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Introclu ction

The purpose of this paper is to descril>e a general method of computing
the second Chern class of a CY (Calabi-Yau) orbifold and the cubic fonn by cup
product on its second integral cohomology, which will also be called the toplogical
coupling in the paper. The CY spaces we are concemed with are mainly the CY
hypersurfaces of weighted projective 4-spaces and the mirror pairs constmcted
from them in [3, 7]. Hy the theory of Wall [8], the diffeomorphic classes of such
CY spaces V are detennined by H3(V, Z), cubic fonn on H2(V, Z) and the linear
form on H2(V, Z) given by the second ehern class of the manifold. Tbe third
cohomology has been known and is detennined by the Vafa's fonnula [6, 7]. As
a consequence, the result of this note will give an effective means to determine
the diffeomorphic type of the CY spaces we are dealing with. The cubic form
on H2 (V, Z) have been a main ingredient for the study of rational curves in a
general CY space [9]. The method given here can give an explicit expression of
cubic fonns even though the existence of rational curves on such CY spaces is
obvious in these cases. In fact for the rational curve problem, ODe tends to reduce
10 a similar situation for a general CY manifold through the behavior of the
cubic form. On the other hand, a problem in string theory raised by Aspinwall
and Lütken [1] concems that the possibility of "flip" between CY spaces with
different topologies implies the ambiguity of the "large radius limit" of a given
confonnal field model. We shall describe a large class of examples of CY spaces
with such phenomena. A natural question which arises here is how to exploit the
significance of this difference for "large radius limit" in the context of confonnal
field theory. Work along this line is under consideration.

The organization of this paper is as folIows. In Sect. 1, we consider the
case when the CY space is obtained by resolving the spare with only "curve
singularities" occurred, and describe the method of computing its cubic form from
the Dormal data of singularities in the original space. In Sect. 2, the same problem
is considered for CY resolution of spaces with only "point-singularities". We
shall illustrate the difference of the topologieal couplings for different resolutions
through same example. In Sect. 3, the more general situation is considered where
both "curve-singularities" and "point-singularities" appear in the constNction of
CY spaces, and the method is applied to the mirror of Fermat quintic. In Secl. 4,
we describe the method of obtaining the expression of the second Chern class of
CY resolution through toric geometry. For technique reasons and for the purpose
of illustration, most of the discussion in this paper is followed by some specific
calculational examples.

I am most pleased to acknowledge many fruitful discussions with Professor
B. Greene during the preparation of this nate. And I also wisb to thank Professor



F. Hirzebroch for the opportunity of visiting Max-Planck-Instutut für Mathematik
while this work was done.

Section 1

In this paper, we shall use the convention of writing O(D) as the line bundle
over a complex manifold having a section with zero heing the divisor D.

First we shall derive an easy lemma on the local structure near singular sets
in the examples which we shall work with later on.

Lemma 1. Let X be a quasi-smooth hypersurface in WP~Jl defined by a
quasi-homogeneous polynomial

f( Z) = f (Zl, ... , ZN) = 0,

here we assume gcd(nili f j)=l for a1l j. Suppose for same m < N, X
intersects with Zm+l = ... = ZN = 0 transversely, (i.e., for a E CN - {O},
f(a) = Zm+l(a) = .. , = ZN(a) = 0 implies #;(a) f 0 for some i ~ m.)
Denate

Y = X n {Zm+l = = ZN = O},
d = gcd(nl, ,nm),

HA:= the line bundle over Y corresponding

to the restrietion of 0wp/\,-t (k).

If Y = [Yi] is an element of Y with gcd(nilYi f 0) = d, then the following spaces
are isomorphic as genns of analytic spaces:

(X, Y, Y) ~ ((E9~m+lH;)/Zd, Y, y),

here the generator of Zd sets on Eaf=m+l H; by {h;}f=m+l .... (enj~ h;) ;=m+l'
and the space Y on the right band side is identified with the zero section.

Proof. Denote

C(X) = {Z E C~ - {O}lf(Z) = O},
C(Y) = C(X) n {Zm+l = = ZN = O},

ep : C(X) -t- eN
-

rn
, (Zi)~l (Zi)~m+l.

Then the map ep is C*- equivariant with the C*-actions defined by ..\ . (Zi) :=

(..\niZi ). Tbc transversal condition of X with Zj = 0, j > m, implies

(C(X), C(Y)) ~ (C(Y) X C N -
m

, C( Y) x 0).
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Therefore for y satisfying the condition of this lemma, we have

(X,Y,y) ~ (Y X (CN-m/Zd) ,Y X {O],y X {O])

heretheZd-actiononCN-m isgivenby ({k],«(j)~m+I) .....-+ (eknj~(j)~ .
J=m+I

Theo the result follows from the definition of W. q.e.d.

The following theorem will be used for the computation of couplings wheo
only curve-singularity appears in the constroction of CY resolution.

Theorem 1. Let Li (i = 1, 2) be line bundles over a complex manifold M,
and G be the group of dth roots of unity in C·. Consider the action of G on
LI EB L2 ,

Denote

x = (LI EB L2)/ G ,

q: X -+ X the minimal resolution,

Do = the proper tra.nsfonn of (0 X L2)/ G,
Dd = the proper transform of (LI xO)/ G,

1r : X -+ M the fiber bundle induced by

the projection of LI EB L2 to M.

