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MODULI OF HYPER-KAHLERIAN MANIFOLDS L.
{"Filling in” problem and the construction of maduli space)

Andrey N. Todorov

#0. INTRODUCTION.

It is a well known fact that if X is a compact complex simply connected Kihler manifold

with
¢ (X)=0
then
X=NX.xNnY.
XJx YJ
where

a) for each j
dimCHO(Xj,Q2)=1
and if qSJ- is a non-zero holomorphic two form on Xj’ then at each point xEXj it is a non-
degenerate, i.e. if -
S a0
B1u=2(4))q, gd2" Adz
then
det( d;ly)€T(U,0%)
Such manifolds we will call Hyper-Kahlerian.
b) For each i and ' _
. . P
O<p<n=dim¢Y, dlmCHo(Yi,Q )=0
and HO(Yi,Qn) is spanned by a holomorphic n-form wY'(n,O) which has no zeroes.
i
This fact is due to Calabi and Bogomolov. See [3]. An elegant proof based on Yau’s
solution of Calabi conjecture was given by M. L. Michelson. See [16].
The purpose of this article is to study the moduli space of the so called marked algebraic
Hyper-K#hlerian manifolds.
Definition. A triple
(X171)'-"’7b2;L)
will be called a marked algebraic Hyper-KiZhlerian manifold if X is a Hyper-Kihlerian
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maanifold

71 a-ms‘)'b2

is a basis of Hy(X,Z) and L is the imaginary part of Hodge metric on X as a class of
cohomology.
The aim of this article is to prove that the moduli space of marked polarized Hyper-
Kidhler manifolds exists and up to a component is isomorphic to
SO(2,by —3)/50(2)xSO(by—2)
where
by =dimgHZ(X,R).

The content of this article is the following:

In #1 we introduce the basic definitions and notations

In #2 we prove the following Theorem:

THEQREM 1.
Suppose that:
*:%* - D*
is a family of non-singular Hyper-Kahlerian manifolds such that:

a) #*:%* - D" has a trivial monodromy on Hy(X,Z)

b) scPNxD*
Lo
D*=D*
Then there exists a family
m:5—=D
such that all its fibres are non-singular Hyper-Kahlerian manifolds and we have
E*CcE
! 1
D*c D

( here D={t| teC and |t|<1})
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The idea of the proof of THEOREM 1.

First step.

We need to prove that the family $* —D™* can be embedded into a family 9§ —U®, where
U%=U\A, U is a polycylinder and A is a cmplex analytic subspace in U. Moreover U has
dimension equal to dimCHl(Xt,Q%)—l and Y—U® is the maximal subfamily in tyhe Kuranishi
family for which the polarization class L is of type (1,1).

Second step.

For any t€U® we can define the isometric deformations with respect to Yau’s metric
corresponding to L, and take the union of all these deformations. It is easy to see that they
form an open set in the the Kuranishi space. From the definition of an isometric deformation it
follows that the group SO(3) acts on them. Now if we change the complex structures on

$* .D*
simultaniously with an element
AeSO(3)
we will get another family
%% =D}y
which is not in "general” complex analytic one. The main point is that we can find
A€S0O(3) such that the family
%K—vDR
can be prolonged to a smooth family of Hyper-Kahlerian manifolds °.5A—.=DA, t.e. all the fibres
of %A—vDA are smooth Hyper-Kahlerian manifolds. From this result it is not so difficult to
get THEOREM 1.
In #3 we prove the following Theorem:
THEOREM 2.
There exists a universal family of marked polarized algebraic Hyper-Kihlerian manifolds:

A (EP

The construction follows Burns and Rapoport. See [6].
We have the so called period map:

. P12
P'm(u_:n....%) PHA(X.D)0C)

where
p(t)::(...,J w(2,0),...)
7i
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where w;(2,0) is the unique up to a constant holomorphic two-form on thrr'l(t). From
Bogomolov’s result, that there are no obstructions to deformations and Local Torelli theorem
we get that the irreducible component fm(r_nl,..,,,bz) is a non-singular manifold and
. : 2

m =bgy— =
dim (L571---"7b2) by —2, where by=dim-H“(X,C)
From Griffith’s theory of variation of Hodge structures we get that:

PR —50(2,b5 —2)/SO(2)xS0(by —2) CP(HA(X,Z)®C)

.11.~.‘rb2) &

is a local isomorphism. See [2].

The second part of this article
"MODULI OF HYPER-KAHLERIAN MANIFOLDS II”.
contains #4.
In #4 we prove THEOREM 3.
THEQREM 3. The period map
p:im(l_;nwdbz)—»P(HQ(X,Z)®C)

is an embedding up to a component of

m
(L:71....7b2)

Theorem 3 is a.positive answer to the so called global Torelli problem, and is in some
aspects a generalization of the theorem of Piatetski-Shapiro and Shafarevich about K3
surfaces. See [20].
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Ideas and methods of the proof of THEQOREM 3.

In order to prove Theorem 3 we need to compatify partially the family
EL_)m(Lr'Yllt'sz)
to a family
7 @
EL (L;71|--'7b )
2
by adding singular Hyper-KZhlerian algebraic manifolds for which L is a very ample line
bundle.

Next we prove that

m, .
(L771l~'11b2)

is a Hausdorff space and p can be extended to a proper étale map .

