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Abstract

Modifications of bundles over complex curves is an operation that allows one to construct
a new bundle from a given one. Modifications can change a topological type of bundle.
We describe the topological type in terms of the characteristic classes of the bundle. Being
applied to the Higgs bundles modifications establish an equivalence between different classical
integrable systems. Following Kapustin and Witten we define the modifications in terms of
monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the
case R x (elliptic curve). This solution is a three-dimensional generalization of the Kronecker
series. We give two representations for this solution and derive a functional equation for it
generalizing the Kronecker results. We use it to define abelian modifications for bundles of
arbitrary rank. We also describe non-abelian modifications in terms of theta-functions with

characteristic.
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1 Introduction

The modifications (or the Hecke transformation) of bundles over complex curves is a correspon-
dence between two bundles F and E. It is isomorphism in a complement of some divisor. A
modification can change the topological type of the original bundle. From the field-theoretical
point of view the modification is provided by a gauge transformation of sections, which is singu-
lar at the divisor. In [1] we apply this procedure to the Higgs bundles. The Higgs bundles are
the phase spaces of the Hitchin integrable systems [2]. Modifications acts on the phase space
as a symplectic transformation. In this special case we call the modification the Symplectic
Hecke Correspondence. For the Higgs bundles over elliptic curves with marked points Symplec-
tic Hecke Correspondence leads to a symplectomorphism between different classical integrable
systems such as

e Elliptic Calogero-Moser system < Elliptic GL(NV,C) Top, [1];

e Calogero-Moser field theory < Landau-Lifshitz equation, [1, 4];

e Painlevé VI < non-autonomous Zhukovsky-Volterra gyrostat, [3].

In these examples modifications increase the degree of the underlying bundles on one. In
general, modifications act as the Béacklund transformations of integrable systems. If degree
of the bundles (modula rank) is not changed then modifications produce what is called the
autoBacklund transformations. It turned out that the modification in the first example is
equivalent to the twist of R-matrices [5, 6] that transforms the dynamical R-matrices of the
IRF models of the GL(N) type [7] to the vertex R-matrices [8] corresponding to the GL(N)
generalization of the XYZ models.

The modifications are parameterized by vectors 7 of the weight lattices P of SL(N,C). If
m belongs to the root sublattice Q@ C P, then the modified bundle E has the same degree
as FE. Otherwise, the degree of bundle is changed. The modifications can be described by
changing another topological invariant. It is a characteristic class of a bundle. Let the base
of F be a Riemann surface X, of genus g. Then the characteristic class of F is an element
of H%(X,,Zy) ~ Zy, where Zy ~ P/Q is a center of SL(N,C). Another example of the
characteristic classes, is the characteristic class of spin-bundles, that will not considered here, is
the Stiefel-Whitney class H?(X, Z2).

Here we discuss a field-theoretical interpretation of modifications. It was established in
Ref. [9] that the modifications are related to the Dirac monopole configurations in a topological
version of the N/ = 4 four-dimensional super-symmetric Yang-Mills theory. If ”the space-time”
of the topological theory has the form R? x ¥, then the modifications of E over ¥, are param-
eterized by the monopoles charges.

To describe the modification it is sufficient to neglect the ”time” dependence and consider
R x ¥4. The condition for fields to preserve the supersymmetry amounts to the Bogomolny
equation.

The aims of this talk are

e To define modifications and describe their interrelations with the Bogomolny equation
following Ref. [9]. We consider a special configuration of the space-time R? x ¥, where
Y. is an elliptic curve with the modular parameter 7.

e To find solutions of the Bogomolny equation in the case of line bundles over .. They are
generalizations of the Kronecker series [17]. We give two representations of the solution
and prove their equivalence by means of the functional equation generalizing the Kronecker
functional equation.



e To describe non-abelian modifications that are not related directly to solutions of the
Bogomolny equation and follows from our previous results.
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2 Characteristic classes of holomorphic bundles over complex
curves

We describe holomorphic bundles over complex curves X, of genus g and define their character-
istic classes.
2.1 Global description

Let m1(X4) be a fundamental group of ¥,. It has 2g generators {aq,b.}, corresponding to the
fundamental cycles of ¥, with the relation

[Tlaa:bal =1, (2.1)
a=1

where [aq, bo] = aabaa; b, ! is the group commutator.

Let p be a representation of 71 in CV. Consider a holomorphic adjoint GL(N,C) bundle £
over ¥,. In fact, E is a PGL(N,C) ~ PSL(N, C) bundle, because the center of GL(N,C) does
not act in the adjoint representation. The bundle E can be defined by holomorphic transition
matrices of its sections s € I'(E) around the fundamental cycles. Let z € ¥, be a fixed point.
Then

$(aa2) = plaa)s(2), 5(bs2) = plba)s(2)
Due to (2.1) we have

H[p(aa)vp(ba)] =Id. (2'2)
a=1

Let K be an extension of w1 by the cyclic group Zy ~ Z/NZ
1—=Zny—K—m(Xy) —1. (2.3)

The group K is defined by the relation
g
[Tlea,ba] =w, &V =1. (2.4)
a=1

Let p be a representation of K in GL(NNV,C). Then using p as transition matrices we define a
bundle over ¥,. But now instead of (2.2) we have

—
>
—~

Q
Q
:—/
R}

(bo)] = wld. (2.5)



Here w Id is the generator of the center Z(SL(N,C)) ~ Zy of SL(N,C). It means that p can
serve as transition matrices only for PSL(N,C) bundles, but not for SL(N,C) or GL(N,C)
bundles. Note, that the fibers of the PSL(/N,C)-bundles are spaces of representations with
highest weights from the root lattice @ (A.2) including the adjoint representation with the
highest weight w; + wy_1 (A.3). For the SL(/NV, C) representations the highest weights belong
to the weight lattice P (A.4). In this way elements from the factor group P/Q ~ Z(SL(N,C))
(A.10) define an obstruction to lift PSL(V, C) bundles to SL(N, C) bundles.