Tben

(i) q-l(Sing(X)) is the union of Do, Dd with the exceptional divisors
Dj, 1 ~ j ~ d - 1. Gnly intersection among Di (0 ~ i :5 d) are

M D D '1',.." M
k:= k n 1;-1 ~

(The Dj, Mj are shown in Figure 1.)

(ü) The following relations hold:

for 1:5 k :5 d.

d

@ O(Dj ) =1r*(L1 ® L2 )

j=o
O(Dk-l)IMJ- ~ Lt ® L~-d ,
O(D) ,-v L 1-.1: JO. L d-I;+1

.I: IMJ- - 1 'CI 2

over X ,

Oller MI;

for 1:5 k :5 d.

Proof. (i) follows from the constroction of the minimal resolution X. We
are going to show (ü) in the following two steps.
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Step <n. We shall descrU>e the local structure along the fiber of 1r : X ~ M.
We have the isomorphism

1f-l(m) ~ C2/G far m E M, (1)

here G acts on C2 by

g' (Z1,Z2) = (gZ1,g-l Z2) , 9 E G Zi E C.

The local coordinate system of the minimal resolution C2"'/G can be described by
toric data as a compactification of C2 /G. We shall denote (Z1, Z2) the coordinates
of C2 . Let

n = {(:J E R2Idia[ehu" eh~l E G} ,

/:::, = { (::) E R
2

1t Xi = 1, Xi ~ 0 for aIl i}.
Then n n ö = {pi} ~=o with pi := (T). For each pi, there associates a divisor

Dpi in C2jG. Dpa,Dpd are the proper transfocm for (OxC)/G, (CxO)/G, and
Dpi, 1 ::; i ::; d - 1, are the exceptional divisors. Let {eI, e2} be the standard
base of R2, and {el, e2} its dual. We have

(/,-1 ,p") = (eI, e2)C$1 T).
( p~-l) _ (k k- d ) (Cl)

p~ - 1 - k d - k + 1 e2 '

here {p~-l, p~} is the dual base of {pl:-l, pl:}. Let (SI:, tl:) be tbe local coordinate

system in C2"'/G corresponding to {pl:-1, pl:}. The relations

I: I:-d
SI: =zl z 2

{t 1-1: d-I:+1 (2)
I: = zl z2

hold for 1 ::; k ::; d. The local defining equations for Dpie-I, Dpie are given by

D k I:-d 0pJc-l : SI: = Zl %2 =
Dpk: tl: = z~-I: zg-I:+l = 0 (3)

d

and by the relation Z1Z2 = Sl:tl:, the defining equation for L: Dpi is
j=O

d

LDpi: Zl%2=0

;=0

4
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Step (m. We now apply the analyses of Step (n to the study of the divisors
Dj of X. It is known that for m E M, Dj n 1r-1(m) corresponds to Dpi in the
isomorphism (1). Over an open set of M, let Li be coordinates of Li (i = 1,2).
For 1 < k < d t.l:lk-d f1-kpd-k+1 are considered as local functions of X by

- - '12'1 "'2
(2), (3) and the Iocal generators of the ideals of Dj's are given by:

I &k&k-dD,,-t= < .(.1.(.2 >,
I - < &1-1: &d-k+1 >D,,- .(.1.(.2 •

Tbeo it folIows:

O(DI:-1)IM" =::: L~ ® L;-d ,
O(D ) "" LI-I: ,0. L d-I:+1

1: IM" - 1 \01 2

over MI: for 1 ::; k ::; d. Since /.1 ®l2 is invariant under the action of G, it defines
a holomorphic section of the line bundle 1f'·(L1 ® L 2 ) over X . By (4), the zeros

d
of this section is equal to L: D j, therefore

j=O

d

® O(Dj) = 1J'·(L1 ® L2) over X .
j=o

q.e.d.

Example 1. Let X be Fermat hypersurface in WP(2,2,2,l,l)

zt + Z~ + Z: + Z: + Z: = 0 .

Tbe singularity of X is given by

Sing(X) = X n {Z4 = Zs = O}

which is aRiemann surface of genus 3. Tbe CY resolution X of X has only
one exceptional divisor D. By Lemma 1, the strueture of X near Sing(X) is
described as in the assumption of Theorem 1 with

M = Sing(X),

L1=L2 = H (:= the restrietion of Owp.(I»,

G = 1/21

We have D = D I and

D 3 = D 2 (1r·H2
- Do - D2)

= D(D. 1J'·H
2

) - Cl (O(D1)I Dt n no) - Cl (O(DI)I~nDt)

= 4( -2) - Cl (H2) - Cl (H2) = -16
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Denote h the element in H2 (X, Z) which represents the pull-back of 0 x (1).

Then the coupling Jl for H2 (X, Z) has the expression:

I'(t . h + s . cl(D)) = 2t3
- 16s3

•

q.e.d.

