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1 Introduction

Let E be a unitary flat vector bundle on a closed Riemannian manifold M . In [19], Ray
and Singer defined an analytic torsion associated to (M,E) and proved that it does not
depend on the Riemannian metric on M . Moreover, they conjectured that this analytic
torsion coincides with the classical Reidemeister torsion defined using a triangulation on M
(cf. [15]). This conjecture was later proved in the celebrated papers of Cheeger [10] and
Müller [16]. Müller generalized this result in [17] to the case when E is a unimodular flat
vector bundle on M . In [2], inspired by the considerations of Quillen [18], Bismut and Zhang
reformulated the above Cheeger-Müller theorem as an equality between the Reidemeister
and Ray-Singer metrics defined on the determinant of cohomology, and proved an extension
of it to the case of general flat vector bundle over M . The method used in [2] is different
from those of Cheeger and Müller in that it makes use of a deformation by Morse functions
introduced by Witten [23] on the de Rham complex.

Braverman and Kappeler [4, 5] defined the refined analytic torsion for flat vector bundle
over odd dimensional manifolds, and show that it equals to the Turaev torsion (cf. [11, 21])
up to a multiplication by a complex number of absolute value one. Burghelea and Haller
[6, 7], following a suggestion of Müller, defined a generalized analytic torsion associated to a
non-degenerate symmetric bilinear form on a flat vector bundle over an arbitrary dimensional
manifold and make an explicit conjecture between this generalized analytic torsion and the
Turaev torsion. This conjecture was proved up to sign by Burghelea-Haller [8] and in full
generality by Su-Zhang [20].

Vertman [22] defined a different refinement of analytic torsion, similar to Braverman and
Kappeler, which applied to compact manifolds with and without boundary. Inspired by
this, in this paper, we extend the Burghelea-Haller analytic torsion to compact connected
Riemannian manifolds with boundary.

The rest of this paper is organized as follows. In Section 2, we recall the defini-
tion of Hilbert complex and some properties of it. Particularly, the Hilbert complexes
(Dmin, Dmin) and (Dmax.Dmax). In Section 3, we get some properties of the Hilbert com-
plex (Dmin, Dmin) and extend the Burghelea-Haller analytic torsion to the Hilbert complex
(Dmin, Dmin). In Section 4, we extend the Burghelea-Haller analytic torsion to the Hilbert
complex (Dmax, Dmax).

∗Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111, Bonn, Germany. sugx@mpim-
bonn.mpg.de

1



2 Fredholm complexes for compact manifolds

Let (M, gTM ) be a smooth n-dimensional compact connected Riemannian manifold with
boundary ∂M , which may be empty. Let (E,∇) be a flat complex vector bundle over
M . The flat connection ∇ extends to Ω∗0(M,E), which is E-valued differential forms with
compact support in the interior of the manifold M . Since ∇2 = 0, we have the de Rham
complex (Ω∗0(M,E),∇). Assume that there is a fiber wise non-degenerate symmetric bilinear
form b on E. By [7, Theorem 5.10], there exists a complex anti-linear involution ν : E → E
such that

ν2 = idE , b(νx, y) = b(x, νy), b(x, νx) ≥ 0, x, y ∈ E.

Then

µ : E ⊗ E → C, µ(x, y) = b(x, νy) (2.1)

is a fiber wise positive definite Hermitian structure on E. The Riemannian metric gTM

and together with the Hermitian metric µ define an inner product in Ω∗0(M,E) which we
denote it by hg,µ, we denote the L2-completion of Ω∗0(M,E) by L2

∗(M,E). The Riemannian
metric gTM together with the fiber wise non-degenerate symmetric bilinear form bE define
a non-degenerate symmetric bilinear form βg,b on Ω∗0(M,E),

βg,b(ω, η) =
∫

M

ω ∧ (∗g ⊗ b) η, ω, η ∈ Ω∗0(M,E). (2.2)

Then βg,b extends to a non-degenerate symmetric bilinear form on L2
∗(M,E), we still denote

its extension on L2
∗(M,E) by βg,b. Then we have hg,µ(ω, η) = βg,b(ω, νη).

