9]).
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Definition (Vertex operator algebra). A vertex operator algebra is a cOlllplex
N-gradeel vector space

wi th dilll(Vn) < 00 for a11 n E N (an clen1cnt <P E ~t is saiel to be of diIllcnsion 11.),

together with a linear 11lap

v ~ (Enel V)[[z, Z-I]], <P 1---7 Y~( <P, z) = L <Pn z-n-l,

nEZ

(thc elelucnts of the iIuage arc ca11eel vertex operators), and two distinguished
elcluents 1 E Vo (ca11cd the vacuunI) anel w E V2 (ca11ed the Virasoro eleluent )
satisfying the fo11owing aXiOIl1S:

(1) Thc 111ap </> 1---7 J'~ ( 4>, z) is injecti ve.
(2) For a11 4>, 'lj; E V thcre cxists a 11.0 such that 4>n'lj; = 0 for a11 n .2: no.
(3) For all 4>,lj; E V and 117., n E Zone has

(<Pm1j;)n = L(-l)i (~1-) (rPm-i'lj;n+i - (-l)mtPm+n-irPr).
i2: 0

(4)
(5)

For rn < 0 this ielentity has to be read arguluentwise: Note that by (2) the
SU111 on the fight hand siele becol11es finite ,vhen applied to an eleluent of V.
}'~(1, z) = idV .

';Vriting Y(w 7) - '""" L z-n-2 one has
,~ - L..inEZ n

~ cl ~
Y(L_ l 4>,z) = -,Y(rjJ,z),

cz

[L m, Ln] = (171. - n)L m +n +Om+n,O (117.
3

- rn) t2 iel v ,

for all 11., rn E Z, <P E V, where c is a COlllpleX COl1stant (ca11eel thc central
charge 01' rank).

Re1narks. 1. For rn .2: 0 property (5) is equivalent to

whcrc the left hand siele denotes the ordinary COllln1utator of encIoluorphislllS.
2. This COlnnlutator ielentity iluplies in particular [Lo, 4>nl = (L_ 1 tjJ )n+J +(La 1»n,

hcnce [Lo, 1>n] = (cl - '11- - 1)cI>n for 1; E Vd (hcre wc used (L_ 1 cl> )n+l = (-n - 1)<Pn
fro111 axioIl1 (4)). Froln this one obtains

rPn Fm ~ 1!;.,l+d-n-l.
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Definition (Representation of a vertex operator algebra). A representation
of a vertex operator algebra V is a. linear lnap

p: V ~ (Endhf)[[z,z-l]], 4> ~ 1'~M( 4>, z) = 2: p( if.> )nz-n-l ,
nEZ

where 1\1 is a N-gr8oded c0111pIex vector space

IvI = E9 lvIn
nEN

\vith eliln(111n ) < 00 for 8011 11. E N, such that t.hc fo11owing axion1s are satisfied:

(1) For a11 if.> E Vd anel 1n, 11. one has p(if.»nIvIm C M m - n - 1+d.

(2) For a11 q., E V anel v E J\1 there exist a '11'0 such that p( 4> )nv = 0 for a11
11. 2: 11.0·

(3) For a11 cP, 'IjJ E V anel a11 rn,n E Zone has

p( cPm 'IjJ)n = 2:( _1)i (1;1.) (p( cP)m -i p( 'IjJ )n+i - (_l)m p( 7jJ )m+n-iP( cI»i) ,
i~a

where again this identity has to reacl argun1entwise.
(4) r~H (1, z) = idM .

(5) Using r~M (w, z) = L:nEZ p(L)1I z-n-2 one has

[p(L)m, p(L )n] = (nI - n)p(L )m+n + 6m+ n1 0 (1"113 - rn.) t2 idJH ,

for a11 11.,1)1. E Z, if.> E V, where c is the central charge of V.

The representation P is called irreclucible if there is no l10ntrivial subspace of ~1

which is invariant undel' a11 p( <P)n'

In the following we sha11 occasiona11y use siIl1ply the term V -n1üelule A1 insteael
of repl'esentatiün p: V -t Encl(J\([) [[z, Z-I]].

Remarks. Note that a vertex operator algebra V isa V -IUOelule itsclf via cP f-l.

Y ( if.>, z) (use rel11ark (2) after the defini tion of vertex operator algebra für verifying
axioll1 (1) of a represel1tation).

Lenulla. Let p: V -t End(111)[[z, Z-l]] be an irreduciblc represcntation of tlle ver­
tex operator algebra V. Tllen tllere exists a cOl11plex constant hm such tllat

p(L)o 1111" = (h M + n) iclJ\;fn

for a11 11 E N.

Proof. By axiolu (1) of a vertex operator algebra representatioll we have that.
p(L)o ]vIa ~ lvfo. HCl1ce, Sil1CC ~;fo is finite clill1ensiol1al, there exists an cigenvector
v of p(L)o in 1110 • Let hM be the correspol1clil1g eigel1value. Since p is irreducible
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the vector space 1'.11 is generated by the vectors p( 1> )11 V (1) C Vd, dEN, n E Z) j for
proving this note that thc subspace spanned by the latter vectors is invariant under
all p( 1»11 as can be deduced fron1 axionl (3)). For 711. E N let A1;n be the subspace
generated by all p( 1> )1IV with <P E AJld and cl - n - 1 = 711.. By axionl (1) we have
IvI;n ~ Aim, anel since Ai is the SUIn of all the A1;n we condude A1;n = lVIm.

On the other hanel, one has [p( L)o, p( 1> )n] = (d - n - 1)1>n for all n and a111> E Vd

(sin1ilarly as in reI11ark (2) after the definition of vertex operator algebras). Fron1
this we obtain p(L) r 111;, = (h M + n) iclM I • This proves the lenlina. 0

n

The lel11n1a sllggests the following

Definition (Character of a vertex operator algebra lllodule). Let AI be
an irreducible Inodllie of the vertex operator algebra V (with respcct to the rep­
resentation p). Then the character X1"1 of Al is the fOrInal power series defined
by

XIII (q) := trkl (qp( L) 0 -c/24) := qh M -c/24 L cliIn( A1n )q n

nEN

where c is the central charge of V ancl h M the confonnal cliInension of lvI.