Example 2. Let X be the quotient of Fennat quintic

Zr + Z~ + zg + z2 + zg = 0 in p4

by the order 5 group generated by

[Zl,Z2,Z3,Z4,Z~]....... [Zl,Z2,Z3,WZ4,w4ZS]

1. Then

Sing(X) = X n {Z4 = Zr, = O}

which is a Riemann surface of genus 6. The CY resolution X contains 4
exceptional divisors Dj, 1 ~ j ~ 4, each of which is a P1_ bundle over
Sing(X). Denote Da, Dr, the divisors in X obtained by the proper transfonn
of Z4 = 0, Zr, = 0 respectively. The classes Cl (Dj), 1 :::; j :::; 4, together

with h (:= the dass ~f pull back of Ox(5)) fonn a base of H2 (X, Z). The

coupling for H2 (X, Z) is the expression:

I' (t .h+t tj .Cl ( D;)) =
1=1

.. 3

125t
3 +L: D~t~ +L: {(D~Di+l)t~ti+l + (DiD~+l)tit~+l}'

i=l i=l

By Lemma 1, we can apply Theorem 1 on the local structure of X near Sing(X)
by setting

M = Sing(X),

Ll= L2 = H (:= the restrietion of hyperplane bundle),

G = Z/5Z.

Then
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DID~ = Cl ({D2]D3nDJ = cl (H3
) = 15,

D~D3 = Cl ([DZ]D3nD3) = Cl (H) = 5,

DzD~ = Cl ({D3]D3nD3) = Cl (H) = 5,
D;D4 = Cl ({D3]D,nD3) = 'Cl (H3

) = 15,

D3D~ = Cl ((D4]D,nD3) = Cl (H- I
) = -5.

Also for 1 ~ k ~ 4, we have

[Dk] = 1r* (HZ) - L D;,
0;Si:5:5
n fI

DiH = 5D,.(a pI-fiber in Dk under 1r)
= -5 L D;(a pI-fiber in Dk under 11")

O:s.;S5
Nil

= -10,

D: = 2(DiH) - L DiD;
°Si:S5

jfl.lI

= -20 - Cl ([Dk]DllnDII_l) - Cl (rDkJDllnDII+l)
= -20 - 4CI(H) = -40.

Hence the coupling for X is given by

4

125t3 - 40 L t~ - 5tI t2+ 15tlt~ + 5t~t3 + 5t2t~ + 15t~t4 - 5t3t~.
i=l

q.e.d.

Section 2

In this section we compute the couplings of exceptional divisors in CY spaces
obtained from the point~singularities. We shall use the torie data of the resolution
to describe to the results.

Let G be a finite diagonal subgroup of SL3(C), V = C3 jG, and V a CY
resolution of V

u:V-+V.
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n = { (::) E R3
[dia [ehtt., ehi»" e

hirß
] E G },

6. = { (:~) E R
3

1t xi = I, Xi ~ 0 for all i}'
x3 1=1

r = nn 6. . (5)

r is finite subset of the lattice n, ~d contains the standard base {ei} :=1 of R3.
There associates a divisor D, in V for each '7 E r. The dual configuration for
intersections among D,'8 is given by the simplicial decomposition S of 6. with
the property

r = {vertex in S}.

It is known that

Dei = the proper transform of (Zi = 0)/ G,

{D,I; E r - {ei} :=1} = {exceptional divisors in V}.
The a-image of an exceptional divisor D, is a point or a curve. We have

a(D,) = a point <=> '"'[ Ern interior(Ö),

in whicb case, a(D,) is the singular point of V corresponding to 0 of C3 • Then
the vertices of a 2-simplex {er, ß, 1'} of S form an integral base of n. Hence
there corres(X>nds a local coordinate system of V, denoted by (Wl, W2, wa). From
{a, ß, 1'} C Ö, the relation

bolds as functions of V. As Z1Z2Za defines aglobal function of V, we have

0(2: D1,) = the trivial bundle of V. (6)
,Er

Theorem 2. (i) For 3 distinct elements a,ß,'7 E r,
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(ü) For distinct 0., ß Ern interior(ß), D~DfJ = 0 unless {o., ß} is a
I-simplex of S. When {a,ß}= I-simplex of S, there exist exactly 2 elements
ob 82 in r such that {o., ß, Oi} are 2-simplexes o(S, and the following relations
holds as vectors in R3:

01 +02 + (D~Dß)o. + (DaD~)ß = O.

(ili) For 7 Ern interior(ß), let {Si} f=l be the set of an the elements in r
which can be connected to 7 by I-simplexes of S. By the suitable indices, we
assume {7, 8i, Oi+1} is a 2-simplex of S for I ::; i ~ L, (DL+1 := D1 ), Define
the integer ni (1 ~ i ~ L) by the equation

for some ni. Tben we have

L

D~ = - L:ni .
i=l

Proof. (i) is obvious.

(ii) Let a, ß be elements in rn interior(ß) such that {o., ß}= a l-simplex of
S. It is easy to see that there are exactly2 elements Cl ,82 in r such that {a, ß, Ci}
are 2-simplexes of S. Since both {o., ß,Oi} are bases for n, we have the relation

(-1 00)
(8I,0.,ß) = ("2,0.,ß) m I 0

n 0 1

for some integers m, n. Denote (Xi):=l' (Yi):=l the local coordinate systems of
V corresponding to {«5}, er l ß}, {82, 0., ß} respectively. Olle has

-1
Y1 = Xl

{ Y2 = Xr X2

Y3 = xixa
(7)

Tbe local defining equations for Da, Dß are given by

Da: X2 = 0 , Y2 = 0,

Dß: X3 = 0 , Y3 = 0,

Da n Dß = pI with affine coordinates Xl, Yl.

