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Introduction

The purpose of this paper is to describe a general method of computing
the second Chern class of a CY (Calabi-Yau) orbifold and the cubic form by cup
product on its second integral cohomology, which will also be called the toplogical
coupling in the paper. The CY spaces we are concerned with are mainly the CY
hypersurfaces of weighted projective 4-spaces and the mirror pairs constructed
from them in [3, 7]. By the theory of Wall [8], the diffeomorphic classes of such
CY spaces V are determined by H3(V, Z), cubic form on H3(V,Z) and the linear
form on H?(V,Z) given by the second Chern class of the manifold. The third
cohomology has been known and is determined by the Vafa's formula [6, 7]. As
a consequence, the result of this note will give an effective means to determine
the diffeomorphic type of the CY spaces we are dealing with. The cubic form
on H?%(V,Z) have been a main ingredient for the study of rational curves in a
general CY space [9]. The method given here can give an explicit expression of
cubic forms even though the existence of rational curves on such CY spaces is
obvious in these cases. In fact for the rational curve problem, one tends to reduce
to a similar situation for a general CY manifold through the behavior of the
cubic form. On the other hand, a problem in string theory raised by Aspinwall
and Litken [1] concerns that the possibility of “flip” between CY spaces with
different topologies implies the ambiguity of the “large radius limit” of a given
conformal field model. We shall describe a large class of examples of CY spaces
with such phenomena. A natural question which arises here is how to exploit the
significance of this difference for “large radius limit” in the context of conformal
field theory. Work along this line is under consideration.

The organization of this paper is as follows. In Sect. 1, we consider the
case when the CY space is obtained by resolving the space with only “curve-
singularities” occurred, and describe the method of computing its cubic form from
the normal data of singularities in the original space. In Sect. 2, the same problem
is considered for CY resolution of spaces with only “point-singularities”. We
shall illustrate the difference of the topological couplings for different resolutions
through some example. In Sect. 3, the more general situation is considered where
both “curve-singularities” and “point-singularities” appear in the construction of
CY spaces, and the method is applied to the mirror of Fermat quintic. In Sect. 4,
we describe the method of obtaining the expression of the second Chern class of
CY resolution through toric geometry. For technique reasons and for the purpose
of illustration, most of the discussion in this paper is followed by some specific
calculational examples.

I am most pleased to acknowledge many fruitful discussions with Professor
B. Greene during the preparation of this note. And I also wish to thank Professor
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F. Hirzebruch for the opportunity of visiting Max-Planck-Instutut fir Mathematik
while this work was done,

Section 1

In this paper, we shall use the convention of writing O(D) as the line bundle
over a complex manifold having a section with zero being the divisor D.

First we shall derive an easy lemma on the local structure near singular sets
in the examples which we shall work with later on.

Lemma 1. Let X be a quasi-smooth hypersurface in WPgﬁl defined by a
quasi-homogeneous polynomial

f(Z)zf(Zl,...,ZN)ZO,

here we assume gcd(nilt # j)=1 for all 5. Suppose for some m < N, X

intersects with Zp4y = ... = Zy = 0 transversely, (ie., for ¢ € CV¥ — {0},
f(a) = Zmya(a) = ... = Zy(a) = 0 implies 54-(a) # 0 for some i < m.)
Denote

Y=X0{Zms1=...= Zy =0},

d = ged(ny,...,nm),
H*= the line bundle over Y corresponding
to the restriction of Owpa-1(k).

If y = [y] is an element of Y with ged(n;ly; # 0) = d, then the following spaces
are isomorphic as germs of analytic spaces:

(X, Y, ) = ((0mit¥)/24, ¥ ,y),

here the generator of Z 4 acts on ®JN=m+1Hj by (hj)?’:m_‘_l ~ (C"jgsihj) A
j=m
and the space Y on the right hand side is identified with the zero section.
Proof. Denote

C(X)={Z € C* - {0}|/(Z) =0},
C(Y) = C(X) N{Zmt+1=...= 2y = 0},
@ : C(X) = CV", (Z)Ly > (Z)ilms.
Then the map ¢ is C*— equivariant with the C*—actions defined by A - (Z;) :=
(A™ Z;). The transversal condition of X with Z; = 0, j > m, implies

(C(X),C(Y)) ~ (C(Y) x CV=m O(Y) x o).



Therefore for y satisfying the condition of this lemma, we have

(X,Y,y) =~ (Y x (c”-"'/zd), Y % [0],y X [0])

N

here the Z ;—action on C¥ =™ is given by ([k], (O +1) - (cknf%*r‘cj)
Then the result follows from the definition of H/. q.e.d.

The following theorem will be used for the computation of couplings when
only curve-singularity appears in the construction of CY resolution.

Theorem 1. Let L; (i = 1,2) be line bundles over a complex manifold M,
and G be the group of dth roots of unity in C*. Consider the action of G on

L1 ®Ls,

j=m41

g-(f1,62) = (gbr,g762) g€G, E€EL;.