Consider the differential operator ∇ and its formal adjoint ∇t with respect to the inner
product. The associated minimal closed extensions ∇min and ∇t

min are defined as the graph-
closures in L2

∗(M,E). The maximal closed extension of ∇ is defined by

∇max =
(
∇t

min

)∗
, (2.3)

where ∗ denote the adjoint operator with respect to the inner product in L2
∗(M,E). We

denote ∇#
min and ∇#

max to be the adjoint operators of ∇min and ∇max with respect to βg,b

on L2
∗(M,E). Let Dmin, D#

min be the domain of ∇min, ∇#
min respectively and let Dmax, D#

max

denote the domain of ∇max, ∇#
max respectively. These extensions define Hilbert complexes

in the following sense, as introduced in [9].

Definition 2.1. [9] Let the Hilbert spaces Hi, i = 0, · · · ,m, Hm+1 = {0} be mutually
orthogonal. For each i = 0, · · · ,m, let Di ∈ C(Hi,Hi+1) be a closed operator with domain
D(Di) dense in Hi and range in Hi+1. Put Di = D(Di) and Ri = Di(Di) and assume

Ri ⊆ Di+1, Di+1 ◦Di = 0. (2.4)

This defines a complex (D∗, D∗)

0 −→ D0
D0−→ D1

D1−→ · · · Dm−1−→ Dm −→ 0. (2.5)

Such a complex is called a Hilbert complex. If the homology of the complex is finite, i.e.
if Ri is closed and kerDi/imDi−1 is finite-dimensional for all i = 0, · · · ,m, the complex is
referred as a Fredholm complex.

For a Hilbert complex there is a dual Hilbert complex

0 −→ Dm

D∗
m−1−→ Dm−1

D∗
m−2−→ · · · D∗

0−→ D0 −→ 0 (2.6)

defined using the Hilbert space adjoints of the differentials D∗
i and Laplacian ∆i = D∗

i Di +
Di−1D

∗
i−1. We can compute the cohomology groups of the Hilbert complex (2.5) using the

subcomplex (D∞D∗, D∗), where D∞Di consisting of all elements x that are in the domain
of ∆l

i for all l ≥ 0.
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Proposition 2.2. [9, Theorem 2.12] The cohomology of the complex (D∗, D∗) is equal to
the cohomology of the complex (D∞D∗, D∗).

By [9, Lemma 3.1] we have the Hilbert complexes (Dmin,∇min) and (Dmax,∇max), where
Dmin = D(∇min) and Dmax = D(∇max). The following theorem [22, Theorem 3.2] is the
twisted setup of [9, Theorem 4.1].

Theorem 2.3. The Hilbert complexes (Dmin,∇min) and (Dmax,∇max) are Fredholm with
the associated Laplacians ∆rel and ∆abs being strongly elliptic in the sense of [12]. The de
Rham isomorphism identifies the cohomology of the complexes with the relative and absolute
cohomology with coefficients:

H∗ (Dmin,∇min) ∼= H∗(M,∂M,E),

H∗(Dmax,∇max) ∼= H∗(M,E).

Furthermore the cohomology of the Fredholm complexes (Dmin,∇min) and (Dmax,∇max) can
be computed from the following smooth subcomplexes,

(Ω∗min(M,E),∇) , Ω∗min(M,E) = {ω ∈ Ω∗(M,E)|l∗(ω) = 0},

(Ω∗max(M,E),∇) , Ω∗max(M,E) = Ω∗(M,E),

respectively, where we denote by l : ∂M → M the natural inclusion of the boundary.