The IUOst hnportant dass of vertex operator algebras if given by "rational" vertex
operator algebras:

Definition (Rationality of vertex operator algebras). A vertex operator al­
gebra V is callecl rational if the following axiOins are satisfiecl:

(1) V has onl)' finitely Inany ineqllivalent irrcducible rcpresentations.
(2) Ever)' finitely generated representation of V is cquivalent to a direct SUIn of

finitei)' l11an)' irreducible representations.

Here the nations equivalence, finitely generatecl anel elirect sunl are to be uneler­
stooel in the obvious sense. The hnportancc of the rational algebras becolnes clear
by the following thcorenl:

Theorenl (Zhu [12]). Let A1i (i = 1, ... 1 n) be a cOlnplete set irreducible IlJod­
ules of thc rational vertex operator algebra V. ASSUllJe, furthcrmore, tllat ZlltJ 's
nniteness condition is satisned, i.c.

dinl(V/(V)-2lf) < 00

where (V)-2 V C V is dcnned by (V)-2 V := {1>-2'ljl 11>,ljl E V}. Tllen tlle cOllfon1Ja,l
characters X1Hi beCOI1Je holoI1JorplJic fU11CtiollS 011 the upper cOI1Jplex half jj plaJJe
by setting q = e2

1t"iT witll T E jj. FurtllcnnOl'C, tllC space spanned by the confonnal
c11aracters XA/j (1: = 1, ... , '11.) is invariant under tlle natural action (X( r), .04) J---t

x(.o4r) of tlle Inodular grou]) 3L(2, Z).

Vve now turn to the definition of W-algebras anel rationallTIoelels of W-algebras.
As indicated above we elescribe these in tenns of vertex operator algebras.

Definition (W-algebra). A vertex operator algebra V is called a (bosonic) W­
algebra if it satisfies the following additional axioll1s:

(1) diIn(Vo) = 1.
(2) There exist finitcly nlany honl0geneous elCInents 1>i E ker(L1 ) (1: = 1, ... ,n)

which generate V.
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Here veetors rj; i (i = 1, ... , 11.) are saicl to generate V if the slnallest subspace of
V whieh is invariant nnder thc action of (<jJi)m (i = 1, ... , 1l; nl E Z) anel eontains
1 equals V.

A W-algebra V is said to be of type W(cll , ... ,dn ) if there exists a lninilllal
set of hOlllogeneous generators rjJi E ker(LI) (i = 1, ... ,11.) whosc dilnensions equal
dl , ... , dn . Here nlillilnallueans that no proper subset of thc set of the tjJi generates
V. Note that the d i oeeurring hcre ruay in general not be ullique.

Re1narks. 1. Exalnplcs of W-algcbras call be constructed fronl thc Virasoro anel
I<ae-1vIoody algebras. They are of type W(l, ... ,1), respeetively W(2) for the
Virasoro algebra [9].

2. Note the following for cOl1nceting our definition of W-algebras \vith the cor­
responding notion usecl in the physiea1literaturc. The right hand siele of (5) in thc
definition of vertex operator algebras is, for rn < 0, what is usually called the n-th
lnocle N ('lj; l a- 1- m rjJ) 11 of the no1'1na1 orclered procluet of the vertex operators eorre­
sponding to 'lj; and the ( -111. - 1)-th derivative of vertex operator corresponding to rj;
(see e.g. [10]) 1tIoreover, thc eonUl1utator fo1'1llula in renlark (1) after the definition
of vertex operator algebras inlplies the (in the physiealliterature) well-known for­
rllula for thc comrllutator of two hOlllogeneous elerncnts in ker(L 1 ) of a W-algebra
11 (see e.g. [10,11]).

Definition (Rational 111odel). A rational nloelel (01' rational nloclel of a W­
algebra) is a rational W-algebra V which satisfies Zhu's finit.eness conclition. The
eJfective central charge of a rationalruoelel is elefined by

c= c - 24nlin h Mj

where lvIi runs through a eonlplete set of il1equivalent irredueible reprcsentations
of V.

Remarks. 1. EXaJllples of rational rllodels are given by eertain vertex operator
a1gebras eonstruetecl fronl I(ae-Moocly algebras [9] 01' the Virasoro algebra [13] (for
lnore details see also §3).

2. Oue ean show that the effeetive eelltral charge of a rational lnoelcl with a
111inirnal generating set of 11. veetors lies in the range [14]

o::; c< n.

3. Historieally the tenn "rational 111oclels" was usccl in thc physiealliteraturc [1]
for fielcl theories in which the operator product expansion of any two loeal quantlun
fields decoluposes into finitely lnany eonfornlal fanlilies.

The following theorem justifies the tenninology "rationalruodels":

Theorell1 ([15]). Assume tbat tbe rcpresentation oE t}le InodulaT group acting on
tbc space spanned by tl1e conEornlal characters oE a rational 1110de1 is uni tary. Then
tbe central charge and tbe conEonnal dirncnsions oE the rational l110del are rational
ntunbers.
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3. CENTRAL CHARGES AND CONFOR.MAL

DIMENSIONS OF CERTAIN RATIONAL MODELS

In this sectioll we review sOlue facts about those rationalluodels which are con­
cerned by the Main Theorenl in §4. Note that sOlue of the results sumnlarized in
this section are not yet proveel on a rigorous luathcmaticallevel. Howcver, \ve sha11
not be concerned by this since we are only intcrestcd in thc central charges anel sets
of confo1'1ual diluensio11s provided by these l11odcls. This section scrves rather as a
l11otivation thal1 as a background for the consideratiol1s in the subsequent sections.

Firstly, wc review SOI11e knowl1 rationall11odels with effcctive central charge less
than 1. The sin1plest W-algebras are those which can be construeted fron1 the
Virasoro algebra (as already 111entioncd in the foregoing section). The rational
models aluong these are called the \Tirasoro 111inill1alillodels (see e.g. [1, 16,13)).
They ean be pararneterized by a set of bvo coprilne illtegers p, q ~ 2. The rational
l110del corresponcling to such a set p, q has centntl charge

(p- q)Z
c = c(p, q) = 1 - 6-'---­

pq

anel its eonfonual dimensions are given by;

I (
') _ (1'p - 8q)Z - (p - q )2

1. p, q, 1,8 -
4pq

(1::;1'<q, (2,r)=1, 8=1:S;s<p),

where we assll1ne q to be odel.
The Virasoro 11liniu1al u10dels are special exalllples of thc larger class of rational

l110dels with c< 1 which eUlerges fro111 the ADE-classification of 1110dlllar invariant
partition fllnctions [17,14]. Their central charges and cOllfonual clinlensions are
given in Table 1: The first cohulln describes the type of l110dular invariant partition
function, the ccntral charge is always c = c(p, q) wherc p and q are the parameters
of the respective ro\v uuder consicleration. 1'loroover, c(p, q) and h(p, q, " .) are
as definecl above. Note that the listed luodcls exist also for p, q, 1'n not necessary
prilue. The prilllality restrictiol1S have been adclecl for techllical reasons only which
will beco111e clear in the next section.