By (7), it follows that D~Dß = -m ,DaD~ = -n, hence we obtain (ü).
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(3) Let 7, Oi, ni, n~ be the same as in the condition (ili). By (6),

L

D; = -D; LDa = - LD;D6i .
aEr i=la",.

As the relation

L
holds, the same argument as (ü) gives D;D6i = ni, hence D; = - L: ni. q.e.d.

i=l

Example 3. Let X be the quotient of Fennat quintic in p4 by the group
generated by

[ZI, Z2, Z3, Z4, Z~] [ZI,WZ2,W2 Z3,W3Z4,W4Z~]

[ZI, Z2, Z3, Z4, Z5] [Zl ,WZ2, Z3,W2Z.. ,w2Z~]

with w~ = 1. ( Example in [1]). Then X has only isolated singularities and

Sing(X) = {Pij , 1 ~ i < j ~ 5}

here pij is the element of X with the coordinate Z k = 0 für k # i, j . The
strncture near a singular point P = Pij is given by

(X,p) ~ (C3/G,0)

here G is the group generated by dia[w, w2, w2]. The unique CY resolution of
C 3/ G is described by the simplicUil decomposition of 6. as shown in Figure 2. In
this case, r = {eI, e2

, e3
, a, ß} with a = leI + !e2 + ~e3, ß= fc l + !e2+!e3

•

We have

el + e2 +3e3
- 5a = 0, el +e2 + a - 3ß = 0, e3

- 2a + ß = 0.

By Theorem 2,

D~Dß = 1, DaD~ = -3, D: = 8, D~ = 9.

X is obtained by resolving the singular points Pij of X. Let Aij, Bi; be the
exceptional divisors over the singular point Pi; which correspond to the Da, Dp
in the above construction. Then the coupling for H2(X, Z) has the expression:

p (t. h + L {UijCI(Aij) + VijCI(Bij )}) =
l::;i<j::;~

25t
3 + L (8u~j + 9v:j) + L (U7jVij - 3UijV;j)

l::;i<j::;~ l::;i<j::;S
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here h = dass of pull- back of OX(5). q.e.d.

Example 4. Let X be the quotient of

ZtZ2 + Z~Z3 +ztZ. +ZtZ5 +ZtZl =0 In p4

by the order 41 group generated by

with w41 = 1. (Example in [4]). Then

Sing(X) = {Pi, 1 ~ i ~ 5}

here Pi is the element of X with the coordinate Zk = 0 for k =/:- i. The structure
near a singular point Pi is isomorphie to the quotient of C3 by an order 41 element
of SL3(C). It eontributes 20 exceptional divisors of the CY resolution X . Hence

we can obtain the cubic fonn of H2 (X, Z) using the method of Theorem 2 by

the simplicial data attached to singular poInts. However this coupling depends
on the triangulations of the simplicial data, which have several different ways
in this example. We are going to illustrate their difference by comparing two
triangulation information associated to the resolutions. We shall only work on the
local situation at one singular point as it already reveal the nature of the topological
couplings be effected by different resolutions for a CY orbifold. Consider the local
structure near the singular point PI. We have

The set r now consists of standard base elements together 20 points lying in the
interior of 6, in particular it contains the following 4 elements:

o = :1 (}J 'ß= :1 (:0). 1 = :1 (~~). 8= 411 C~) .
One has

a+o= ß+, ,
and both (a, 6, ß), (a, 0,;), (a, ß, I), (0, ß,;) are integral bases of the lattice n.
Consider triangulations SI, S2 of ~ such that they differ only on the convex set
spanned by the 4 elements a, ß,;, 0, while on this convex part SI contains the
2-simplexes (a,o,ß),(a,o,r) while S2 contains (a,ß,,),(o,ß,r). (See Figure
3). Let Xi be the CY resolution corresponding to the sirnplicial decomposition Si

for i = 1,2. The classes Cl (D-y) (I E r - {ei}:=1) form the base of H2(Xi, Z).
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By Theorem 2, the couplings Pi for H2 (Xi, Z) are the same except D~DAI, D~
for .-\,.-\1 E {a,,ß,;,8}, and we have

P2 ( I: t.~Cl(DA)) - PI ( I: tAel (DA)) = t~ +t~ - t~ - t; - t~t-y
AEr-{e i } AEr-{e i }

22 22 22 22 22 2-tpt-y + t(/6 + tot6 - tatp +totp - tot-y + tot-y +tpt6 - tpt6 - t6t-y + t6t-y.

q.e.d.

Section 3

For the CY manifolds from "orbifold construction", the singular space we
started with in general possesses curve-singularities together point-singularities
on them. The couplings of exceptional divisors can be detennined by the method
of Sect. 2 except those couplings of divisors all contracting to curves of the
singular space. In the latter situation, the computations are more complicated
than the cases we described in the previous 2 sections. We shall give a general
method for the computation of those remaining parts. For this purpose we shall
work only couplings with divisors contmeting to the same curve in the singularity,
and formulate the problem in the local version near the curve-singularity.