The obstruction has a cohomological interpretation. Consider the exact sequence following
from (A.1)

— HY(%,,SL(N,C)) — H'(%,,PSL(N,C)) — H*(Z,, Z(SL(N,C))) — ... (2.6)

The groups H'(X,,SL(N,C)), H'(X,,PSL(N,C)) are the moduli space of SL(N,C) and
PSL(N, C) bundles. Then H?(3,, Z(SL(N, C))) defines an obstruction to lift PSL(N, C) bundles
to SL(N,C) bundles. We call £ € H%(S,,Zy) the characteristic class of a PSL(N,C) bundle.
In fact, H*(Xy,ZN) ~ Zy and w in (2.5) represents & € H2(Xy, Zn).

This construction can be generalized to any factor-group G; = SL(N,C)/Z;, where [ is a
nontrivial divisor of N, (N = pl, I # 1, N). Consider an extension K; of 71(X,) by Z; (compare
with (2.3))

1 -2 — K —m(Eg) —1.

Let E; be a holomorphic Gj-bundle. The fibers of E; belong to a irreducible representation of
G| with a highest weight v € T'(G;) (A.12). Then the transition matrices representing K; satisfy
the relation

[115(aa), p(ba)] =P Id, (wP)' =1. (2.7)
a=1

It follows from the exact sequence
1—7%Z; — SL(N,C) - G; — 1,

that elements from H?(3,,7;) ~ Z; are obstructions to lift G; bundle E; to a SL(V, C)-bundle.
The group Z; can be identified with the center of the dual group *G; ~ G, = SL(N,C)/Z,
(see (A.17) and (A.16)). Thus, the obstructions to lift G; bundles E; to a SL(N, C) bundles are
defined by H%(%,, Z(FG))).

On the other hand, since Z, is a center of G we have the sequence

1—Z,— G, — PSL(N,C) — 1,

where Z, is a center of G;. Then elements from H?(X,, Z(G))) are obstructions to lift a
PSL(N, C)-bundle to a Gj-bundle. Summarizing we have defined two types of the characteristic
classes

H?*(%,, Z(G))) — obstructions to lift a PSL(N, C) bundle to a G; bundle, (2.8)

H?(%,, Z(*G))) — obstructions to lift a G} bundle to a SL(N,C) bundle. (2.9)

Though for w # 1 PSL(N,C) bundles cannot be lifted to SL(N,C) bundles, they can be
lifted to GL(V, C) bundles. From the exact sequence

1 — 0* % GL(N,C) — PGL(N,C) — 1 (2.10)
we have
HY(%,,GL(N,C)) — H'(%,,PGL(N,C)) — H*(%,, 0%). (2.11)

The Brauer group H?(X,, O*) vanishes and therefore, there is no obstruction to lift PGL(N, C) ~
PSL(NV,C) bundles to GL(N, C) bundles. We will demonstrate it below.



2.2 Holomorphic bundles over elliptic curves

We define an elliptic curve (¢ = 1) as the quotient ¥, = C/(Z + 7Z). In this case we can
construct explicitly the generic transition matrices for GGj-bundles.

The curve has two fundamental cycles a : (z = 2z+1),b : (z = z+ 7). We define a trivial
bundle E over ¥, by two commuting matrices

s(z+1) =pes(z), s(z+7)=pps(2), [pa,pp] =1d. (2.12)

It is a PGL(V, C)-bundle that can be lifted to SL(N, C) bundles.
Consider a representation of p of I acting on the sections of E as

s(z+1) = pas(z), s(z+7)=pps(z). (2.13)
with commutation relation (2.5)
[pas o) = w Id. (2.14)
One can choose
Pa=129, pp=A, (2.15)
Q = diag(l,w,...,w¥ 1), (2.16)
01 ...0
00 1 0 (2.17)
I D '
10 ... 0

The bundle with these transition functions cannot be lifted to SL(V, C) bundles. Replace py by

271 T
) = 4+~ )AL 2.1
Db exp< N (z+ 2) (2.18)

It is a GL(N, C) bundle since [fq, py] = Id and det pj # 1 . It follows from (2.18) that a section
of the determinant bundle is the theta-function

Iz, 7) = q% Z(—l)”em<n(n+1)T+2m) , q=exp2miT. (2.19)
nez

It has a simple pole in the fundamental domain C/(Z @ 7Z). Therefore, the bundle has degree
one. It is called the theta-bundle.

To consider a general case [10] represent the rank as the product N = pl. Define the
transition matrix

Pa = Idp ®Q, Q= diag(lawpaw2p7 s ,w(l—l)p) ) wN =1, (220)

oo = (@) ® A, (2.21)
where A; is the [ x [ cyclic matrix of the type (2.17) and

27

2mi
e(u,) = diag(e » “,er ... e P 7). (2.22)
Since [Qy, Ay] = wP Id;, wP = exp 2

[Pa, Pp) = WPIdy .



Comparing this relation with (2.7) we conclude that (2.20) and (2.21) serve as the transition
matrices for a Gj-bundle over ¥;. Therefore wP represents an element from H?(%,, Z(*G))) ~
Zy. 1t is an obstruction (2.9).

As in (2.18), modify the transition matrix

~ V. 271 (s 4 T) .
pr— X _— —_— J— .
Pb — Py p P 9 Pb

We come to the GL(N, C)-bundle of degree p (mod N).