Denote
X=(L1®L2)/G,
o: X — X the minimal resolution,
Do = the proper transform of (0 x L:)/G,
D4 = the proper transform of (L1x0)/G,
m: X — M the fiber bundle induced by
the projection of L1 ® L2 to M.
Then

(i) o~1(Sing(X)) is the union of Dy, Dy with the exceptional divisors
D;, 1 <j < d—1. Only intersection among D; (0 < i < d) are

My=DiNDiy X' M for 1<k<d.

(The D;, M; are shown in Figure 1.)
(ii) The following relations hold:

d
® O(Dj) = 7" (L1 ®Lz) over X,
j=0
ok —d
O(De—1)y, =L1OL™°
O(Dk)MI; o~ Li_k ® Lg_H-l over M;

for 1<k<d.

Proof. (i) follows from the construction of the minimal resolution X'. We
are going to show (ii) in the following two steps.
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Step (I). We shall describe the local structure along the fiber of 7 : X — M.
We have the isomorphism

r~l(m)~ C?/G for m € M, (1)
here G acts on C? by
g-(z1,22) = (921,47 '22) , g€ G z €C.

The local coordinate system of the minimal resolution C%/G can be described by
toric data as a compactification of C%2/G. We shall denote (21, z2) the coordinates

of C2. Let
n= {(:1) € R2|dia[chh‘,c£ﬁ"] € G} ,
2

2
A 2{(22) €R2|Zx§'—"l,x520 for all i}.

i=1
. . d—i .
ThennNA = {p'}LO with p' = (_;') For each p*, there associates a divisor

D, in C?/G. Dy, D, are the proper transform for (0xC)/G, (Cx0)/G, and
Dyi,1 <i < d—1, are the exceptional divisors. Let {e!,e?} be the standard
base of R?, and {ej,e;} its dual. We have

(F2%) = (“l’cz)(? ?)

pf-l — k k - d (4]
pt ) T \1=k d—k+1/\ey ) "

here {p¥~1, p*} is the dual base of {p*~1, p*}. Let (sx, ;) be the local coordinate

~

system in C2/G corresponding to {p*~?,p*}. The relations

Sk = zfzg"d
O )
hold for 1 < k < d. The local defining equations for Dx-1, D s are given by
Dju-s S = zfzg_d =0
Dp: 4= zi_kzg—'Hl =0 , (3)

d
and by the relation z,z; = s3t;, the defining equation for }_ D, is
j=0

ZDPJ‘ . z1z2=0 . (4)



Step (II). We now apply the analyses of Step (I) to the study of the divisors
Dj of X. It is known that for m € M, D; N x~}(m) corresponds to D, in the
isomorphism (1). Over an open set of M, let ¢; be coordinates of L; (i = 1,2).
For 1 < k < d, £5¢5~¢ Ak ¢@=5+1 are considered as local functions of X by
(2), (3) and the local generators of the ideals of D;’s are given by:
Ip,_,= < 66579 >,
Ip,=< kg4 5

Then it follows:
O(Dk—l)lMg o~ Lf @ Lg_d 3
O(Di)ypy, L1 F@LGHH!

over M, for 1 < k < d. Since ¢, ®¥£, is invariant under the agtion of G, it defines
a holomorphic section of the line bundle =*(L; ® L2) over X' . By (4), the zeros

d
of this section is equal to ) Dj, therefore
7=0

d
® O(Dj) = 7*(L1 ® Lz) over X .
=0

ed.
: Example 1. Let X be Fermat hypersurface in Wsz,z’l,l)
Zi4+ Zy+ 28+ 28+ 28 =0
The singularity of X is given by
Sing(X) = X N {24 = Zs = 0}

which is a Riemann surface of genus 3. The CY resolution X of X has only
one exceptional divisor D. By Lemma 1, the structure of X near Sing(X) is
described as in the assumption of Theorem 1 with

M= Sing(X)v
L;=L3 = H (:= the restriction of Owps(1)),
G=1/21
We have D = D; and
D? = D*(r*H? — Dy — D)
= D(D ¢ W’H‘z) —_— C] (O(Dl)“):npo) - C]_ (O(Dl)|D3rlD1)
=4(=2) - (H?) =, (H?) = 16



Denote h the element in H? (X ,Z) which represents the pull-back of Oy (1).
Then the coupling u for H? (X ,Z) has the expression:

p(t-h+s-e1(D)) =23 — 165°.

q.ed.
Example 2. Let X be the quotient of Fermat quintic

B+ +Z5+28+28=0 in P!
by the order 5 group generated by
(21, Z2, Z3, Z4, Z5) ~ [Z1, 22, Z3,w Z4,w* Zs)
with w® = 1. Then
Sing(X) =X N{Zs = Z5s = 0}

which is a Riemann surface of genus 6. The CY resolution X contains 4
exceptional divisors Dj, 1 < j < 4, each of which is a P!— bundle over
Sing(X). Denote Dy, Ds the divisors in X obtained by the proper transform
of Zy = 0, Zs = 0 respectively. The classes ¢1(D;),1 < j < 4, together
with A (:= the class of pull back of Ox(5)) form a base of H? (X z). The

coupling for H? (X , Z) is the expression:

p(t-h+§:ti-cl(D,—)) =

1=1
4 3
1258 + Y D} + Y {(DIDina)8tis1 + (DiDly)tithy )
i=1 i=1

By Lemma 1, we can apply Theorem 1 on the local structure of X near Sing(X)
by setting

M = Sing(X),
Li=L2 = H (:= the restriction of hyperplane bundle),
G=1/5Z.