3 Ray-Singer symmetric bilinear torsion for (Dmin,∇min)

In this section we define the Ray-Singer symmetric bilinear torsion for the Hilbert complex
(Dmin,∇min). This can be viewed as the extension of the Burghelea-Haller analytic torsion
to compact manifolds with relative boundary condition.

Proposition 3.1. The restriction of the non-degenerate symmetric bilinear form βg,b to
Dmin is non-degenerate.

Proof. Let x ∈ Dmin, then there exist {xn} ⊂ Ω∗0(M,E), such that xn → x in L2
∗(M,E)

and ∇xn convergence in L2
∗(M,E). Since ν is a bounded operator, we get ν(xn) → νx in

L2
∗(M,E). By

∇(νxn) = (∇ν)xn + ν(∇xn) (3.1)

and ∇ν is a bounded operator, we get ∇(νxn) convergence in L2
∗(M,E). Then by definition

of ∇min, we get νx ∈ Dmin. So that if for any y ∈ Dmin, βg,b(x, y) = 0, then by

hg,µ(x, x) = βg,b(x, νx) = 0, (3.2)

we get x = 0. Then the restriction of βg,b to Dmin is non-degenerate.

Proposition 3.2. The following identity holds

∇#
min = ∇∗

min + (ν (∇ν))∗ . (3.3)

Particularly, the domain of ∇∗
min equals D#

min.

Proof. Let y ∈ D#
min, then there exists z ∈ L2

∗(M,E) such that for any x ∈ Dmin, we have

βg,b (∇minx, y) = βg,b(x, z). (3.4)
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By Proposition 3.1, we have νx ∈ Dmin. Then

hg,µ (∇min(νx), y) = hg,µ ((∇ν)x + ν∇minx, y)

= hg,µ ((∇ν)x, y) + hg,µ (ν∇minx, y) = hg,µ ((∇ν)ννx, y) + βg,b (∇minx, y)

= hg,µ

(
νx, ((∇ν)ν)∗ y

)
+ βg,b(x, z) = hg,µ

(
νx, ((∇ν)ν)∗ y

)
+ βg,b(νx, νz)

= hg,µ

(
νx, ((∇ν)ν)∗ y

)
+ hg,µ(νx, z). (3.5)

Then by definition we have y ∈ D(∇∗
min) and

∇∗
miny = ((∇ν)ν)∗ y +∇#

miny. (3.6)

Since ν2 = Id, so that ν(∇ν) = −(∇ν)ν. Then by (3.6) we get

∇#
min = ∇∗

min + (ν (∇ν))∗ . (3.7)

The proof of Proposition 3.2 is complete.

We consider the operator

∆b,rel =
(
∇min +∇#

min

)2

= ∇min∇#
min +∇#

min∇min. (3.8)

The domain of ∆b,rel is the following,

D(∆b,rel) =
{

x ∈ Dmin ∩D#
min|∇minx ∈ D#

min and ∇#
minx ∈ Dmin

}
. (3.9)

By (3.3), we see that the domain of ∆l
b,rel equals the domain of ∆l

rel for all l ≥ 0. By Propo-
sition 3.2, ∆b,rel has same leading symbol with ∆rel = (∇min +∇∗

min)2. Then the spectral
of ∆b,rel are discrete. Let λ ∈ Spec(∆b,rel), denote by P{λ},∆b,rel the spectral projection of
∆b,rel corresponding to λ, then

P{λ},∆b,rel =
i

2π

∫
C(λ)

(∆b,rel − x)−1
dx, (3.10)

with C(λ) being any closed counterclockwise circle surrounding λ with no other spectrum
inside. The image of P{λ},∆b,rel is finite dimensional. In particular P{λ},∆b,rel is a bounded
operator in L2

∗(M,E). Then by [13, Section 4, p.155] the decomposition

L2
∗(M,E) = ImP{λ},∆b,rel ⊕ Im

(
1− P{λ},∆b,rel

)
(3.11)

is a direct sum decomposition into closed subspaces of the Hilbert space L2
∗(M,E).