2.3 Local description

There exists another description of a holomorphic bundles over 3 . Let wg be a fixed point on
Yy and Dy, (Dy,) be a disc (punctured disc) with a center wg with a local coordinate z. A
bundle E over ¥, can be trivialized over D and over ¥,\wg. These two trivializations are related
by a GL(N, C) transformation g(z), holomorphic on Dj . If we consider another trivialization
over D then g is multiplied from left by an invertible matrix h on D. Likewise, a trivialization
over ¥, \ wg is determined up to the multiplication on the right ¢ — gh , where h € GL(N,C)
is holomorphic on X, \ wg. Thus, the set of isomorphism classes of rank N vector bundles is
described as a double-coset

GL(N, C)(Duy) \ GL(N, C)(Dy,)/GL(N, C) (34 \ wo) ,

where GL(V, C)(U) denote the group of GL(/V, C)-valued holomorphic functions on U.
Let det g(z) = 1. If g(2¢*™) = g(2) then it defines a SL(N, C)-bundle over ¥,. But if the
monodromy is nontrivial
g(ze*™) = wy(z), (W =1),

then g(w) is a transition matrix for a PSL(N, C)-bundle but not for a SL(N, C)-bundle. This
relation is similar to (2.5).

Let us choose a trivialization of E over D by choosing N linear independent holomorphic
sections § = (s1,82,...,5n). Thereby, the bundle E over D is represented by a sum of N line
bundles £1 & Ly@...®Ly. The sections over 3, \ wy are obtained by the action of the transition
matrix §' = sg.

Let m belongs to the root lattice (m = (mji,mo,...,my) € Q) (A.2). Transform the
restriction of the section 5on Dy as

sj— 2z "s;, j=1,...,N. (2.23)
Then the transition matrix is transformed by the diagonal matrix
g(z) — diag(z™™, 272 L 27 Y )g(2) . (2.24)
It implies the transformation of line bundles over D
L;— L;®0(m;).

In this way we come to the new bundle F (the modified bundle); It is defined by the new
transition matrix (2.24). This transformation of the bundle E to E (or more exactly the map
of sheaves of its sections)

E(m)
—

T(E) 2N I(E), (E(m)~ diag(z"™,2"™,...,2"™N))



is called the modification or the Hecke transformation of type m = (my, ma,...,my). In field-
theoretical terms it corresponds to the t’Hooft operator, generating by monopoles (see below).

Let us relax the condition Z —;mj = 0. Then the modification Z(1) changes the topology
of E. We come to a nontrivial bundle of degree deg (E F) = Z;Vﬂ m;. In next section we illustrate
this fact.

Now assume that 7 belongs to the weight lattice P (A.4). Then the modification =(m)
changes the characteristic class of a PGL(V, C)-bundle E. To prove it let us pass to the basis
of the fundamental weights (A.3)

E mi;€; = E nrog .

It follows from (A.3) that m; and ny are related as

= —]{,((N — g+ (N —=2)ng+...+nn-1),
1
—ni1+(N—=-2)no+...+nny_1),

v (=m )2 N-1) Nk = Mg — Mk -

my = £~ —2na + ...+ —(N = D)ny_1),

Rewrite the modification in the form of the product of the diagonal matrices

=(t H diag (z~"+%*) (2.25)

It follows from (A.3) that the monodromy of this matrix around the point z = 0 is

. N-1
2
exp(—ﬂ kng) Idy . (2.26)

1

=

b
Il

Therefore, the characteristic class of the adjoint bundle is unchanged if

N-1 N-1
Z kng, :Nij =0, (modN).
k=1 j=1

In this case the weight vector m belongs to the root lattice (). Otherwise, we come to the
non-trivial monodromy (2.26). It is an obstruction to lift the PGL(N, C)-bundle to a SL(N, C)-
bundle. This element can be identified with the monodromy (2.5) and in this way with an
element from H?(X,Zy). As it was mentioned above, the modified bundle E can be lifted to a
GL(N, C) bundle. Let us act on the modified sections (2.23) by the scalar matrix

27i

ho= 2% X ke gy

It is a GL(N, C) gauge transformation. The monodromy of the new transition matrix is trivial.
Therefore, we come to the GL(N,C) bundle. The bundle is topologically nontrivial - it has
degree

=

-1

3
I

N-1
kng = N Z mj . (2.27)
j=1

B
Il

1

J



It follows from (2.26) that the characteristic class £ and the degree p are related as

§ = exp Wp'
The set of modifications that changes the degree on p is defined as solutions of (2.27) in integers
N-
Assume that the bundle E is equipped with a holomorphic connection. On Dy it takes the

form (0, + A.)dz and can be considered as an element of the affine Lie coalgebra gl (N,C)(Dg,)
The gauge transformation (2.24) acts on A,, acts as the coadjoint action

(Az)jkdz — (kaimj (Az)jk(l — 5]k) — mjz*15jk)dz . (2.28)

Let m € P. Then the first term in the r.h.s. is well defined, since mj, — m,; is integer. The last
term represents the shift action (A.20) of the affine group W, (A.19) on the connection. The
topology of E is not changed if m € () and we come to description of the characteristic class as
elements from factor group W,/W, (A.21). We come again to this point in Section 4.

Let N = pl with [ # 1, N and G; = SL(N, C)/Z; (A.14). Consider the gauge transformation
(2.25) with m () € T'(*G) (A.14). For example, we can take @ = (p,0,...,0). Then the
monodromy (2.26) belongs to the group Z;. It means that the modified bundle E is the G-
bundle that cannot be lifted to the SL(N, C)-bundle (see (2.9)).

The modification can be performed in an arbitrary number of points w,, (a =1,...,n). To
this end define the isomorphism classes of vector bundles as the quotient

n

[ GL, C)(Du,) \ [] GLWV, C)(D;;,)/GL(N, C) (g \ (w1, ., wa)) -

a=1 a=1

We have n transition matrices gq(z,) representing an element of the quotient, where z, is a local
coordinate. Let Z(m,) denotes the modification of E at w, and E = [[,_; E(m,). The order
of modifications in the product is irrelevant, since they commute. To calculate the monodromy

of = we choose the same orientation in all points w,. The characteristic class of £ of modified

bundle E corresponds to
n . N—1
2
H exp (—;\;Z E knﬁ) .
k=1

a=1

3 Bogomolny equation

Definition.
Let W =R x ¥,. Consider a bundle V over W equipped with the curvature F'. Let ¢ be a zero
form on W taking value in sections of the adjoint bundle ¢ € Q°(W, EndV'). It is the so-called
Higgs field.