Then

DDy = &1 ([Dilp,ap,) = ao(H™') = -5,



Dng = cl([D2]Danl) =a (Ha) =15,
D3Ds = e ([D2lp,np,) = a1(H) =5,
DzD% =0 ([D3]Daan) ='cl(H) =95,
D3Dy = c1([Ds]p,np,) = a1 (H) =15,
D3D} = e1([Dalp,np,) = e1(H™!) = -5.

Also for 1 < k < 4, we have
[Di] = =*(H?) - 3" Dj,
O?;ES
D}H = 5D;(a P! —fiber in D under 7)
= -5 Z Dj(a. P! —fiber in Di under 1r)

05j<5
vk
=-10,
D} =2(D{H) — " D}D;
ogés

=-20—¢ ([Dk]DhnD,,_l) —-qa ([‘Dk]DhnDk-H)
= —20 — 4¢;(H) = —40.

Hence the coupling for X is given by

4
p(t-h+2t,--c1(p,-)) =

=1

4
1258 — 40 ) ¢ — 563t + 158183 + 5t3ts + 5tat] + 15¢3t4 — Sats.

i=1
g.ed.
Section 2

In this section we compute the couplings of exceptional divisors in CY spaces
obtained from the point-singularities. We shall use the toric data of the resolution

to describe to the results.
Let G be a finite diagonal subgroup of SL3(C), V = C3/G, and V a CY

resolution of V

c: V-V,



We shall denote (z3, 22, 23) the coordinate of C3. Let

Iy
n= { (xg) € Rsldia[ch""‘,c““‘,c“m] € G},
I3

Iy 3
A = { (zz) €R3|ZI:‘=1,$-‘ZO for all i},
z3 =1

T=nnA . (5)

T is finite subset of the lattice n, and contains the standard base {e"}?'=1 of R3.

s

There associates a divisor D in V for each ~ € I'. The dual configuration for
intersections among D,’s is given by the simplicial decomposition § of A with
the property

I' = {vertex in S}.
It is known that
D,: = the proper transform of (z; =0)/G,
{D-,h el - {ci}?=1} = {exceptional divisors in V }
The o—image of an exceptional divisor D, is a point or a curve. We have
o(Dy) =a point & €T N interior(A),

in which case, o(D,) is the singular point of V corresponding to 0 of C3. Then
the vertices of a 2-simplex {a, 3,7} of & form an integral base of n. Hence
there corresponds a local coordinate system of V, denoted by (w1, we,ws). From
{e, 8,7} C A, the relation

WWattg = 212223
holds as functions of V. As z1z923 defines a global function of V, we have

) (E D,-) = the trivial bundle of V. (6)

+€T

Theorem 2. (i) For 3 distinct elements a, 3,7 € T,
DaDgDy #0 & {a,f,7}is a 2—simplex in §,

in which case, we have Dy DgDy = 1.
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(ii) For distinct «,8 € T N interior(A), D2Dg = 0 unless {a,B} is a
1-simplex of S. When {e, f}= 1-simplex of &, there exist exactly 2 elements
61,82 in T such that {e, 8,6;} are 2-simplexes of S, and the following relations
holds as vectors in R3:

81 + 62 + (D3 Dg)a + (Da D5)B = 0.

(iii) For v € T N interior(A), let {6}, be the set of all the elements in T
which can be connected to v by 1-simplexes of §. By the suitable indices, we
assume {v, é;,8i+1} is a 2-simplex of § for1 < i < L, (Dy41 := D), Define
the integer n; (1 <i < L) by the equation

bim1 + 6ip1 +niy + 06 =0

for some n}. Then we have

L
Dg = —Zn; .
i=1

Proof. (i) is obvious.

(ii) Let «, 8 be elements in I' Ninterior(A) such that {«, §}= a 1-simplex of
S. It is easy to see that there are exactly 2 elements &, 6, in I' such that {a, 3, §;}
are 2-simplexes of §. Since both {«, §,4;} are bases for n, we have the relation

-1 0 O
(51:0,ﬁ)=(52,a,ﬂ)( m 1 0)
n 01

for some integers m,n. Denote (z;)5_;, (vi)s-, the local coordinate systems of
V corresponding to {6;,a,8}, {é2,a, 8} respectively. One has

-1

nh=x
{ y2 =z, (7)
y3 = z]23

The local defining equations for Dy, Dg are given by

Dy: 22=0, y2=0,
Dﬁ: z3=0, y3=0,
DaNDg = P! with affine coordinates z,y.