Proposition 3.3. The decomposition L2
∗(M,E) = ImP{λ},∆b,rel⊕ Im(1−P{λ},∆b,rel) is βg,b-

orthogonal.

Proof. Let Nλ be the multiplicity of the generalized eigenvalue λ. Then we have (∆b,rel −
λ)Nλ |D(∆b,rel)∩ImP{λ},∆b,rel

= 0 and ∆b,rel − λ : D(∆b,rel) ∩ Im(1 − P{λ},∆b,rel) → Im(1 −
P{λ},∆b,rel) has an everywhere defined bounded inverse. By the decomposition (3.11), for
Ω∗0(M,E) we have

Ω∗0(M,E) = Ω∗0(M,E) ∩ ImP{λ},∆b,rel ⊕ Ω∗0(M,E) ∩ Im
(
1− P{λ},∆b,rel

)
. (3.12)

In particular (∆b,rel − λ)Nλ |Ω∗0(M,E)∩ImP{λ},∆b,rel
= 0 and ∆b,rel − λ : Ω∗0(M,E) ∩ Im(1 −

P{λ},∆b,rel) → Ω∗0(M,E)∩Im(1−P{λ},∆b,rel) is bijective. So the decomposition (3.12) is βg,b-
orthogonal. In fact, for ω ∈ Ω∗0(M,E)∩ ImP{λ},∆b,rel and η ∈ Ω∗0(M,E)∩ Im(1−P{λ},∆b,rel),
then there exists ηNλ

∈ Ω∗0(M,E) ∩ Im(1− P{λ},∆b,rel) such that

(∆b,rel − λ)Nλ ηNλ
= η. (3.13)

4



Then we have

βg,b (ω, η) = βg,b

(
ω, (∆b,rel − λ)Nλ ηNλ

)
= βg,b

(
(∆b,rel − λ)Nλ ω, ηNλ

)
= 0. (3.14)

For x ∈ ImP{λ},∆b,rel and y ∈ Im(1− P{λ},∆b,rel), there exist {xn} ⊂ Ω∗0(M,E) and {yn} ⊂
Ω∗0(M,E) such that xn → x and yn → y. Since ImP{λ},∆b,rel and Im(1 − P{λ},∆b,rel) are
closed subspaces of L2

∗(M,E), so that for sufficient large n, βg,b(xn, yn) = 0. Then we have

βg,b(x, y) = lim
n→∞

βg,b(xn, yn) = 0. (3.15)

The proof of Proposition 3.3 is complete.

By the decomposition (3.11), we can decompose Dmin as follows

Dmin = Dmin ∩ ImP{λ},∆b,rel ⊕Dmin ∩ Im(1− P{λ},∆b,rel). (3.16)

By Proposition 3.1 and Proposition 3.3, we get that the restrictions of βg,b to Dmin ∩
ImP{λ},∆b,rel and Dmin ∩ Im(1 − P{λ},∆b,rel) are all nondegenerate. For any a ≥ 0, let
P[0,a],∆b,rel be the spectral projection of ∆b,rel corresponding to the spectral with absolute
value in [0, a]. Then we have the βg,b-orthogonal decomposition

Dmin = Dmin,[0,a] ⊕Dmin,(a,∞), (3.17)

where Dmin,[0,a] = Dmin ∩ ImP[0,a],∆b,rel and Dmin,(a,∞) = Dmin ∩ Im(1 − P[0,a],∆b,rel). By
Proposition 3.1, we get that the restrictions of βg,b to Dmin,[0,a] and Dmin,(a,∞) are all nonde-
generate. Since ∇min commutes with ∆b,rel, we get two subcomplexes (Dmin,[0,a],∇min,[0,a])
and (Dmin,(a,∞),∇min,(a,∞)) such that