~50(2,b5~2)/SO(2)xS0(by-2)

:
A (PPN

But

SO(2,b2—2)/SO(2)xSO(b2-2)
is a Siegel domain of IV type and so it is simply connected domain of holomorphy. From this
fact and since P is a proper and etale map it follows that P is a surjective and one to one map

up to a component of

m
(L;71.~~.‘rb2)

So this proves that the period map is both injective and surjective up to a component of
the moduli space of marked polarized Hyper-K&Zhlerian manifolds. This generalizes a theorem
proved in [21].

The main step of the proof of Theorem 3 is the partial compactification of the moduli
space (one of its components) and it is based on Theorem 1.

The proof of Theorem 1 is based on the proof of Calabi’s conjecture given by Yau. See
[22]. More precisely we are using the existence of Ricci flat metrics on Hyper-Kihlerian
manifolds and the so called isometric deformations which existence is based on the solution of
the Calabi’s conjecture.

Theorem 1 gives an affirmative answer to the so called ™filling in problem™ posed by Ph.

Griffiths. See [11] and [18] for counterexamples in case of surfaces of general type.
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Theorem 1 is a generalization of some results of Kulikov’s . See [15]. Our proof is
entirely different from the proof of Kulikov’s theorem for K3 surfaces and in my opinion his
proof can not be generalized for higher dimensions.

The first examples of Hyper-Kihlerian manifolds of

dlmCX>3

were constructed by Fujiki. See [12]. These examples were generalized by Beauville and
Miyaoka. See [1].
It is pot very difficult to prove the surjectivity of the period map for all Hyper-Kahler
manifolds. This will be done in a future paper.
Recently O. Debarre constructed using the so-called elementary transformations introduce
by Mukai in {17] constructed two bimeromorphic but not biholomorphic non-algebraic Hyper-
Kahlerian manifolds. See [7].

CONJECTURE. Let X and X’ be two marked Hyper-Kdhlerian manifolds which have

the same periods, then X is bimeromorphic to X’.
Part of this work was done during my stay in IAS in Princeton and was supported by an

NSF grant. It was finished in Max-Plank Institute fur Mathematik in Bounn. The auther

expresses his gratitude to both institutes for the hospitality and excellent conditions for work.
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#1. SOME DEFINITIONS AND NOTATIONS.

Definition 1.1. Let X be a Kdhler compact manifold such that:
a) m1(X)=0

b) dim-X=2n, n>3

c) dimCHO(X,Q?‘):l and let wX(Q,O) is a non-zero holomorphic two form on X, then
wx(2,0) is a non-degenerate form on X, which means that Aan(Q,O)::.uX(?n,O) is a
holomorphic 2n form which has no zeroes.

Then X will be called a Hyper-Kdhlerian manifold.

Some notations:

wy (k,O) will be a holomorphic k-form on X.

wx(O,k)= W, i.e. the anti-holomorphic k-forms on X.
D-will be the unit disk, i.e. D:{t€C| 1t|<1}

D*=D\{0} ‘

If 7:5—D is a family of manifolds, then Xt=1r'1(t).

If g is a Riemannian metric on X by V we will denote the Levi-Chevita connection on
T*X, where TX is the tangent bundle on X and T*X is the cotangent bundle. By T*X®C, we
will denote the complexified cotangent bundle. V induces a covariant derivative on APT*X for
any p€Z. This covariant derivative we will denote it again V.

['(X,7F) will denote the global sections of any sheaf ¥ on X.
If eT(X,APT*X), then locally:

where
Ap=(al,...,ap) & Bq:(ﬁl,...,ﬂq)

are multi-indices.
[44 (44 DY
dz P=dz LA..Adz P and zl,..,z'n are local coordinates.

If qﬂEF(X,ApT*X) and d¢=0, then [¢] we will denote the class of cohomology that
defines in HP(X,C).
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#2. PROOF OF THEOREM 1:

THEOREM 1.
Suppose that:
*:%*-D*
is a family of non-singular Hyper-Kahlerian manifolds such that:
a) 7*:%* —D* has a trivial monodromy on H2(Xt,l)
b) ScPNxD*
1o
D*=D*
Then there exists-a family m:%—D such that all its fibres are non-singular Hyper-
Kihlerian manifolds and we have
' C%
! l
D*cD
( here D={t| t&C and |t|<1})

This problem was first posed by Ph. A. Griffiths.

For the proof of Theorem 1 we will need some preliminary matirial.

#2.1. HODGE STRUCTURES OF WEIGHT TWO ON HYPER-KA HLERIAN MANIFOLDS.

Definition 2.1.1. The triple

(X;‘fl"’Tbo’L)
we will call a marked, polarized H}per-Ké’.hIerian manifold if
a) X is a Hyper-Kihlerian manifold;
b serey is a basis of Hy(X,Z d
) 7y 7b2 is a basis of Ho(X,Z) an
¢) L is the cohomology class of the imaginary part of a Kihler metric on X, i.e.

L=[Im(ga’ﬁ)]€H2(X,Z)

Remark. Notice that two marked, polarized Hyper-Kahlerian manifolds
(X;vl,---,‘er;L)
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and
(X,;ﬁli‘"1ﬁb2;[")

are isomorphic iff there exists a biholomorphic map
o: X=X’

such that

a) ¢*(L)=L ;4*:H2(X’,2)—:H(X,Z)

b) ¢*(71)=ﬁ1 ;¢*:H2(X,Z)—':H2(X’,Z)

Definition 2.1.2.

