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NUMERICALLY TRIVIAL CANONICAL DIVISORS

SHENG MENG

Abstract. Let X be a klt projective variety with numerically trivial canonical divisor.

A surjective endomorphism f : X → X is amplified (resp. quasi-amplified) if f∗D −D

is ample (resp. big) for some Cartier divisor D. We show that after iteration and

equivariant birational contractions, an quasi-amplified endomorphism will descend to

an amplified endomorphism.

As an application, when X is Hyperkähler, f is quasi-amplified if and only if it is

of positive entropy. In both cases, f has Zariski dense periodic points. When X is

an abelian variety, we give and compare several cohomological and geometric criteria of

amplified endomorphisms and endomorphisms with countable and Zariski dense periodic

points (after an uncountable field extension).
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1. Introduction

We work over an algebraically closed field k of characteristic 0. Let f be a surjective

endomorphism of a projective variety X. It was first defined by Krieger and Reschke

(cf. [20]) that f is amplified, if H := f ∗L−L is ample for some Cartier divisor L. Polarized

endomorphisms are special cases and much are learned in various aspects (cf. [3], [5], [24],

[25], [26], [27], [31], [39]). One of the main methods of studying polarized endomorphisms
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is the equivariant lifting and descending. However, as discussed in [24, Section 1], the

“amplified” property can not be preserved by an equivariant birational lifting and it is

not known whether it is preserved via an equivariant descending. For the lifting problem,

one natural way is to imitate the “quasi-polarized” endomorphism (cf. [25]) to introduce

the quasi-amplified endomorphism, i.e., B := f ∗L − L is big for some Cartier divisor L,

though it is now known that “quasi-polarized” is just “polarized” (cf. [25, Proposition

1.1], [5, Theorem 5.1]).

From the geometric point of view, Fakhruddin showed the following very motivating

Theorem 1.1. Further, an amplified endomorphism has only countably many periodic

points (cf. [24, Lemma 2.4]). Note that if the base field is countable, then Per(id) is

always countable. To exclude this, we may work over an uncountable field. In this

way, we define a surjective endomorphism to be PCD (for short), if its periodic points

are countable and Zariski dense after replacing the base field by an uncountable one

(cf. Definition 2.2). Note that “amplified” is then always “PCD” (cf. Theorem 2.5). On

the other hand, when the base field is uncountable, an amplified endomorphism f admits

a Zariski dense orbit, which means for some x ∈ X, the orbit {fn(x) |n ≥ 0} is Zariski

dense in X (cf. Theorem 2.7). All these are taken into account in Section 2.

Theorem 1.1. (cf. [13, Theorem 5.1]) Let f : X → X be an amplified endomorphism of

a projective variety X. Then the set of f -periodic points Per(f) is Zariski dense in X.

One may have intuition that the divisorial (cohomological) and geometric assumptions

have their own advantages to study the properties of surjective endomorphisms. In this

paper, we will try to find the hidden connections among these conditions and mainly

focus on a projective variety X of klt Calabi-Yau type, i.e., (X,∆) is klt and KX +∆ ≡ 0

(numerical equivalence) for some effective Weil Q-divisor ∆. Note that such pair has

KX + ∆ ∼Q 0 (Q-linear equivalence) by [29, Chapter V, Corollary 4.9]. We refer to [19]

for the standard definitions, notation, and terminologies in birational geometry. In this

setting, we first show that a quasi-amplified endomorphism f of such X is birationally

equivalent to an amplified endomorphism g : Y → Y , which means there is a birational

map π : X 99K Y such that g ◦ π = π ◦ f . Precisely, we have the following result.

Theorem 1.2. (cf. Theorem 4.6) Let f : X → X be a quasi-amplified endomorphism of

a projective variety X of klt Calabi-Yau type. Then replacing f by a positive power, there

is an f -equivariant sequence of birational contractions of extremal rays (in the sense of

[26, Definition 4.1])

X = X1 → · · · → Xi → · · · → Xr

(i.e. f = f1 descends to fi on each Xi), such that we have:
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(1) fr is amplified.

(2) For each i, Xi is of klt Calabi-Yau type.

(3) For each i, fi is of positive entropy (cf. Definition 2.2) and quasi-amplified and

Per(fi) ∩ Ui is countable and Zariski dense in Xi for some open subset Ui ⊆ Xi.

(4) Suppose the base field k is uncountable. For each i, fi has a Zariski dense orbit.

Let f : X → X be an amplified endomorphism of a projective variety X. Then X has

Kodaira dimension κ(X) ≤ 0 by taking the equivariant Iitaka fibration (cf. [24, Lemma

2.5] and [30, Theorem A]). Suppose further that X is a smooth complex projective variety

with KX being numerically trivial (hence κ(X) = 0). We may apply Beauville-Bogomolov

decomposition (cf. [2]) and have an étale cover (
∏

iXi)
∏
A→ X where A is an abelian

variety and Xi is either a projective Hyperkähler manifold or a strict Calabi-Yau variety.

Moreover, the cover can be chosen as the so called Albanese closure (cf. [31, Lemma 2.12])

such that f can be lifted equivariantly and then f t splits on A and Xi for some t > 0

(cf. [37, Theorem 4.6]). We also refer to [31, Proposition 3.5] for a version of the singular

case (cf. Proposition 7.4).

The following result is an application of Theorem 1.2 to the Hyperkähler case. Note

that in this case, any surjective endomorphism is an automorphism.

Theorem 1.3. Let f : X → X be an automorphism of a projective Hyperkähler manifold

X. Then the following are equivalent.

(1) f is of positive entropy.

(2) f ∗D 6≡ D for any nef R-Cartier divisor D 6≡ 0.

(3) f is quasi-amplified.

(4) For some n > 0, fn is birationally equivalent to some amplified automorphism

f ′ : X ′ → X ′.

Moreover, if f is PCD, then all the above are satisfied.

Remark 1.4. Oguiso [34, Theorem 4.1] constructed an automorphism f : S → S of a

projective K3 surface S with Picard number 2, such that no eigenvalue of f ∗|NS(S) is 1. In

particular, f is amplified. We refer to Corollary 5.5 and Examples 5.7 and 5.8 for further

discussion about the case of projective K3 surfaces.

Next, we consider another important case: the abelian varieties. In this case, “quasi-

amplified” is just “amplified” since any big divisor of an abelian variety is ample. Krieger

and Reschke [20, Proposition 2.5] gave the following characterization of PCD isogenies.

Here, we provide a similar criterion of amplified endomorphisms for comparison.

Theorem 1.5. (cf. Theorems 6.2 and 6.5) Let f : A→ A be a surjective endomorphism

of an abelian variety A. Then the following hold.
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(1) f is amplified if and only if no eigenvalue of f ∗|H1(A,OA) is of modulus 1.

(2) f is PCD if and only if no eigenvalue of f ∗|H1(A,OA) is a root of unity.

Remark 1.6. When A is an abelian surface, Krieger and Reschke [20, Propositions 2.5

and 4.3] showed that an isogeny f is amplified if and only if the set of preperiodic points

Prep(f) = Tor(A) where Tor(A) is the set of torsion points in A. This is also equivalent to

saying that f is PCD. The reason now is simple by applying the above theorem. Indeed,

let α, β be the eigenvalues of f ∗|H1(A,OA). Then the eigenvalues of f ∗|H1(A,Z) are α, β, α, β.

Once some of them has modulus 1, so are all of them and hence all are roots of unity

by Kronecker’s theorem. However, in the higher dimensional cases, this phenomenon no

longer holds due to the existence of the Salem polynomials. So we can construct a PCD

endomorphism which is not amplified induced by any Salem polynomial; see Example

6.6.

The following result gives another characterizations and comparison of amplified and

PCD endomorphisms from the aspect of divisors.

Theorem 1.7. (cf. Theorems 6.2 and 6.13) Let f : A→ A be a surjective endomorphism

of an abelian variety A. Then the following hold.

(1) f is amplified if and only if f ∗D 6≡ D for any nef R-Cartier divisor D 6≡ 0.

(2) f is PCD if and only if f ∗D 6≡ D for any nef Cartier divisor D 6≡ 0.

Let f : X → X be a surjective endomorphism of a projective variety X over k. When

the base field k is uncountable, Amerik and Campana [1] showed that f has a Zariski dense

orbit if and only if there is no dominant rational map π : X 99K P1 such that π ◦ f = f .

When k is countable, this equivalence still remains unknown (cf. [23, Conjecture 7.14])

except the case when X is an abelian variety proved by Ghioca and Scanlon [14, Theorem

1.2]. In the following, we show that they are also equivalent to “PCD endomorphisms”

for abelian varieties.

Theorem 1.8. Let f : A → A be a surjective endomorphism of an abelian variety A.

Then the following are equivalent.

(1) f is PCD.