The Bogomolny equation on W takes the form

F=+Dé. (3.1)

Here * is the Hodge operator on W with respect to the metric ds®> on W. In local coordinates
(2,2) on ¥, and y on the real line ds® = g|dz|? + dy?, where g(z, Z)|dz|? is a metric on ;. Then
the Hodge operator is defined as

1
*dy = iz‘gdz/\dé, *xdz = —idz ANdy, xdz =1idz ANdy,

8



and (3.1) becomes

1 0,4; — 0:A, + [A,, As) = 95 (9,6 + (A, 4])
3. ayAg — agAy + [Ay, AE] = _Z(aigb + [Aiv ¢]) .

In what follows we will consider only PSL(V, C)-bundles.

A monopole solution of this equation is defined in the following way.
Let W= (W\i° = (y =0,z = 2)). The Bianchi identity DF = 0 on W implies that ¢ can be
identified with the Green function for the operator xD x D

*D % Dp = M§(% — 20). (3.3)
M = diag(mi, ma,...,mn) € gl(N,C), mi = (mi,ma,...,myn) € P (A4), (3.4)
and (mq,ma,...,my) are the monopole charges. We explain below this choice of M. This

equation means that ¢ is singular at z°.

Boundary conditions and gauge symmetry.

In what follows exept Section 3.1 we assume that dy¢ vanishes when y — Zfoo. It is the
Neumann boundary conditions for the Higgs field, while the gauge fields are unspecified. Let Vi
be restrictions of V' to the bundles over ¥, on the "left end” and "right end” of W : y — $o0.
These bundles are flat. It follows from 1.(3.8), where the gauge A, = 0 is assumed. It was
proved in [9] that in absence of the source M = 0 in (3.3) the only solutions of (3.1) with these
boundary conditions are F' = 0, ¢ = 0. Note that these boundary conditions differ from ones
chosen in Ref. [9].

The Bogomolny equation defines a transformation V- — V,. (F and E in our nota-
tions in Introduction.) We will see in next sections that in general the characteristic classes
of bundles are changed under these transformations. It depends on the monopole charges
m = (my,ma,...,my).

The system (3.2) is invariant with respect to the gauge group G action:

A, — hAW 4+ 0.hh7Y | As — hAzh~ 4 0k, Ay — hAhT! 4 9,hh!

¢ — hoh™t, (3:5)

where h € G is a smooth map W — GL(N,C). To preserve the r.h.s in (3.3) it should satisfy
the condition [h(z%), M] = 0.

Assume for simplicity that V is an adjoint bundle. Since the gauge fields for y = +oo are
unspecified and only flat we can act on them by boundary values of the gauge group G|y—+oc =
G+. Then My = {V4}/G1 are the moduli spaces of flat bundles.

Relations to integrable systems.
The moduli spaces of flat bundles are phase spaces of non-autonomous Hamiltonian systems
related to the isomonodromy problems over ;. The isomonodromy problem takes the form

{ [0, +A,,¥] =0, (3.6)

(9= + A, 0] = 0.

Here U € Q°(X,, AutV) is the Baker-Akhiezer function. These system is compatible for any
degree of bundle, because it is defined in the adjoint representation. One example of these



systems we have mentioned in Introduction (V_ — Painlevé VI) and (V; — Zhukovsky-Volterra
gyrostat).

It is known, that the moduli space of flat bundles are deformation (the Whitham deformation)
of the phase spaces of the Hitchin integrable systems - the moduli spaces of the Higgs bundles. To
consider this limit one should replace a holomorphic connection by the x-connection k0, + A,
introduced by P.Deligne and take a limit k — 0. It is a quasi-classical limit in the linear
problem (3.6). Details can be found in [11, 12, 13, 14]. In this way a monopole solution put in
a correspondence (symplectic Hecke correspondence) two Hitchin systems (the first and the last
examples in Introduction). But Bogomolny equation tells us more. It describes an evolution
from one type of system to another.

It is possible to generalize (3.3) and consider multi-monopole sources >, M,6(Z — Z2) in the
r.h.s. . This generalization will correspond to modifications in a few points of ¥, described at
the end of previous section.

It is interesting that in some particular cases this situation was discussed in the frameworks
of a supersymmetric Yang-Mills theory [15, 16]. 2 Tt was observed there that a monopole
configuration corresponds to a soliton type evolution along y. Therefore, it can be suggested
that the system (3.2) is integrable. We did not succeed to prove this fact, but propose a linear
problem related to the Bogomolny equation. An associated linear problem allows one in principal
to apply the methods of the Inverse Scattering Problem or the Whitham approximation to find
solutions [18]. Assume that the metric g on ¥, is a constant. Then the system (3.2) is the
compatibility condition for the linear system

(0, + A, + %A_lg(ay + Ay +i¢))p =0,
(0z + Az + 5)\9(83/ + Ay — ip)yY =0,

where A € CP! is a spectral parameter. It can be suggested that monopole solution of (3.2)
corresponds to a soliton solution of this system. We will not develop here this approach. 3

Gauge fixing
Choose a gauge fixing conditions as: Az = 0. Holomorphic functions h = h(y, z) preserve this
gauge. Then 4
—0:A, = % ((%(b—}— [Ayzd)]) )
8yAz - asz =+ [A27 Ay] = l(azﬁb + [Azw Qb]) ) (3'7)
0:Ay =1i0:¢.

The last equation means that A, — i¢ is holomorphic. It follows from (3.5) that the gauge
transformation of this function is

Ay —ip — h(Ay —i¢)h~ " + Oyhh™?