Suppose that
7B —5
is a family of a non-singular Hyper-Kihlerian manifolds and suppose that the monodromy
operator T induced by the action of
71(S) on Ho(X,,.Z)
is the identity operator. It is clear that if we fix a basis
1 Th
of H‘Z(Xt’z)’ then since the monodromy operator
T=id for every s€S§
Tla---,‘}‘bg
will be a basis in Hy(Xg,Z) for every s€5. So we can define the period map:
p:S —P(H2(X,C))
in the following manner:
p(s)::(...,J uxs(‘Z,O),...)
7
Now we want to see where the image of S lies in P(H2(X,C)).
For this reason we will define a scalar product in H2(X,R), where X is a marked Hyper-

Kahlerian manifold.

Definition 2.1.3. The scalar product < , > in H2(X,R) is defined as follows

<w1,w2>=J wll\wg/'\Ln_2
X
and L is the polarization class.
Proposition 2.1.3.4. The scalar product < , > has signature (3,b2—3), where
by=dimg HZ(X,R).
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It is easy to see that
<L,L>=J L?® = Vol(X)>0
X
where Vol(X) is the volume of X with tespect to the metric (ga,ﬁ) and [Im(ga’ﬁ)]=L.

Next we will prove the following relations:

(2.1.4.) <wx(2,0),wx(2,0)>=0
(2.1.5) <wyx(2,0),wg(0,2)>>0
(2.1.6) <wx(2,0),L>=0

(2.1.4.) and (2.1.6.) follow from the definition of < , > and comparing the types of
forms. '

In order to prove (2.1.5.) we need the following lemma:
LEMMA. If 7 is a primitive form of type (p,q), then

(p+a)(p+q+1)

('J_ )P q( l) ) LG'p'q

2
=" Bn-p-q)

where * is the Hodge star operator.
Proof: See [8].
Q.E.D.

From this lemma. it follows that

<y (2,0) Ty (B0)>=| wx (2,0) A B0)=llwy (2,0){2>0
So (2.1.5.) is proved. X
Let
w(2,0) = Rewy (2,0)+i Imwy(2,0)
then from 2.1.4. and 2.1.5. it follows that:
' <Rewy (2,0), Rewy (2,0)>=<Imuwy (2,0),Imuy (2,0)>=}luy [2>0
and
<Rewx(2,0),Imw(2,0)>=0
So we see that L, Rewy(2,0) & Imwy(2,0) are three orthonormal vectors in HQ(X,R)
and they have positive self intersection number. So from here it follows that < , > has at least

signature (3,by~-3). Since we have
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H2(X,R)=RRewy (2,0)+RImwy (2,0)+RL+H " (X R)o
where

Hl’l(X,R)o={weHl’l(X,R)|<w,L>=O}
i.e. H'M(X,R)o are the primitive cohomology classes of type (1,1). From the LEMMA it
follows that if weH "} (X,R)o, then

<w,w><0

It is easy to see that if weHl’l(X,R), then
<w,wy(2,0)>=<w,wx(0,2)=0
So Proposition 2.1.3.4. is proved.
Q.E.D

The scalar product < , > defines a non-singular quadric

Qc P(H2(X,C))
in the following way:
(2.1.7.) . Q:={ueP(H2(X,C))| <uu>=0}
Let 2 be
Q::{ute <u,ﬁ>>0}
Qis an open subset in Q.
(2.1.8.) Let a(L)={ueq| <u,L>=0}
From Griffith’s theory [13] we obtain that if
®—S
is a family of marked polarized Hyper-K&hlerian manifolds, then
p(S)c (L)
where p is the period map.
Definition 2.1.10.

Q(L) we will call the period domain of the polarized Hodge structures of weight two on
Hyper-Kihlerian manifolds.
Remark 2.1.11.
a) If LEHQ(X,Z), then < , > is defined over Z.
b) It is not difficult to see that:
Q(L)=800(2,b5—3)/U(1)xSO(bgy —3)
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#2.2. GEOMETRY OF Q.
Proposition 2.2.1.

There exists a one-to-one map ¢ between points of 2 and all two dimensional oriented
vector subspaces ECHQ(X,R) such that < , > (defines in #2.1.) when restricted to E is
positive, i.e. <u,u>>0 for YueE.

Proof: The map ¢ is constructed in the following way:
Let
xeQCP(HA(X,2)®4C),
then x defines a line
IkcHZ(X,2)®C
Let
wy=Rewy +ilmwy #0 wy €l

From the definition of 2 it follows that
<x,x>=0 & <x,T>>0=>x#X

So
Rewy#0 Imwyz#O

Now we can define ¢ in the following way:
#(x)=Ex

where Ex is an oriented two dimensional subspace in HQ(X,[R) spanned by

Rewy and Imwy

The orientation of Ex is g'iven.by {Rewy , Imwy}.