(2) f has a Zariski dense orbit.

(3) There is no dominant rational map π : A 99K P1 such that π ◦ f = f .

Finally, we can show that the PCD and amplified properties can be preserved via the

Albanese map in the following setting, which gives a partial answer to [20, Question 1.10]

(cf. Question 3.10). We refer to [5, Theorem 1.2 and Section 5] for the case of polarized

endomorphisms.
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Theorem 1.9. Let f : X → X be a PCD (resp. quasi-amplified) surjective endomorphism

of a klt projective variety X with KX ≡ 0. Then the Albanese morphism albX : X →
Alb(X) is surjective with (albX)∗OX = OAlb(X). Furthermore, the induced endomorphism

g := f |Alb(X) : Alb(X)→ Alb(X) is PCD (resp. amplified).

2. Preliminaries

Let X be a projective variety of dimension n. Throughout this paper, by a Cartier

divisor we always mean an integral Cartier divisor. We refer to [25, Definitions 2.1

and 2.2] for the numerical equivalence (≡) of R-Cartier divisors and the weak numerical

equivalence (≡w) of r-cycles. Denote by N1(X) := NS(X) ⊗Z R for the Néron-Severi

group NS(X). One can also regard N1(X) as the quotient vector space of R-Cartier

divisors modulo the numerical equivalence. Denote by Nr(X) the quotient vector space

of r-cycles modulo the weak numerical equivalence.

Definition 2.1. Let X be a projective variety. We define:

• Amp(X), the cone of classes of ample R-Cartier divisors in N1(X).

• Nef(X), the cone of classes of nef R-Cartier divisors in N1(X).

• Big(X), the cone of classes of big R-Cartier divisors in N1(X).

• PE1(X), the closure of the cone of classes of effective R-Cartier divisors in N1(X).

• NE(X), the closure of the cone of classes of effective 1-cycles with R-coefficients

in N1(X).

Let f : X → X be a surjective endomorphism of a projective variety X over an

algebraically closed field k. By the projection formula, all the above cones are f ∗ and f∗

invariant. Moreover, f ∗f∗ = (deg f) id on N1(X) and Nr(X) for any r; see [39, Section

2.3].

Denote by

Fix(f) := {x ∈ X | f(x) = x}

the set of fixed points of f . Denote by

Per(f) :=
+∞⋃
i=1

Fix(f i)

the set of periodic points of f . Denote by

Prep(f) :=
+∞⋃
i=1

f−i(Per(f))

the set of preperiodic points of f .

Let K/k be a field extension such that K is algebraically closed. Denote by XK :=

X ×k K and fK : XK → XK the induced surjective endomorphism. The following
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definitions (4) and (5) coincide with the usual one when X is smooth and defined over

C; see e.g. [11] and [12, §4].

Definition 2.2. Let f : X → X be a surjective endomorphism of a projective variety X.

(1) f is amplified if f ∗D −D is an ample Cartier divisor for some Cartier divisor D.

(2) f is quasi-amplified if f ∗D−D is a big Cartier divisor for some Cartier divisor D.

(3) f is PCD if Per(fK) is countable and Zariski dense in XK for some uncountable

algebraically closed field extension K/k.

(4) f is of positive entropy if the spectral radius of f ∗|N1(X) is greater than 1.

(5) f is of null entropy if f is not of positive entropy.

The following result is frequently used throughout this paper.

Proposition 2.3. Let f : X → X be a surjective endomorphism of a projective variety

X over k. Then the following hold.

(1) f is amplified (resp. quasi-amplified) if and only if f ∗D−D is an ample (resp. big)

R-Cartier divisor for some R-Cartier divisor D.

(2) f is amplified (resp. quasi-amplified, of positive entropy) if and only if so is fK

for any algebraically closed field extension K/k.

(3) f is PCD if and only if Per(f) is Zariski dense in X and Fix(f i) is finite for any

i > 0.

(4) f is PCD if and only if fK is PCD for any algebraically closed field extension

K/k.

(5) For any positive integer n > 0, f is amplified (resp. quasi-amplified, PCD) if and

only if so is fn.

Proof. (1) One direction is clear. Suppose f ∗D−D is an ample R-Cartier divisor for some

R-Cartier divisor D. Note that Amp(X) is an open cone in N1(X) and (f ∗ − id)|N1(X) is

continuous. Then there exists some Q-Cartier divisor D′ with [D′] in a sufficient small

neighborhood of [D] such that [f ∗D′ −D′] ∈ Amp(X). Assume that mD′ is Cartier for

some m > 0. Then f ∗mD′ −mD′ is an ample Cartier divisor. The quasi-amplified case

is similar.

(2) Let π : XK → X be the projection. Note that Pic(XK) = Pic(X) ×k K and

Pic0(XK) = Pic0(X)×kK. Then π∗ : NS(X)→ NS(XK) is an isomorphism and π∗◦f ∗ =

f ∗K ◦ π∗. Moreover, π∗(Amp(X)) = Amp(XK) and π∗(Big(X)) = Big(XK). Then (2) is

clear.

(3) Let K/k be an algebraically closed field extension. Let ∆X be the diagonal of X×X
and Γf the graph of f . We can identify Fix(fK) with ∆XK ∩ΓfK . In particular, Fix(fK) is

defined over k and hence Fix(fK) = Fix(f)×kK. Then Fix(f i) is finite if and only if so is
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Fix(f iK) for any i > 0. Note that Per(fK) =
⋃+∞
i=1 Fix(f i)×k K ⊆ Per(f)×kK ⊆ Per(fK)

where the last inclusion is by Lemma 2.4. So we have Per(fK) = Per(f)×k K. Now one

direction is clear.

Suppose Per(fK) is countable and Zariski dense in XK for some uncountable field

extension K/k. Then Per(f) is Zariski dense in X. We claim that Fix(f iK) is finite

for any i > 0. Otherwise, Fix(f iK) is infinite for some i > 0. Let Z be the closure of

Fix(f iK) in XK . Then f iK |Z = idZ and hence Z ⊆ Fix(f iK) ⊆ Per(fK). However, K being

uncountable and dim(Z) > 0 imply that Z is uncountable, a contradiction. Therefore,

Fix(f i) is finite for each i > 0.

(4) A similar argument of (3) works.

(5) Let ϕ := f ∗|N1(X). Note that ϕn − id = (ϕ − id) ◦
∑n−1

i=0 ϕ
i =

∑n−1
i=0 ϕ

i ◦ (ϕ − id).

Suppose H := ϕ(D)−D is ample (resp. big). Then ϕn(D)−D =
∑n−1

i=0 ϕ
i(H) is ample

(resp. big). Conversely, suppose ϕn(D) − D is ample (resp. big). Then ϕ(D′) − D′ =

ϕn(D) −D is ample (resp. big) where D′ :=
∑n−1

i=0 ϕ
i(D). Finally, note that Per(fn) =

Per(f) always holds true. So (5) is proved. �

Lemma 2.4. Let K/k be algebraically closed fields. Let S be a subset of Pnk and regard

Pnk as a subset of PnK. Denote by S
k

the closure of S in Pnk and S
K

the closure of S in PnK.

Let f ∈ K[x0, · · · , xn] be a homogeneous polynomial such that f |S = 0. Then f |
S
k = 0.

In particular, S
k ⊆ S

K
.

Proof. We may write f :=
∑m

i=1 aifi such that fi are homogeneous polynomials of the

same degree with coefficient in k and ai are k-linearly independent. For any s ∈ S,

f(s) = 0 and hence fi(s) = 0 for all i. Then fi|Sk = 0 for all i. Therefore, f |
S
k = 0. �

By Proposition 2.3, we may rewrite Theorem 1.1 in the following way.

Theorem 2.5. Let f : X → X be an amplified endomorphism of a projective variety X.

Then f is PCD.

Let f : X → X be a surjective endomorphism of a projective variety X. We say f has a

Zariski dense orbit, if for some x ∈ X, the orbit {fn(x) |n ≥ 0} is Zariski dense in X. We

recall the following useful result proved by Amerik and Campana. Here, we rewrite it a

bit and only consider surjective endomorphisms for convenience. Note that the following

still remains unknown without the “uncountable” assumption; see [23, Conjecture 7.14].

Theorem 2.6. (cf. [1]) Let f : X → X be a surjective endomorphism of a projective

variety X over an uncountable algebraically closed field k. Then f has no Zariski dense

orbit if and only if there is a dominant rational map π : X 99K P1 such that π ◦ f = f .
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The following is an application of the above result, which is originally motivated by

Zhang [40, Conjecture 4.1.6] for polarized endomorphisms.

Theorem 2.7. Let f : X → X be an amplified endomorphism of a projective variety X

over an uncountable algebraically closed field k. Then f has a Zariski dense orbit.