Thus, we can keep A, = i¢ by using holomorphic and y-independent part of the gauge group
(Oyh = 0). Finally, we come to the system

1 0:A, = -%0,0,

2. OyA, —2i0.¢ + 2i[A,, 4] =0,
3. Ay =ig,

4. A;=0.

(3.8)

*We are grateful to A.Gorsky who bring our attention to this point
3The SU(2) case and W = R® was analyzed in Ref. [19] for different boundary conditions.
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Two upper equations from (3.8) lead to the Laplace type equation
4
2
Oy + (0:0:0 + 02 Az, 9]) = 0. (3.9)
In scalar case (3.9) is simplified

4
9o+ gazagqs =0. (3.10)

3.1 Rational solution in scalar case

In this subsection we replace X3 by C. The coordinates z,z on C will play the role of local
coordinates on X . Consider (3.10) on W = R x C\ (0,0,0). In this particular case we can
choose the boundary conditions in the following form:

¢|y::i:oo = 0’ (3.11)
Aly—too = 0. (3.12)
The solution of (3.10) with g = 1 satisfying (3.11) has the form:
1
p=c (3.13)

V2 + 22

where c is a constant. So in fact we deal here with the Laplace equation on R x C\ (0,0,0). It
follows from (3.12) and from the equation 9:A, = —50,¢ 1.(3.8) that

{ Az(za'E?y):Aj(Z?Z’y)? y>0andy:O>Z7AOv (314>
Ax(z,2,y) = A (2,2,y), y <0,
where

AT (z,z,y) = —ic % Tngzi — 1) + const,

A7 (z,2,y) = —ic| 1 fi’“g + 1) + const,

and A,(z,z,y) is a connection on the line bundle £ over . The connection has a jump —22’6%
at y = 0. To deal with smooth connections we compensate it by a holomorphic gauge transform
that locally near ¥y has the form h ~ z". Here m should be integer, because h is a smooth
function. Notice that all holomorphic line bundles over S? are known to be O(m)-bundles,
m € Z. Thus, we have ¢ = i, m € Z. This usually referred as a quantization of the monopole
charge. In fact the constant ¢ contains factor 47 (area of a unit sphere) which yields a proper
normalization of delta-function and appears in Gauss’s law. The gauge transformation h is
the modification (2.23), (2.24) for line bundles over CP!. This is what we mean saying that
the described 3-dimensional construction characterizes the modification of the corresponding
bundle.

Consider for a moment the general situation W = R x ¥, and let 2,z be local coordinates
on 4. Locally near 2y = (0,0, 0) connections corresponding to solutions of (3.10) have the form
(3.14). Let S? be a small sphere surrounding the point Zj in W and X, 1 be the left and right
boundaries of W and L4 are the corresponding restrictions of £. Then (as it is explained in [9]

in detail)
F :/ F+m,
k.=

o
where F' is a curvature of the connection A. In other words, the monopole solution with the
charge m increases the degree of bundle by m (degLy = deglL_ + m).
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3.2 Elliptic solution in scalar case

The Laplace equation (3.10) on X, has the form
2 2 _
ay¢ + 4(Im(7—)) 8282¢ - 07 (315)

or )
21

3§¢ + (270)%0,0:0 =0, o™l = ,

and Zm(7) is the area of parallelogram of periods. We give two representations of the Green
function ¢ and prove their equivalence using the same technique as for the Kronecker series
described in [17].

A naive elliptic solution of (3.15) on W is obtained by averaging (3.13) over the lattice
r=ZorZcC: *

(z,y)=c (3.16)
VZGI; V(ray)? + |z +92
However the series diverges. That is why we consider its generalization
Ris,z ) = e o A R0z = o), (317
((ray)? + [z +~[?)* 2

yel

where
X ) = e 07

is a character Z x Z — C* of the additive group I' and s,z are complex parameters. The
characters are double-periodic

x(v,z+1) = x(v, ), x(v,x+7)=x(v,2), veT,

while the series R (s, z, z,y) are quasi-periodic

R(s,z,z+ 1,y) = eo‘fl(x_i’)R(s,x, z,9),

1= - 3.18
R(s,x,z+1,y) =e* 1(”_””)R(s, x,2,Y) . ( )

The variable = describes behavior of R (s, z, z,y) on the lattice I'. In other words, z parameterizes
the moduli space of line bundles on ¥,. Note that for Re s > 1 the series in the r.h.s. of (3.17)
converges. The function

1 x(7, )
PR ES] = T — ) 3.19
5102 2,Y) c; (Grag)? + | 497} o(z,2,y) (3.19)

R(

is the formal solution of (3.15) with the quasi-periodicity conditions (3.18).
Another representation of the Green function can be obtained by the Fourier transform.
Define the delta-functions

—+00

(y) = /dpe%"py, 8@ (z,2) = x(v,2

yel

—00

4We omit here and in what follows the Z dependence.

12



Then

> x(y+a,2) =x(2,2) Y x(,2)

~yel

x(x,2)6%(2,2) = 6%(2, %),
~yel
Let ¢ be the Green function with the quasi-periodicity (3.18)

27 2 7
0,0 + (27a) 0. 0:¢ =

Expanding it in the Fourier harmonics we find

c8(y)0?) (2, z)

oy

+x,2).
Py \’Y + 2|2 X )
Integrating over p provides factor m and leads to the following expression

] ¢ L —2nlytally
=—— — . 3.20
¢z, 2,y) =~ > ol x(v+,2) (3.20)
~yel
It is worthwhile to note that the solution (3.20) is well defined. Our goal is to find interrelations
between (3.20) and (3.19).

Consider a generalization of (3.20)

K,_1(27|ylly + )
I(s,2,2,y) = 2em’y* 2y 2

_1
~vel ‘7 +x ‘S 2
Here K, is the Bessel-Macdonald function

Xy +z,2). (3.21)

T 1 v 2mipy
PRI L [y e
2(ry)*I'(3) . (p? + 22)r+2
The function I(s,z,z,y) is the Green function for the pseudo-differential operator
2 2_2 s
(8y + 4o 0z05)
on R x ¥, with the boundary conditions (3.18). Since

Ki(z) =/ —e®

3 22"
we conclude that for s = 1 I coincides with ¢ (3.20) up to constant.