Since from

<x,x>=0 and <x,Xx>>0=x#X if xeQ,

then it follows that to the point X coresponds E, i.e
$(X)=Ex
where
E<=Ex (as subspaces without orientation)
but
Ey has a different orientation then E.
Now it is very easy to show that ¢ is a one-to-one map. Indeed let E be a positive two
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dimensional subspace in H2(X,Z)®R.
Let e, and e, be two orthonormal vectors in Eyx and x=e, +ie, .
Clearly |
<x,x>=0 and <x,x>>0
So the vector x#0 defines a line Iy in H2(X,R)®C and the line Iy defines a point uel.
Q.E.D.
Corollary 2.2.2 Let
mH—S
be a family of marked polarized Hyper-Kahlerian manifolds, then the period map
p:S—Q
can be defined in the following way:
p(s) = By ' {Rews(2,0),Imuws(2,0)}
where Ej- means Eg with an orientation
{Re wg(2,0),Imwg(2,0).
Corollary 2.2.3. 2=504(2,b,—3)/U(1)xSO0(by—3).
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#2.3. GEOMETRY OF PLANE QUADRICS ON Q.
Proposition 2.3.1.

Let E be a three dimensional subspace in HQ(X,R) such that the restriction of < , > on
E is srtrictly positive, i.e < , >]E>O'
Then
P(E®C)NQ
will be a non-singular projective plane quadric.
Proof: From the definition of Q2 it follows that
{1 is an open subset in Q,
where Q is a non-singular hypersurface of degree 2 in P(H2(X,C)). Clearly
P(EQRC)NQ
is a plane quadric. We will prove first that P(EQC)NQ=P(E®C)N.
Since
ECH2(X,R) & dimE=3
and the restriction of < , > on E is srtrictly positive it follows that
P(E®C)NQCR
Indeed if
ueP(E®C)NQ
then any vector wely defined by u in H2(X,R)®C), (where |, is the one dimensional subspace
in H2(X,R)®C), that corresponds to u) has the property that
<w,wW>>0 & <w,w>=0
So we get that :
<u,T>>0 & <uu>=0 in P(H3(X,R)®C))
Since this inequality is valid for any
ue P(E®C)NQ
we get that
P(E@C)NQC
Q.E.D.
Next we will prove that P(E®C)Q is nonsingular projective curve of deg=2.
Proof: Suppose that P(E®C)()Q is a singular plane quadric, then
P(E&C)NQ

should have a unique singular point q.
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From the definition of  we know that
YueQ =>u#T
So we get that q#q. Remember q was a singular point on the plane quadric
P(E@C)NQ
From here and the fact that
ECH2(X,R)=> E®C=E®C
we get that the plane quadric
' P(E®C)NQCE
has two different singular point q & q.
This is so since
P(E®C)NA=P(ERC)NN , q & TeR= q#7
This is clearly a contradiction with the fact that deg P(E®C)NQ=2.
Q.E.D.
Definition 2.3.2.
Grass(3,bR) “€" {all oriented 3-dim subspaces ECH2(X,R)| < , >|E>O}
Corollary 2.3.2.1.

There is a one two-one map
v:Q(R)—Grass(3,bg;R)
where .
Q(R) def {all-projective plane quadries FCQ| F:F}
Definition 2.3.3.
If ECH2(X,R) & <u,u>>0 VueE
then we will denote by P}(E)(R)CS the plane quadric
QNPERC)=QMNP(E®C) (See Prop. 2.3.1.)
Proposition 2.3.4. Let LeH2(X,Z) & <L,.L>>0, Q(L):={ue®| <u,L>=0}and VC(L) be a
complex analytic submanifold. Let z€Q be any fixed point such that zg¢Q(L), then the set
Az (V)(R) U (PLE)(R)| 2€P!(E)R) & PA(E)R)NV 6}
is a real analytic subset in Grass(3,b,;R).

Proof:
This is a standard fact from the theory of the grassmanian manifolds. See [13].

Q.E.D.
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Definition 2.3.5.
Let zeQ & z be a fixed point then we will denote by A;(R) the following set:
def
4z(R) Z {PUE)(R) | 2P (E)(R)}

Remark 2.3.5.1.

It is a standart fact that Az(R) is a real analytic subset in Grass(3,by;R) and dimg
Az(R)=bg —3.(See [13].)
Proof of the fact that dimg Az(R)=bgy —3:

We know from 2.2.1. that to the point z€2 corresponds to a two-dimensional space
E,CH2(X,R)
Clearly that there is one-to-one correspondence between the following three sets
iECHQ(X,R)K . >g>0 , dimgE=3 & EZCE}
the points of AZ(R)CGrass(S,b2;R)}
and the lines in in the convex cone

T,(R) & (ueH2(XR) [uLE, <uu>>0)}

dimg Az (R)=dimg P(¥7(R))

where P(¥z(R)) means the projectivization of ¥,(R).
So
dimp Az(R)=dimp¥;(R)~1=by -3
This follows directly froin the definition of ¥;(R).
Q.E.D.

Definition 2.3.6. Let

Gra.ss(3,b2;C) dgf{all oriented ECHQ(X,C)i dimCE=3 & <, >|E>O’ Le. <u,T>>0 VueE}

Corollary 2.3.6.1.

There is a one two-one map v:Q(C)— Grass(3,b,;C) where
a(c) 4f {all projective plane quadrics FCQ}
Definition 2.3.7.
If ECH?(X,C), dimE=3 & <u,u>>O0 for all ucE
then we will denote by P!(E)(C)CQ the plane quadric QﬂP(E)EQﬂIP(E) (See Prop. 2.3.1.)
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Proposition 2.3.8.