The seconcl list of rational 1110clels which we sha11 consider are special cases of
the so-caUecl Casil11ir W-algebras.

Starting frol11 a I(ac-Moody algebra associated to a siluple Lie algebra K, one
cau construct a 1-paralueter fanlily WK of W-algebras, the paran1eter bcing the
central charge (see c.g. [18]) (Note that this cOl1struction is different fron1 the one
luentioned in the foregoing section). Für a11 but a fini te 11111Ubel' of celltral charges
these W-algebras are of type W(eil, ... ,ein) where 11. is the rank of K anel the
di (i = 1, ... , 11.) are the oreIers of the Casimir operators of K. Thc rClnaining
ones, called truncated, are of type W(d i1 , • .• , dir) where the d ilt forn1 a proper
subfaillily of the d j above. Note that the W-algebras cOllstructed froul thc Virasoro
algebra u1entioued in §2 are exactly the Casiluir W-algebras associatecl to Al. The
rational Inodels of CasiInir W-algebras (solnetilues called n1inill1al Inodels) have
been detenuinecl, assulniug certain COllj ectures, in {18].
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Table 1: Data of certain W-algebras relatecl to the ADE-classification

type type of W-algebra He(p,q) (In := {I, ... , n} )

(.4 q- 1 , Ap-d W(2) {h(p, q, 1', .5) I l' E I q- 1 , .s E I p- 1 , (2,1') = I}
p > q prirne

(A q- 1 , D m + l ) W(2, (m-l~(q-2») {h(p,q,r,.s) Ir' E I(q-l)/2, 8 E Im, (2,8) = I}
p = 2nt

q, m prnne

(.4 q- 1 , E6 ) W(2,q - 3) {rnin(h(p, q, 1',1), h(p, q, 1', 7)) IrE I(q_t)/2}U

p = 12, q 2: 5 {rnin(h(p, q, 1',5), h(p, q,l', 11)) 11' E I(q-l)/2}U

q prn11e {h(p,q,1',4) IrE I(q-l)/2}

(A q- t ,E8 ) W(2,q - 5) {nün(h(p, q, 1',1), h(p, q, 1',11)) I T E I(q-I)/2}U

p = 30, q ;:: 7 {nün(h(p, q, T, 7), h(p, q, 1',13)) I T E I(q_l)/2}

q prnne

In Table 2 we list the central charges c, effective central charge canel the sets of
confonnal elinlensions He of 6 ratiollallnodels with c> 1.

The last foul' are CasiInir W-algebras associateel to B2 , (h, E7 anel B3 .

The first two W-algebras are "tensor proclucts" of thc rational W-algebra with
c = -22/5 constructeel froln the \Tirasoro algebra and the rational W-algebras with
c = 14/5 01' C = 26/5 constructeel fro111 the Kac-Moody algebras associateel to 92
01' :F4 , respectively. V·.,Te denote thenl by W0 2 (2, 114

) anel WF<t(2, 114
), respectively.

Here the construction of the W-algebras in question is the one Inentioned in §2.

Table 2: Data of the six rational n10elels

W-algebra C C He

Wc 2 (2,1 14
)

8 l§. k{O, -1,1, 2}-5 5

WF.j (2,1 26
) i 28 k{O, -1,2, 3}5 5

W(2,4) 444 1.1 -n{O, 9,10,12, 14, 15,16,17,18, 19}-lT 11

W(2,6) 1420 20 - /7 {O, 27,30,37,39,46,48,49,50,-~ 17
52,53,55,57,58,59,60}

W(2,8) _ 3164 28
- 2

1
3 {O, 54, 67, 81,91,94,98,103, 111,23 23
112,116,118,119,120,122,124,

125, 129, 130, 131, 132, 133}

W(2,4,6) 13 .!1. 1~0 {O, -15, -8, -3, 12,37,57,60,100,-"15 15

117,120,132, 145, 252, 285,405}

vVe give sorne conlmerÜs on these 6 rational 1110dels. Using [16] anel [19J the
central charges, conformal characters anel dirnensions of the two conlposite rational
n10dels can bc conlputed. For the rational nlodels of type W(2, rl) lists of the
associated conformal dimension can bc founel in [14]. The conformal eliluensions of
the last rationalrnoelel of type W(2, 4,6) have been calculatecl in [20].
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As it will turn out in the next section thc first five rational Inodels in Table 2
exhibit sonle interesting analogy: The representations of r affordcd by their C011­

fonnal characters belong to one and thc sanle series Pi (cf. §4.4 for details). So
one could ask whcther thcre cxist nl0re rational models whose represcntations of
r belongs to the serics pi. Alllore detailecl investigation of the fusion algebras
associated to such potentially existing models sho\ved that this is not the case [21]
(cf. also the speculation in [14]).

4. UNIQUENESS OF CONFORMAL CliARACTERS 01" CERTAIN RATIONAL MODELS

4.1 Statelnent of the Inain theoreill.

Main theorenl. Let c bc any of tbc central chargcs of Table 1 01' 2, let He elenote
the set oE corrcsponding conforInfJl diInensions, anel let H be a subset of He con­
taining O. Asstune that there exist nonzero functions ~e,h (11. EH), 11010nl0rphic on
the upper half pla.ne, wbicb satisfy tlle following conditions:

(1) T11e fUllctions ~e,h are Inodular functions for SOlne congruellce subgroup of
r = 5L(2, Z).

(2) Tlle space of functions spanned by tlle ~e,h (h EH) is invariant undcr r
witll respect to the action (A,~) 1-+ ~(AT).

(3) For eac11 h E HOlle 11a.s ~e,h = O(q-c/24) as IIn(T) tends to infi11ity, wllere
C= c - 24 Inin H.