Let M be a compact Riemann sunace, and G' a finite abelian group acting
on M. Denote

G = {9 E G' 19 acts triviallyon M},

and in this section we shall always assume the order of G to be positive

d:= IGI > o.
Denote

p: M -+ M/(/ the projection,

{PI, ..• , PN} = the branched 10cUB oe p in M / G' ,

Pi = the divisor I: m in M,
mEp-l(pj)

Ij = the G' - isotropy Bubgroup at P E P-I(Pi),

11-1
dj = the integer ;.

Suppose LI, L2 , L are line G'-bundles over M such that the following conditions
hold:

N

(a) There 15 a section 8 E r(M,L) with (8 = 0) = I: pj
j=I

12



(b) The quotient space X:= (LI ffi Lz)/ G' has trivial canonical sheaf,

(c) The G' - action on LI ® L2 ® L induces a line bundle E on M / G'
LI ® Lz ® L -+ E := (LI ® L2 ® L)/ G'

! !
M -+ M/G'

Consider a CY resolution

u:X -+X

and define 1r by the following diagram:

X.!.. X

'\, !'Ir
M/G'

Lemma 2. (i) G is the group generated by

LI ffi L2 -+ LI ffi Lz
(ll,lz) ...... (W1l,W-I1Z)

withw=e~.

(ii) Let Da, Dd be the divisors in X defined by

Da = the proper transform of (0 X Lz)/ G',
Dd = the proper transform of (LI xO)/ G'.

Then there are exactly d - 1 exceptional divisors DI , ..• , Dd-l lying generically
over M / G' through the map 1r, and only intersections among Dj's (0 :$ j :$ d)
are

-,;r; := DJ; n Dk-I 'Ir~~r M / G' for 1 ::; k ::; d.

Proof. Since G acts as scalar multiplications on line bundles Li, the conclu
sion of (i) follows from the assumption on the trivial canonical sheaf of X. (ü)
follows from the structure of X. q.e.d.

We now describe the structure of X near 1r-
l (pj) for a given j. For

convenience of notations, we shall identify M with the zero section of LI ffi Lz,
and consider M as a G'-submanifold of LI ffi Lz. We know that

(X ,Pj) ~ (LI ffi Lz)/lj, qj ) ~ (Ca/ lj, 0) ,

here qj is an element in p-l (Pj), the action of lj on Ca on the right hand side is
considered as a diagonal subgroup of SLa(C). The coordinate (ZIJ zz, Z3) of C3

13
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can be regarded as a local eoordinate system of LI EB L2 near qj sueh that {za = O}
eorresponds to the fiber (LI EB L2 )qj and OXL2 ......... {ZI= O}, LI x 0 ......... {Z2= O}.
Then we have

here 0= tbe union of exceptional divisors eontracting to O. The eombinatorial data
for the torie variety Ca"/Ij is now given by a simplicial decomposition S of

having

r = !:::. n { Gn E R3 Idia [e2
..

ix
, , e2

..
ix2

, e21rix
.] E Ij }

as the set of all its vertices [5]. Since G is a subgroup of Ij, it follows

rn{ GU ER3IX3=O} = {;j}1=o, 7j:= (T}
Under the isomorphism (9), the divisor Dj in Lemma 2 corresponds to the torie

divisor D",,/j of Ca"/Ij associated to Ij for 0 ~ j ~ d. For 1 ~ k ~ d, there is an
unique element Ck in r such that {/k-b IA; , CA;}= a 2-simplex in S (See Figure
4). One can write

(
TjA;) 1

8k = Si with rjk,Sjk E ddj Z, djrj1c+djsj1c = dj-l.

J

Define

mjA; = -k(dj - 1) + ddjs jk , mjA; = (k - l)(dj - 1) - ddjSjk

for 1 ~ j ~ N, 1 ~ k ~ d. Note that mjk +mjk +dj = 1. Let (tl, t2, ta)
be the local coordinate system of Ca"J Ij attached to {7k-b J 10, Ck } • Its relation
with the coordinate (ZI, Z2, za) of Ca are obtained from the torie data as follows.
From the relation

(
d-~+l T

(;k-l,7k,8k) = (e\e
2
,e
3) kf ~
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we have

bence
tlt2 t a = ZlZ2 Za .

Tbe local equations for the divisors D"'f"-I' D"'(", (D"'f"_1 + D"'f" + Ds,,) are given
by

(11 )

t ........,. (u, (u(t))

! !
u = u

D t 1: 1:-d mj" 0
"'("-1: 1 = Zl Z2 Z3 =, , (10)

D t l-k d-k+l mj" 0
7" : 2 = zl Z2 Z3 =,

(D7,,-1 + D7" + Ds,,): tlt2 t 3 = ZlZ2Za = 0 .