Let LeH2(X,Z) & <L,L>>0, Q(L):={uef| <u,L>=0}, VCAL) be a complex
analytic submanifold. Let z€Q2 be any fixed point such that z¢Q(L),
then the set

2.3.8.1 Az(V)(€) ¥ (P ()| 2P (E) & PI(E)V£0)

is a complex analytic subset in Gra.ss(3,b2;C). .

Proof:

This is a standard fact from the theory of the Grassmanian manifolds. See [13].

Q.E.D.

Remark 2.3.9. Let r be the complex analytic conjugation in HQ(X,R)®C, ie.
7(u)=T for ue H3(X,R)®C

then T acts on Grass(3,b2;C) in the following manner:
r(E)=E

Clearly that
Grass(3,b2;C)T=Grass(3,b2;R)

where

Grass(3,b2;C)r=={EC Grass(3,bq;C)| ET=E)

Definition 2.3.10. Let

(L) %! {ueq| <u,L>=0, where LeHZ(X,R) & <L,L>>0)}

Remark 2.3.11.

Let zeQ(L) and let E; be the two dimensional subspace in H2(X,IR) that corresponds to
the point z, i.e. E;=¢(z)(See (2.2.1.))
then

< 7 IEg()”

E(L) is the three dimensional subspace in HQ(X,[R) spanned by E, and L.
Proof: We know from 2.2.1. that

<, >|EZ>O
From the definition of Q(L) it follows that LLE, and <L,L>>0
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So Remark 2.3.11. is proved if we use 2.2.1.
Q.E.D.
Main Lemma 2.3.12.
Let V be a complex analytic submanifold in Q(L), where Q(L) is defined as in 2.3.10.
Let zeV and Ez(L) be defined as in Remark 2.3.11. Let UCQ(L) be any open
neighborhood of the point zgV.

Then there exists a point

yeU & ygV
such that
PH(Ey(L))(R)NP'(E(L))(R)#0
i.e. .
P (Ey (L)) (RNP (Ez(L))(R)=tUt
and
t & tgQ(L)
Proof;

Let x€P!(Ez(L))(R) and xgQ(L)
Sublemma 1. Ax(C)2(L) contains an open subset U'CQ(L) and V’=V[Ax(C)CU’, where

Ax(C) €HPI(E)| xeP!(E) }

Proof:
Stepl. dim Ax(C)=by—2.
Proof of stepl:
| Since xEQCP(H2(X,C)) and from ‘the definition of P(HQ(X,C)) it follows that x

corresponds to a line

IXCH2(K9C)
Clearly from the definition of Ax(C) it follows that A4 (C) is parametrized by all lines
in:
¥ (C) % (all 1 in H2(X,C)| | is one dim subspace, u€l, u£0 <uF>>0 &
<lx,ﬁ>=o}

It is not difficult to see, using the fact that < , > has a signature (3,by,—3) that

. . bl
¥x(C) is an open cone in C *
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So dim¥x(C)=by—1= dimCP(‘Y'x(C))=b2—2=>dimc.4x(C)=b2--.2= dim
| Q.E.D.
&.‘31)_2' Ax(C)NQ(L) contains an open subset.
Proof: Since Ax(C) contains P}(Ex®C) where ExCH2(X,R) we have

P!(Ex ®C)=P}(Ex®C)=P(Ex @ C)2=P(Ex ®C)NQ( See 2.2.1.)
So we get that
P!(Ex®C) intersects Q(L) transversally
This is so since
a) PY(Ex®C) is a plane quadric, i.e. plane curve of degree 2
b) P!(Ex®C) contains z and Z, where both z #Z € Q(L) since Ex® C=E,®C.
So from here and the fact that transversality is an open condition we get what we need
from the fact that dim¥x(C)=by—1. See [13].
: Q.E.D.
So the Sublemma is proved
Q.E.D.
Step 3. Ax(R)NQ(L) is not contained in V, where
Ax(R) L (PYE)(R)| xeP!(E)(R)}where x is fixed and V is the submanifold in Q(L)
defined in 2.3.12. )
where dimRE=3 and < , >IE>O.
Proof of step 3:

Suppose that Step 3 is not true. This means that we have the following inclusion:
Ax (VI R)NAL)CV
where
Ax(V)(R) EHPUE)R)IxePHE)R) & PU(E)R)NV 0} CGrass(3,byiR)
where dimRE=3 and <, >1E>O'
We will show that this inclusion is absurd.
It was proved that Ax(V)(R) is a real anlytic subset in Grass(3,bo;R). More
over we have
Ax(VY(R)=Ax(V)(C)"
On the other hand we have the follwing inclusions

(%) Ax(€)T=Ax(R)CAx(V)(C)CAx(€)
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From (*) we obtain that the complex analytic submanifold A¢(V)(C) in A«(C) is locally
defined by

(*%) f(z',..2M)=0 ,f,(z},...,2™)=0,....,f (z},...2M)=0

where
f,(z'5..02™) , £a(24 002 s £ (21 i2™)
are complex-analytic functions in
Ax(C)
From
(*) Ax(C)T=Ax(R)CAx(V)(€) C4x(C)
We obtain that
f,(Rez',...,Rez™)=0 ,f,(Rez',...,Rez™)=0,....,f (Rez',...,Rez™)=0
on Ax(C)T=Ux(R) and so on Ax(C). From here it follows that
fi(z',...,2™M=0 , f(z},...,2™)=0,....,f (z},...2™)=0
on A(C).
This is so since the following trivial fact is valid:
Trivial fact.
If f(z',...,2™) is a complex analytic function on C™ and
f(Rez!,...,Rez™=0
then
f(z*,...,2™)=0 on C™.
See [13].
But this is a contrudiction since Ax(V)(C) is a proper analytic subset in Ax(C) defined
locally by
f,(2},...,2™)=0, f2(21,...,zm)EO,....,fk(zl,...,zm).EO
Step 3 is proved.
Q.E.D.
The end of the proof of Lemma 2.3.12.:

From Step 3 it follows that there exists a plane quadric
P!(Ey(w))(R) in Ax(V)(R)
such that

PH(Ey (w))R)NQL)=yUy gV
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where
Ey is the two dimensional subspace in HZ(X,R)
that corresponds to the point y€Q(L) by 2.2.1. and Ey(w) is a three dimensional subspace
spanned by Ey and a vector WEH2(X,R) is such that
<w,w>>0 and <w,Ey>=0
If w is proportional to L then our Lemma is proved.
Suppose that w#L.
Let us consider the four dimensional subspace in HQ(X,R) spanned by Ey and L. Let us
denote this four dimensional subspace by 8. Clearly
Ey(L)C8 and E,(L)C8

and

(**) <, >|Ey(L)>O and < y >|Ez(L)>o
So

Ey(L)NEZ(L)=E, & dimgE,=2

From (*x) and 2.2.1. it follows that
) O
< >|Et>

So again using 2.2.1. we get that
P(EZ(L))(RNP!(Ey (L)) (R)=tUE
Q.E.D.
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#2.4. CALABI-YAU METRICS AND ISOMETRIC DEFORMATIONS.

Definition 2.4.1.
A Kihler metric g, 7 0ona Hyper-Kihlerian manifold X will be called Calabi-Yau metric if

Ricei (ga E)=§6 log det (ga B)EO

The existence of a Calabi-Yau metric follows from the deep work of Yau [22]. In the

polarization class L, there exists a unique Calabi-Yau metric g - such that

a,f
[SQ,E]EL

Let us fix the Calabi-Yau (ga F) metric in L. This metric induces a covariant differentiation
on
A(T*X8C)

We will denote it by V.

Lemma 2.4.2. Vwy(2,0)=Vwy(2,0)=0
Proof: See [1].
Q.E.D.
Corollary 2.4.2.1. If wy(2,0)=Rewy (2,0)+ilmwy(2,0), then
VRewy (2,0)= Vimwy(2,0)=0
(2.4.3.) From the definition of a Kahler metric, it follows that
& p g, By —0.
VA1 g, 2" Nz )=V(Im ga,ﬁ)_o

(2.4.4.) Rewy (2,0), Imwy(2,0) and Im(ga,ﬁ) define a three-dimensional subspace

Ey (L)CT(X,A*T*X&C)
EX(L) is spanned by three forms parallel with the respect to the connection induced by
the Calabi-Yau metric (ga E)

Since

Rewx(2,0), Imwx(2,0) & Im ga,ﬁ

are harmonic forms, then

(2.4.4.1.) Ex(L)CH(X,R)
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Proposition 2.4.4.2. Rewy(2,0), Imwy(2,0) & Im ga,:ﬁ_ is an orthonormal basis in
Ex(L)CI(X,A?T*X@C)
Proof: Since
HO(X,02)=Cuy (2,0)

and the definition of < , > we may suppose that

<Rewx(2,0),Rewx(2,0)=<Imwx(2,0),Imwx(2,0)>=<lm gCl’,E’Im gO’,B>=1
From the definition of < , > and comparing the types of the forms it follows that

<Rewx(2,0),lmux(2,0>=<Imwx(2,0),lmga,3>=<Imux(2,0)a1m ga,ﬁ>=o
This proves (2.4.4.2)

Q.E.D.

(2.4.5.) Isometric deformations.

Let us define v in the following way:

., def aRewy (2,0)+blmwy (2,0)+cIm £, 3
where
a, b & ceR and a.2+b2+c2=1
Since
7€Ey (L)CT(X,A*T*X®C)
then
() Vy=0

Locally 4 can be written in the following way:

'Y:Z‘Yp,ydprde
If
> grpdx” Adx”
is the Riemannian Ricci flat metric on X defined by the Calabi-Yau metric (ga,ﬁ) on X, then
we will define the complex structure operator J(v) in the following manner:
(2.4.5.1.) I(N%)= g y_n) ENX,T*QT)
o (105)=(E €7 7r)
V({I(v))=0

page
24



LEMMA 2.4.5.2.

a) J(v) defines a new integrable complex structure on X.
b) v is an imaginary part of a Calabi-Yau metric with respect to the new complex structure
J(v) and this metric defined by ¥ is equivelent as a Riemannian metric to the Calabi-Yau
metric ga,ﬁ’ that we started with.
Proof: Since
VI(y)=0
if we prove that in each point x€X we have
J(7)od(yv)=~id
then J(v) will define an almost complex structure globally on X. Then we will need to show
that J(v) is an integrable one.
(2.4.5.2.1.) J(v)od(v)=—id at VxeX.
Proof:

Since wX(Q,O) is a parallel with respect to the connection V of the Ricci flat metric, it
follows that the holonomy group of the Calabi-Yau metric is Sp(n). This means that globally
there exists

