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Abatract. We consider Hecke symmetries of minimal type, i.e., solutions of the QYBE
with two eigenvalues and such that the Poicaré series of the corresponding exterior alge-
bras are polynomials of degree 2. We construct the corresponding quantum cogroups and
introduce notion of braided Lie algebra. The examples of Hecke symmetries of minimal
type and of braided Lie algebras are given.
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Generalized Lie algebras connected with involutive {$% = 1) solution of
the quantum Yang-Baxter equation (QYBE) have been introduced in our
paper [3]. In [5] (see also references therein for our previous papers) we have
constructed some explicit examples of generalized Lie algebras (or in other
words S-Lie algebras) of gl and sl types, connected with involutive non-
quasiclassical (or non-deformation) solutions of the QYBE. The problem of
a proper generalization of this notion to the non-involutive case was open
though a lot of papers were devoted to the problem.

This paper is devoted to two questions. On the one hande we continue to
study some non-quasiclassical non-involutive solutions S of the' QYBE (so
called Hecke symmetries). On the other hand we propose the definition of
S-Lie algebras (called here braided Lie algebras to stress non-involutivity of
the operator §) connected with Hecke symmetries.

The paper consists of three Sections. In Section 1 we recall some usuful
facts about Hecke symmetries. We put emphasis on Hecke symmetries of
minimal type, i.e. such that the Poincaré series of corresponding exterior
algebras are polynomials of degree 2 with leading coefficient 1. Some of such
type solutions of the QYBE have been independently constructed in [1].

In Section 2 we introduce quantum cogroups connected with Hecke sym-
metries of minimal type and compare these objects with Hopf algebras aris-
ing from non-degenerated bilinear forms defined in [1]. In Section 3 we in-
troduce a notion of braided groups and give their examples connected with
Hecke symmetries of minimal type.

1. HECKE SYMMETRIES: STRUCTURE, EXAMPLES

Let V be a finite-dimensional vector space over a field k of characteristic 0
and § : V9% V9?2 3 solution of the QYBE

(S @id)(id ® )(S ®id) = (id @ $)(S ®id)(id ® 5).
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Among all the solutions of the QYBE, the most interesting are the so called
closed ones. Fix a base {e;,1 < i < n = dimV} in the space V and put
S(ei@ej) = S,!‘J-l er ® e;. Consider the operator T which in the base {e;} is
defined by SH T{m = §™6!. We call the solution § of the QYBE closed if T
exists.

It is not difficult to show that a closed solution of the QYBE can be ex-
tended up to a braiding operator in a rigid quasitensor category A containing
the space V. According to generally accepted terminology, a quasitensor cat-
egory is called rigid if it satisfies the condition U/ € ObA — U* € ObQA and
the pairing U ® U* — k is A-morphism. The braiding operator § (or in other
words, “commutativity morphism”) is a mophism in the category « but it
is not involutive in general.

In this paper, we deal only with solutions of the QYBE wich have two
eigenvalues. We call them Hecke symmeties. More precisely we call a solution
S of the QYBE a Hecke symmetry if S satisfies the equation

(gid = $)(id + §) = 0.

We assume that ¢ # 0 and ¢" # 1,n = 2;3;...
The Hecke symmetries have a great advantage: it is possible to define for
them an analogue of the symmetric and exterior algebras. Namely we put

A (V) = T(V)/{Iz}

where T(V) = @V ®* is the tensor algebra of V and {I,} (resp., {I-}) is
the ideal in T(V) generated by the image I (resp.,J_) of § 4 id (resp.,
gid — §). Denote A% (V) the homogeneous component of degree k of these
algebras and consider the Poincaré series P4(t) of the algebras A4(V):

Pi(t) =Y dimAf(V)tF.

We call a Hecke symmetry S (and the corresponding space V') even if it
is closed and the Poincaré serie P_(t) is a polynomial (as it was shown in
[5] this condition is equivalent to following one: P_(t) is a polynomial with
leading coefficient 1). If this polynomial is of degree k we say that V (or §)
has bi-rank k|0 and denote it bi-tk V. !

