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Abstract. In [1] Michael Anderson proved the following remarkable theorem: Let
Mn be a closed Riemannian manifold with a torsion-free fundamental group. Assume that
Ricci curvature is bounded from below by −(n−1). Assume that the volume of Mn is not
less than v > 0 and the diameter of Mn does not exceed d. Then there exists an explicit
ε = ε(n, v, d) > 0 such that every closed curve γ of length ≤ ε on Mn is contractible.
Moreover, one can drop the assumption that π1(M

n) is torsion-free, but in this case the
theorem asserts only the existence of some positive integer k(γ) ≤ N(n, v, d) such that γ

iterated k(γ) times is contractible. Here N(n, v, d) is an explicit function.
The purpose of the present paper is to derive several effective versions of this the-

orem. For example, we prove that for every positive r there exists an explicit positive
ε = ε(n, v, d, r) such that for every closed curve of length ≤ ε one of its first N(n, v, d)
iterates is contractible via closed curves of length ≤ 2r inside a metric ball of radius r.

The proof by M. Anderson is based on an application of the Bishop volume comparison
theorem to the universal covering space of a manifold with Ricci curvature bounded from
below. Our main technical novelty is to replace this by an application of the Bishop volume
comparison theorem to a tangent space of the manifold endowed with the (pseudo-)metric
obtained as the pullback of the Riemannian metric on the manifold under the exponential
map.

1. Introduction and main results.

To state our main results let vn(t) denote the volume of a metric ball of radius t is
the n-dimensional hyperbolic space, N(n, v, d) be the smallest odd integer number greater

than vn(2d)
v

, and ε(n, v, d, c) = c
N(n,v,d)−1 . (Recall that vn(t) = π

n

2 n
Γ( n

2
+1)

∫ t

0
sinh(τ)n−1dτ (cf.

[2]).) The ith iterate of a closed curve γ : [0, 2π] −→ Mn, γ(0) = γ(2π), is, by definition,
the curve γi defined by the formula γi(φ) = γ(iφ).

Theorem 1. Let Mn be a closed Riemannian manifold with Ric ≥ −(n − 1), volume
bounded from below by v > 0 and the diameter bounded from above by d. Let c ≤ 2d be
any positive real number. For every closed curve γ of length ≤ ε(n, v, d, c) there exists a
positive integer k = k(γ) ≤ N(n, v, d) such that the closed curve obtained by iterating γ k

times can be contracted to a point via closed curves of length ≤ 2d + c.

Example. One can take c = 2d, ε(n, v, d) = ε(n, v, d, d) = 2d
N(n,v,d)−1 and to conclude that

one of the first N(n, v, d) iterates of every closed curve of length ≤ ε(n, v, d) is contractible
via closed curves of length ≤ 4d.

Michael Anderson proved in [1] an assertion similar to the assertion of Theorem 1 but
without the upper bound 2d + c for lengths of closed curves in the contracting homotopy.
Here is a slighlty modified sketch of his proof that yields a slightly better estimate than the
estimate in [1]: Assume that none of first the K iterates of γ is contractible. The same will
be true for iterates of γ traversed in the opposite direction. Then there exists a segment S of
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the length 2K length(γ) in the universal covering of Mn that consists of 2K distinct copies
of the lift of γ to the universal covering. Without any loss of generality we can assume
that all 2K +1 endpoints of these segments (that project to the basepoint) are in different
fundamental domains. Therefore the d-neighborhood of S in the universal covering contains
(at least) 2K+1 fundamental domains, and therefore has volume ≥ (2K+1)v. On the other
had it is contained in a metric ball of radius K length(γ) + d. Assume that K ≤ d

length(γ)
.

Then K length(γ) + d ≤ 2d, and the Bishop volume comparison theorem implies that the
volume of the d-neighborhood of S does not exceed vn(2d). Thus, (2K + 1)v ≤ vn(2d).

Now choose N(n, v, d) as the minimal odd integer number greater than vn(2d)
v

, and

let K = N(n,v,d)−1
2 . Let ε = ε(n, v, d) = 2d

N(n,v,d)−1 . Then the assumption that a closed

curve has length ≤ ε but its first N iterates are non-contractible leads to an immediate
contradiction.

Note that this argument cannot provide an upper bound for the length of loops during
a contracting homotopy of an iterate of a short closed curve. Indeed, observe that Theorem
1 makes sense and is non-trivial even for simply connected Riemannian manifolds. In this
case we obviously cannot use volume comparison in the universal covering space of M n as
this universal covering coincides with Mn and is useless for this purpose.