(4) For each h E H the fU11ctioll q-(h-f:r)~e,h is periodic with period 1.
(5) Thc Fourier coefflcients of t11e ~e,h al'C rational 11 tunbers.

Tllcn H = He, and~ for each h E H, t}le fl.l11ction ~e,h is unique up to Intzltiplication
by a scalal'.

Rernarks. 1. Note that thc theorenl only ensures the uniqueness of thc functions ~e,h

but not their existence. However, they da indeed exist. For Table 1 the existence
of the co1'1'esponding functions is a well-known fact [17, 14]: explicit fornullas for
thern can be given in tenns of the Ricluann-.Jacobi theta series

L exp(27r'irx 2 /4k).
xEZ

x;;;'\mod2k

The existence of thc functions ~e,h 1'ela.ted to Table 2 will bc proved elscwhcre [7].
2. Note that the confornlal characters XA<f of a rational luodel with H as set

of conformal diruensions satisfy the properties listed under (2) - (5) by the very
definition of rationallnodcls and Zhu's theorCln if wc set ~e,h = XAI (h = eonfonnal
dilnension of 111). Property (1) is not part of this definition, anel it is llot clear
whether it is ilnplied by the axiorns for 1'ationallnodels. However, there is evidence
that it always holels true (cf. the cliscussion below).

3. If we aSSluue for a rationallnodel corresponeling to a row in Table 1 01' Table 2
that its confonnal charactcrs satisfy (1) Vle ean conclude fronl our thcorelu that the
corresponding set He is exactly the set of its confonnal dirnensions anel that the
properly normalizeel functions ~e,h (11. E He) are its conformal characters.

4. For the proof of the theoreln for thc first 5 lllodels of Table 2 the asslunption
oE H is not needeel, and it can possibly be elropped in all cases. Howeve1', we did
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not pllrsue this any further: Fro11l the physical point of vicw the assluuption 0 E H
i8 natural since h = 0 corresponds to the vaCUU111 representation of the unelerlying
W-algebra, i.e. the representation givcn by the W-algebra itself.

For thc first two cases of Table 2 the requirenlent that the ~c,,, are 1uoelular
functiol1s on sonle congruence subgroup is not necessary. Here we have thc

Suppleluent to the luain theorelu. For c = -~ allel c = ~ and with He as in
Table 2 tlle equality H = He alld the uniqueness of tlle ~c,h (17. EH) are already
iInplied by properties (2) to (5).

For thc other cases we da not know whether thc state1uent abollt the uniqueness
of H and the ~e,h rC1uains truc if one takes also into account non-nl0dular functions
01' non-cong;ruencc subgroups.

Howevcr, as alreacly 1uentionecl, it see1US to be reasonable to expect that the
confonnal charactcrs associateel to rational IllOdcls satisfy (1). Evidence for thi s i5
given by the following:

There is no eXaInple of a confonnal character of any rational llloclel which is not
a 1uodular function on a congruence subgroup.

As lllentioned above the functions ~c,h, whose uniqueness is ellsured by the NIain
theorenl, cxist. As it turns out they can be nonnalizcd so that their Fourier co­
cfficients are ahvays nonnegative integers (for the case of Tablc 2 cf. [7]). This
gives further evidence that they are idelltical with the confornla.l characters of the
corresponcling W-algebra 1noclels whence the latter therefore satisfy (1).

According to thc 1'lain theore111, for each He of Table 1 anel 2 the r -nl0dule
spanned by the ~e,h is uniqnely detennined. In particular the S-luatrix (i.e. the
1natrix representing the action of S with respect to the basis givell by the ~c,,, with
the nOl'lualization inelicatcd in thc prcccding rCluark) is aniqne. Closed fonl1ulas
for the S-luatrices corresponding to the first foul' ro,vs of Tablc 2 can bc fonnel
in [7]. They can be compared with the S-luatrix of the corresponcling W(2,4)
rational nlodel with c = - 4;\4 as ntunerically c01uputed in [22] using so-called
elirect calculations in the W-algebra. Both S-luatrices coincide within the range of
the nU1uericai precision.

All rational nloclcls listecl in Table 2 are n11ni1nal 11loclels of Casi1uir W-algebras
for which fonnulas for the corrcsponcling confonnal characters havc been obtained
in [18] nnder the assu1nption of a certain conjecture. Once lllore, the confonual
characters so obtainecl are 1uodular functions on congruence subgroups [7].

In the rest of §4 we provc our 1nain theorcnl. To this end we will dcvelop
SOlne general tools clealing with l1loclular represcntations, Le. with representations
of r = 5L(2, Z) on spaces of luoclular functions 01' fonus. These 1uethods are
introclnced in the next two subsections. In §4.4 we conclucle with the proof of the
lnain theore1n.

4.2 A dilllension forlllula for spaces of vector valued 1110dular fornls.
In this section we state di1nension fonnulas for spaces of vector valued 1110dular

fonns on 5L(2, Z). These fonuulas are one of the 1na.in tools in t.he proof of the
1uain theoreln. It is quite natural in thc context of confonnal characters, 01' 1uore
generally in the context of nlodular representations, to ask for such fonnulas: The
vector X whose entries are the confonual charactcrs of a rational 1110del, 1nultipliecl
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by a suitable power of 11, is exactly what we shall call a vector valueelnloelular fonn,
and is as such an elenlent of a finite diluensional space. (The latter holds true at
least in the case whcre the characters are invariant uneler a subgroup of finite index
in f; see the assunlptions in the theorelu below).

IvIultiplying X by an odd power of 11 yielels a vector valued 11l0dulaJ.· fornl of half­
integral weight. However, because of the aJ.l1biguity of the squareroot of cr + cl (c, cl
being the lower entries of a Inatrix in f) we now do not deal with a vector valuecl
1110dulaJ.· fonn on SL(2, Z) but rather on a certain double cover nf = DSL(2, Z) of
this group.

Vle now Inake these notions precise.
The double cover Dr is clefined as follows: the group elelnents are the pairs

(A, w), where A is a Inatrix in f anel w is a hololnorphic function on .f) satisfying
w 2

( r) = cr + d with c, cl the lower row of A. The lllultiplication of two such pairs
is elefined by

(A, w ( T )) . (A' , 10' ( T )) = (.4A I , 10 ( A' T) . 10' ( r ) ).