Proof. Suppose f has no Zariski dense orbit. By Theorem 2.6, there is a dominant rational

map π : X 99K P1 such that π ◦ f = π. Let U be an open dense subset of X such that π

is well defined over U . Denote by Xy := π|−1U (y) for any y ∈ π(U). Then f−1(Xy) = Xy.

Note that f |Xy is amplified and dim(Xy) > 0. By Theorem 2.5, Per(f |Xy)∩U 6= ∅. Note

that Per(f) ⊇
⋃
y∈π(U)(Per(f |Xy)∩U) and the latter one is an uncountable disjoint union.

So Per(f) is uncountable, a contradiction. �

One can see easily that if Theorem 2.6 holds true without the “uncountable” assump-

tion, then so does Theorem 2.7. Indeed, a positive answer to the following question is

enough to show that Theorem 2.7 (in particular [40, Conjecture 4.1.6]) holds true without

the “uncountable” assumption.

Question 2.8. Let f : X → X be a surjective endomorphism of a projective varity X

over a countable algebraically closed field k. Suppose fK has a Zariski dense orbit for

some algebraically closed field extension K/k. Will f also admit a Zariski dense orbit?

3. General results of surjective endomorphisms

Proposition 3.1. Let f : X → X be a surjective endomorphism of a projective variety

X. Then the following are equivalent.

(1) f is amplified.

(2) For any Z ∈ NE(X), f∗Z ≡w Z implies Z ≡w 0.

Proof. Suppose f ∗D − D is ample. For any pseudo-effective 1-cycle Z 6≡w 0, we have

(f ∗D − D) · Z = D · (f∗Z − Z) > 0 and hence f∗Z 6≡w Z. So (1) implies (2). Suppose

f is not amplified. Let V be the image of f ∗|N1(X) − id. Then V ∩ Amp(X) = ∅ and

hence there exists some 1-cycle Z 6≡w 0 such that L · Z = 0 for any L ∈ V and A · Z > 0

for any A ∈ Amp(X). By Kleiman’s ampleness criterion (cf. [19, Theorem 1.18], Z is

pseudo-effective. Note that D · (f∗Z − Z) = (f ∗D − D) · Z = 0 for any Cartier divisor

D. Therefore, f∗Z ≡w Z. �

Lemma 3.2. Let f : X → X be a surjective endomorphism of null entropy of a pro-

jective variety X. Then all the eigenvalues of f ∗|N1(X) are roots of unity and f is an

automorphism.
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Proof. Note that all the eigenvalues of f ∗|NS(X) are algebraic integers and hence of modu-

lus 1. Replacing f by a positive power, we may assume all the eigenvalues of f ∗|N1(X) are

1 by Kronecker’s theorem. Let x1, · · · , xr be a basis of N1(X) such that either f ∗xi = xi

or f ∗xi = xi + xi+1. Let (a1, · · · , ar) be a sequence of non-negative integers such that
r∑
i=1

ai = dim(X). We define a partial order that (a1, · · · , ar) < (b1, · · · , br), if for some

k, ak < bk and ai ≤ bi for any i ≥ k. Let (a1, · · · , ar) be the maximal one such that

xa11 · · ·xarr 6= 0. Then (deg f)xa11 · · · xarr = (f ∗x1)
a1 · · · (f ∗xr)ar = xa11 · · ·xarr 6= 0. So

deg f = 1. �

Lemma 3.3. Let f : X → X be an amplified endomorphism of a projective variety X.

Then f is of positive entropy.

Proof. Suppose f is of null entropy. By Lemma 3.2, f is an automorphism. By the

projection formula, f∗|N1(X) is the dual action of f ∗|N1(X). In particular, all the eigenvalues

of f∗|N1(X) are of modulus 1. By the Perron-Frobenius theorem, f∗Z ≡w Z for some

Z ∈ NE(X)\{0}, a contradiction by Proposition 3.1. �

Lemma 3.4. Let f : X → X be a PCD endomorphism of a smooth projective variety X.

Then f is of positive entropy.

Proof. Let K be a finitely generated field over Q such that f : X → X is defined over

K. Then there is a field extension C/K. So we may assume X is defined over C by

Proposition 2.3. Suppose f is of null entropy. By Lemma 3.2, f is an automorphism. By

[9, Propositions 3.5 and 3.6] and Kronecker’s theorem, we may assume all the eigenvalues

of f ∗|Hi(X,Z) are 1 for each i after replacing f by a positive power. Since f is PCD,

Fix(fn) is finite for any n > 0 by Proposition 2.3. Applying the Lefschetz fixed point

formula, we have

]Fix(fn) ≤
∑
i

(−1)itr((fn)∗|Hi(X,C)) =
∑
i

(−1)ihi(X,C) = e(X),

where tr is the trace, e(X) is the Euler characteristic of X, and ]Fix(fn) counts Fix(fn)

without multiplicities. However, Per(f) is infinite and hence the set {]Fix(fn) |n > 0}
has no upper bound, a contradiction. �

In general, we ask the following question.

Question 3.5. Let f : X → X be a quasi-amplified or PCD endomorphism of a projective

variety X. Is f of positive entropy?

In the rest of this section, we consider the lifting and descending problems.
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Lemma 3.6. Let π : X → Y be a finite surjective morphism of projective varieties. Let

f : X → X and g : Y → Y be surjective endomorphisms such that g ◦ π = π ◦ f . Then f

is PCD if and only if so is g.

Proof. By Proposition 2.3, we may work assume the base field is uncountable. Note

that π(Per(f)) ⊆ Per(g). For any y ∈ Per(g), since π−1(y) is finite, there exists some

x ∈ Per(f) ∩ π−1(y). So π(Per(f)) = Per(g). Clearly, Per(f) is countable and Zariski

dense if and only if so is Per(g). �

Lemma 3.7. Let f : X → X and g : Y → Y be surjective endomorphisms of projective

varieties. Then f × g is PCD (resp. amplified, quasi-amplified) if and only if so are f

and g.

Proof. Note that Per(f × g) = Per(f) × Per(g). Clearly, Per(f × g) is countable and

Zariski dense if and only if so are Per(f) and Per(g).

Suppose f ∗DX − DX = AX and g∗DY − DY = AY with AX and AY being ample

(resp. big). Let D = p∗XDX + p∗YDY where pX and pY are the natural projections. Then

(f×g)∗D−D = p∗Xf
∗DX+p∗Y g

∗DY −p∗XDX−p∗YDY = p∗XAX+p∗YAY is ample (resp. big).

Suppose B = (f × g)∗D − D is big. Write B = A + E where A is ample and E is

effective. For general y ∈ Y , X×{y} is not contained in the support of E. Then B|X×{y}
is big and hence f is quasi-amplified. Similarly, so is g. In particular, when E = 0, both

f and g are then amplified. �

Lemma 3.8. Let f : V → V be an invertible linear map of a positive dimensional real

normed vector space V such that f(C) = C for a closed convex cone C ⊆ V which spans

V and contains no line. Suppose x ∈ C◦ (the interior part of C) and y := lim
n→+∞

fn(x)
|fn(x)|

exists. Then f(y) = ry where r is the spectral radius of f .

Proof. By the Perron-Frobenius theorem, f(x1) = rx1 for some x1 ∈ C. By the as-

sumption, f(y) = lim
n→+∞

fn+1(x)
|fn(x)| = ( lim

n→+∞
|fn+1(x)|
|fn(x)| )y. Then a := lim

n→+∞
|fn+1(x)|
|fn(x)| exists and

a ≤ r. Suppose a < r. Then lim
n→+∞

|fn(x)|
rn

= 0. Since x ∈ C◦, x − εx1 ∈ C for some

ε > 0. We have lim
n→+∞

|fn(x)|
|fn(x−εx1)| = lim

n→+∞
1

| f
n(x)
|fn(x)|−

εrnx1
|fn(x)| |

= lim
n→+∞

1

|y− εrnx1
|fn(x)| |

= 0. Then

lim
n→+∞

fn(x−εx1)
|fn(x−εx1)| = lim

n→+∞
−εrnx1

|fn(x−εx1)| = lim
n→+∞

−εx1
|0−εx1)| = − x1

|x1| . Note that C contains no line

and f(C) = C. We get a contradiction. �

Lemma 3.9. Let π : X → Y be a generically finite surjective morphism of projective

varieties. Let f : X → X and g : Y → Y be surjective endomorphisms such that

g ◦ π = π ◦ f . Then the following are true.

(1) If g is quasi-amplified, then so is f .
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(2) f is of positive entropy if and only if so is g.

Proof. Suppose g∗E−E is big. Let F := π∗E. Then f ∗F −F = π∗(g∗E−E) is big since

π is generically finite. So (1) is true.

For (2), one direction is trivial. Suppose f is of positive entropy and g is of null entropy.