We became interested in finding an effective version of the result of Anderson in the
course of our joint work with Shmuel Weinberger [4], as such a theorem could be helpful
there. To prove such an effective version Shmuel Weinberger suggested to use some form
of an “effective universal covering” instead of the universal covering. Here one possible
idea could be to identify two paths leading from the base point to the same point if the
loop formed by these two paths is not merely contractible, but is contractible with some
control over geometry of the curves obtained in the process of contraction. Yet we were
not able to construct any specific version of an “effective universal covering” that would
be appropriate for a proof of Theorem 1. So, another possible reason to look for a proof
of Theorem 1 is to find out what can replace the universal covering space when one is
interested in an effective version of various arguments in comparison geometry that use
the Bishop volume comparison theorem applied to domains in the universal covering.

Our answer for the last question is that one needs to apply the Bishop volume compar-
ison theorem to a tangent space to the manifold endowed by the Riemannian pseudo-metric
defined as the pullback of the Riemannian metric on the manifold under the exponential
map. Our motivation for this idea will be explained in the last section. An obvious compli-
cation is that the tangent space with the pullback metric cannot be naturally subdivided
into fundamental domains (unlike the universal covering space of Mn). This difficulty
is circumvented by means of Lemma 2, which asserts that under certain conditions the
inverse image of every point of the manifold under the exponential map will have many
distinct points in a ball of controlled radius. (Or equivalently, every two points of the
manifold can be connected by many distinct geodesics that are not too long.)

We are going to use essentially the same idea to prove an effective local version of the
result of Anderson (Theorem 3 in section 4). Theorem 3 answers the following question: In
Theorem 1 iterated short curves are contracted using all manifold and via closed curves of
length bounded by 2d+ c. Does a smaller upper bound for the length of a curve guarantee
that one of its iterates will be contractible within a small ball and via short curves? A
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possibility of such a local version of his theorem had been suggested by Anderson in
Remark 2.2(1) in [1]. (But he was not interested in controlling the length of curves during
a contracting homotopy). Anderson suggested to consider the δ-neighborhood T (δ) of a
closed curve γ of interest for a sufficiently small δ. Then he suggested to replace Mn by
this δ-neighborhood in his argument, obtaining as the result the inequality N vol(T (δ)) ≤
vn(N length(γ) + d) (in our notations) from which a local version of his theorem can be
easily deduced. (However, there is a technical problem with this idea: In general, T (δ)
and its universal covering have boundaries, and the Bishop volume comparison theorem
is not applicable to manifolds with boundary. To appreciate the last assertion consider a
thickened figure eight in R2. Assume that its thickness is approximately equal to one. Its
universal covering will be a thickened binary tree. The volume of the ball of radius R in
the universal covering will grow exponentially with R, and will not be bounded from above
by πR2, as the Bishop volume comparison theorem would imply).

Note that all these results assert not the contractibility of a short closed curve but of
one of its iterates. Our last results (Theorems 4 and 4.A) provide an explicit value of ε

such that every closed curve of length ≤ ε on Mn can be contracted to a point with only
a controlled increase of its length as a loop based at one of its points. Yet this ε is defined
not in terms of n, v, d. Instead, we use a distance x such that the volumes of all metric
balls of radius ≤ x are close to the volumes of the balls of the same radius in Rn.

2. Proof of Theorem 1.

First, note that the general case of Theorem 1 follows from the special case when the
Riemannian metric on Mn is analytic. Indeed, we can δ-approximate any given smooth
Riemannian manifold Mn by an analytic Riemannian manifold Nn, where δ is much smaller
than the convexity radius of Mn. (Here we consider an approximation in the Gromov-
Hausdorff metric.) Then it becomes possible to “transfer” any closed curve γ in Mn to
Nn, fill its appropriate iterate by a 2-disc in Nn made of curves of length 2d + c + O(δ),
and to “transfer” this 2-disc back to Mn. The idea that one can canonically fill “gaps”
between points or between closed curves of size less than the convexity radius of M n. The
construction of such transfers is well-known in comparison geometry (cf. [3] for a detailed
description of such transfers back and forth in a different setting).