JET(X,T*®T)
such that _
Vj=0 & joj=-id (j defines a quaternionic structure on X)
and we have at each point x
| T;}(’Osn":c%cﬂj
This splitting is global.
On the other hand the Calabi-Yau metric on-

T, }1{’O=H“=R“+R“i+an+R“k, where k=ioj

is induced by the standart scalar product on H®, so from here it follows that we can find an

orthonormal quaternionic basis in

* 1,0

Tx,X

~H"=C"+CPj
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h1=e1+e1+nj, ..... LM =e"4e<"j

Then at a point x€X we have:

n_o.o
(+) tm(s, )|, 1,0=1Y; %'
<. X =1
(*%) wx(2,0) .4 o=e1/\e1+n+...+an/\e2n=i\‘ eaelth
T ? +

x,X i=n

’

Let us denote by I the original complex structure on X, then
I(Im(g,, 5))=1
Let
J=J(Rewx(2,0)) & K=J(Imwx(2,0))
From (*) and (*%) we get:
() 2=12=K?=-id, U4+JI=IK+KI=JK+KI=0
Let me remind You that
 def aRewy (2,0)+blmwy (2,0)+clm 8,7
and
a2+b2+c2=1; a, b & ceR
From (#*x) we get
J(7)0J(7)=a2IoI+b2.IoJ+c2KoK=(a.2+b2+c2)(—id):—id
So we have proved that the J(v) is an almost complex structure on X.

Proof of the fact that J(v) is an integrable complex structure.

Proof: The proof is based on the following fact:
ANDREOTTI-WEIL REMARK.

Let w be a n-complex-valued C* form in a neighbothood of a point x€X, where
dimR X=2n
Let w satisfy: _

a) P(w)=0, where P are the Pliicker relations. This means that at each point x€X
Wlgex =C A AL CieT;,xec

80 w defines a subspace
T%OCT;X®C

at YxeX.
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b) w/\U:f(xl,...xgn)dxlA../\den, where f(x]‘,...xgn)dxll\../\dx2n>O in U. This means that
1,0;..1,0
Tx +Tx =T;,X®C
in U

¢) dw=0

a) and b) means that w defines an almost complex-structure in U. ¢) means that this almost
complex structure is an integrable one.

So in order to use the Andreotti-Weil remark we need to construct the form w, that
satisfies a), b) and c). So first we will construct a globally defined form “3(7)(2’0) of type
(2,0) with respect to J(v) and then we will prove that

W) (2mOY=AR wy (2,0)

fulfills the conditions of Andreotti-Weil remark.

Construction of wJ(’Y)(?’O).

Let
(o,8,7)
be an orthonormal basis of
Ey (L)CD(X,A2T*X)

with respect to the scalar product induced by Calabi-Yau metric on I‘(X,/\2T*X). We suppose
that

(,8,7)
define the same orientation of Ey (L) as
{Rewx(2,0),Imwx(2,0),lm(ga,—ﬁ)}
(2.4.5.2.1.) wJ(T)(‘Z,O):a-l-lﬁ
Proposition 2.4.5.2.2.

wJ(7)(2,O)=a+iﬂ is a form of type (2,0) with respect to the almost complex structure on
X defined by J(v).

Proof:

Since both wJ(T)(2,0)=a+iﬁ & J(7)
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are parallel with respect to the connection V. We need to check that

WJ(,},)(?eO):U‘i‘lﬂ . .
is a form of type (2,0) at one point x€X with respect to J(v). We will define an action of
Sp(1) on T*X. Remember that the holonomy group of the Calabi-Yau metric

i i * .. )
(ga,ﬁ) is Sp(n), so we can introduce on Tx,X a quaternionic structure, i.e.
T;,X=Cn+cnj=ﬂn (H is the quatenionic field)
The Calabi-Yau metric (ga 3) induces the standard quaternionic scalar product.
y

Let

hl=el4et1j . hM=e"4e2j ’
be a quaternionic orthonormal basis in H?, then the restriction of Calabi-Yau metric on T; X
is obtained from the following quaternionic product in HY. Let
u=Yhlu; & v=Fhlv,
then
<U.,V>=Z:uivi
We can identify
Sp(1)={A€H] AA=1}
Then Sp(1) acts on H" in the following way:
Let A€Sp(1l) and let
i
u-—-—:h ui
then
el
Au=3Y"h wA
Clearly Sp(1)CSp(n); i.e. this action of Sp(1) preserves the quaternionic scalar product
<u,v>=3u. v,

The following remark is an easy exercise.

*

Remark. Sp(1) induces an action on /\“‘ZT)c
b

X and

2
EX(L)CF(X,A“T;,X)
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is invariant under the induced action of Sp(1l). Moreover Sp(l) induces the standard SO(3)
action on Ey (L) with respect to the Euclidean metric on E (L) induced by the orthonormal
basis

{Rewx(Q,O),Imwx(Q,O),Im(ga,ﬁ)}
From this remark it follows immediately that there exists

A€eSp(1)CSp(n)
such that:
(=) A(Rewy(2,0))=0a, A(Imwx(2,0))=8 & A(Im(ga,ﬁ))27

So
A(“X(g’o))=w3(7)(2ao)

On the other hand from the definition of J(7) we see immediately that
(%) I(y)=AIAt
So from (*) and (**) we get that wJ(7)(2,O) is a form of type (2,0) with respect to the
almost complex structure J(v). This is so since A"~ is a subspace of vectors of type (2,0) in
2 ok
A (Tx,X®C)

with respect to the complex structure defined by I and if

I(y)=AIA¢,
then
A(A?C) cAX(TE x C)
and if
wEAQ(T;,X®C),
is of type (2,0) with respect to I, then A(w) is of type (2,0) with respect to J(y)=AIAt.