Replacing g by a positive power, we may assume all the eigenvalues of g∗|N1(Y ) are 1. Fix a

norm on N1(Y ). Let B be a big Cartier divisor of Y . Then D := lim
n→+∞

(gn)∗B
|(gn)∗B| ∈ PE1(Y )

exists and g∗D ≡ D. Let B′ := π∗B which is big since π is generically finite. Then

D′ := lim
n→+∞

(fn)∗B′

|(fn)∗B′| = π∗D ∈ PE1(X) exists and f ∗D′ ≡ D′, a contradiction by Lemma

3.8. �

In general, we ask the following question. We shall see later it is true for the case of

abelian varities (cf. Proposition 6.11).

Question 3.10. Let π : X → Y be a surjective morphism of projective varieties. Let

f : X → X and g : Y → Y be surjective endomorphisms such that g ◦ π = π ◦ f . Suppose

f is amplified (resp. quasi-amplified). Will g be amplified (resp. quasi-amplified)?

4. Equivariant contractions for quasi-amplified endomorphisms

Let V be a positive dimensional real vector space. For any 0 6= x ∈ V , denote by

Rx := {ax | a ≥ 0}

the ray generated by x. Let C be a closed convex cone which spans V and contains no

line. Let R be an extremal ray of C. We say R is extremal if for any x, y ∈ C, x+ y ∈ R
implies x, y ∈ R. We say an extremal ray R is isolated if there exists a nonzero x ∈ R
and an open neighborhood x ∈ U , such that for any y ∈ U , either y ∈ R or the ray Ry

generated by y is not extremal.

Lemma 4.1. Let f : V → V be an invertible linear map of a positive dimensional real

normed vector space V such that f(C) = C for a closed convex cone C ⊆ V which spans

V and contains no line. Suppose f(x) = qx for some x ∈ C◦ and q > 0. Let R be

an isolated extremal ray of C. Then replacing f by a positive power, f(R) = R and

f |R = q id.

Proof. Replacing f by f/q, we may assume q = 1. Let y ∈ R be of norm 1. For

some r > 0, B(y, r) has no intersection with any extremal ray of C except R. By [25,

Proposition 2.9], there exists a positive numberN such that 1
N
< ||fn|| < N for any n ∈ Z.

So the set {fn(y) |n ∈ Z} is bounded. In particular, for some a > b, |fa(y)− f b(y)| < r
N

.

Then |fa−b(y) − y| < N |fa(y) − f b(y)| < r. Note that the ray generated by fa−b(y) is
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also extremal in C. Then fa−b(y) ∈ R. By the last argument of [25, Proposition 2.9], all

the eigenvalues of f are of modulus 1. In particular, fa−b(y) = y. �

We recall [25, Lemma 2.7] and the following is a slightly modified version.

Lemma 4.2. Let V be a positive dimensional real normed vector space. Let C ⊆ V

be a closed convex cone which spans V and contains no line. Let x ∈ C be a nonzero

point. Then there exists a unique minimal closed extremal face F of C such that x ∈ F .

Furthermore, x ∈ F ◦ (in the sense of the topology of the space spanned by F ).

Proof. If x ∈ C◦, then F = C and the lemma is trivial. If x ∈ ∂C, then [25, Lemma 2.7]

construted and proved that such F exists and is contained in ∂C. If x 6∈ F ◦, then x ∈ ∂F
and we can apply [25, Lemma 2.7] again. However, this contradicts the minimality of

F . �

We recall [26, Definition 4.1].

Definition 4.3. Let X be a projective variety. Let C be a curve such that RC is an

extremal ray in NE(X). We say C or RC is contractible if there is a surjective morphism

π : X → Y to a projective variety Y such that the following hold.

(1) π∗OX = OY .

(2) Let C ′ be a curve in X. Then π(C ′) is a point if and only if [C ′] ∈ RC .

(3) Let D be a Q-Cartier divisor of X. Then D · C = 0 if and only if D ≡ π∗DY

(numerical equivalence) for some Q-Cartier divisor DY of Y .

Theorem 4.4. Let f : X → X be a surjective endomorphism of a normal projective

variety X with (X,∆) being klt for some effective Q-divisor ∆. Suppose f∗x ≡w λx for

some λ > 0 and nonzero x ∈ NE(X) with (KX + ∆) · x ≤ 0. Then one of the following

holds.

(1) D · x ≥ 0 for any effective Cartier divisor D.

(2) Replacing f by a positive power, λ is a positive integer and f∗C ≡w λC for some

rational curve C with RC being a contractible extremal ray of NE(X).

Proof. By Lemma 4.2, there exists a unique minimal closed extremal face F of NE(X)

containing x. By the uniqueness, we have f∗(F ) = F . Suppose D ·x < 0 for some effective

Cartier divisor D. Since (X,∆) is klt, (X,∆+εD) is klt for some ε > 0 (cf. [19, Corollary

2.35]). Note that (KX + ∆ + εD) · x < 0. By the cone theorem (cf. [19, Theorem 3.7]), F

contains some (KX + ∆ + εD)-negative contractible extremal ray RC which is isolated.

Note that x ∈ F ◦. By Lemma 4.1, after replacing f by a positive power, f∗C ≡w λC.

Let A be any ample Cartier divisor. We have that A · f∗C = λA · C is a positive integer

and hence λ is a rational number. Since λ is also an algebraic integer, λ is an integer. �
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Lemma 4.5. Let f : V → V be an invertible linear map of a positive dimensional real

normed vector space V such that f(C) = C for a closed convex cone C ⊆ V which

contains no line. Suppose f(x) = x for some nonzero x ∈ V and f(y)− y = ax for some

y ∈ C and real number a. Then a = 0.

Proof. Suppose a > 0. Then lim
n→+∞

fn(y)
|fn(y)| = x

|x| ∈ C and lim
n→−∞

fn(y)
|fn(y)| = −x

|x| ∈ C. Since

x 6= 0, this contradicts that C contains no line. The case a < 0 is similar. �

Now we prove Theorem 1.2.

Theorem 4.6. Let f : X → X be a surjective endomorphism of a normal projective

variety X such that B = f ∗D − D is big for some Cartier divisor D. Suppose (X,∆)

is klt and KX + ∆ ≡ 0 for some effective Q-divisor ∆. Then replacing f by a positive

power, there is an f -equivariant sequence of contractions of extremal rays

X = X1 → · · · → Xi → · · · → Xr

(i.e. f = f1 descends to fi on each Xi), such that we have:

(1) For each i ≤ r, (Xi,∆i) is klt and KXi +∆i ∼Q 0 for some effective Q-divisor ∆i.

(2) For each i < r, the i-th contraction πi : Xi → Xi+1 of the extremal ray RCi is

birational and (fi)∗Ci ≡w Ci.
(3) For each i ≤ r, there exists big Cartier divisor Bi of Xi such that B1 = B and

Bi = π∗iBi+1 for i < r.

(4) For each i ≤ r, if (fi)∗xi ≡w xi for some xi ∈ NE(Xi), then Bi · xi = 0.

(5) fr is amplified. For each i ≤ r, fi is of positive entropy and quasi-amplified and

Per(fi) ∩ Ui is countable and Zariski dense in Xi for some open subset Ui ⊆ Xi.

(6) Suppose the base field k is uncountable. For each i ≤ r, fi has a Zariski dense

orbit.

Proof. If dim(X) = 1, then B is ample and the theorem is trivial by taking r = 1.

Suppose dim(X) > 1. Let r be the maximal integer such that we have an f -equivariant

sequence of contractions of extremal rays

X = X1 → · · · → Xi → · · · → Xr,

satisfying (1) - (4). Note that for each step, ρ(Xi) = ρ(Xi+1) + 1. Then r ≤ ρ(X). When

r = 1, (2) and (3) are automatically true, (1) is satisfied by taking ∆1 = ∆ and applying

[29, Chapter V, Corollary 4.9], and (4) is satisfied by the projection formula.

Suppose fr is amplified. Then we stop and (5) follows from Lemma 3.9 and Theorem

2.5, and (6) follows from Theorem 2.7.

Suppose fr is not amplified. There exists some xr ∈ NE(Xr)\{0} such that (fr)∗xr ≡w
xr by Proposition 3.1. Since (4) holds true for i ≤ r, Br · xr = 0. By Theorem 4.4,
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after replacing f by some positive power, we may assume xr = Cr for some contractible

rational curve Cr. Let πr : Xr → Xr+1 be the induced fr-equivariant contraction. By

the cone theorem (cf. [19, Theorem 3.7]), Br = π∗rBr+1 for some Cartier divisor Br+1 of

Xr+1. Since Br is big, πr is birational and Br+1 is big too. Let ∆r+1 = (πr)∗∆r. Then

KXr+1 + ∆r+1 = (πr)∗(KXr + ∆r) ∼Q 0 and hence KXr + ∆r = (πr)
∗(KXr+1 + ∆r+1).