Now we introduce two important operators B = B(§):V - Vand C =
C(§):V = V as follows

B(ei) = Ble; = Tife;, Cle;) = Cle; = Tiie;,

! Note that bi-rank is well-defined for odd objects of Hecke type (it is left to the reader
to give a definition of odd spaces). For them we say that bi-rank is equal to 0|l and for
some objects V' composed in some sens from even and odd spaces it is natural to put bi-
rank V = k|l. We dont want to examine this problem in more detail but stress only that
it is not clear yet, whether all involutive closed solutions of the QYBE have a bi-rank.



where {e;} is the fixed base in V.

It is easy to see that this definition does not depend on the choice of the
base. These operators can be defined for any object in any rigid quasitensor
category but we need them only for an inicial space V equipped with a Hecke
symmetry §.

The following statements are proved in, or can be easily deduced from,

[5].
PROPOSITION 1. 1. For any Hecke symmetry S the relation
Pit)P_(-t) =1

holds.
2. If § is even then the polynomial P_(t) is reciprocal.
3. Moreover if bi-rkV = k|0 then the operators B and C satisfy the rela-
tion
ttB=trC =q¢ %k,

(we denote here and below kg =1+ g+ ...+ q"‘l).

4. If bi-rkV = 2|0 then BC = CB = q73id and the operators b = Bg?®
and ¢ = Cq? satisfy the following condition

J) if Jordan form of b or ¢ contains a cell with eigenvalue z it contains
another cell with eigenvalue gz~ (with the same multiplicity).

5. If an operator ¢ : V — V satisfies the conditions J) and trc = 1+ ¢
then there ezists an even closed Hecke symmetry § : V&% — V2 of bi-rank
2|0 such that C = C(S) = q~2%c. There ezists the one-to-one correspondance
between the family of all such Hecke symmetries and matrices v satisfying
the condition -

() lg=v"lew, v=(v7)

(c* denotes the matriz conjugated to c). If such v is fized then the corre-
sponding Hecke symmetry is of the form

85 = a8 = (1+ q)uizo®,
where u = (u;;) can be deduced from the equality
c=(1+ g ie c = (1+¢) v uy.

Remark that the quantity trB = trC, which can be defined for any
element of a rigid category, is usually called its rank (see for example [6]).
So the statement 3 of Proposition 1 establishes the relation for even Hecke
symmetries between rank in this sens and bi-rank in our sense. Here and

further on, we say that a Hecke symmetry is of minimal type if it is even
and has bi-rank 2|0.



Stress also that bi-rank does not change under deformation and therefore,
a quasiclassical Hecke symmetry (i.e.,a deformation of the usual tranposi-
tion) must have bi-rank n|0,» =dimV.

Let us give two examples of minimal Hecke symmetries.

EXAMPLE 1. Let dimV =2 and ¢ # 1. Then any pair (c,v) satysfying the
conditions above has in some base form

=(87) »=(s5)-

Then
g0 0 0
100 gm! _
§= 0mg—10 where m = —a/b.
00 0 ¢

Stress that the operator N = uv is scalar iff m? = g (the role of this operutor
will be ezplained in Proposition 2).

EXAMPLE 2. Let dimV =3. We put ¢ = diag(z,t,q/x) where t is one of
roots +./q and z satisfies the equation z +t+ qf/x = 2. Then.assuming v to
be as follows we obtain §

(qO 0 0 0 0 0 00\

0q 0 0 0 0 0 00

00 g—xz 0 —bzfa 0 —czfa 00

00a 00 0 ¢ 0 0 0 00
v=(0b0),5= 00 —at/b 0 g—t 0 —tefb 00
& 00 00 0 0 0 g 0 00

00 —gajex 0 ~gbfcz 0 q—q/z 00

00 0 0 0 0 0 q0

\0o0 0 0 0 0 0 0gq)

For this example the operator N = uv is scalar if afc = z /1.