We are going to establish a relation between (3.17) and (3.21), and in this way between
(3.16) and (3.20). Let us prove that

(3.22)
vel' "o

In fact, using the integral representation for the Gamma-function

I(s) = / Cfts -t (3.23)
0

and taking the integral over ¢ in (3.22) we come to (3.21)

The representation (3.22) is universal and can serve to define R (3.17)

13



Lemma 3.1 The function R(s,x,z,y) has a representation as the Fourier integral

= 1/00 dkI(s,z,x i)672’”']“3/. (3.24)
T(s)x(7,2) Joo T ra

Proof. Substitute in (3.24) I(s,z,z,y) (3.22) and take first integral over k. We come to the

condition p = way. Then using the integral representation for the Gamma-function (3.23) we

obtain (3.17). O

R(s,x,2,y)

Remark 3.1 The series (3.21) is a three-dimensional generalization of the Kronecker series

(see [17])

K(:I"a Zo, 5) = ZX(F% $0)|$ + ’7|_25
Y

Using the Poisson summation formula Kronecker proved that
['(s)K(z,x0,5) = o' %T(1 — s)K(zo,z,1 — s)x(z, z0) .

Our purpose is to generalize this functional equation for the 3-dimensional case ¥, x R. It takes
the following form.

Lemma 3.2 The function I(s,x,z,y) satisfies the functional equation:

+o00
k .
I(s,z,z,y) = X(w,z)wféaﬂ”l / dk I(3 8,2, &, —)e "M (3.25)
e’
Proof. Following [17] we subdivide integral (3.22) into two parts
r d
8 T,z y Z/ p/ttts —t(p?+|y+z|?)+2mipy (’}/-l-l‘ Z)—|-
vel " 0

3 / dp/ A s %+ [y+e[2)+2mipy x(y+x,2), TER, T>0.
vel "

The second term is a well defined function for all s. Consider the first one. It is well known

that for the series ,
Q(ta xz, ‘TO) = Z 6_t|z+’7| X(’77 .CL‘())
v

the following functional equation holds:
O(t, z,z0) = (at)~'O(a™?t ™, o, 2)x (w0, )

The latter follows from the Poisson summation formula which states that the averaging of
function over some lattice equals the averaging of its Fourier transform over the dual lattice.
In the above case the functional equation appears after the Fourier transform for the Gauss
integral. Then

0o T d
t .
'YEF—OO 0
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T
dt 2, .
S [ [ et e g (a2 an) =
0

(integrating over p)

dt 1o
Z/ tS - y2t 1_ =2 1|V+Z|2X(’y+z,x)X(:l:,Z)(Oﬁf)lﬁ:

7€'y

(making substitution a=?t~! — ¢)

oo
dt 3
> [ VR e g, 2)
’YEFa—QT—l
Let T = o~ !. Then
7 d
t 3
I(s,z,z) Z / 7t§_sfa2 25— t((mow)* +1+21")y (y 4 2, 2)x (7, 2)+ (3.26)
WEF

Z / dp/ dtts —t(p?+|y+=x|?)+2mipy (’y—l—ﬂ? Z)

vel "

The proof follows from (3.26). One should only substitute I(s,z, z,y) from (3.26), into (3.25).
Formula (3.26) represents I as the sum of two terms. Direct evaluation shows that the first (of
two) term from the Lh.s. of (3.25) equals to the second one from the r.h.s and vice versa. [J

From Lemma 3.1 and Lemma 3.2 we come to the main result of this section

\/70[25 1]_

R(g 8 .%' z y) F(3 ) (vaazay)'

Now put s = 1. Then one can see that well-defined series

e~ 27lylly+|
WZX +x,z2) e (3.27)

describes the analytic continuation of the divergent series

=3 %, !

= V(may)? + v+ 22

We use (3.20) as the Green function. Then

ic 1 1
A (z,Z,y,x) = —— ——=sgn —— e mhrtallyl +x,2), 3.28
(2,29, 2) (y);ng X(v+,2) (3.28)

sgn(y) =1 for y >0, sgn(y) =—1 for y <O.

Notice that the jump of A (while coming through y = 0, z = 0) is obviously defined by the
jump of sgn(y).
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Remark 3.2 Note that (3.28) is a formal solution of the Bogomolny equation. For x # 0 it is
not a connection of a line bundle over X, due to its monodromies similar to (3.18). We will
use this solution in next Section to define a genuine connection for higher ranks bundles.

In order to compare elliptic configuration with the rational we take £ = 0. Then on the line
y = 0 the connection is proportional to

A~ Y 2x(r.2) = Ey(z) — a7l (2 — %),
770 7

where E1(z) = 0lnv(z) is the so-called first Eisenstein series. It has a simple pole at z = 0
with Res,—0E1(z) = 1 and the connection A, is double-periodic. In terms of (3.5) the gauge
transformation h compensating the jump of the connection is given by an integer power of theta
function ¥ (z), m € Z. Thus

Ologh = 0logd™(z) = mE(z).

4 Arbitrary rank case

Here we describe modification of vector bundles of an arbitrary rank. First, we repeat arguments
of Ref. [9] and justify the choice M in (3.4). As before, we consider PSL(N, C) = G,4-bundles.
Near the singular point #° the bundle V is splited in a sum of line bundles. Using the solution
(3.13) for a line bundle we take the Higgs field near the singularity in the form
o=

diag(mq,...,my).

i
2\/y2% + 22

It follows from (3.14) that A undergoes a discontinuous jump at y = 0
AT — A7 = L diag(my,ma,...,mn) . (4.29)
z

To get rid of the singularity of A at z = 0, as in the abelian case, one can perform the singular
gauge transform E that behaves near z = 0 as (2.25)

E=diag(z7 ™,z ™2, L 27

Assume that m belongs to the weight lattice m € P. It means that = is inverse to the cocharacter
Yad of PSL(N,C) (Veqa € t(Gaq) = PY ~ P (A.9)). As it was explained before, the modified
bundle Vi can not be lifted to a SL(N,C) bundle. On the other hand, if m = (my,...,my)
belongs to the root lattice Q (A.9), then Z~! = 4 and there is no obstruction to lift V; to an
SL(N, C) bundle. Note that (4.29) describes the affine group W, (A.19) action in the former
case and the affine group W, (A.18) action in the latter case. From field-theoretical point of
view it is an action of the t'Hooft operator on A, (see (2.28)).