So (Xr+1,∆r+1) is klt. Suppose (fr+1)∗xr+1 ≡w xr+1 for some xr+1 ∈ NE(Xr+1). Since

πr is surjective, there exists some yr ∈ NE(Xr) such that (πr)∗yr ≡w xr+1. Note that

(πr)∗((fr)∗yr − yr) ≡w (fr+1)∗xr+1 − xr+1 ≡w 0. Then (fr)∗yr − yr ≡w mCr for some real

number m. By Lemma 4.5, m = 0. By the projection formula, Br+1 · xr+1 = Br · yr = 0

since (4) holds for i ≤ r. Now we have a longer sequence and we have checked that (1) -

(4) hold for r + 1. However, this contradicts the maximality of r. �

5. The Hyperkähler case and proof of Theorem 1.3

In this section, we always work over C. Let X be a projective Hyperkähler manifold.

There is a Beauville-Bogomolov-Fujiki’s form q on N1(X) with signature (1, 0, ρ(X)− 1)

where ρ(X) is the Picard number of X (cf. [17]).

Lemma 5.1. Let X be a projective Hyperkähler manifold. Let D1 and D2 be nef R-Cartier

divisors which are linearly independent in N1(X). Then q(D1, D2) > 0 and D1 + D2 is

nef and big.

Proof. Note that q(D1) := q(D1, D1) ≥ 0 and q(D2) ≥ 0. Since D1 and D2 are linearly

independent, q(D1, D2) > 0 by observing the signature. Then q(D1 + D2) = q(D1) +

q(D2) + 2q(D1, D2) > 0. By the claim in [15, Proposition 26.13], D1 +D2 is big. �

Lemma 5.2. Let f : X → X be an automorphism of a projective Hyperkähler manifold

X. Suppose f ∗D ≡ D for some R-Cartier divisor D such that D is big or q(D) > 0.

Then f has finite order.

Proof. Note that q(D) > 0 imlies either D or −D is big. Then we may assume D is

big. Applying [25, Proposition 2.9] and Kronecker’s theorem, we have f ∗|N1(X) = id after

replacing f by a positive power. Then f has finite order by [33, Corollary 2.7] (cf. [17,

Section 9]). �

We recall [32, Lemma 2.8] and provide a simplified proof in our situation. We also

refer to [16] for related results of birational automorphisms group of null entropy.

Proposition 5.3. Let f : X → X be an automorphism of a projective Hyperkähler

manifold X. Then the following are equivalent.

(1) f is of null entropy.
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(2) f ∗D ≡ D for some nef R-Cartier divisor D 6≡ 0.

Suppose further the order of f is infinite. Then the above are equivalent to

(3) There is a unique (up to scalar) nef Cartier divisor D 6≡ 0 such that f ∗D ∼ D.

Proof. (1) implies (2) by the Perron-Frobenius theorem. Suppose f is of positive entropy

and (2) holds. Then f ∗D′ ≡ rD′ for some nonzero D′ ∈ Nef(X) where r > 1 is the

spectral radius of f ∗|N1(X). Note that q(D,D′) = q(f ∗D, f ∗D′) = rq(D,D′). Then

q(D,D′) = 0. However, D and D′ are linearly independent in N1(X). By Lemma 5.1,

q(D,D′) > 0, a contradiction. So (2) implies (1).

Suppose now that f has infinite order. Clearly, (3) implies (2). Suppose f ∗D ≡ D

and f ∗D′ ≡ D′ for two linearly independent D,D′ ∈ Nef(X). by Lemma 5.1, f ∗(D +

D′) ≡ D + D′ and D + D′ is big, a contradiction by Lemma 5.2. Suppose all the

eigenvalues of (fn)∗|N1(X) are 1 for some n > 0. Let A be an ample Cartier divisor. Then

lim
i→+∞

R(f in)∗A = RD for some nef Cartier divisor D and (fn)∗D ≡ D. Let D′ =
n−1∑
i=0

(f i)∗D.

Then D′ is nef and Cartier and f ∗D′ ≡ D′. Since q(X) = 0, f ∗D′ ∼ D′ after replacing

D′ by mD′ for some integer m > 0. So (1) implies (3). �

Proof of Theorem 1.3. (1) and (2) are equivalent by Proposition 5.3. (3) implies (4) by

Theorem 4.6. (4) implies (1) by Lemmas 3.3 and 3.9.

Suppose f is of positive entropy. By the Perron-Frobenius theorem, f ∗D1 ≡ aD1 for

some nef R-Cartier divisor D1 and a > 1, and f ∗D2 ≡ bD2 for some R-Cartier divisor D2

and b < 1 (Indeed ab = 1). Note that D1 and D2 are linearly independent in N1(X). Let

D = D1 −D2. Then f ∗D −D = (a− 1)D1 + (1− b)D2 is nef and big by Lemma 5.1. In

particular, (1) implies (3).

The last argument follows from Lemma 3.4. �

Remark 5.4. If Question 3.5 has a positive answer, then the above equivalent conditions

are also equivalent to that “fn is birationally equivalent to some PCD automorphism for

some n > 0”.

Corollary 5.5. Let f : X → X be an automorphism of a projective K3 surface X. Then

the following are equivalent.

(1) f is of positive entropy.

(2) Per(f) ∩ U is countable and Zariski dense for some open dense subset U of X.

(3) f has a Zariski dense orbit.

Proof. (1) implies (2) by Theorems 1.3 and 1.2. Let x ∈ X be any point and let Z be

the closure of the orbit {fn(x) |n ≥ 0}. Then f(Z) ⊆ Z implies f(Z) = Z and hence



16 SHENG MENG

Z is also the closure of the set {fn(x) |n ∈ Z}. Then (1) and (3) are equivalent by [32,

Theorem 1.4].

Suppose f is of null entropy and (2) holds. By Proposition 5.3, f ∗D ≡ D for some nef

Cartier divisor D 6≡ 0. If D2 > 0, then D is nef and big and hence f has finite order by

Lemma 5.2. In particular, Per(f)∩U = U is uncountable for any open dense subset U of

X, a contradicition. If D2 = 0, the Riemann-Roch theorem implies that D is basepoint

free. Then we have an f -equivariant elliptic fibration π : X → P1. Denote by g := f |P1 .

By (2), Per(g) is Zariski dense in P1 and hence g has finite order. Replacing f by a

positive power, we may assume g = id. Let y be a general point of P1 such that the fibre

Xy := π−1(y) is a smooth elliptic curve and Per(f) ∩ U ∩Xy 6= ∅. Then we may assume

f |Xy is an isogeny after replacing f by a positive power. It is known that an (algebraic

group) automorphism of an elliptic curve has finite order. So Per(f |Xy) = Xy and hence

Per(f) ∩ U is uncountable, a contradiction. �

Remark 5.6. In the above corollary, Cantat [4, 2] showed that (1) and (3) are equivalent

even when X is not necessarily projective; see also [32, Theorem 1.4]. On the other hand,

Xie [38, Theorem 1.1] showed that (1) implies (2) even when f is only a birational

automorphism of a smooth projective surface over an algebriacally closed field k with

char k 6= 2, 3.

In general, Amerik and Campana [1] showed that for a dominant meromorphic endo-

morphism f : X 99K X of a compact Kähler manifold X, there is a dominant meromor-

phic map π : X 99K Y onto a compact Kähler manifold Y , such that π ◦ f = π and

the general fibre Xy of π is the Zariski closure of the orbit by f of a general point of

Xy. Applying this, Lo Bianco [21, Main Theorem] showed that (1) implies (3) for the

Hyperkähler manifolds; see also Theorem 1.2 for another application.

K. Oguiso suggested the following example that some K3 surface admits an automor-

phism of positive entropy which is not PCD.

Example 5.7 (Oguiso). Let S = Km(E × F ) be the Kummer surface associated to the

product of two mutually non-isogenous elliptic curves E and F . Dinh and Oguiso [10,

Proposition 3.7] showed that there exists a subgroup G of Aut(S) such that G is not

finitely generated. Then G contains some automorphism f of positive entropy (cf. [16,

Proposition 1.3]). Note that Per(f) contains at least 8 curves (cf. [10, Section 3, Figure

1]). So f is not PCD.