For any k E Z we have an action of nf on functions f on f) given by

Note that for integral k this action factors to an action of f, which is nothing else
than the usnal "]k"-action of f given by (f!kA)(r) = f(r)(cr + d)-k.

For a subgroup ~ of f we will denote by D6. C Df the preiulage of 6. with
respect to the natural projection nf -t f 111apping elelnents to their first conlpo­
nent.

Special subgroups of Df which we have to consicler below are thc groups

f (411~ )tt = {(A, j (.4, r ))IA E f (41'n) } .

Here, for A E r( 411'1.), we use

j(A, r) = {}(Ar)/{}(r)

where ()(r) = L:l1EZ qn~. It is we11-known that ineleeel j (A, r) = e(A)Jcr + cl where
c, rl are the lower row of A auel I::(A) = ±l. Explieit fonnulas for I::(A) ean be found
in the literature, e.g. (23).

\\Te eau now elefine the notion of a veetor valueel 1110elular fonn on f 01' nf.

Definition. For any representation p: nf -+ GL(n, C) anel any nlunber l: E ~Z

clenote by l'lk(p) the spaee of all holonl0rphic IDaps F:.f) -t Cu which satisfy
FjkO' = p(O')F for aH 0' E Dr, anel which are bounded in any region Inl(r) 2:: r > O.
Denote by Sk(p) the subspaee of a11 fornls F(T) in A1k(p) whieh tend to 0 as Irn(r)
tends to infini ty.

If p is a representation of f anel k is integral we use A1k (p) far A1k (p 0 7r) 1

where 7r is the projection of Df onto the first eOlDponent. Clearly, in this ease the
transfonnation law for the funetions F of A1k (p) is equivalent to FlkA = p(A)F for
a11 A Er. In general, if h~ is integral, the group Df IDay be replaced by f in all of
the fo11owing consiclerations.
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Finally, for a subgroup .6 of Df 01' f we use lvlk(.6) for the space of lnodular
forllls of weight k; on ß in the usual sense. In the case .6 C f the weight k has
of course to be integral. Thc reader Illay not lllix the two kinds of spaces J\1k (p )
and A1k(.6); it will always be clear frolll thc context whether p and ß refer to a
representation 01' a group.

Clearly, if the hnage of p is finite, i.c. if the kernel of p is of finite index in Df then
the conlponents of a.n F in A1k(p) are 11lodular fonlls of weight. k on this kernel. In
particular, the space A1k(p) is thcn finite dilnensional. Fonnulas for the diluension
of these spaces can be obtained as follows: Let F be the cOlnplex vector space of row
vectors of length n = dirn p, equippeel wi th the D f -right action (z, (\') 1-+ p( (\' )t z,
where 0 t lneans transposition. The space j\1k (p) can then be identified \Vi th the
space HOlnDr(F~M k (6.)) of Dr-holllolllorphisIl1S fronl F to lVh·(ß), where .6 =
ker p, via the correspondence

A1k (p) :7 F 1-+ the nlap which associates z E F to zt . F E 1\1.[1.(.6).

By orthogonality of group characters thc dinlension of HOlnDr(F, A1k (ß)) can be
expressed in tenns of the traces of the cndornorphisrns definecl by the action of
eleulelüs of Df on JVfk(ß). These traces in turn can be explicitly computed by
using thc Eichler-Selberg trace fonnnla. In this way one can derive tohe following
theorem (cf. [23, pp. 100] for a conlplcte proof):

Theorenl (Dhnension forlnula [23]). Let p : DSL(2, Z) ----t GL(n, C) be a repre­
sentation witll finite iInage alld SUell that p((E2 id, E)) = E- 2k id [ar all [ourth l'oots
o[ ullity E. allel let k E tZ. Thell tbc eliInensioll of J.'1k (p) is givcl1 by the following
fonnula

dirn lvlk(p) - diln S2-k(p) = k - 1 . n + ~ Re (e-rrik/2 tr p((S, JT)))
12 4

+ 3~ Re (e"i(2k+l)/6 tr p((ST, v:;:-+l)))

1 n

+ 2a.(P) - ?= Ial (Aj).
;=1

Here t1le Aj (1 ::; j ::; n) are cOl1lplex llulnbers SUel1 that e2tri
,\j runs througll tlle

eigenvalues of p(T), we tzse a(p) for tlle llunlhcr oi j SUdl that e2-rriAj = 1, allel wc
use Ia} (x) = 3.;' - 1/2 if x E x' + Z witll 0 < Xl < 1, allel IaI (x) = 0 for x integral.
j\;!oreover, [01' T E S), lve use JT anel v:;:-+l [01' tll0se square roots wllicb llavc
positive real parts.

Remark. For k: ~ 2 the theorenl g;ives an explicit fonnula for diln A1k(p) since in
this case dinl(S2-k(p)) = 0 (the conlponents of a vector valued nlodular fonn are
ordinary lnoelular fonns on ker p, anel there exist no nonzero lllodular fonns of
negative weight and no cusp fonns of weight 0).

For h~ = 1/2, 3/2 anel ker(p) :> f(4nl)G it is still possible to give an explicit
fornnI1a for 1VIk(p) [23]. However, we do not need those ditnension fonnulas in full
generality hut need only the following consequence of theIn:
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Suppleluent to the ditllension forillula [23]. Let p : DSL(2, Z) ---t GL(n, C) be
an irreducible representation witb r(4111)' C ker(p) for some integer rn. Tllen one
has dinl( .A11/2 (p)) = 0, 1. Furtllen1l0re, if dinl(1111 / 2 (p)) = 1 then tbe eigenvalues of

. ,2
p(T) are of the fonn e2

1'l"14ffi with integers l.

Re1uark. A c0111plete list of all those representations p for which dilll(JVh (p)) = 1
can be found in [23].

A proof of this supplenlcnt can be found in [23]. It uscs a theorenl of SerTe-Stark
describing explicitly the rllodular fonns of wcight 1/2 on congruence subgroups.

4.3 Three basic leuunas on representations of SL(2, Z).
In this section we will prove sorne le1nrnas which are useful for iclentifying a

given rcpresentation p of r if one has certain infonnations about p, which can C.g.
easily conlputed frorn the central charge anel tbe confonnal ditnensions of a rational
rnodel.