(Dmin,∇min) =
(
Dmin,[0,a],∇min,[0,a]

)
⊕

(
Dmin,(a,∞),∇min,(a,∞)

)
. (3.18)

Proposition 3.4. The inclusion (Dmin,{0},∇min,{0}) → (Dmin,∇min) induces an isomor-
phism on cohomology. In particular, the subcomplex (Dmin,(a,∞),∇min,(a,∞)) is acyclic for
any a ≥ 0, and

H∗(Dmin,[0,a],∇min,[0,a]) ∼= H∗(Dmin,∇min). (3.19)

Proof. By Proposition 2.2, in order to compute the cohomology of (Dmin,{0},∇min,{0})
and (Dmin,∇min) we need only to compute the cohomology of (D∞Dmin,{0},∇min,{0}) and
(D∞Dmin,∇min). Then it only needs to prove the inclusion

(D∞Dmin,{0},∇min,{0}) → (D∞Dmin,∇min)

induces an isomorphism of cohomology groups. Since ∆b,rel : D∞Dmin → D∞Dmin, then
∆b,rel induces an isomorphism

∆b,rel : D∞Dmin/D∞Dmin,{0} → D∞Dmin/D∞Dmin,{0}. (3.20)

So it induces an isomorphism on cohomology group

∆b,rel : H∗ (
D∞Dmin/D∞Dmin,{0},∇min

)
→ H∗ (

D∞Dmin/D∞Dmin,{0},∇min

)
. (3.21)

For [x] ∈ H∗ (
D∞Dmin/D∞Dmin,{0},∇min

)
, we have x = z + D∞Dmin,{0} with ∇minz ∈

D∞Dmin,{0}. Then by ∆b,relz = ∇#
min∇minz + ∇min∇#

minz and ∇#
min∆b,rel = ∆b,rel∇#

min,
we get ∆b,relz −∇min∇#

minz ∈ D∞Dmin,{0}. Then by definition we get ∆b,rel[x] = 0. Since
(3.21) is an isomorphism, we get

H∗(D∞Dmin/D∞Dmin,{0},∇min) ∼= {0}.

So that H∗(Dmin,{0},∇min,{0}) ∼= H∗(Dmin,∇min). In particular for any a ≥ 0, we have

H∗(Dmin,[0,a],∇min,[0,a]) ∼= H∗(Dmin,∇min)

and the subcomplex (Dmin,(a,∞),∇min,(a,∞)) is acyclic.
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For a finite dimensional complex vector space V , we define

detV = ΛmaxV. (3.22)

Then for the complex (Dmin,[0,a],∇min,[0,a]), we define the complex determinant lines

det
(
Dmin,[0,a],∇min,[0,a]

)
=

n⊗
k=0

(
det

(
Dmin,[0,a],k

))(−1)k

(3.23)

and

detH∗ (
Dmin,[0,a],∇min,[0,a]

)
=

n⊗
k=0

(
detHk

(
Dmin,[0,a],∇min,[0,a]

))(−1)k

. (3.24)

Let Dmin,[0,a],k = Dmin,[0,a] ∩ L2
k(M,E) and the induced nondegenerate symmetric bilinear

form denoted by bmin,[0,a],k. Then by bmin,[0,a],k and (3.23), we get a nondegenerate sym-
metric bilinear form on det(Dmin,[0,a],∇min,[0,a]) and denote it by bdet(Dmin,[0,a]). By the
canonical isomorphism (cf. [14] and [1, Section 1a)])

detH∗ (
Dmin,[0,a],∇min,[0,a]

) ∼= det
(
Dmin,[0,a],∇min,[0,a]

)
(3.25)

and the isomorphism (3.19), we get a nondegenerate symmetric bilinear form on the deter-
minant line detH∗(Dmin,[0,a],∇min,[0,a]) = detH∗(Dmin,∇min) and denote by bdetH(Dmin,[0,a]).