D.-Q. Zhang suggested the following example that some K3 surface admits a PCD

automorphism which is not amplified.
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Example 5.8 (Zhang). Let S = Km(E × E) be the Kummer surface associated to the

product of an elliptic curve E. Let Tor2 be the set of 2-torsion points of E × E. Denote

by π : S̃ → E × E the blowup of Tor2. Denote by τ : S̃ → S be the finite surjective

morphism of degree 2. Let f : E ×E → E ×E be an automorphism defined by f(a, b) =

(5a + 8b, 8a + 13b). Then f fixes all the 2-torison points and f is PCD (cf. Theorem

6.5). For any n > 0, (fn)∗|TP is not a scalar action where P is a 2-torsion point and

TP is the tangent space of E × E at P . Denote by f̃ the equivariant lifting of f to S̃

and fS := f |S. Then Per(f̃) = π−1(Per(f)\Tor2)
⋃

Per(f̃ |π−1(Tor2)) is also countable. In

particular, f̃ is PCD and hence so is fS by Lemma 3.6. Note that the 16 π-exceptional

divisors are f̃ -invariant. So f̃ is not amplified (cf. Proposition 3.1). Similarly, f is not

amplified.

At the end of this section, we would like to ask a related question.

Question 5.9. Let f be an automorphism of a projective Hyperkähler manifold X. Sup-

pose Per(f)∩U is countable and Zariski dense for some open dense subset U of X. Will

f be of positive entropy? Does f admit a Zariski dense orbit?

6. Case of abelian varieties

Let A be an abelian variety of dimension g. We recall some facts from [28, Sections

6, 8, 16]. Let n be a nonzero integer. Denote by nA : A → A the isogeny sending a to

na. Let L be a Cartier divisor of A. Then we have the Euler characteristic χ(L) = Lg

g!

where Lg is the self intersection of L. Consider the following homomorphism to the dual

abelian variety

φL : A → A∨ := Pic0(A)

a 7→ T ∗aL− L

where Ta is the translation map by a. Denote byK(L) the kernal of φL. For any connected

closed subgroup B ≤ A, L|B ≡ 0 if and only if B ≤ K(L). In particular, L|K(L) ≡ 0.

If L is ample, then K(L) is finite and hence φL is an isogeny. If K(L) is finite, then

χ(L) 6= 0. For any surjective endomorphism f : A → A, we have φf∗L = f∨ ◦ φL ◦ f ,

where f∨ : A∨ → A∨ is the dual map of f .

In the following, we show that the building blocks of surjective endomorphisms of

abelian varieties are automorphisms and amplified endomorphisms.

Proposition 6.1. Let f : A→ A be a surjective endomorphism of an abelian variety A of

positive dimension. Then there is an f -equivariant surjective homomorphism π : A→ B

to an abelian variety B of positive dimension such that the descending f |B is either an

automorphism or an amplified endomorphism.
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Proof. We show by induction on n := dim(A). Write f = g+a where g is an isogeny and

a ∈ A. If dim(A) = 1, then f is either an automorphism or a polarized endomorphism.

Suppose f is neither amplified nor an automorphism. Then so is g since T ∗a |N1(A) = id.

Moreover, g∗L ≡ L for some Cartier divisor L 6≡ 0. Since deg g > 1, Ln = (g∗L)n =

(deg g)Ln implies that Ln = 0. Then 0 < dim(K(L)) < n. Note that φL = φf∗L =

f∨ ◦ φL ◦ f . Let Z be the neutral component of K(L). Since 0 ∈ g(Z) and L|g(Z) ≡ 0,

we have g(Z) ≤ K(L) and hence g(Z) = Z. Let B = A/Z and define h : B → B via

h(x) = f(x). It is easy to check that h is well defined. Note that 0 < dim(B) < dim(A).

Then we are done by induction. �

Let A be an abelian variety of dimension n. Denote by Hk,k(A,R) = Hk,k(A,C) ∩
H2k(A,R). For k = 1 and n − 1, denote by Posk(A) the cone of positive (k, k)-forms in

Hk,k(A,R). Note that Pos1(A) ∩ N1(A) = Nef(A) = PE1(A) and Posn−1(A) ∩ N1(A) =

NE(A). We refer to [7] and [8, Chapter III] for the details.

Theorem 6.2. Let f : A → A be a surjective endomorphism of an abelian variety A of

dimension n. Then the following are equivalent.

(1) f is amplified.

(2) f ∗ω − ω ∈ Pos1(A)◦ for some ω ∈ H1,1(A,R).

(3) No eigenvalue of f ∗|H1(X,OX) is of modulus 1.

(4) f∗Z − Z ∈ NE(A)◦ for some Z ∈ N1(A).

(5) For any Z ∈ NE(X), f∗Z ≡w Z implies Z ≡w 0.

(6) For any D ∈ Nef(X), f ∗D ≡ D implies D ≡ 0.

(7) For any ω ∈ Posn−1(A), f ∗ω = (deg f)ω implies ω = 0.

(8) For any ω ∈ Pos1(A), f ∗ω = ω implies ω = 0.

Proof. (1) and (5) are equivalent by Proposition 3.1. (4) and (6) are equivalent by almost

the same proof of Proposition 3.1. Clearly, (1) implies (2).

Consider the Jordan canonical form of f ∗|H1(X,OX) with the Jordan blocks J1, · · · , Jm.

Let ri be the rank of Ji and λi the corresponding eigenvalue of Ji. Let {xij}j be the

corresponding basis of Ji such that f ∗xij = λixij + xij+1
if j < ri and f ∗xij = λixij if

j = ri. Note that {xij ∧ xi′j′}ij ,i′j′ forms a basis of H1,1(A,C) and f ∗|H1(X,OX) determines

f ∗|H1,1(A,C). Suppose |λ1| = 1. If r1 > 1, then f ∗(x11 ∧ x11) − x11 ∧ x11 = λ1x11 ∧ x12 +

λ1x12 ∧ x11 + x12 ∧ x12 . If r1 = 1, then f ∗(x11 ∧ x11) − x11 ∧ x11 = 0. Note that the

coefficient of x11 ∧ x11 in f ∗(xij ∧ xi′j′ ) is 0 for any ij 6= 11 or i′j′ 6= 11. Therefore, for any

ω ∈ H1,1(A,R), the coefficient of x11 ∧x11 in f ∗ω−ω is 0 and hence f ∗ω−ω 6∈ Pos1(A)◦.

So (2) implies (3).
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Suppose f ∗ω = ω for some nonzero ω ∈ Pos1(A). Write ω =
∑
aij ,i′j′xij ∧ xi′j′ . Let s

be the minimal one such that asj ,sj 6= 0 for some j. Let t be the minimal one such that

ast,sj 6= 0 for some j. Let t′ be the minimal one such that ast,st′ 6= 0. Then the coefficient

of xst ∧ xst′ in f ∗ω is |λs|2ast,st′ . So |λs|2 = 1 and hence (3) implies (8). Clearly, (8)

implies (3) and (6).

Note that f ∗(x11 ∧ · · · ∧ xmrm ∧ x11 ∧ · · · ∧ xmrm ) = |λr11 · · ·λrmm |2x11 ∧ · · · ∧ xmrm ∧ x11 ∧
· · · ∧ xmrm . Then deg f = |λr11 · · ·λrmm |2. Denote by the (n− 1, n− 1) form

x∗ij ∧ x
∗
i′
j′

= x11 ∧ · · · ∧ x̂ij ∧ · · · ∧ xmrm ∧ x11 ∧ · · · ∧ x̂i′j′ ∧ · · · ∧ xmrm .

Suppose f ∗ω = (deg f)ω for some nonzero ω ∈ Posn−1(A). Write ω =
∑
aij ,i′j′x

∗
ij
∧ x∗i′

j′
.

Take s, t, t′ like above. Then the coefficient of x∗st ∧ x∗st′ in f ∗ω is deg f
|λs|2 ast,st′ . So |λs|2 = 1

and hence (3) implies (7).

Suppose f∗Z ≡w Z for some nonzero Z ∈ NE(A). By the projection formula, f ∗Z ≡w
(deg f)Z. So (7) implies (5). �

Lemma 6.3. Let f : A → A be an isogeny of an abelian variety A. Then Per(f) is

Zariski dense in A.

Proof. Let n be a positive integer such that (n, deg f) = 1. Denote by Torn(A) be the

set of n-torsion points of A. For any x ∈ Torn(A), f(x) ∈ Torn(A). We claim that

f |Torn(A) is a bijection. First, if f(x) = 0, then (deg f)x = 0. Since (n, deg f) = 1,

x = 0. So f |Torn(A) is injective and hence bijective since Torn(A) is finite. In particular,⋃
(n,deg f)=1 Torn(A) ⊆ Per(f). Let B be the closure of

⋃
(n,deg f)=1 Torn(A). Then B is

a closed subgroup of A. Suppose B 6= A. By Poincaré’s complete reducibility theorem

(cf. [28, §19, Theorem 1]), there is an abelian subvariety C of A such that B ∩ C is

finite and B + C = A. Then for any n > ]B ∩ C and (n, deg f) = 1, we have {0} 6=
Torn(C) ⊆ Torn(A) ⊆ B and hence Torn(C) ⊆ B∩C. However, ]Torn(C) > n > ]B∩C,

a contradiction. �

Lemma 6.4. Let f : A → A be a PCD surjective endomorphism of an abelian variety

A. Then f + a is PCD for any a ∈ A.

Proof. Denote by g := f + a. Since f is PCD, Fix(fn) 6= ∅ for some n > 0 and we may

assume fn is an isogeny. Note that gn = fn + b for some b ∈ A. By Proposition 2.3,

Fix(f in) is finite for each i > 0. So f in − idA is still an isogeny and hence Fix(gin) is

finite and nonempty for each i > 0. Since Fix(gn) 6= ∅, gn is an isogeny after choosing

a suitable identity. By Lemma 6.3, Per(gn) is Zariski dense and hence g is PCD by

Proposition 2.3. �
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Krieger and Reschke [20, Proposition 2.5] gave the following characterization of PCD

isogenies. By applying the above lemma, we generalize it a little bit.