Let p be a point of Mn. Consider the exponential map expp : TMn
p −→ Mn of the

tangent space of Mn at p to Mn. For each r let Br(TMn
p ) denote the open ball of radius

r centered at the origin in TMn
p . Consider the pullback pseudo-Riemannian metric on

TMn
p : For v, w ∈ T (TMn

p )q we define < v, w > as g(d expp(q)v, d expp(q)(w)). If expp(q)
is not a conjugate point, this formula yields a Riemannian metric in an open neighborhood
of q, and the exponential map will be a local isometry. If Mn is an analytic Riemannian
manifold, then the set of points X q ∈ TMn

p such that d expp(q) is a singular linear map
is a triangulable subset of TMn

p of codimension ≥ 1. Note that one can also consider the
pullback of the volume measure on Mn to TMn

p . Denote the resulting pseudo-Riemannian
manifold with the pullback measure by (TMn

p )∗. Note that one can regard Br(TMn
p ) as

a subset of (TMn
p )∗. Classical proofs of the Bishop volume comparison inequality (cf.

section 9.1 of [5]) also imply that:

Proposition. Let Mn be a complete Riemannian manifold satisfying Ric ≥ −(n−1).

3



Then for every r the volume of Br(TMn
p ) ⊂ (TMn

p )∗ does not exceed the volume vn(r) of
a metric ball of radius r in the hyperbolic n-space.

Let γ be a closed curve on Mn of length ≤ ε = ε(n, v, d, c).

Example. Assume that Mn is the round n-dimensional sphere of radius 1. Let p be
the South pole of the sphere. In order to understand the geometry of the pseudo-metric
space (TMn

p )∗ note that for every integer k expp maps every (n− 1)-dimensional sphere of
radius 2πk centered at the origin into the South pole and every sphere of radius (2k + 1)π
centered at the origin into the North pole. Therefore, for every integer m the distance
between each pair of points in the (n−1)-dimensional sphere of radius πm is equal to zero.
In order to better understand the geometry of the pseudo-metric space (TMn

p )∗ one can
turn it into a metric space by identifying every pair of points such that pseudo-distance
between them is equal to zero. After passing to the quotient (TMn

p )∗ will become the
infinite join of round n-spheres of radius one indexed by number 1, 2, . . . and attached to
each other so that for every i the North pole of the ith sphere is glued to the South pole
of the (i + 1)-sphere.

Choose p = γ(0). Our idea is to carry out the proof by M. Anderson using (TMn
p )∗

instead of the universal covering space of Mn. Instead of considering a metric ball of
radius 2d in the universal covering space of a Riemannian manifold we are going to consider
B2d(TMn

p ) ⊂ (TMn
p )∗. As it had been already noted, the volume of B2d(TMn

p ) regarded
as a subset of (TMn

p )∗ does not exceed vn(2d).
In order to complete the proof of Theorem 1 we need only to prove that if none of the

first N = N(n, v, d) iterates of γ is contractible in Mn via closed curves of length ≤ 2d + c

then B2d(TMn
p ) contains at least N “copies” of Mn and has, therefore, volume ≥ Nv.

(Juxtaposing the upper and lower bounds for the volume of B2d(TMn
p ) ⊂ (TMn

p )∗ we
would obtain the inequality Nv ≤ vn(2d) contradicting the definition of N = N(n, v, d).)
More precisely, we would like to establish that Mn minus a set of measure zero can be
partitioned into open domains such that each of these open domains is the image under expp

of at least N disjoint open domains in B2d(TMN
p ) ⊂ (TMn

p )∗, and the restriction of expp on
each of these open domains in B2d(TMn

p ) is an isometry. Since (TMn
p )∗ is locally isometric

to Mn outside of the inverse image of the set of conjugate points of p, it is sufficient to
prove that for every point x of Mn the cardinality of the set exp−1

p (x)
⋂

B2d(TMn
p ) is at

least N . In simple terms this means that there exists at least N geodesics of length ≤ 2d

between p and x.
Thus, Theorem 1 follows the following lemma:

Lemma 2. Let Mn be a Riemannian manifold, and x a point of Mn. Let K be a
positive integer number, and ε a positive real number. Finally, let γ is a closed curve of
length ≤ ε on Mn such that neither of its first K iterates can be contracted to a point
via loops based at γ(0) of length ≤ 2Kε + 2dist(γ(0), x). Then there exist at least 2K + 1
distinct geodesics of length ≤ Kε + dist(γ(0), x) between p = γ(0) and x.

Indeed, we can apply Lemma 2 with K = N(n,v,d)−1
2 , ε = ε(n, v, d, c) and to observe

that for every point x ∈ Mn dist(x, γ(0)) ≤ d and that 2Kε = c. Therefore, 2Kε +
2dist(γ(0), x) ≤ 2d + c, and Kε + dist(γ(0), x) ≤ c

2 + d ≤ d + d = 2d, as needed. QED.
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3. Proof of Lemma 2.