For the subcomplex (Dmin,(a,∞),∇min,(a,∞)), we define the Laplace operator by

∆b,rel,(a,∞) = ∇min,(a,∞)∇#
min,(a,∞) +∇#

min,(a,∞)∇min,(a,∞). (3.26)

Where ∇#
min(a,∞)

is the adjoint of ∇min,(a,∞) with respect to the induced nondegenerate
symmetric bilinear form on Dmin,(a,∞). For 0 ≤ k ≤ n, let ∆b,rel,(a,∞),k be the restriction
of ∆b,rel,(a,∞) to D(∆b,rel,(a,∞)) ∩ L2

k(M,E). Since ∆b,rel has the same leading symbol with
∆rel, then the following regularized zeta determinant is well defined:

det′
(
∆b,rel,(a,∞),k

)
= exp

(
− ∂

∂s

∣∣∣∣
s=0

Tr
[(

∆b,rel,(a,∞),k

)−s
])

. (3.27)

Theorem 3.5. The symmetric bilinear form on detH∗(Dmin,∇min) defined by

bdetH∗(Dmin,[0,a])

n∏
k=0

(
det′

(
∆b,rel,(a,∞),k

))(−1)kk (3.28)

is independent of the choice of a ≥ 0.

Proof. Let 0 ≤ a < c < ∞. We have(
Dmin,[0,c],∇min,[0,c]

)
=

(
Dmin,[0,a],∇min,[0,a]

)
⊕

(
Dmin,(a,c],∇min,(a,c]

)
(3.29)

and (
Dmin,(a,∞),∇min,(a,∞)

)
=

(
Dmin,(a,c],∇min,(a,c]

)
⊕

(
Dmin,(c,∞),∇min,(c,∞)

)
. (3.30)

Then we have

det′
(
∆b,rel,(a,∞),k

)
= det′

(
∆b,rel,(a,c],k

)
· det′

(
∆b,rel,(c,∞),k

)
. (3.31)

Particularly,

n∏
k=0

(
det′

(
∆b,rel,(a,∞),k

))(−1)kk

=
n∏

k=0

(
det′

(
∆b,rel,(a,c],k

))(−1)kk ·
n∏

k=0

(
det′

(
∆b,rel,(c,∞),k

))(−1)kk
. (3.32)
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Applying [7, Lemma 3.3] to (3.29), we get

bdetH(Dmin,[0,a]) ·
n∏

k=0

(
det′

(
∆b,rel,(a,c],k

))(−1)kk = bdetH(Dmin,[0,c]). (3.33)

The proof of Theorem 3.5 is complete.

Definition 3.6. The symmetric bilinear form defined by (3.28) is called the Ray-Singer
symmetric bilinear torsion on detH∗(Dmin,∇min) and is denoted by bRS

(M,E,gT M ,bE),rel.

Remark 3.7. By Theorem 2.3, we have

detH∗ (Dmin,∇min) ∼= detH∗(M,∂M,E). (3.34)

So that bRS
(M,E,gT M ,bE),rel can be viewed as the extension of the Burghelea-Haller analytic

torsion to compact manifolds with relative boundary condition.

4 Ray-Singer symmetric bilinear torsion for (Dmax,∇max)

In this section we define the Ray-Singer symmetric bilinear torsion for the Hilbert complex
(Dmax,∇max). The steps are the same as Section 3. The proofs of main results in this section
are also the same as in Section 3. It can be viewed as the extension of the Burghelea-Haller
analytic torsion for compact manifolds with absolute boundary condition.

Proposition 4.1. The restriction of βg,b to Dmax is nondegenerate.