Theorem 6.5. Let f : A → A be a surjective endomorphism of an abelian variety A of

dimension n. Then f is PCD if and only if none of the eigenvalues of f ∗|H1(X,OX) are

roots of unity.

Proof. Write f = g+a where g is an isogeny and a ∈ A. By Lemma 6.4, f is PCD if and

only if so is g. Note that T ∗a |H1(X,OX) = id. So the theorem follows from [20, Proposition

2.5]. �

Now we may construct a PCD endomorphism (automorphism) which is not amplified.

Example 6.6. Let ϕ(x) =
n∑
i=0

aix
i be a Salem polynomial where a0 = an = 1 and n > 2.

For example, we may take the Lehmer’s polynomial

ϕ(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.

It is known that ϕ(x) is irreducible and it has exactly two real roots α > 1 and 1/α off

the unit circle S1 := {z ∈ C | |z| = 1}. Note that no root of ϕ is a root of unity. Let

M ∈ GLn(Z) such that the characteristic polynomial of M is ϕ. For example, we may

take M as 

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an


Let E be an elliptic curve and A := E×n. Then M induces an automorphism f : A→ A

via f(x) = Mx. Note that no eigenvalue of f ∗|H1(A,OA) is a root of unity. By Theorem

6.5, f is PCD. However, some eigenvalue is of modulus 1. So f is not amplified by

Theorem 6.2.

Applying Theorem 6.5, Pink and Roessler showed the following result.

Theorem 6.7. (cf. [35, Theorem 2.4]) Let f : A → A be a PCD endomorphism of an

abelian variety A. Suppose f(X) = X for some (irreducible) closed subvariety X of A.

Then X is an abelian variety.

Next, we consider the restriction, lifting and descending problems.

Lemma 6.8. Let f : A→ A be a PCD surjective endomorphism of an abelian variety A.

Let B be an (irreducible) closed subvariety of A such that f(B) = B. Then f |B is also

PCD.



ENDOMORPHISMS OF PROJECTIVE VARIETIES 21

Proof. By Theorem 6.7, B is an abelian variety and we may assume that B is a subgroup

of A. Denote by t := f(0) ∈ B and g := f − t. Then g(B) = f(B) − t = B − t = B

and g(0) = 0. Since f is PCD, so is g by Lemma 6.4. By Proposition 2.3, Fix(gi|B) is

finite for each i > 0 and hence g|B is PCD by Lemma 6.3. So f |B is PCD by Lemma 6.4

again. �

Lemma 6.9. Let π : A→ B be a surjective morphism of abelian varieties. Let f : A→ A

and g : B → B be surjective endomorphisms such that π ◦ f = g ◦ π. Suppose f is PCD.

Then so is g.

Proof. Replacing f by a positive power, we may assume f is an isogeny. We may also

assume π is a homomoprhism and hence g is an isogeny. By Proposition 2.3, we may

work over an uncountable field. It is clear that Per(g) is Zariski dense in B. Suppose

Fix(gn) is infinite for some n > 0. Then Fix(gn) is uncountable. By Lemma 6.8, for each

y ∈ Fix(gn), fn|Ay is PCD where Ay is an irreducible component of π−1(y). In particular,

Per(fn|Ay) 6= ∅ for each y ∈ Fix(gn). Note that Per(f) ⊇
⋃
y∈Fix(gn) Per(fn|Ay). Then

Per(f) is uncountable, a contradiction. �

Lemma 6.10. Let i : A → B be an inclusion morphism of abelian varieties. Then the

restriction i∗ : NSQ(B)→ NSQ(A) is surjective.

Proof. We may assume i is also a group homomorphism. By Poincaré’s complete re-

ducibility theorem (cf. [28, §19, Theorem 1]), there is an abelian subvariety A′ of B such

that A ∩A′ is finite and A+A′ = B. Define π : A×A′ → B via π(a, a′) = a+ a′. Then

π is an isogeny. Define j : A → A × A′ via j(a) = (a, 0). Then π ◦ j = i. Note that

j∗|NSQ(A×A′) is surjective and π∗|NSQ(B) is isomorphism. Then i∗|NSQ(B) is surjective. �

Proposition 6.11. Consider the commutative diagram of abelian varieties

0 // A
i //

f
��

B
π //

g
��

C //

h
��

0

0 // A
i // B

π // C // 0

where f, g, h are surjective endomorphisms. Then g is amplified (resp. PCD) if and only

if both are f and h.

Proof. We may assume that f, g, h are isogenies (cf. Lemma 6.4).

Suppose g is amplified. Clearly, f is amplified. Suppose h is not amplified. By Theorem

6.2, h∗D ≡ D for some D ∈ Nef(C)\{0}. Then g∗π∗D ≡ π∗D and hence g is not amplified

by Theorem 6.2 again. So we get a contradiction.
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Suppose f and h are amplified. Let V be the space of the image of g∗|NSQ(B) − id. By

Lemma 6.10, i∗D is ample for some D ∈ V , i.e., D is π-ample. Suppose h∗E−E is ample

for some E ∈ NSQ(C). Let F := g∗(π∗E)−π∗E = π∗(h∗E−E) ∈ V . By [19, Proposition

1.45], nF +D ∈ V is ample for n� 1.

Suppose g is PCD. Then both are f and h by Lemmas 6.8 and 6.9. Suppose f and

h are PCD and g is not PCD. By Proposition 2.3 and Lemma 6.3, Fix(gn) is infinite

for some n > 0. Let Z be the neutral component of Fix(gn). Then Z is an abelian

variety of positive dimension and π(Z) = 0. Therefore, Z ≤ i(A) and i−1(Z) ⊆ Fix(fn),

a contradiction. �

Proposition 6.12. Let f : A → A be a surjective endomorphism of an abelian variety

A. Let f∨ : A∨ → A∨ be the dual endomorphism. Then f is amplified (resp. PCD) if and

only if so is f∨.

Proof. We may assume f is an isogeny (cf. Lemma 6.4) and prove by induction on dim(A).

If dim(A) = 0, it is trivial. If dim(A) = 1, f is amplified (resp. PCD) if and only if

deg f > 1. Note that deg f = deg f∨. So we are done.

Suppose dim(A) > 1. Since f∨∨ = f , it suffices for us to show that if f∨ is amplified

(resp. PCD), then so is f . If f ∗|N1(A) − id is surjective, then f is amplified (resp. PCD)

and there is nothing to prove. Suppose now that f ∗L ≡ L for some Cartier divisor L 6≡ 0.

Suppose K(L) is finite. Note that φL = f∨ ◦ φL ◦ f . If H = (f∨)∗D − D is ample,

then f ∗(−φ∗L((f∨)∗D))− (−φ∗L((f∨)∗D)) = φ∗LH is ample and hence f is amplified. If f

is not PCD, then Fix(fn) is infinite for some n > 0 by Proposition 2.3 and Lemma 6.3.

Let Z be the neutral component of Fix(fn) and denote by i : Z → A be the inclusion

map. Then dim(Z) > 0 and fn|Z = idZ . Note that i∨ : A∨ → Z∨ is surjective and

(f∨)n|Z∨ = id∨Z = idZ∨ . Then f∨ is not PCD by Lemma 6.9.

Suppose dim(K(L)) > 0. Let A1 be the neutral component of K(L). Then dim(A1) >

0, f(A1) = A1 and we have the commutative diagram

0 // A1
i //

g

��

A
π //

f
��

A2
//

h
��

0

0 // A1
i // A

π // A2
// 0

where A2 = A/A1 and dim(A2) > 0 since L 6≡ 0. Taking the dual of the diagram, we

have

0 A∨1oo A∨
i∨oo A∨2

π∨oo 0oo

0 A∨1oo

g∨

OO

A∨
i∨oo

f∨

OO

A∨2
π∨oo

h∨

OO

0oo
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Suppose f∨ is amplified (resp. PCD). Then so are g∨ and h∨. By induction, so are g = g∨∨

and h. By Proposition 6.11, so is f . �

Finally, we are able to give another criterion of PCD endomorphisms.