By (7), it follows that D2Dg = —m ,Dc,Df6 = ~n, hence we obtain (ii).



(3) Let 7, §;, n;, n} be the same as in the condition (iii). By (6),

=-D%Y Do=- ZDZDGI

aer i=1
oply
As the relation
bic1+ i1 Hniv+nibi=0
L
holds, the same argument as (ii) gives D2 Dg, = n;, hence D3 = — 3 n;. ge.d.

1=1
Example 3. Let X be the quotient of Fermat quintic in P4 by the group
generated by

[Zl, Zz, Za, Z4, Z5] ~ [Zl,ng,wZZ3,w324,w4Z5]

(21,2, 23, Z4, Z5] ~ (21, w22, Z3,w" 24, 0" Zs]

with w® = 1. ( Example in [1]). Then X has only isolated singularities and
Sing(X) = {pij, 1 <i<j <5}
here p;; is the element of X with the coordinate Zy = 0 for k # %,j. The
structure near a singular point p = p;; is given by
(X,p) = (C*/G,0)
here G is the group generated by dia[w,w?,w?]. The unique CY resolution of
C3/@ is described by the simplicial decomposition of A as shown in Figure 2. In
this case, T' = {e!,e2,¢%,0, B} with a = ge! +}e? + 3¢3, B = %e! + fe? + £€3
We have
el +e? 433 —5a=0,e' +e?+a—-38=0,¢*—2a+8=0.

By Theorem 2,

DiDg=1, D,D%=-3, D} =8, Dj=9.

X is obtained by resolving the singular points p;; of X. Let A;;, B;; be the
exceptional divisors over the singular point p;; which correspond to the Dy, Dg
in the above construction. Then the coupling for H%(X,Z) has the expression:

z (t bt Y {wmja(An) + v,'_,'c1(B,',')}) =

1<i<i<S

258+ D (Bul+oud)+ Y (uhvij—duinl)
1<1i<7<5 1<i<y<5
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here b = class of pull — back of Ox(5). q.ed.
Example 4. Let X be the quotient of

232,04+ 252+ Z3Z4 + 2825 + 282y =0 in P*
by the order 41 group generated by
(21,22, 23, Z4, Z5) ~ [wZ1,0" Z;,w"® Z3,w"® Z4,w0'" Zs]
with w#! = 1. ( Example in [4]). Then
Sing(X) = {pi, 1 <i <5}

here p; is the element of X with the coordinate Z; = 0 for k # i. The structure
near a singular point p; is isomorphic to the quotient of C3 by an order 41 element
of SL3(C). It contributes 20 exceptional divisors of the CY resolution X . Hence
we can obtain the cubic form of H? gX ,Z ) using the method of Theorem 2 by
the simplicial data attached to singular points. However this coupling depends
on the triangulations of the simplicial data, which have several different ways
in this example. We are going to illustrate their difference by comparing two
triangulation information associated to the resolutions. We shall only work on the
local situation at one singular point as it already reveal the nature of the topological
couplings be effected by different resolutions for a CY orbifold. Consider the local
structure near the singular point p;. We have

(X,p1) >~ (C3/dia.[w15,w17,w9] , 0).

The set I' now consists of standard base elements together 20 points lying in the
interior of A, in particular it contains the following 4 elements:

2 9 4 11
1 1 1 1
a=—|5],8==]|2|,y==(10}),6==| 7 ].
41 (34) 41 (30) 41 (27) 41 23)

One has
até= ﬂ+7 )

and both (e, 4, 8),(a,6,7),(a,B,7), (6, B,7) are integral bases of the lattice n.
Consider triangulations 81,82 of A such that they differ only on the convex set
spanned by the 4 elements a, 8,~,4, while on this convex part §; contains the
2—simple}es (e, 6,8),{c,é,~) while S, contains («a,,7),($,5,7). ( See Figure
3). Let X; be the CY resolution corresponding to the simplicial decomposition S
for =1,2. The classes c1(D) (7 € T = {¢*}_, ) form the base of H2(X;, ).
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By Theorem 2, the couplings p; for H? (f(;,l) are the same except D3 Dy, D3
for \,) € {e,8,7,6}, and we have

ﬂz( > txq(DA)) _I‘l( > tACl(D,\)) =15 +tf —t5 — 3 — tht,

rel—{e'} Ael—{e'}
—tptl 4+ 1215 + taty — thip +tath — thty + tats + thts — tetf — Loty + L3,
qg.e.d.

Section 3

For the CY manifolds from “orbifold construction”, the singular space we
started with in general possesses curve-singularities together point-singularities
on them. The couplings of exceptional divisors can be determined by the method
of Sect. 2 except those couplings of divisors all contracting to curves of the
singular space. In the latter situation, the computations are more complicated
than the cases we described in the previous 2 sections. We shall give a general
method for the computation of those remaining parts. For this purpose we shall
work only couplings with divisors contracting to the same curve in the singularity,
and formulate the problem in the local version near the curve-singularity.