Theorem 3. The following relations hold for 1 ~ k ~ d,
N

1G'I(D~_lDk) = kCl(L1) + (k - d)Cl(L2) + :E m;1:lp-l(p;)I,
;=1

N

IG'I(D1:-1D~) = (1-k)Cl(L1)+(d- k+1)Cl(L2)+ :E m jklp-l(p;)/,
;=1

7r*(E) = o(t Di) ~ 0 ( ~ D) near QI Dk .
1-0 ff(D)-pj k-l

Proof. In order to show the first two relations, it suffices to show the following
equalities hold for line bundles over M, .

p. (O(Dk-Il[U.) = L~ @ L;-d @ 0 (~ mjkPi) ,

p* (O(Dk)IM.) = Lt-k ~ Lg-J:+l ~ 0 (t m~pj) .
)=1

Consider the local trivializations of LI, L2, Lover some G'-invariant open
neighborhood U of P-l(Pi):

Lu ~ U xe
! !
U= U
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(Li)U~ UxC

! !
u = u

ii ......... (u, (u,i(ii))

! !
u = u

The section .s E reM, L) in (8) on the open U corresponds to a function
.su : U ~ C via the above trivilization of L. We denote sü : (LI EB L2)U ~ C
the composition of .su with the bundle projection map. The function su defines
a local coordinate of M near the element qj E p-l(p;). Therefore the map

(LI EB L2 )u ('U,1'~213Ü) C3 (12)

(iI, l2) -+ ( (U,l (LI), (U,2( l2 ),sü (lI, l2)) ,

defines a local coordinate of the 3-fold LI EB L2 near the point qj. From (10),
we have the expression of local generators of the following ideal sheaves near
Mk n 1r-

l (p;):

(13)

I(D1't_l+D'I~_1+D6t) =< (U,1(U,2 SÜ >. (14)
N

For q E M - U p-l(p;) and some neighborhood U in M, the map
;=1

(LI EB L
2
)u ('U,II,~,proj.)

(i l ,l2) ~

C2 xU

((U,l (i l ), (U,2 (l2), u),
(15)

(16)

(here(II , i 2 ) E(L1 ffi L2) u) gives a local coordinate system for LIEB L2 near the
point q. Through the above map, the structure of X near the point p(q) is giyen
the isomorphism

(X, p(q)) ~ ((C2/G) x U, [0] x q),

bere G acts on C2 as the diagonal subgroup of SL2 ( C) generated by the element
of order d. From the discussion of Secl. 1, the local generators of the following
ideal sheaves near 1rTk are given by

In =< (UI; 1(UI;-2
d >,

1'1--1 "

I -< (l-I;(d-I;+l >n..,J: - U,l U,2 ,

I(n D ) =< (U,1(U,2 >. (17)"'.-1 + "'.-1
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Since p. (O(-Di:-I)rM;)' p. (O( -Di:)rE') are the line bundles corresponding

to p. (ID'_' ~~), p. (ID. ~~) respectively, one obtain (11) by COffi

puting transition functions of the line bundles from the relations (13) and (16).
Similarly the third relation of this theorem follows from (14) and (17).

Example 5. (Mirror of Fennat quintic). Let X be the quotient of Fermat
quintic in p4 by the group , denoted by SD, generated by

[Z1, Z2, Z3, Z4, Z~] (WZl,W4Z2, Z3, Z4, Z5]

[Z1, Z2, Z3, Z4, Z~] [Zl, WZ2,W"Z3, Z4, Z~]

[Z1, Z2, Z3, Z4, Z5] [Z), Z2, WZ3,W4Z.. , Z5]

with w~ = 1. Tben

Sing(X) = U(Zi = Zj = O)/SD ,
i<j

and each (Zi = Zj = O)/SD is a rational curve, which intersects the others on
3 points. Tben the CY resolution X of X is the mirror of Fermat quintic with
the following properties [4, 7]:

HI,I (X ) ~ H2,I(quintic), H2,1 (X) ~ HI,I(quintic).

The exceptional divisors, together with the pull-back of 0 x (5), give a base of

H2 (X, Z) . One can obtain the couplings on H2 (X, Z) using the method in

Sect.. 2 except those with an the divisors lying generically over the same curve
(Zi = Zj = 0)/ SD for some i, j. For conveoience of notations, we shall work
ooly the case for (i,j) = (1,2). Apply Theorem 3 on this case and set

M = {[X3 , X.. ,X~] E p 2 1xi + x: + xg = o},
G' = {[X3 ,X4,XS ] ....... [wiXa,wiX4 ,wi:x~], i,j, k E z},

II = L2 = H the restrietion of hyperplane bundle,

L = Ha.

Tbe section s E r(M, L) in (8) is equal to Z3Z..Z~. So G' ~ (Z/5Z)2, and we
can identify M / G' with

{[Wa,W., W5] E p 2 1Wa + W. + Ws = O}.

The projection p : M -+ M / G' is now given by Wj = Z; with the branched
locus

17



Theo the line E in (8) is the hyperplane bundle OM/GI(l) of the [Wa, W4 , W5]

line. There are 4 exceptional divisors in this case, Le., d = 5, dj = 5 for alt j. As
the case in Sect. 2, the couplings depend on how the singularities resolved near
Pl,P2,pa. We shall work only two cases to illustrate the method of computation
using Theorem 3. The same procedure can be applied to the more general cases.
Assume now the simplicial data in the CY resolution associated to Pl,P2,Pa are
alt the same, and equal to SI or S2 as indicated in Figure 5.