Stress that the last example can be easily generalized to arbitrary dimension
n=dim V.

2. HECKE SYMMETRIES ARISING FROM BILINEAR FORM
AND QUANTUM COGROUPS

In [1] a method have been introduced to construct a solution of the QYBE
by means of a non-degenerated bilinear form. In this Section we show that
the family of such solutions coincides with subset of Hecke symmetries of
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minimal type. We introduce also the quantum groups connected with Hecke
symmetries of minimal type and compare them with Hopf algebras defined
in [1]. ‘

Consider a linear space [ = V ® V* with base {e¢] = ¢; ® e’} equipped
with the operator

Sq:L® — L®2, So(el @ek) = SP (ST, el @ ef.

Stress here that V* differs from the dual space (right or left one) in the rigid
category mentioned above and moreover the space L does not belong to this
category (wich will appear below as the category of comoduls of a quantum
cogroup).

It is obvious that this operator Sg satisfies the QYBE and has eigenvalue
1.

Consider the algebra A(S) = T(L)/{/} where {I} is the ideal generated
by the image I of the operator id — §q. Suppose now that the initial operator
S is Hecke symmetry of minimal type and introduce the so called quantum
determinant det = u;v'*e! ® el (in [5] it was defined for any even Hecke
symmetry).

One can see that

Sqldet ® €l) = Mijef @ det

for some operator M : L — L. Introduce the formal inverse element det™?
and put . _

So(det™ ' @ e}y = (M) lef @ det™
(so the element det det~! is central) and define the algebra k[GL(.S)] as the
quotient of A(S) with the additional generator det~! by. the ideal generated
by elements

det™' @ el — Sq(det™ @ €l).

It is natural to do this because
Sh(det @ el) = det ® €]
(see [5]).

If det is a central element of A(.S), we introduce also the following algebra
k[SL(S)] = A(S)/{lset} where {I.} is the ideal in A(S) generated by
det — 1. The algebras k(GL(S)] and k[SL(S)], being equipped with the
usual comultiplication (Ae! = e¥ ®e]) the usual counit (ye! = 6]) and some
antipod, are Hopf algebras. We call them quantum cogroups because, like in
deformation case, it is more natural to use the terme quantum groups for
dual objects (although we do not have their description similar quasiclassical
quatum groups U,(g)).

These quantum cogroups have been introduced in [4] and [5].



6

PROPOSITION 2. (see [{],[5]) If S is Hecke symmetries of minimal type
then the element det € A(S) is central iff the operator N = uv (N} = uyv*?)
is scalar.

Represent now the construction of [1] in a form convenient for our aims.

PROPOSITION 3. Let B = (B;;) be a non-degenerated bilinear form. Then
the operator Spy,

(SpL)ij = 678; + aBy(B~H)™
where By (B~1)¥ = §! is a solution of the QYBE iff at-a= '+ B;;(B~1)" = 0.

To establish the relation between the construction from [1] and ours, consider
the operator

S =4qSpL=qid+qaB@ B (SH = ¢6F8t + qaBi;(B™)H)

and put u;; = Bij,v* = —qa(l + ¢)"}(B~1)¥. It is easy to see that the
operator S satisfies the conditions of Proposition 1 iff for B,a and ¢ the
relation above and relation ga? = 1 hold.

Hence § is a Hecke symmetry of minimal type with eigenvalues —1 and
a~? and the operator Spy, has eigenvalues —a? and 1. The operator N = uv
is scalar in case under consideration. Therefore the map

{SpL} — {Hecke symmetries of minimal type with central det}

is constructed. It is invertible because assuming det to be central we have
v = bu~! with some b € k.