Proof: Let σ be a minimizing geodesic between p and x. Consider 2K + 1 paths
τi,−(N − 1) ≤ i ≤ N − 1 between p and x that first go along γ i times and then along σ.
Apply a version of the Birkhoff curve-shortening process for curves with fixed endpoints
to each of paths τi. As the result, for every i we will obtain a length non-increasing path
homotopy Hi between τi and a geodesic between p and x that we are going to denote
σi. (Recall that path homotopy is a homotopy of paths with fixed endpoints.) Of course,
σ0 = σ.

We claim that, if i > j, then σi 6= σj. (This assertion immediately implies the lemma.)
Indeed, assume that i − j = k > 0, and σi = σj . Then there is a path homotopy between
τi = γi∗σ and τj = γj∗σ that passes through paths of length not exceeding Kε+dist(x, p).
This path homotopy H is obtained by combining path homotopy Hi with a path homotopy
obtained from Hj by reversing the direction of time.

Now one can contract γk via closed curves of length ≤ 2d + 2Kε thereby obtaining a
contradiction with the assumptions of the lemma as follows: First, create j new copies of
γ followed by j copies of γ traversed in the opposite direction. This step can be described
by the formula γk −→ γk ∗ γj ∗ γ−j = γi ∗ γ−j. Now insert σ ∗ σ−1 in between of γi

and γ−j . We obtain γi ∗ σ ∗ σ−1 ∗ γ−j = τi ∗ σ−1 ∗ γ−j. Apply H to τi. We will obtain
τj ∗ σ−1 ∗ γ−j = γj ∗ σ ∗ σ−1 ∗ γ−j, which can be contracted to a point over itself by a
length decreasing homotopy. QED.

4. A local version of Theorem 1.

In this section we are going to prove the following theorem:

Theorem 3. Let Mn be a closed Riemannian manifold with Ric ≥ −(n− 1), volume
greater than or equal to v and the diameter less than or equal to d. Let N be the smallest

odd number greater than vn(2d)
v

, and δ be any positive number. Assume that a positive ε

satisfies the inequality

vn((N − 1) ε
2

+ δ)

vn(δ)
<

vn(2d)

vn(d)
. (∗)

Let r = N−1
2

ε + δ. Then for every closed curve γ of length ≤ ε in Mn there exists i ≤ N

such that the ith iterate of this curve can be contracted to a point inside the metric ball
of radius r centered at γ(0) via loops based at γ(0) of length ≤ 2r.

Since vn(x) is continuous, the left hand side of (*) converges to 1, as ε −→ 0, and so
the inequality (*) holds for all sufficiently small positive ε. Thus, we obtain the following
corollary of Theorem 3:

Corollary 3.A Let Mn be a closed Riemannian manifold with Ric ≥ −(n − 1),
volume not less than v > 0 and diameter not exceeding d. Then for every positive r there
exists an explicit ε(n, v, d, r) > 0 such that every closed curve of length ≤ ε(n, v, d, r) on
Mn can be contracted to a point within a metric ball of radius r via closed curves of length
≤ 2r.
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Proof of Theorem 3. We are going to prove Theorem 3 by contradiction. Assume
that its conclusion is false. Then we can apply Lemma 2 with K = N−1

2
. It implies that

for every point x ∈ Mn such that the distance between x and γ(0) does not exceed δ there
exist at least N distinct geodesics between γ(0) and x of length not exceeding r. Therefore,
as in the proof of Theorem 1 in section 2, we can assume w.l.o.g. that the Riemannian
on Mn is analytic, and can conclude in this case that the volume of Br(TMn

γ(0)) regarded

as a subset of (TMn
p )∗ is not less than Nv(δ, γ(0)), where v(δ, γ(0) denotes the volume of

the metric ball in Mn of radius δ centered at γ(0). An application of the Bishop-Gromov

volume comparison inequality implies that v(δ, γ(0)) ≥ v vn(δ)
vn(d) . Therefore,

vn(r) ≥
Nv vn(δ)

vn(d)
≥

vn(2d)

v

v vn(δ)

vn(d)
=

vn(2d)

vn(d)
vn(δ).

Hence
vn(r)

vn(δ)
≥

vn(2d)

vn(d)
,

which contradicts (*). QED.