Let M be a compact Riemann surface, and G’ a finite abelian group acting
on M. Denote

G = {g € G'|g acts trivially on M},
and in this section we shall always assume the order of G to be positive
d:=|G] > 0.
Denote
p: M — M|G' the projection,
{p1,---,pn} = the branched locus of p in M/G',
p; = the divisor E m in M,
mep~1(p;)
I; = the G' —isotropy subgroup at p € p~(p;),
d; = the integer |ITJ|
Suppose L1, g, L are line G'—bundles over M such that the following conditions
hold:

. N
(a) There is a section s € M(ML) with (s =0) =)z
j=1

12



(b) The quotient space X:= (L; @L2)/G’ has trivial canonical sheaf,

(c) The G' —action on L; ® L, ®L induces a line bundle E on M/G’
LigL: QL — E:=(L1®L2®L)/G’

| !
M - M/G

Consider a CY resolution
o X o X

and define = by the following diagram:

X 35 x
N
M/G'

Lemma 2. (i) GG is the group generated by

Liel—L®L:
(fl,fz) ~ (wfl,w_lfz)

with w = .
(ii) Let Dg, D4 be the divisors in X' defined by

Dy = the proper transform of (0 x L2)/G’,
Dy = the proper transform of (Lyx0)/G’.

Then there are exactly d — 1 exceptional divisors D»,...,Dq_; lying generically
over M/G' through the map =, and only intersections among D;’s (0 < j < d)
are

Mi:=DiNDy_y = M/G for 1<k<d

Proof. Since G acts as scalar multiplications on line bundles L, the conclu-
sion of (i) follows from the assumption on the trivial canonical sheaf of X'. (ii)
follows from the structure of A . q.ed.

We now describe the structure of X' near 7~Y(p;) for a given j. For
convenience of notations, we shall identify M with the zero section of L; @ Lo,
and consider M as a G'—submanifold of L; @ L,. We know that

(X ,pj) = (L1 ®L2)/I;, g5 ) = (C¥/1;, 0)

here g; is an element in p~1(p;), the action of I; on C* on the right hand side is
considered as a diagonal subgroup of SL3(C). The coordinate (z3,22,23) of C3

13



can be regarded as a local coordinate system of L1 @ L2 near g; such that {z3 = 0}
corresponds to the fiber (L1 @ L2)y; and 0xLz & {z1=0}, L1 x 0 & {z=0}.
Then we have

(% 700) = (975, 9) ©)

here 0= the union of exceptional divisors contracting to 0. The combinatorial data
for the toric variety C3/I; is now given by a simplicial decomposition § of

T 3
A= z9 €R3|Zz;=1, z; >0
Iy i=1
Il v I3 . -
T'=AnN z2 € R3 |dia[62nz;,8211221621123] € Ij
T3

as the set of all its vertices [S]. Since G is a subgroup of I;, it follows

Il %l
I‘ﬂ{(zg)eﬂah:;;:()} {J};_o’ 7'::(% )
I3 0

Under the isomorphism (9), the divisor D; in Lemma 2 corresponds to the toric
divisor D,; of C3Q/I,- associated to v; for 0 < j < d. For 1 <k < d, there is an
unique element &; in T' such that {vx_1,7x, 6% }= a 2-simplex in S (See Figure
4). One can write

rjk

& = (SJ‘;;) with rjx, 8,6 € — dd —1, dirg+d;sg = dj—1.
%

Define

mg = —k(dj - l) + ddj&jk, m;-k = (k - 1)(dj - 1) - ddj.ijk

for 1 <j < N, 1<k <d Notethat mjp +m)y +d; = 1. Let (41,12,23)
be the local coordinate system of C371j attached to {vi—1,7x,0x}. Its relation
with the coordinate (27,22, 23) of C* are obtained from the toric data as follows.
From the relation

d—k+1 d-k
(7k—l$7k)6k) (C] € 83)( kql E— ik
0 0

d;

14



and their duals

T-1. k k—d mj e1
w |=|1-k d—k+1 m;k e |,
6};_ 0 0 dj €3

we have
tl = zi‘z; d
{ 19 —z1 zg "'H Mk
f3 = za ;
hence

titaty = 212023 .