Theorem 6.13. Let f : A → A be a surjective endomorphism of an abelian variety A.

Then f is PCD if and only if f ∗D 6≡ D for any nef Cartier divisor D 6≡ 0.

Proof. We may assume f is an isogeny by Lemma 6.4. Suppose f is not PCD. Then

f∨ is not PCD by Proposition 6.12. By Proposition 2.3 and Lemma 6.3, Fix((f∨)n) is

infinite. In particular, there is a positive dimensional abelian subvariety B∨
p∨

↪−→ A∨ such

that (f∨)n|B∨ = idB∨ . Taking the dual, we have an fn-equivariant surjective morphism

p : A → B such that fn|B = idB. Let H be an ample Cartier divisor on B and

D :=
n−1∑
i=0

(f i)∗p∗H. Then D 6≡ 0 is a nef Cartier divisor and f ∗D ≡ D.

Suppose f ∗D ≡ D for some nef Cartier divisor D 6≡ 0. We show by induction on

dim(A) that f is not PCD. Suppose D is ample. By [25, Proposition 2.9], f is of null

entropy and hence not PCD (cf. Lemma 3.4 or Theorem 6.5).

Suppose D is not ample. Replacing D by a numerically equivalent class and some

multiple, we may assume D is effective and basepoint free (cf. [22, Proposition 3.10]).

Let ϕ|D| : A → X be the morphism defined by the linear system |D|. Then D = ϕ∗|D|H

for some very ample Cartier divisor H of X. Let B be the neutral component of K(D).

We have f(B) = B and dim(B) > 0 by [28, Application 1, page 60]. Note that D|B+a ≡ 0

for any a ∈ A. Then ϕ|D|(B + a) is a point and hence ϕ|D| factors through the natural

quotient map p1 : A→ A/B and p2 : A/B → X by [6, Lemma 1.15]. Let D′ := p∗2H and

g := f |A/B. Then D′ 6≡ 0 is a nef Cartier divisor of A/B and g∗D′ ≡ D′. By induction,

g is not PCD and hence f is not PCD by Lemma 6.9. �

7. Proof of Theorems 1.8 and 1.9

We first prove Theorem 1.8.

Lemma 7.1. Let f : A → A be a PCD endomorphism of an abelian variety A. Then

there is no dominant rational map π : A 99K P1 such that π ◦ f = f .

Proof. Suppose such π exists. By the same argument in the proof of Theorem 2.7, we

have f−1(Xy) = Xy for some general y ∈ P1. Let B be an irreducible component of

Xy which is a prime divisor of A. We may assume f−1(B) = B after replacing f by a

positive power. Then B is an abelian variety by Theorem 6.7. We may assume B is a

subgroup of A. Then there is an f -equivariant fibration p : A → A/B. Note that A/B

is an elliptic curve and f |A/B is an (algebraic group) automorphism and hence has finite

order. However, f |A/B is PCD by Proposition 6.11, a contradiction. �
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Proof of Theorem 1.8. (2) and (3) are equivalent by [14, Theorem 1.2]. (1) implies (3)

by Lemma 7.1.

Suppose f is not PCD. By the same argument in the first part of the proof of Theorem

6.13, for some n > 0, there is an fn-equivariant surjective morphism p : A → B such

that dim(B) > 0 and fn|B = idB. Note that there always exists a dominant rational

map τ : B 99K P1. Denote by π := τ ◦ p. Then π ◦ fn = fn and hence fn has no Zariski

dense orbit. Suppose Of (x) := {f i(x) | i ≥ 0} is Zariski dense in A for some x ∈ A. Then

Of (x) =
n−1⋃
j=0

f j(Ofn(x)) =
n−1⋃
j=0

f j(Ofn(x)) and hence Ofn(x) = A, a contradiction. So (2)

implies (1). �

We show in the next two propositions that for a PCD endomorphism of an abelian

variety, any equivariant descending is a finite quotient of an abelian variety, and any

equivariant finite cover is still an abelian variety.

Proposition 7.2. Let π : A→ Y be a surjective morphism of normal projective varieties

with A being an abelian variety. Let f : A → A and g : Y → Y be surjective endomor-

phisms such that g ◦ π = π ◦ f . Suppose f is PCD. Then replacing f by a positive power,

there is an f -invariant abelian subvariety B of A such that, via Stein factorization, π

factors through the natrual quotient map p1 : A→ A/B and a finite surjective morphism

p2 : A/B → Y . In particular, g is PCD.

Proof. Replacing f by a positive power, we may assume f is an isogeny. Taking the Stein

factorization of π, we may assume π has connected fibres by [5, Lemma 5.2] and Lemma

3.6. Then the general fibre of π is irreducible and we may assume B := π−1(π(0)) is

irreducible. Note that f(B) = B and Theorem 6.7 implies that B is an abelian variety.

Let H be an ample Cartier divisor of X. By the projection formula, π∗H|B+a ≡ 0. Then

π(B + a) is a point. By [6, Lemma 1.15], p2 : A/B → Y via p2(a) = π(a) is well defined.

Note that p2 is birational and hence an isomorphism since A/B contains no rational curve

(cf. [19, Proposition 1.3]). Note that f |A/B is PCD by Lemma 6.9. �

Proposition 7.3. Let π : X → A be a finite surjective morphism of normal projective

varieties with A being an abelian variety. Let f : X → X and g : A → A be surjective

endomorphisms such that g ◦ π = π ◦ f . Suppose g is PCD. Then π is étale and hence X

is an abelian variety.

Proof. Let n := dim(X) and d := deg f = deg g. By the ramification divisor formula,

KX ∼ π∗KA + Rπ ∼ Rπ where Rπ is the ramification divisor of π. By the ramification

divisor formula again, KX ∼ f ∗KX + Rf where Rf is the ramification divisor of f .

So (fn)∗Rπ ∼ Rπ −
n−1∑
i=0

(f i)∗Rf for any n > 0. Let H be an ample Cartier divisor of
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X. Suppose Rf 6= 0. Note that (f i)∗Rf · Hn−1 is a positive integer for each i ≥ 0.

Then 0 < (fn)∗Rπ · Hn−1 = Rπ · Hn−1 − (
n−1∑
i=0

(f i)∗Rf ) · Hn−1 < 0 when n � 1, a

contradiction. Therefore, f ∗Rπ ∼ Rπ and hence f∗Rπ ≡w dRπ by the projection formula.

Then g∗π∗Rπ ≡w π∗f∗Rπ ≡w dπ∗Rπ. By the projection formula again, g∗(π∗Rπ) ≡ π∗Rπ.

Note that π∗Rπ is nef and Cartier. By Theorem 6.13, Rπ = 0. Since A is smooth, π is

then étale by the purity of branch loci. Then X is an abelian variety (cf. [28, Section 18,

Theorem]). �

We recall the following useful decomposition result by Nakayama and Zhang and refer

to [31, Definition 2.9] for the definition of weak Calabi-Yau varieties. Here, we recall a

fact that for an abelian variety A and a weak Calabi-Yau variety S, the Albanese map

albA×S is just the natrual projection pA : A × S → A. Note that in the following, we

remove the assumption about polarized endomorphisms in the original proposition by

applying its proof without the argument of polarized endomorphisms.

Proposition 7.4. (cf. [31, Proposition 3.5]) Let f : X → X be a surjective endomor-

phism of a klt projective variety X with KX ∼Q 0. Then there exist a finite covering

τ : A × S → X étale in codimension one for an abelian variety A and a weak Calabi-

Yau variety S, and surjective endomorphisms fA : A → A, fS : S → S such that

τ ◦ (fA × fS) = f ◦ τ .

Proof of Theorem 1.9. By [29, Chapter V, Corollary 4.9], KX ∼Q 0. Since X is klt, X

has rational singularities and hence the Albanese morphsim and the Albanese map are

the same (cf. [36, Proposition 2.3] or [18, Lemma 8.1]).

By Proposition 7.4, we have the following commutative diagram

A× S

τ

��

albA×S // A

π
��

X
albX // Alb(X)

where π exists by the universal property of the Albanese map. The same reason implies

that π is surjective and hence albX is surjective. Note that the whole diagram is (fA×fS)-

equivariant.

Suppose f is quasi-amplified. Then so are fA × fS and fA by Lemmas 3.9 and 3.7.

Since A and Alb(X) are abelian varieties, fA is amplified and hence so is g by Proposition

6.11. Suppose f is PCD. Then so are fA × fS, fA and g by Lemmas 3.6, 3.7 and 6.9.

In both cases, g is PCD (cf. Theorem 2.5). Taking the Stein factorization of albX and

applying [5, Lemma 5.2] and Proposition 7.3, albX has connected fibres by the universal

property. �
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