Our last result provides ε and δ such that every closed curve γ of length ≤ ε can be
contracted to a point via loops based at γ(0) of length ≤ 2ε+2δ. In this case one does not
need to iterate γ to make the result contractible. But ε and δ are not defined in terms of
n, v and d anymore. (It seems that a modification of the example constructed in the proof
of Proposition 3.1 of [1] can be used to show that there is no positive lower bound for ε of
the form f(n, v, d) such that every closed curve of length ≤ ε is contractible. One needs
just to replace the Eguchi-Hanson metrics on TS2 used in the proof of Proposition 3.1 of
[1] by analogous Riemannian metrics on TRP 2. I learned this idea from Vitali Kapovitch
and would like to thank him for pointing out to me this construction.) To state out result
note that for small ε volumes of all balls of radius ε in Mn are very close to the volume of
the ball of radius ε in Rn. The same is true for the volume of the ball of the radius ε in
the n-dimensional hyperbolic space.

Theorem 4. Let Mn be a closed Riemannian manifold with Ric ≥ −(n− 1). Define
δ0 as supremum of all positive numbers τ such that the volume of every metric ball of
radius τ in Mn is not less than 1

2vn(τ). Assume that δ is in the open interval (0, δ0). Let
εδ be the solution of the equation vn(εδ +δ) = 3

2vn(δ). Then every closed curve γ of length
ε < εδ can be contracted to a point via loops based at γ(0) of length ≤ 2ε + 2δ.

Proof. Assume that the conclusion of the theorem is false. We are going to bring this
assumption to a contradiction. Denote the length of γ by ε. Apply Lemma 2 for K = 1
and x ∈ Mn such that the distance from γ(0) and x does not exceed δ. Its conclusion is
that there exists at least three distinct geodesics between γ(0) and x of length ≤ ε + δ.
Therefore, the volume of Bε+δ(TMn

γ(0)) regarded as a subset of (TMn
γ(0))∗ is not less than

three times the volume of the metric ball of radius δ centered at γ(0) in Mn. The definition
of δ implies that this volume is not less than 3

2vn(δ). On the other hand, the Bishop volume
comparison theorem (or, more precisely, Proposition in Section 2) implies that this volume
does not exceed vn(ε + δ), which is less than 3

2vn(δ). (The last inequality follows from the
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fact that ε < εδ.) Juxtaposing these two inequalities we obtain the desired contradiction.
QED.

Note that we used the lower bound for the Ricci curvature in this proof only to
majorize the volume of Bε+δ(TMn

γ(0)) regarded as a subset of (TMn
γ(0))∗ by the volume

of the ball of the same radius in the hyperbolic space. Therefore, essentially the same
argument proves the following slightly more general theorem. Denote the volume of a
metric ball of radius t in the simply-connected space of constant sectional curvature k by

vn,k(t). It is well-known that vn,k(t) = π
n

2 n
Γ( n

2
+1)

∫ t

0
Sk(τ)n−1dτ , where Sk(t) = sinh(

√
−kt)

√
−k

, if

k < 0, Sk(t) = t, if k = 0, and Sk(t) = sin(
√

kt)
√

k
, if k > 0 (cf. [2]).

Theorem 4.A. Let Mn be a closed Riemannian manifold. Let k denote the infimum
of the Ricci curvature of Mn divided by n − 1. Define δ0 as the supremum of all positive
numbers τ such that the volume of every metric ball of radius τ in Mn is not less than
1
2vn,k(τ). Let δ be a positive number less than δ0, and εδ be the solution of the equation
vn,k(εδ + δ) = 3

2vn,k(δ). Then every closed curve γ of length ε < εδ can be contracted to a
point via loops based at γ(0) of length ≤ 2ε + 2δ.

5. A concluding remark.

The main idea behind our improvements of Anderson’s theorem is to use the tangent
space of Mn with a (pseudo-) Riemannian metric defined as the pullback of the Riemannian
metric on Mn under the exponential map. Our rationale can be explained as follows. The
universal covering space of Mn is usually constructed by considering all paths emanating
from a fixed base point p ∈ Mn. Two paths are being identified into the same point of the
universal covering if they have the common endpoints and together form a contractible
loop. An almost obvious observation is that here it is sufficient to consider only geodesics
emanating from p. Indeed, every path emanating from p can be connected with a geodesic
with the same endpoints by a (length non-increasing) homotopy. So, the path and the
geodesic will correspond to the same point of the universal covering. Thus, we have
a surjective map from the tangent space TMn

p that parametrizes all geodesics on Mn

emanating from p to the universal covering space of Mn. Informally, one can say that
TMn

p is “not smaller” than the universal covering space of Mn. Yet the Bishop volume
comparison theorem is still true for TMn

p with the pullback metric and measure (see
Proposition in section 2). Therefore, this space seems to be a natural replacement for the
universal covering space of Mn in arguments involving volume comparison on the latter,
if by some reasons the latter cannot be used.
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