Asslune that thc confonnal characters of a rationalrllodel are nl0dular functions
on SOlI1C apriori unknown congrucnce subgroup. Then thc first step for detennining
the representation p, given by the action of r on thc the confonnal characters,
consists in finding a positive integer N such that p factors through f(N). The Hext
theore1n teIls us that the optitnal choice of 1V is given by thc order of p(T).

Theorenl (Factorization criterion). Let p: f -t GL(n, C) be a representation,
anel let 1V > °be an integer. ASSU1l1e that p(TN) = 1, allel, if JV > 5, tllat the
kernel of p is a congruence subgroup. Tllen p factars tllrough a representation of
f /f(IV).

Proof. The kernel f' of p contains the nornul] hull in f of thc subgroup generatecl
by T N . CaU this nornlal hull I1(N). By a result of [24J (but actually going back to
Fricke-I(lein) one has 11(1V) = r(JV) for JV ::; 5. If 1V > 5 then by asslunption we
have f' J f( f\,TI) for S01ne integer lV'. Thus f' contains 11(1V)f(1Vrl'), which, once
nlore by [24], equals f(N).

By the last theorerll the detennination of thc representation p associated to a
rationalrnoclel with modular functions as confonnal characters is reclucecl to thc in­
vestigation of the finite list of irreclucible rcprcsentations of f /f( N) ~ SL(2, Z / NZ)
with sonle easily cornputable JV. Thc following theorenl, 01' rat.her its subsequent
corollary, allows to rechlce this list clrarnatically.

TheoreUl (!(-Rationality of lllodular representations). Let h~ allel JV > 0 be
integers, let!( = Q(e21'l"i/N). Thcn the ](-vector space .A1{"·(f(IV)) of all1110elular

fonns 011 f(1V) of weight k whose Fourier elcvc1opl11ents with rcspcct to e21'l"ir/N

have coeflicients ill ]( is inval"iant uneler t11e action (f, A) Ho flkA of f.

Proof. Let jeT) denote the usua] j-function, which has Fourier cocfficients in Z
anel satisfies j (.4T) = j (T) for all .4 E f. Assurue that k is even. Then the rnap

f I--)- f / j1k/2 defines an injection of the !(-vector space .A1t~·(f(1V)) into the ficlel
of allruodular functions on f(N) whose Fourier expansions have coefficients in !(.
It clearly suffices to show that the latter fidel is invariant under f. A proof for
this can be found in [25, p. 140, Prop. 6.9 (1), equ. (6.1.3)). The case k add can
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be reduced to thc case k even by considering the squares of the Inodular fonns in
lvII:'" (r( IV)).

Corollary. Let p : r -t GL(n, C) be a. representation wllose kernel conteuns r(lV)
for S0111e positive integer lV, and let J( = Q(e21l"i/N). JE, for sonle integer k, tllere ex­
ists a nonzero elelnent in lvI,,(p) whose Fourier deve10pnlent has Fourier coefflcients
in ](fl, thcn p(r) c GL(n~ J{).

1. f one aSSlllnes that a vector va.lued Inodular fOrIn is related to the confonnal
characters of a rational Illodel which are Illodular functions of SOine congrucncc
subgroup then obviously all the Fourier coefficicnts arc rational so that thc corollary
applies.

Proof. If F E 1v1k(p) has Fourier coefficicnts in j(n then FlkA, by thc prcceding
theoreIn, has Fourier coefficients in J{'l too. Here A is any elelnent in f. Fronl
FIA = p(A)F we decluce that p(.4) has entries in Je
4.4 Proof of the Inain theoreln. '\'e willnow prove our nlain theoreln stated in
§4.1. Pick onc of the central charges c in Table 1 01' Table 2. Assllllle that for S0111e
H c He containing 0 there exist functions ~e,h (h E H) which satisfy the praperties
(1) to (5) of the ll1ajn theoreill. Let ~ denote the vector whose COinponents are
the functions ~e,h ordercd with increasing h. Notc that the h-valucs are pairwise
different 1110dulo 1. By (3) the ~e,h are thus linearly independent. Hence, we
have a well-defined IHJ-diInensional rcprcsentation p of the Il10dular group if we
set ~(AT) = p(A)~(T) for A E r. Finally, recall that the Dedekind eta function 17
is a n10dular fonn of weight 1/2 far nf, n10re precisely, that there exists a one­
diInensional rcprcsentation eof Dr on the gTOUp of 24-th roots of unity such that
'7 E lVI~ (8) .

For any half integer k E tz such that

k ~ c/2

we have F := TJ2k~ E j\lk (p<9 e2k ), as is inunediate frOIl1 property (3) and the
assumption that the ~c,h are hololnorphic in the upper half plane. Let k be the
smallest possible half integer satisfying this inequality. The actual value is given in
Tahle 3 below.

'Ve shall show that by property (1) to (5) the rcprcsentation p is uniqllely deter­
nlined (up to equivalcnce) anel, in fact, is conjugate to thc rcprescntation in the last
coItlll1n of Table 3, rcspectively (notat.ions will be explained below). In particlllar,
p has cliluension equal to the cardinality of He, and hence we conclude H = He.
The h-va.lues are pairwise incongrucnt. Il1odlllo 1, i.e. p(T) has pairwise different
eigcnvalues. Since p(T) is a diagonallnatrix the rcpresentation p is thus unique up
to conjugacy by diagonal matrices.

Finally, the kernel of p is a congrllence sllbgroup by property (1). In particular,
p (9 82k has a finite ilnage. Thus we can apply the dimension fonuulas stated in
§4.2. It will turn out that A1k(p @ B2k) is one-cliulcusional. Thus, if there actually
exist functions ~e,h satisfying (1) to (5) then N1k(p @ 82k ) = C . ~172k. Since p is
unique up to conjugacy by diagonal nlatrices we concluele that ~ is unique up to
lllultiplication by such lnatrices, and this proves the theorein. '~Te now give the
details.
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Deterluination of the representation p. \~Te first detennine the equivalence
dass of the representation p.

Denote by d the lowest COlluuon denoluinator of the rational nlunbers h - c/24
(h E He), anel for any integer k I let I( h~') be the lowest conunon denominator of the
nluubers h - c/24 + h:' /12 (h EHe), i.e. let

l( k') = 12d/ gcd(12, k' d).