For the case of SI, we have

mjk = k - 5, mjk = 1 - k for 1 ~ k ~ 5.

By Theorem 3, we obtain the following couplings:

D~_IDk=k-4, Dk-lD~=2-k,

Df = D~(1r·O(I) - Dk- 1 - Dk+1 ) = -2 + 1 = -1

for 1 ~ k ~ 5.

For the case of 82,

mj1 = mjs = 1, mj2 = mj4 = 2, mja = mja = -2,

mj4 = mj2 = -6, mjS = mi1 = -5.

By Theorem 3, we obtain the following couplings:

D~D1 = D4D~ =0, D?D2 = DaD; = 1 , D~D3 = D2D; = -1 ,

D;D4 = D1D~ = -3 , D~D5 = DoDi = -2,

D: = -1, D~ = 2, D: = 2, D~ = -1.

q.e.d.
Section 4

In this section we shall compute the second Chern class of the CY orbifolds.

Let dj E Z>b 1 5. j 5. 5, and d := lcm(dt, ... , d5 ), nj .- f , qj := +.
J aj

Denote

. 5
{e l

} i=1 = the standard base of

T = the algebraic torus (C*)5,
5

q = Lqiei ,

i=l

C= {tXiei E R51xi ~ O},
1=1

18



and define

eXPq : R5-+ T , expq(x) = [0
2'7'''],

e2.'C1!o.1:~

5 5

5 '" ~itrq: R -+R, trq(x) = L.J qixi for X = LJ Xi e ,

i=1 i=1

SDq = { [it]E TI iI ti = I, tt' = 1 for all i}'
t5 1-1

Q = the group generated by expq(t Ci) .
1=1

In this section G shall always be a group with the property

Q c Ge SDq • (18)

Let NG (MG) be the group of I-parameter subgroups (characters) ofthe algebraic
torus T/G:

NG = IIoffialg.group(C*, T/G),

M G= IIOffialg.group(T / G, C*).

We shall identify NG , MG with the following lattices:

NG = exp;l( G),

MG= {t ki ci ITI Zik; ia G - invaraint}.
i=1 i=1

The above lattices are connected to the stnlcture of CY mirror pairs obtained
from Fennat hypersurfaces in weighted 4-spaces [7]. But they are also naturally
associated to the birational geometry of WP(ni)/G which we are now going to
discuss. Denote

v= the vector 8pace R5
/ Rq,

NG = the lattice NG/Rq in V,

T /G = the algebraic 4 - torus which is the quotient of

T/G by the 1 - parameter subgroup dq ENG.

The lattice structure of NG in R~ induces Z-stnlcture of V with NGasthe
lattice. Any rational cone decomposition {Ca} aEA of the boundary ac of the
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first quadrant cone C gives a rational simplicial cone decomJXlSition {~} aEA of
V here Ca := Ca +Rq C V. Hence the data {~} aEA induces a compactification
of TI G which will be denoted by P {Ca} aEA' For the case when {Ca} aEA =
{coordinate faces of Cl, the corresponding compactification of TIG is simply
the quotient wPtni) I G. In the case where each 4-dimensional cone in { Ca } a EA is
generated by part of Z-base of NG, p{C } is a smooth projective resolutiona aEA
of wPtni)1 G,

ib : P{Ca}aEA -+ wptni)1 G . (19)

L
Let {ytl;=l be the collection of all torie divisors in P{Ca}aEA' Le., U II =

l=1

ib-1 (.U (Zj = O)IC). Tben we have the following expression of Chern classes
J=1

of p{Ca}:
Lemma 3. The total Chern dass of the smooth compactification P {Ga} of

Tc is given by

L

c(p{Ca}) = TI (1 +Cl(Yl)).
t=t

Proof. There is an exact sequence of sheaves over P{ Ca}'

0-+ Op{Ca } (T(IOgt Yl)) --+ Op{CaJ(T) --+ EBOy,(Yi ) --+ 0,
t=1 l=1

here T is the tangent bundle of p{c.}. and OPIC.J(T(logEYi ))= dual of

n~ (log t Yt). Since n~, (log t Yt) is a free Op{Ca}-module, we
{Ca} l=1 {Ca} l=l

have

c(p{c.}) = C(T (lOg~ Yi) ) 11 c(Oy,( Yi))

L

= TI (1 +Cl (Yl)) .
l=1

q.e.d.
We now compute the Chern classes of CY orbifolds using the above results

of p{Ca}' Consider a degree d quasi-smooth hypersurface in wPtni) defined by

J(Z) = zt1 + Z;~ +Z;3 + Z~( +zta + JtZtZ2ZaZ4Z5 = 0
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with ..\ E C. Assume d, nj satisfy the condition

5

d = L nj ,

j::::l

and G the same as (18). As G preserves the polynomial f( Z) and the fonn
dZ} A ... A dZs, the quotient space

X:= ([Z] EWP(nj) If(Z) = O)IG
has the trivial canonical sheaf with the singularity