The local equations for the divisors D, _,, D,, (Dy,_, + Dy, + Dj,) are given
by

Dy, : tl—ZHd?":O’ (10)
D,, : tg—zll‘:d“’1 =0,

(Dys_y + Dy + Dg,) : tataty = 212323 = 0.
Theorem 3. The following relations hold for 1 < k < d,

N
|G'|(DE_1Ds) = ker(La) + (k — d)er(La) + Y mizlp™ (p5),
i=1

|G'|(Di-1D}) = (1 = k)er(L1) + (d — k + 1)ex ( Lz)-’erJ,‘lp (2],
=1

d-1
7' (E) = (ZD)@O Z D near UD);
1=0 x(D)=p; k=1
Proof. In order to show the first two relauons, it suffices to show the following
equalities hold for line bundles over M,
M P}') ;

P’ (O(Dk-l)pz;) =LjeL; @0 (
P (O(D,,)IE) =Ll"*gLi-Hlgo0 (Z mﬁp}) : (11)

= 10

=1
Consider the local trivializations of Lj,L;,L over some G'—invariant open
neighborhood U of p~1(p;):

Ly~ UxC £ o (u, (y(£))
! l 1 i
U= U u = u ,

15



(Li)y~ UxC & o (u, (uilki)
! l ! !
U= U u = u

The section s € I'(M,L) in (8) on the open U corresponds to a function
sy : U — C via the above trivilization of L. We denote sy : (L1 ®L2)y; — C
the composition of sy with the bundle projection map. The function sy defines
a local coordinate of M near the element g; € p~!(p;). Therefore the map

Lioly, e c (12)
(£1,€2) ~ (Cua (1), Cua(b2), s (41, £2)),

defines a local coordinate of the 3—fold L, & L2 near the point g;. From (10),
we have the expression of local generators of the following ideal sheaves near
M_}: N ﬂ_l(pj)I

ID11-1 = < CUIC sy >

13
In, =<(03's *“U s, 19

I(D'!t-1+Dn_,+Dq) =< (u (25U > . (14)

N
For g € M — |J p~'(p;) and some neighborhood U in M, the map
Jj=1
(Ll @ L2)U (Cb'.l :Clii)proj') sz U (15)
(61,£€2) ~ (Cva(61), Cu2(£2),u),
(here(£1,£2) €(L1 @ L2),) gives a local coordinate system for L; @ L2 near the

point q. Through the above map, the structure of X’ near the point p(q) is given
the isomorphism

(%, p(9)) = ((C}/G) x U, [0] x q),

here G acts on C? as the diagonal subgroup of SL,(C) generated by the element
of order d. From the discussion of Sect. 1, the local generators of the following
ideal sheaves near M are given by

Ip,, =< CUICUZ >y

- 16
ID." =< CU] (d k+1 ( )

I(D7}—1+D‘11-1) =< CU’ICU’Z > (17)

16



Since p* (0(-0,;_1)'7?;), o (0(—Dk)l-m) are the line bundles corresponding

(l' Dis ® , P Ip, ® Og;- | respectively, one obtain (11) by com-

puting transmon functions of thc hne bundles from the relations (13) and (16).
Similarly the third relation of this theorem follows from (14) and (17).

Example 5. (Mirror of Fermat quintic). Let X be the quotient of Fermat

quintic in P* by the group , denoted by SD, generated by

(21, 22, Z3, Z4, Zs) ~» [wZy,w* 22, Z3, 24, Zs)

(21, 22, Z3, 24, Zs] ~ [21,wZ2,w* 23, Z4, Zs]

[le Z2a Z3; Z4) ZS] r [Zl) ZZ7WZ3$W4Z4,Z5]
with w® = 1. Then

Sing(X) = | J (i = 2; =0)/SD,
i<j

and each (Z; = Z; = 0)/SD is a rational curve, which intersects the others on

3 points. Then the CY resolution X of X is the mirror of Fermat quintic with
the following properties [4, 7]

H'! ()?) ~ H%!(quintic), H?! (X) ~ H!(quintic).

The exceptional divisors, together with the pull-back of Ox(5), give a base of
H? (ff,Z). One can obtain the couplings on H? (JE’,Z) using the method in
Sect.. 2 except those with all the divisors lying generically over the same curve
(Zi = Z; = 0)/SD for some i,j. For convenience of notations, we shall work
only the case for (z,7) = (1,2). Apply Theorem 3 on this case and set

M = {[X3)X47X5] € P2 IXg +X45 +X55 = 0}’
G = {[X3’X4aX5] M [wixs,uij4,kas], i,k € Z},

L; =Lz =H the restriction of hyperplane bundle,
L=H3.

The section s € T'(M,L) in (8) is equal to Z3Z4Zs. So G' ~ (Z/52)%, and we
can identify M/G' with

{{Ws, Wy, Ws] € P2 |W; + W+ Ws =0}.

The projection p : M — M/G' is now given by W; = Z} with the branched
locus '

{PI)PZ)P.'S} = {[Wa,W4,W5] = [0,1,—*1],[1,0,—1],[1,—1,0]}.

17



Then the line E in (8) is the hyperplane bundle O, /¢:(1) of the [W3, Wy, Wi]
line. There are 4 exceptional divisors in this case, i.e.,d = 5, dj = 5 forall j. As
the case in Sect. 2, the couplings depend on how the singularities resolved near
P1,p2, 3. We shall work only two cases to illustrate the method of computation
using Theorem 3. The same procedure can be applied to the more general cases.
Assume now the simplicial data in the CY resolution associated to pi, p2,p3 are
all the same, and equal to &7 or &7 as indicated in Figure 5.