Proof. We first recall that for σ ∈ L2
∗(M,E), if there exists η ∈ L2

∗(M,E) such that for any
φ ∈ Ω∗0(M,E),

hg,µ

(
σ,∇tφ

)
= hg,µ(η, φ), (4.1)

then σ ∈ Dmax and ∇maxσ = η. If σ ∈ Dmax, then for νσ ∈ L2
∗(M,E), and for any

φ ∈ Ω∗0(M,E) then νφ ∈ Ω∗0(M,E), we have

hg,µ

(
νσ,∇t(νφ)

)
= hg,µ (∇t(νφ), νσ) = βg,b (∇t(νφ), σ)

= βg,b

(
ν (∇tφ)− (∇ν∗)∗ φ, σ

)
= βg,b (ν (∇tφ) , σ)− βg,b

(
(∇ν∗)∗ φ, σ

)
= βg,b

((
∇tφ

)
, νσ

)
− hg,µ

(
(∇ν∗)∗ φ, νσ

)
= hg,µ

((
∇tφ

)
, σ

)
− hg,µ

(
νσ, (∇ν∗)∗ φ

)
= hg,µ (σ, (∇tφ))− hg,µ (ν∗ (∇ν∗) νσ, νφ) = hg,µ(η, φ)− hg,µ (ν∗ (∇ν∗) νσ, νφ)

= hg,µ(φ, η)− hg,µ (ν∗ (∇ν∗) νσ, νφ) = βg,b(φ, νη)− hg,µ (ν∗ (∇ν∗) νσ, νφ)

= βg,b(νφ, η)− hg,µ (ν∗ (∇ν∗) νσ, νφ) = hg,µ(νφ, νη)− hg,µ (ν∗ (∇ν∗) νσ, νφ)
= hg,µ (νη − ν∗ (∇ν∗) νσ, νφ) . (4.2)

Then by definition we get νσ ∈ Dmax. Then by the same reason in Proposition 3.1, we get
that the restriction of βg,b to Dmax is nondegenerate.

The proof of Proposition 4.1 is complete.

Proposition 4.2. The following identity holds

∇#
max = ∇∗

max + (∇ν∗)∗ ν. (4.3)

Particularly, D#
max equals the domain of ∇∗

max.
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Proof. For x ∈ Dmax, by (4.2) we have νx ∈ Dmax and

∇max(νx) = ν (∇maxx)− ν∗ (∇ν∗) νx. (4.4)

Let y ∈ D#
max, then there exists z ∈ L2

∗(M,E) such that for any x ∈ Dmax, we have

βg,b (∇maxx, y) = βg,b(x, z). (4.5)

Then

hg,µ (∇max(νx), y) = hg,µ (ν∇maxx− ν∗ (∇ν∗) νx, y)

= hg,µ (ν∇maxx, y)− hg,µ

(
νx, (∇ν∗)∗ νy

)
= βg,b (∇maxx, y)− hg,µ

(
νx, (∇ν∗)∗ νy

)
= hg,µ(νx, z)− hg,µ

(
νx, (∇ν∗)∗ νy

)
. (4.6)

By definition we have y ∈ D(∇∗
max) and

∇∗
maxy = ∇#

maxy − (∇ν∗)∗ νy. (4.7)

The proof of Proposition 4.2 is complete.

Let ∆b,abs = ∇#
max∇max +∇max∇#

max. By Proposition 4.2, ∆b,abs has the same leading
symbol with ∆abs = (∇max+∇∗

max)
2, so the spectral of ∆b,abs are discrete. For any a ≥ 0, let

P[0,a],∆b,abs be the spectral projection of ∆b,abs corresponding to the spectral with absolute
value in [0, a]. Then we have the decomposition

L2
∗(M,E) = ImP[0,a],∆b,abs ⊕ Im

(
1− P[0,a],∆b,abs

)
, (4.8)

and ImP[0,a],∆b,abs , Im(1−P[0,a],∆b,abs) are closed subspaces of L2
∗(M,E). Then by the same

proof in Proposition 3.3, the decomposition (4.8) is βg,b-orthogonal. By (4.8), we have the
βg,b-orthogonal decomposition of Dmax as