Sing(X) =U{XI,I 1 C {I, ... , 5}, Cl > I}

here Xl = X n n(Zi = 0), cl = I{g E Glg(Z) = Z for Zi = 0, i E 1}1. Note
iel

that Xl = 0 for 111 ~ 4. The exceptional divisors of the CY resolution

0': X-+X

are described in a certain part of the lattice NG [7]. In fact the combinatorial
data of exceptional divisors over Xl (Cl> 1) is a simplicial cone decomposition

of the 1th face of C (:={x = t xiei E CI Xj = 0 for j rt I}) having
I::::}

{R~ovlv E (lth face of C) n {x with trq(x) = I}}

as the set of alll--dimensional cones. With these given data on the simplicial cone
decomposition of U (lth faces of C), ODe can extend it to a simplicial cone

111.$3
decomposition of the whole C in such a way that every 4-dimensional cone Ga is
generated by part of Z-base of NG. Then the corresponding space P {C } is a

01 OlEA

projective resolution of WP(nj) I G. By the construction of the toroidal resolutions,

X is a smooth hypersurface of p{C} , and in fact it is the proper transfonn
01 OlEA

of X of the birational morphism ~ in (19). Note that X is disjoint with the
exceptional divisors of p{C } lying over points of WP4

( .)1 G with vanishing
01 OlEA n.

coordinates except ODe.

Theorem 4. Let Ei (1 ~ i ~ e) be an the divisors in X contained in
5
U O'-

1(Zj = 0). Denote EI = nEi for 1 C {I, ... ,e}, and [EI J the Poincare
;::::} iel

dual of EI. Then the second Chern dass and Euler number of X are given by

c2(x) = L [EIJ,
111=2

x(x) =-2L IEll+ Lx(EI)'
111=3 111=2
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Proof. Let p{C } be a resolution of WP4( .)1 G we have just described
a aEA n,

above. There is an exact sequence of vector bundles over X,

o-+ T (X) -+ T(P{Ca})IX -t NX ,p{Ca} -t 0,

here T ( i ), T (p{Co}) are the tangent bundles of X , p {Co} aEA respectively and

Nx ,p{c
o

} is the nonnal of X in p{Ca }. Then by Lemma 3,

c(x) (1 + cI(Nx)) = c(T(P{Ca})I!)'
e

Cl (X) + cI(Nx) = L: [Ei],
i=1

C2(X) + Cl (x )cI(Nx) = L: [EI],
111=2

C3 (X )+ c2 (X )CI (N i ) = L: [EI] .
III=:3

As Cl (X) = 0, we obtain the first relation of this theorem. Also we have

e

X(X) = - L: L: [Ei][EI ] + L: IEII
i=:l 111=2 111=3

= -3 L: IE1J- L: (L: [Ei]) [EI] + L: IEII·
111=3 111=2 ieI 111=3

For 111 = 2, EB O(Ei) is isomorphie to NE i (:= the normal of EI in X), hence
ieI 1,

(?= [Ei]) [EIl = JCl ('A NEl,x) = - JCl (T(EI)) = -x(EI).
leI EI EI

Therefore

x(x) = -2 L: IEII + L: x(E]).
111=3 111=2

q.e.d.

Example 6. Let X be the Fermat hypersurface in WP(2,2,2,1,1)' X its CY

resolution with the exceptional divisor D and the dass h in H2 ( X, z) as in
Example 1. We have 6 divisors Ei in Theorem 4 for this case, which are defined
by

Ei = the proper transform of (Zi = 0) for 1 ~ i ~ 5,

E6 = the exceptionaJ divisor D.
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Then the eurves EI are connected Riemann surfaces of genus 9 for

1 = {1,2},{1,3},{2,3}j

of genus 3 for

1= {1,4},{1,5},{2,4},{2,5},{3,4},{3,5},{4,6},{5,6};

EI are the union of 4 disjoint pI for

1= {1,6},{2,6},{3,6};

and E{4,S} = 0. For 111 = 3, we have

8, 1 = {1,2,3},

I
E I - { 0, I={I,2,6},{2,3,6},{I,3,6},{I,",:S},

I - {2,",:S};{3,"'S};{",S,6};
4 I={1,2,4},t I ~,5},t2,3,4},t 2,3,S},{ 1,3,4} ,{l,3,:S}.

, {l,4,6},{ 1,S,6} ,{2,4,6},{2,:S,6} ,{3,4,6} ,{3,S,6}.

Hence by Theorem 4, we have

x(X) = -2(8 +48) +3(-16) +8(-4) +3 x 8 = -168,

[E6]C2 (x) = L IEII + L [E6][E/] = 24 + L [E6][E/].
111=-3 111.~ 111"~
(leI (leI (leI

Using Theorem 1, with the same computation as in Example I, we have

[Ea][EI] = { 4 für 1 = {4,6}, {5,6}.
-8 für I = {I, 6}, {2, 6}, {3, 6}.

[E6]c2 (X) = 24 - 16 = 8.

One can also have the following results:

4 für I={l,2},{ 1,3},{2,3},{I,4},{2,4},
{3,"},{ 1,:s},{2,~},{ 3,~}.

h[E/] = {2 für 1 = {4,6},{5,6}.
o für 1 = {1,6},{2,6},{3,6},{4,5}.

This implies

The linear fonn on H2 (X, z) given by the second ehern class is now expressed

by
t· h + s· cl(D) ...... 40t + 8s.
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q.e.d.
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