PROPOSITION 4. In the algebra k[SL(S))] the relations

'u.k;ef ® ej- = uij, 't)"’.efc ® e_’,— =k

hold.
The first relation arrises from the follow chain of equalities
upef ® €5 = (1+ )7 (gid + Sq)unef @ ¢} =

(14 )" (quuef ® €} + unSH el ® ef(STh,) =

(1+ q)—l(qukfe? ® e_if - UmnS?jbeLn ® ep) = ujdet = uy;.

The second relation can be proved in the similar way. Here we use the
following lemma.



LEMMA 1. The relations
S(uge* ® e') =uySHer @b = —uye* @ €,
S(u‘je; ®ej) = v"jS,‘-",.,-be,1 Qe = —ve; ® e;
hold

Vice versa any of the relations from Proposition 4 yields the equality det = 1.

In [1]) some Hopf algebras have been introduced as quotients of T(L) by
the relations from Proposition 4. Due to this Proposition we can conclude
that these algebras coincid with quantum cogroups k[ L(S)] defined above.

3. BRAIDED LIE ALGEBRAS

Let us recall first the definition of S-Lie algebras in the case when the op-
erator S is an involutive solution of the QYBE. We say that the space V is
equipped with a structure of S-Lie algebra if there exists an operator (S-Lie
bracket) [,] : V®% — V satisfying the axioms

L. [)]S = _[)];

2. [,][,]lz(id + S§12923 + 523312) =0;

3. S[,]** = {,]1*35125%3 with usual notation §'? = §®id and so on.

To introduce a braded counterpart of this notion we consider first a notion
of quadratic algebras. Let the space V be fixed. Consider a subspace I C V@2
and so called quadratic algebra corresponding to I : AL(V) = T(V)/{I}
where {I} is the ideal in T(V) generated by I.

Recall now that a quadratic algebra A4 (V) is called Koszul algebra if the
complex :

LS AW OALY) S AT (V) @ AD (V) S

is exact. 2 Here A% (V) is as usually the k—homogenous component of A4 (V);
AL (V) are defined as follows AL(V) = V,A2(V) = [, A3 (V) = IQVNV®I
and so on, and d is a natural differential (see [7] for details).

Let a map [,] : I — V be given. Define a quadratic-linear algebra (an
analogue of envelopping algebra) in the natural way U(g) = T(V')/{J} where
{J} € T(V) is ideal generated by elements I — [,]I. Since in this algebra
there exists a natural filtration, it is possible to consider the graded algebra

GrU(g).

PROPOSITION 5. Let us assume that the algebra Ay (V') is Koszul algebra
and that the following conditions

([9]12_[:]23)(I®V0V®1) clI

? In some papers another complex connected with quadratic algebra is considered and
the algebra is called Koszul algebra if the last complex is exact (see [5] where the both
complexes are considered).
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and
| LI -1L1®)Ievnvel) =0
hold. Then GrU(g) is isomorphic to AL (V).

This Proposition is proved in [7] where the first condition is called correctness
and the second one is called Jacoby identity.

Suppose now that we have an algebra A = k[GL(S)] or A = k[SL(S)] as
above. Consider the category ¥ of left comodules of A, i.e., for any V € &
there exists a coaction A : V — A ® V with usual properties.

Let V € 2. Suppose that there exists a map [,]: V& = V.

DEFINITION 1. The agregate (V,I& I* = V9?2 [,]) will be called a braided
Lie algebra if the following arioms hold

0. the algebra AL (V) = T(V)/{I} is Koszul algebra;

1. [a]r‘l =0y

2. the relations from Proposition 5 are satisfied;

3. I, I" € Ob and the map [,] is @ morphism in A.

Let us explain that the last condition means that

ALl=(r@[])(A® A)

where A@ A : VO 5 A®2 @ VO2 and i : A®? - A is the multiplication in
the algebra A.

Stress that a S-Lie algebra for involutive S is a particular case of a braided
Lie algebra. If we put 7 = I_ and I* = I, where Iy € V®? is as in Section
1 (assuming g = 1), all axioms of braided Lie algebras are satisfied for any
S-Lie algebra. The verification of this fact is left to the reader. We note only
that “koszulity” of the algebras A,(V) have been proved (in more general
context) in [5].