Dmax = Dmax,[0,a] ⊕Dmax,(a,∞), (4.9)

where Dmax,[0,a] = Dmax ∩ ImP[0,a],∆b,abs and Dmax,(a,∞) = Dmax ∩ Im(1 − P[0,a],∆b,abs).
By Proposition 4.1, we get that the restrictions of βg,b to Dmax,[0,a] and Dmax,(a,∞) are
nondegenerate. Since ∇max commutes with ∆b,max, we have the following decomposition of
the complex (Dmax,∇max),

(Dmax,∇max) =
(
Dmax,[0,a],∇max,[0,a]

)
⊕

(
Dmax,(a,∞),∇max,(a,∞)

)
. (4.10)

By the same proof of Proposition of 3.4, we have

Proposition 4.3. For any a ≥ 0, we have

H∗ (
Dmax,[0,a],∇max,[0,a]

) ∼= H∗ (Dmax,∇max) . (4.11)

Let Dmax,[0,a],k = Dmax,[0,a] ∩ L2
k(M,E). Let

det
(
Dmax,[0,a],∇max,[0,a]

)
=

n⊗
k=0

(
det

(
Dmax,[0,a],k

))(−1)k

(4.12)

and

detH∗ (
Dmax,[0,a],∇max,[0,a]

)
=

n⊗
k=0

(
detHk

(
Dmax,[0,a],∇max,[0,a]

))(−1)k

(4.13)
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be the determinant lines of (Dmax,[0,a],∇max,[0,a]) and H∗(Dmax,[0,a],∇max,[0,a]) respectively.
Then we have a canonical isomorphism (cf. [14] and [1, Section 1a)])

det
(
Dmax,[0,a],∇max,[0,a]

) ∼= detH∗ (
Dmax,[0,a],∇max,[0,a]

)
. (4.14)

Let bDmax,[0,a],k denote the induced nondegenerate symmetric bilinear form from βg,b, then
by (4.12) and (4.14) it induces a symmetric bilinear form on detH∗(Dmax,[0,a],∇max,[0,a])
and denote it by bdetH∗(Dmax,[0,a]).

Let ∇#
max,(a,∞) be the adjoint of ∇max,(a,∞) with respect to the induced symmetric

bilinear form on (Dmax,(a,∞),∇max,(a,∞)), and define

∆b,abs,(a,∞) = ∇max,(a,∞)∇#
max,(a,∞) +∇#

max,(a,∞)∇max,(a,∞). (4.15)

For 0 ≤ k ≤ n, let ∆b,abs,(a,∞),k be the restriction of ∆b,abs,(a,∞) to D(∆b,abs,(a,∞)) ∩
L2

k(M,E). Since ∆b,abs has the same leading symbol with ∆abs, then the following regular-
ized zeta determinant is well defined:

det′
(
∆b,abs,(a,∞),k

)
= exp

(
− ∂

∂s

∣∣∣∣
s=0

Tr
[(

∆b,abs,(a,∞),k

)−s
])

. (4.16)

By the same proof of Theorem 3.5, we have

Theorem 4.4. The symmetric bilinear form on detH∗(Dmax,∇max) defined by

bdetH∗(Dmax,[0,a])

n∏
k=0

(
det′

(
∆b,abs,(a,∞),k

))(−1)kk (4.17)

is independent of the choice of a ≥ 0.

Definition 4.5. The symmetric bilinear form defined by (4.17) is called the Ray-Singer
symmetric bilinear torsion on detH∗(Dmax,∇max) and is denoted by bRS

(M,E,gT M ,bE),abs.

Remark 4.6. By Theorem 2.3, we have

detH∗ (Dmax,∇max) ∼= detH∗(M,E). (4.18)

So that bRS
(M,E,gT M ,bE),abs can be viewed as the extension of the Burghelea-Haller analytic

torsion to compact manifolds with absolute boundary condition.
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