For the case of §;, we have
my =k — 3, m;,,=1—k for 1 <k <5
By Theorem 3, we obtain the following couplings:
Di_Dy=k—-4, Dy Di=2-k,
D} = D¥(r*0(1) = Dy_y = Dyyy) = —2+1=-1
for1 < k £ 3.
For the case of S2,
mj = m}s =1, mj2 = m;-4 =2, mj = m.'ia = -2,
mjy = m;-z = —6, mjs = m;-l = —8.
By Theorem 3, we obtain the following couplings:
DiDy = D4D} =0, D¥Dy = D3D% =1, DiDy = D;D% = -1,
DiDy= DD} = =3, DiDs= DyD? = -2,
D}=-1, D}=2, D}=2, Di=-1
g.ed.
Section 4
In this section we shall compute the second Chern class of the CY orbifolds.
Let dj € Z5,,1 <5 <35, and d := lem(dy,...,ds), nj = ad; y G5 = E};'
Denote
{ci}f:l = the standard base of R®,
T = the algebraic torus (C*)°,

5
q=EQici)

i=1

. .
C= {Zzgci€R5|z;20},

1=1

18



and define

e2ﬂ'q121
expq : R T, expg(z) = , ,
TigsTs
e

5 5
trg: R° =R, try(z) = Z giz; for z = Z zie' |

i=1 =1

tl 5
Squ{[E:l €T|Ht,-=1, t"-"'zl for alli},

5 .
Q@ = the group generated by expq (E c') .
i=1

In this section G shall always be a group with the property
QCGCSD,. (18)

Let Ng (Mg) be the group of 1-parameter subgroups (characters) of the algebraic
torus T'/G:

Ng = Hom,jg group(C*, T/G),
Mg= llom,ig group(T/ G, C*).

We shall identify Ng, Mg with the following lattices:

Ng = expgl(G),

5 5
Mg= {Z k.'c"]HZf‘ is G—inva.raint}.

=1 i=1

The above lattices are connected to the structure of CY mirror pairs obtained
from Fermat hypersurfaces in weighted 4—spaces [7]. But they are also naturally
associated to the birational geometry of WP‘(‘m) /G which we are now going to
discuss. Denote

V= the vector space R®/Rgq,
NG = the lattice Ng/Rq in V,
T/G = the algebraic 4 — torus which is the quotient of
T/G by the 1 - parameter subgroup dgq € Ng.

The lattice structure of Ng in R® induces Z—structure of V with Ng as the
lattice. Any rational cone decomposition {Cy},e4 Of the boundary 9C of the
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first quadrant cone C gives a rational simplicial cone decomposition {Ca} ., Of
V here Cy := Cq +Rg C V. Hence the data {Cy ), ., induces a compactification
of T/G which will be denoted by P(c,} _,. For the case when {Ca},cp =
{coordinate faces of C}, the corresponding compactification of T/G is simply
the quotient WP?n.— / G. In the case where each 4-dimensional cone in {Cp },¢p 1S
generated by part of Z—base of Ng, P(Ca}oca 1S @ sSmoOth projective resolution
of WP? /G,

®: Poy,., = WP/ G - (19)

L
Let {Y[}f’:l be the collection of all toric divisors in Py¢,; ., ie. UY. =
* =1

j=1
of P{C..}:

Lemma 3. The total Chern class of the smooth compactification Py ) of
Tc is given by

5
31 ( U (Z; =0)/ G) . Then we have the following expression of Chern classes

L
c(Pic.y) =[]+ ().

=1
Proof. There is an exact sequence of sheaves over P(c 3,

L L
TS
=1 =1

L
here T is the tangent bundle of P{Ca}, and Op{m(T (log Z Yt))z dual of
=1

L L
Q,l,{c }(log Y. Yg). Since Q%'{v }(log Y Yg) is a free Op ,—module, we
t=1 ° =1

=1

L
C(P{C'a}) = C(T (log Z Yt)) H C(O y‘( Yg))
L

q.e.d.
We now compute the Chern classes of CY orbifolds using the above results
of Py}, Consider a degree d quasi-smooth hypersurface in WP‘(*ni) defined by

f(Z2) =28 4 28 4+ 28 + 20 4+ 28 4 02, 2,232425 = 0
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with A € C. Assume d, n; satisfy the condition

5
d-—-ZnJ' ,
i=1

and G the same as (18). As G preserves the polynomial f(Z) and the form
dZ; A ... A dZs, the quotient space