Note also that it is natural to introduce the axiom 0 if we want to ob-
tain a “good” envelopping algebra (see Proposition 5). In the forthcoming
publications we hope to elucidate the important role of this axiom in the
quantization procedure.

Consider now an example of a braided Lie algebra constructed by means
of a Hecke symmetry of minimal type.

Let §:V®2 o V@2 be a Hecke symmetry of minimal type such that det
is central and put A = k[SL(S)]. Fix the base {e;, 1 < i < n =dimV}.
Consider one-dimensional A-comodule ¥y = keg (Aep = 1 ® ep) and denote
Vi=V®Vo. Weput I = I_ @& Iy (resp., I* = I, @ I]) where Iy C V9?2
are the same spaces as in Section 1 and I, I3 C V2@ Vo @ VOV ® V, are
generated by elements {eg ® e; — e; @ eg} (resp., {eo® ep, 0@ e; +¢; D eg}).

In [5] we have proved that A (V) is Koszul algebra. Using this result
it is not difficult to show that the algebra Ay (V') = T(V')/{I} is Koszul
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algebra as well. We introduce in V' an A-modul structure putting Ae; =
ef ® e,, Aeg =1 ® g and extend this structure on T(V’) in a natural way.
It is obvious that I,I* are A-comodules and I @ I* = V'®?%, Introduce a
bracket:

(ei, e5) = guijeq, 1 < 1,7 < n,[ei, 0] = —[eo, €] = cie;

where u = (u;;) is as in Proposition 1 and g,¢; € k.

" Verify now that this bracket is a morphism in the category A of A-
comodules. First we will check compatibility of the bracket {e;, e;] with coac-
tion of A. Indeed by virtue of Proposition 4

(@[ 1)(Aei, Ae5) = (@[, ]) (el ® ep,eﬁ ® eg) = p(ef ® ej-) ® lep, €] =

gu(el @ e)up, ® eo = guijv™ ek, ® eluy, ® eo = 1 ® guijep = Ale, 5.

It is obvious that the bracket [e;, €] is compatible with coaction of A iff
¢; = ¢ for any i. The verification of the axiom 1 is left to the reader. Verify
now the axiom 2. Since § is a Hecke symmetry of minimal type one has
I_®@VNV®I_ = {0}. Hence the space IQ V' NV'® I is generated be the
elements

{v(e;i®e;®er—e;®eg®@e; +eo® e ®ej)}.

Applying the operator [,]'? —[,]?® to an element from this family we have
(LI =112 (ei®e;@e0—€ei@eo®@ej+ e @ €; @ ej) =

vij(gu;jeo ®eg—ce;Qe; —ce;Qe; —ce;Re; —ce; Qe; — gujjeg ® e) =
—4vice; Qe; € 1.
Axiom 2 is satisfied if cg = 0. Therefore under this condition all axioms of
braided Lie algebra are satisfied.

Consider the particular case n = 2. In terms of the “envelopping algebra”
the relations between the generators eg, €1, e; are of the form

ae; @ ez +bea ® e = g(1+ g)eo, €1 ® e — €0 ® €1 = 2cey,

e; ® g — eg ® ez = 2cey

where we assume that a,b from Example 1 satisfy the condition m? =
(a/b)? = ¢ and eigher ¢ = 0 or ¢ = 0. As result we obtaine a braided
deformation of usual Lie algebras, namely of Heisenberg algebra when ¢ = 0
and of the algebra [ej,e2] = 0, [e1,e0] = 2cey, [ea,e0) = 2ce; when g = 0
(in fact only the first relation is deformed).

Stress that these relations differ from ones arising from representation
of quantum group U,(slz) of spine 1 (see [2]). The last example will be
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considered elsewhere from the point of view of our definition of braided Lie
algebras.
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