Clearly, the order of (p 0 fpe )(T) divicles l( k'). Let 1.;' thc s1l1allest nonnegative
integer such that I = l( k') is lninilnal, anel set ji = p 0 02e. The values of k' and I
are given in Table 3.

Note that k' integral in1plies that p can be regarcled as a representation of r
(rather than DSL(2, Z )). By property (1) its kernel is a congruence subgroup.
Thus we can a,pply the factorization criterion of §4.3 to conducle that this kernel
contains r(l). Note that here the assulnption (1), nalnely that thc ~c,h, are invariant
under a conßTuence subgroup, is crucial if I > 5. For I ::; 5, this assu1l1ption is not
llecessary, which explains the supplelnent to the lnain theoren1.

Table 3: Representations of f anel weights related to certain rational n10dels

W-algebra c h~ k' I P= p 0 02e

W(2) 1 _ 6 (p_q)2 ! 2 Spq a 9 0 (71' 0 Dpq

l'q 2 P q 8

W(2, (m-1;(q-2») 1 _ 3(2m-q)2 1 1-3mq d12 rnq a
2m 0 r

2q
mq 2 2 1110 q m

W(2,q - 3) 1- (12-q)2 ! -1 - q IUOel 3 16q (7~ 0 Di62q 2

W(2,q - 5) 1- (30-q)2 1 1~5q IUOel 12 5q (7 30 0 (7fJ
5q 2 q 5

WG 2(2,1 14
)

8 2 4 5 ps-5
WF-t(2,126) 1 3 10 5 ps5

W(2,4) 444 1 6 11 PlI11

W(2,6) 1420 1 2 17 P17-17

W(2,S) 3164 1 10 23 P23-~

W(2,4,6) 13 1 1 360 a~ 0 D~ 0 R2 (1, -)-15

Recall that in Table 3 the integers p, q anel rn are prirnes with q =f:. ]), 1n.

\\Te sha11 say that a representation of f has level lV if its kernel contains r(lV).
Since any representation of level lV factors to a representation of

r /f(lV) ~ 5L(2, Z/lVZ),

it has a unique deC0I11position as sum of irrec1ucible level J\T representations. Fur­
thenuore, therc are only finitely II1i:1ny irrcclucible level N representation, and each
such representatioll 1r has a unique procluct clecolnposition
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with irreducible level p>" representations 7rp'\' Finally, 7r1,,\ (T) has order dividing
pA, i.c. its cigenvalues are p>"-th roots of unity. Since any lV-th root of unity (

has a uniquc decoluposition as product of thc p>"-th raots af unity (;X-x p with
-?-xp == 1 moel p>", \ve concludc:

Lenllua. Let (j (1 :::; j :::; n = dilll 7r) bc tbe eigellvalues of 7r(T). Tllen, for eac11

p>"11 1V, tbe eigenvalues f:. 1 of 7rp'\ (T) (coullting multiplici ties) are exactly tbose

alnong tbe numbers (r xP
(1 .:::; j .:::; n) Wllic11 are not equal t~ 1.

The representation p in line 1 to 4 of Table 3. First, we cansider the rational
rnodels corrcsponding to the first 4 rows of Table 3. By asstuuption h = 0 is
in H, i.e. fl = exp(27ri( -c/24 + k' /12)) is an eigenvalue of p(T). Let 7r bc that
irrechlcible level [ representatian in the sunl decoruposition of p such that 7r(T)
has the eigenvalue p" Since 7r is irreelucible it has a elecoluposition as product of
irreducible representations Irp'\ as ahove. Since p. is a priruitive [-th root of unity
the leuuua huplies that the 7r]J'\ are nontrivial.

The ruinirual eliluension of a nontrivial irreclucible level p>" representation is 2, 3
01' (p - 1)/2 accordingly if p>" equals 8, 16 01' is an odel prinlc [26~ p. 521ff]. Hencc
we have the inequalities

diru 7r 2::

(p-1)(q-1)/2 forrow1

(rn - l)(q - 1)/4 for row 2

3(q-1)/2 forrow3

q - 1 far row 4

For row 1, 3 ancl 4 the right hand siele equals the carelinality of He respectivcly. In
these cases wc thus conclude that p= 7r is irreelucible, that it is equal to a procluct
of nontriviallevel p>" representations with luinhual clituensions, anel, in particular,
that H = He.

For ro\v 2 the right hand siele is sluallcr than the cardinality of He. However,
here we can sharpen the above inequality: First we note that the level p repre­
sentations of dirnension (p - 1)/2 have parity (_1)(]J+l)/2, whcnce thc proclllct of
the corresponcling level1H and q representations has parity (_1)(m q-l)/2. On thc
other hand any irrcclucible subrepresentat.ion has the sanle parity p, i.c. thc parity
(_l)k' = (_1)(m q+l)/2. Hence 7r cannot cqual a prodllct af twa nontriviallevellH
anel q representations of lllininlal clil11ension. The dil11cnsion of the sccond 81ua11­
est nontrivial irreduciblc level p reprcsentations is (p + 1)/2. Ullder each of thesc
representatians T affards eigcnvaluc 1. Since T uuder p afforcls no ln-t.h root. of
unity as eigenvalue we conelude that Ir canllat be equal to a product of a (q + 1)/2
diruensional level q ancl a (112 - 1)/2 dinlcnsional level r11, representation. Thus,

dinl7r 2:: (111. + l)(q - 1)/4.

The right hand siele eqllals JHcI, and we canelude as abovc that H = He, that p
is irreclucible, and that pequals a product of an irreducible (q - 1)/2 dimensional
level q and an irredllcible (nt + 1)/2 clinlensionallevel r11, rcpresentation.
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To identify p it thus reIuains to exanline thc nontriviallevel pA representations
with slnall dimensions (cf. [26, p. 521ff]).

Let pA = P be an oeld prilne. Thcre exist exactly two il'reducible level p reprc­
sentations wi th dinlension (p - 1) /2. The iInage of Tunder these representations
has exactly thc eigcnvalues exp(27rie:v 2 /p) (1 ::; ;l: ::; (p - 1)/2) where for one of
thenl e is a quaclratic residue 1110dulo p, anel a quadratic non-residue for the other
one [26]. eall these representations accorcIingly a~. Siluilarly there exist exactly 2
irredllcible level ]J representations with diluension (p + 1)/2, denoted by r; (with c
being a quadratic residlle 01' non-resielue luodulo p). The eigenvalues of T;(T) are
exp(21riex 2 /p) (0::; x::; (p-1)/2).