X = ((2) eWPl,, 1£(2) = 0)/G
has the trivial canonical sheaf with the singularity
Sing(X) = J{X; 1T c {1,...,5}, e1 > 1}
here X; = XN ﬂ (Zi=0),c;={g€Glg(Z)=Z for Z; =0, i € I}|. Note
that X; =0 for“ﬁr | > 4. The exceptional divisors of the CY resolution
c: X =X

are described in a certain part of the lattice Ng [7]). In fact the combinatorial
data of exceptional divisors over X (¢; > 1) is a simplicial cone decomposition
of the Ith face of C (:={a: = _Zsjlz.-e" €C|z; =0 for j ¢ I}) having

{R>ovlv € (Ith face of C)N {z with try(z)=1}}

as the set of all 1-dimensional cones. With these given data on the simplicial cone

decomposition of |J (Jth faces of C), one can extend it to a simplicial cone
l|<3

decomposition of the whole C in such a way that every 4—dimensional cone Cj, is

generated by part of Z—base of Ng. Then the corresponding space P{Ca}a“ isa

projective resolution of Wsz) / G. By the construction of the toroidal resolutions,

X is a smooth hypersurface of P{Ca},g’ and in fact it is the proper transform
of X of the birational morphism & in (19). Note that X is disjoint with the
exceptional divisors of P(¢,}  lying over points of WP(‘R'_) / G with vanishing
coordinates except one.

Theorem 4. Let E; (1 <i<e) be all the divisors in X contained in
5
U ¢~Y(Z; =0). Denote Iy = () E; for I C {1,...,e}, and [E;] the Poincare
i=1 i€l
dual of I’;. Then the second Chern class and Euler number of X are given by

a(X) =Y @l

{|=2

x(X) =-2 3 1B+ Y x(Br).

|Ii=3 II[=2

ag
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Proof. Let P(c,} ., be a resolution of WP{_ /G we have just described
above. There is an exact sequence of vector bundles over X,

0— T(X) - T(P{Ca})l,\’ - NX,P{C‘,} -0,

here T (X ), T(P{c,}) arc the tangent bundles of X, P (Ca} s TESPeECtively and
Nx pc., is the normal of X in P{c,}- Then by Lemma 3,

c()?)(l +ca(Nyg)) = C(T(P{Ca})|x)’
(%) +aNg) = Y 5
cg(f() +a (X)CI(NX) =) B,

{1I=2

63()2) +L‘2(X)01(Nxv) = E [E]] .

1{]=3

As ) (X ) = (), we obtain the first relation of this thecorem. Also we have

(%) =-% ¥ BB+ X 15

i=1 |1|=2 |1]=3
=-3Y |E|- ) (E IE.-]) [Ed+ ) |E|.

|f]=3 [f|=2 \iel |7|=3

For |I| = 2, @ O(E;) is isomorphic to N,y (:= the normal of E; in X ), hence
i€l ’
2
(Stm)i= [ ANsx) = - [arien - <z,
IGI EI EI

Therefore .

X(X) =-2Y " |Bll+ > x(Er).

1]=3 =2

g.e.d.

Example 6. Let X be the Fermat hypersurface in WP, , 5, ), X its CY

resolution with the exceptional divisor D and the class h in H? X,7) asin

Example 1. We have 6 divisors ; in Theorem 4 for this case, which are defined
by

E; = the proper transform of (Z; =0) for 1 <i <5,
I = the exceptional divisor D.
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Then the curves I/ are connected Riemann surfaces of genus 9 for

I=1{1,2},{1,3},{2,3}

of genus 3 for

I= {114}){115}${214}1{2$5}){3a4}7{3a5}a{476}1{5a6};

Iy are the union of 4 disjoint P! for

I= {1:6}’{236}3{3:6};
and E(y5, = 0. For |I| = 3, we have

8, I= {1,2,3},

0 ]={1,2,6},{2,3,6},{1,3,6},{1,4,5},
|E]={ 9 (24,5} {3.4,5) {4.5.6}

4 I={1:2:4}l 17215}){213:4}1{23»5}!{1)3|4}|{1|3)5}|
! {1,4,6},(1,5,6},{2,4,6},{2,5,6},{3,4,6},{3,5,8}.

Hence by Theorem 4, we have
X(X) = —2(8 + 48) + 3(—16) + 8(—4) + 3 x 8 = —168,
[Bolez (X) = 3 |11+ Y [BellBi] = 24+ Y [Be][Er)

Hi=3 =2 a2
ee! s8€r [.1:74
Using Theorem 1, with the same computation as in Example 1, we have
4 for I = {4,6},{5,6}.
L[ Ef] =
BN ={ g for 1= {1,6},{2,6},{3,6}.

[Eglez (X) =24—16=8.

One can also have the following results:
4 fOI' I={1l2}l{1?3}1{2l3}l{1?4}!{2!4}!

{3,4},{1,5},{2,5},{3,5}.
RlE)={2 for I= {4,61, ,6}.

0 for I={1,6},{2,6},{3,6},{4,5}.
This implies
hey ()E’) = 40.
The linear form on HZ (X , Z) given by the second Chern class is now expressed

by
t-h+s-c;(D) ~ 40t + 8s.
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q.e.d.
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