If N =pl, (I # 1,N) one can consider the intermediate situation and g, (A.13). It means
that m € t(*G)) ~ I'(G,). This embedding provides the modification that allows the PGL(N, C)-
bundle to lift to the G; = SL(N, C)/Z;-bundle but not to a SL(V,C) bundle. In this way the
monopole charges are related to the characteristic classes of bundles.

One can use the maps to the Cartan subgroups of the solution ¢(z) for a line bundle over
¥ (3.27) withx =0

¢ — ¢ -diag(my,ma,...,my). (4.30)
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Unfortunately, in this case V being restricted on ¥; is splitting globally over 3 and defines an
unstable bundle, though it allows one to describe its modifications.

There exists a map of ¢(z,y,x) and A,(z,y,x) with = # 0 to a non-semisimple elements of
sl(N,C)

0 kio(z,y,21) ... kn—10(2z,y,2N-1) 0 kiA.(z,y,71) ... kno1A.(z,y,28-1)
0 0 o 0 0 0 o 0
0 e . 0 0 e e 0

Since these matrices commute they are solutions of the matrix equation (3.9). The connection
has a jump at y = 0. The bundle is characterized by the diagonal monodromy matrices (2.12)
Pa = diag(ala az, ... aaN) y Pb = diag(blv b27 s 7bN) )

where

N-1
~ 1 1
— N — - — -
ay = HO'j , G2 = ai10q aN—alo'N_l,
j=1

N-1
N -1 -1
by = H SV b =a15, by = aisy
J=1

oj = exp(a~l(z;—%;)), ¢; = exp(a(x;7—Z;7)) . Note that they are y-independent. Moreover,
the singular gauge transform, leading to a continues solution of the Bogomolny equation, belongs
to the upper nilpotent subgroup and in this way does not change the topological type of the
bundle.

Now we describe non-diagonal modifications = of a PGL(N, C)-bundles over ¥.. We do not
know solutions of the Bogomolny equation in this case, and only can assert that the modification
7kill the jump” of A, at y = 0:

=lo,E=Af —=714 =,

We use the global description of a bundle E' in terms of the transition matrices pg, pp (2.12)
using the approach of Ref. [1]. Let

u

po=Idy, pp=e¢", (u=dag(u,ug,...,un)). (4.31)

The group commutator of these matrices is Idy. Thereby, E can be lifted to a SL(N, C)-bundle.

Define a modification = of E to the bundle E with the transition matrices (2.15). Then =
should intertwine the transition matrices

E(z+1,7) =9 xE(2,7), (4.32)

E(z+71,7)=A(2,7) X E(2,7) x diag(e(u)) . (4.33)

The matrix =(z) degenerates at z = 0 and we assume that it has a simple pole. These conditions
fix Z(z). It can be expressed in terms of the theta-functions with characteristics

k1
0[ Ny 2 ](z—i—sz—Nuj,NT)
= 2mikz 5
Eri(z,ut, .., un;T) =€ N 2 T ,
9[ Ny 2 :|(Z,N7‘)
2
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where
6[ Cbl :|(Z,T) = Zexp 2mi ((] +a)2z +(J —i—a)(z—i—b)) .

: 2
JEZ

The quasi-periodicity properties (4.32), (4.33) follow from the properties of the theta-functions

e[ “ }(ZH,T) :e(a)G[ Z }(z,f), e(a) = exp 2ia

b
/
0[ Z ](z—i—a'T,T) =e (—a'2g —a’(z—l—b)) 0[ a%l;a :|(Z,7’),
This modification has the type (%, —%, ey —%) The modification that allows to lift F

to GL(V, C)- bundle is
k1
Z1(2) = h(2)2(2) = 9[ N2 :|(Z+ kT — Nuj, NT),
2

where the gauge transformation h is the diagonal matrix

h(z) = diag
2miz i—l Amiz l_l X l
<€_N [ Ny? ](z—i—T,NT),e_ N 9[ Ny ? ](Z—I—ZT,NT), ,6_27”29[ £ :|(Z—|—NT,NT)>

pa:Q7 szA, A:e_%ri(ﬁ—'—QN)A'

The last transformation belongs to GL(N, C). Moreover, it can be proved that

det

El(z,ul-,...,uN;T)] _ 9(z) H I (uy —uk)7

in(7) () it )

where n(7) = qi [I,50(1 —¢") is the Dedekind function (¢ = exp2mit) and (z) is the theta-
function (2.19). Since ¥(z) has a simple pole in ¥, the bundle E is a GL(N,C)-bundle of
degree one. This modification provides the Symplectic Hecke correspondence between the elliptic
Calogero-Moser system and the Elliptic Top.

Now consider the modification of the trivial bundle F with the transition matrices (4.31) to
the £ = Ey (2.20), (2.21), where @, = (@, s, . . . , ip) is the moduli of the modified bundle. The
modification takes the form

E_ 1
0[ ! 1 2 ](Z-FkT—l(U,j—ﬁ[“]),lT)
2mikz 2

Ekj(z,7) =€ 1

e[ %7% }(z,h)

As it was explained in Section 2 the modified bundle can be lifted to G; = SL(N, C)/Z;-bundle,
but not to SL(N, C)-bundle.
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5 Appendix. SL(N,C) and PSL(NV,C) [20, 21]
The group SL(N, C) is an universal covering of PSL(V, C) with the center Zy = Z/NZ

Id — Zy — SL(N,C) — PSL(N,C) — Id. (A1)
Therefore 71 (PSL(N, C)) = Zy. The both groups have the same Lie algebra &.