Let pA = 8. There cxist exactly 4 irreducible two diluensional level 8 repre­
sentations which wc denote by Da (x being an integer 1110elulo 4). Thc eigenval­
ues of the inlage of Tunder thc representation Da are exp(21ri(1 + 2x )/8) and
exp(27ri(7 + 2x)/8).

Let pA = 16. There are 16 irreducible t.hree dinlensionallevel 16 represcntations.
These can be distinguished by thcir cigenvalucs of the image of T. In particular,
there are foul' of these representations, denoted by Df6 (x nl0d 4), where the iluage
of T has the eigenvalues exp(27f'i.(2x + 3)/8), exp(27ri(3x - 6)/16), exp(27ri(3x +
2)/16).

S . . fi I ~ 71 p 7l q D 7l s 7l q ·,l 7l p D 7l t 6ull11uanzlng we ne p = a IV\ a!VI - a IV\ T m = a!VI 01'
~ l' 'Cl q I(Y 8' - q 'Cl m' q \01 16

= a;q ® a~lr" rcspectively, with suitable nUlnbcrs Hp, •.•. The httter CaJl be easily
detenuinecl using the LeInma and the description of He in Table 1. Thc resulting
values are given in Table 3.

The represel1tation p in line 5 to 9 of Table 3. V\Te now eonsiclcr the rational
Inoelels corresponding to row 5 to 9 of Tablc 3. Here the level of p is a prilne I,
the diluension of p is ~ I - 1, und the eigenvalues of p(T) are pairwise different
prilnitive I-th root of unity.

'~ie sho\v that pis irreelucible with dilnension [-1. Assunle that pis reclucible 01'

has dilnension < (1- 1). The only irreclucible level 1reprcsentations with diInension
< (I - 1) for which the ilnage of T cloes not afforcl cigenvalue 1 are af. Thus

there only two possibilities: (a) p = af 01' (b) P= af EB a(. For [ = 5,17 the
representations ai have parity -1, whereas p has parity +1: a contradiction. For
1= 11,23 we not.e that ~112 is an elClnent of 1',111(p0B2- 2k'). vVe shall show in mOlnent
that the dinlension of lvII (aj 0 B2-2k') is 0, whieh gives the elcsired contradietion (to
recognize the contradiction in case (b) note that thc "functor" p l---+ 111k(P) respects
direct sunls).

Since thc dilnension forn1tl1a gives cxplicit diluensions only for J..~ =I=- 1 we cannot
apply it clircctly for calculating the cliluension of lvI = A11(aj ® e2 - 21.:'). For [ = 11
we note that 1]2 111 is a subspaee of l\12 (af 0 rr- 2k'). To the latter we can apply
thc dilnension fonnula, anel find (using traf(S) = 0, traf(ST) = -1) that its
diluension is 0. For 1= 23 allel c = 1 we eonsicler A13 / 2 (a/ 0 IP-2k') which eontains
7] lvI. '~Te fin cl that its dilnension equals

dilnSl/2(ail (8) e-(3-2k'») ::; elinl1'\11 / 2 (ai 1 ® e-(3-2k'»),

whieh eqllals 0 by the supplelnent in §4.2 (for applying the supplelnent note that
ail ®e-(3-2k

l

) has a kernel containing r(23·24)~ allel represents T with eigenvalues
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exp(27ri( -24x2 + 17 ·23)/23 . 24) ). Finally, by tbe diulension fonnula we find

anel the right hand side equals 0 since diul S3/2 (al ® 8-( I - 2kl ») = 0 by the supple­
lnent.

Thus, p is irreducible of dilnension I - 1, which iInplies in partieular H = He.
There cxist exactly (I - 1)/2 irreducible level I rcpreselltatiollS of cliInension I - 1
[27, p. 228]. \Ve now use property (5) of the lnain theorenl, whieh ilnplies that the
Fourier coefficients of ~ . 17 2k' are rational. Hence, by thc corollary in §4.3 we find
that p takes values in GL(l - 1, ]() \vith ]( being thc field of l-th roots of unity.
There is exactly one irredueible level I representations of diInension I - 1 whose
character takes valucs in ]( [27, p. 228]; denote it by PI. Then p= Pi.

The representation P in line 10 of Table 3. Finally, WB consider the last
rationallnodel of Table 3. Here phas level 360 = 8 ·5 . 9. The eigenvalue of peT)
eorresponding to h = 0 is a prilnitivc 360-th root of unity. Henec by thc lenl111a
there exists an irreducible subreprescntatiol1 7r of p which factors as a product of
110ntrivial irreducible representations of level 8, 5 aud 9, respectively. The nlininlal
dilllension of all irreducible nontrivial level 8, 5 01' 9 represel1tation is 2, 2 anel 4,
respeetively {26, p. 521]. Thus din17r 2': 16 = IHel, anel hence H = He and p= 7r.
Thc eigcnvalucs of peT) cau bc reacl off fronl Table 2. Using thc lcnllllH and the
rcpresentations Da and asintroelueeel ahove, we find

-- n° 1 RP = 8 ® as ® .

for an irrcducible level 9 representation R. with dinlension 4, whieh represents T
with eigenvalues exp(2?Tix2) (1 ::; x ::; 4), aud is odd. Looking up [26] WB find that
there is exaetly oue such represcntation, following [26] we denote it by R2(1, -).

COlllputation of ditllensions. It rCluains to show d = dirn N1kCiJ ® B2k
-

2 k') ::; 1.
For the first 4 rows of Table 3 this follows froul the suppleulcnt in §4.2 anel thc
irreducibility of p (in fact it can be shown that d = 1 [23]). For row 5 and 6
we find cl = 1 by the clilllension fonllula ancl using tr PI(S) = 0, tr PI(ST) = 1
(valid for arbitrary priules I). For thc rClnaining eases (wherc k = 1) we ll1Ultiply
1\1. Cii®82

-
2e

) by 1] for obtaining cl' = clinl1113/2(p®83-Ze) as upper bounel. Again,
using the dilnension fonnula anel its supplelnent we find cl' = 1.

This eonclucles thc proof of the lnain theoreln. 0
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