Roots and weights.
The Cartan subalgebra § C & is a hyperplane in CV

N
H={x=(21,...,an) €CV| D) z;=0}.
j=1

The simple roots II = {ay}
a1 =€ —€2...,N_1 = EN_-1 —EN

form a basis in the dual space $*. Here {e;} j = 1,..., N is a canonical basis in CN. They
generate the set of roots of type Ayx_1

R={(ej—ex), j#k}.

The root lattice ) C H* takes the form

Q:{ijej|mj€Z, ij:O}. (AQ)
We identify $* and $ by means of the standard metric on CV. Then the coroot system
2(a”, B)
R ={a"(R)="—~ cZforany BER
et =55 }
coincides with R, and the coroot lattice QV coincides with Q.
The fundamental weights wy, (kK = 1,..., N — 1) are dual to the basis of simple coroots
IV ~ T (g (o) = 0;)
e T &
j w2:(¥71\[]§2a a_%)
wj:61+...+ej—le;el, (A.3)
walz(%v%a a%)

In the basis of simple roots the fundamental weights are

wy = N[(N —k)ag +2(N —k)ag+ ... (k—1)(N — k)ag_1

+]<}(N — k‘)O&k + k‘(N —k— 1)04k+1 + ...+ kaN—l] .

The fundamental weights generate the weights lattice

PCH*, P={) mw|nmcL}. (A.4)
l
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N
1
P:ijej, ijNZ, m; —my € Z.
=1

The weight lattice is generated by ) and the vector

N

1
wlzel—NZej. (A5)
7=1

The weight lattice P defines representations of SL(V,C), while @ define representations of
PSL(N, C).
The factor-group PV /QY (PV ~ P) is the center Zy of SL(N,C). On the other hand it can

be identified with the cyclic group symmetry e; — e;4+1 mod(NN) of the extended Dynkin graph
ITu (Oé() =enN — 61).

Characters and cocharacters.
Let T (74q) be a Cartan torus in SL(N,C) (PSL(N, C)). Define the groups of characters °

I'={x@)}={T = C},

Lad = {Xad(2)} = {Taa — C}.
They can be identified with lattice groups in $* as follows. Let w; be a basic weight and
¢ = (¢1,02,...,6N), ¢k = 55 Inap. The functions

exp 2mi(wgp), , k=1,...,N —1
generate a basis in I'. Similarly, for a;, € II
exp 2mi(ag, ), k=1,...,N—1
is a basis in I'yg. Thereby, we have
I'=P, Twu=Q. (A.6)
Define the dual groups of cocharacters ¢(G) = I'* and ¢(Gqq) = I'}; as the maps
tHG)={y=C"—T}, (A.7)
t(Gad) = {Vaa = C* — Taa} - (A.8)
In another way
tHG) ={s €H|X(™) =1}, (Gaa) = {d € H| Xaa(e®™) =1}
These groups are the groups of the coweight and coroot lattices
HG)=Q" ~Q, t(Gaa) =P ~P. (A.9)
The center of I' = SL(N, C) belongs to 7 and is identified with the factor-group

Z(SL(N,C)) = PY/t(T) ~ PV /Q" ~ P/Q = Zn . (A.10)

®The holomorphic maps of the tori to C* such that x(xy) = x(x)x(y) for z,y € 7.
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Similarly, the fundamental group of PSL(N, C) is
7 (PSL(N,C)) ~ (Cad) /Q ~ P/Q = Ly
Let N=pl, (I#1,N) and Z; C Zy be a subgroup of Zy. Define the factor-group
G; =SL(N,C)/Z; . (A.11)

Then the center Z(G)) of G} is Z, and m(G;) = Z;. Consider the groups of characters and
cocharacters of GG}
I'G) ={xq, : T(G;) = C*}, (A.12)
HG) ={ve, : C© = T(G)}, (A.13)

(T*(G;) = t(Gy)). They are lattices in H* and $ Q C I'(G)) € P, QY C t(Gy) C PV. The
lattice I'(G)) is generated by the root lattice  and the vector lw;, while the lattice t(G;) is
generated by the root lattice @) and the vector pwy

NG) =lwuQ, t(Gl) =pwi UQ. (A.14)

The group I'(G)) is the weight lattice of G; because highest weights of irreducible finite-dimensional
representations of G belong to I'(Gy).
In terms of lattices the center Z(G;) and m1(G;) take the form

Z(Gy) ~ PY/HGI) ~T(G1)/Q ~ Ly, (A.15)
m1(Gi) ~ H(G1)/Q" ~ P/T(Gy) ~ 7.
A subgroup “G; € SL(N, C) is the Langlands dual to G if
t(*G) ~T(G) (T(*Gy) ~ HGY)).
It implies that

Z("G) ~ 1, (A.16)
m(PGy) ~ L .
Therefore the dual group is
Lg=aG,. (A.17)

In particular, “SL(N,C) = PGL(N, C).

Affine Weil group
The affine Weyl group W, is a semidirect product QY x W of the Weyl group W and the
group Q. It acts on §) as

2
x%x—mav—i—kav, kelZ. (A.18)
(a; )
Consider a semidirect product
Wo=P' xW. (A.19)
In particular, the shift operator
r—az+m, mePY (A.20)
is an element from W,. It follows from this construction that the factor group
Wo/Wa ~ PY/QY ~ Z(SL(N,C)). (A.21)
Let again N = pl and define a subgroup W,(G;) of W,, generated by shifts from (G})
Wa(Gy) = t(Gy) x W (A.22)

The factor group W,(G;)/W, is isomorphic to ¢(G)/Q" and in this way to Z(*G;).
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