Q.E.D.
Proof of 2.4.5.2.b): If
7=Zyp,ydx“/\dxy
then v defines a scalar product in the following way on_T;’X:
Let

u=2uadxa and v:Evﬁdxﬁ

then

<u,v>7=Zua7anﬂ

page
29



[ e _— 4 waea I R SO U VR U P - ]

If we prove that for
X
Yue Tx,X
we have:
<J(7)u,u>4>0
then it will follow that + is an imaginary part of a Kihler metric on X with respect to J(7v),

this follows from the definition of a Kahler metric and sipce

dy=0

We may suppose that at YxeX
Sa 5" oB

then
J('f)%=')’a'@, TaB= "7 ga & J(7)od(y)=-id = ZT&ﬂ‘Tﬁu:-éaV

B
If

u:Zuadxa

then

<J(T)u’u>7=z7paua7#ﬂuﬁ=zua(_70p)7pﬁuﬁ=
> ual8yglug=d u’>0

The last calculation shows that v is an imagunary part of a K&hler metric on X with respect
to the complex structure J(v7) and this new Kihler metric is equivelent as Riemann metric to
the Calabi-Yau metric we started with.

Q.E.D.
Definition 2.4.5.3.

From Lemma 2.4.5. it follows that every oriented two dimensional submanifold
ECEX(L)CI‘(X,AQT*X) defines a new complex structure on X. Since all oriented planes in
three dimensional space is parametrized by the two dimensional sphere S2 we obtain a family
of Hyper-Kahilerian manifolds

m: B §2
Such family we will call a family of isometric deformations with respect to the Calabi-Yau

metric g

@B’
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Proposition 2.4.5.4. Let
7 B G2

be a family of marked isometric deformations with respect to the Calabi-Yau metric
&, 3 such that [Im ga,—]=L,

b

then

p(S%)=F'(Ex (L))R)C

where Ex (L) is the three dimensional space spanned by
Rewy(2,0), Imwy(2,0), Imga,ﬁ

p is the period map

Proof:

Every point t€S2 defines an oriented two plane E; CEy (L) in the following manner

E;={Rew(2,0),Imw,(2,0)}

where
{Rew(2,0),Imw,(2,0)}

is an orthonormal basis in E, and
w(2,0)=Rew;(2,0)+ilmw(2,0)

Now our proposition follows from 2.2.1.

Q.E.D.
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F#2.5. HILBERT SHEME OF HYPER-KAHLERIAN MANIFOLDS.

Let X be a projective Hyper-Kahlerian manifold embedded in PN. The Fubbini-Schtudy
N

metric on P in a natural way defines a class of a polarazation L.

Definition 2.5.1.

Let Hilbx/PN be the irreducible componeﬁt of the Hilbert scheme that contains X.
Let Hilb N be the the subscheme of Hilb N that parametrizes all non-singular
X/P X/P

Hyper-Kdhlerian manifolds in the flat family:
9 — Hilb
) x/PN
Remark,

Grothendieck proved in {[SGA] that Hilbx/PN is a quasi-projective algebraic space.

Proposition 2.5.2. Hilb is a non-singular manifold.
x/pN

Proof: Bogomolov proved in [4] that the Kuranishi family 7:%—3% has a non-singular base %
and
: : 1
dim¥%=dim~H"(X,0y)
From the local Torelli theorem ( See [3]) it follows that we may suppose that
%CQCP(H2(X,C)). Let L be a fixed class in HQ(X,Z) and let
% ={te%| L is of type (1,1) on Xt:.‘:r'l(t)]
It is an easy exercise to see that %; can be defined also in the following manner:
%, =QNH[,, where H; ={u€Q| <u,L>=0}
i.e.
. 1,1
dlmc%_—.h -1
On the other hand we may consider %y to be a maximal local slice to the orbits of the
action of subgroup GCPGL(N) on H . where H is the universal covering of
8 (N x/pN o x/eN .

Hilb .
x/pN

REMARK, 1)PGL(N) that preserve the fixed marking of the family ‘i}—'-f{X/PN, where this
family is just the pullback of the standart family
— Hilb
Y x/eN
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2) The action'of G on 11 N i8 defined correctly, since PGL(N) acts on Hilb N ina
: x/p x/p
natural manner and so G acts on H .
x/pN

3)Notice that since rl(f{x

PN)=0 it is enouph to fix the marking of one of the fibres of
§—H

/
x/PN

then the marking of all the fibres will be fixed.

From Lemma 3.1. it follows that if Gy is the group of biholomorphic automprphisms of a
fixed Hyper-Kahlerian manifold that preserve the marking of a fixed Hyper-Kahler manifold
then G is the same group for all Hyper-Kihler manifold. It is clear that Gg is 2 normal

subgroup in G and G/Gg, acts freely on ﬁ‘(/PN.

From here it follows that locally H is a product of %; xOrb(G/G,) So H is a
x/pN L*¥Orb(6/Go) x/pN
non-singular manifold. From here it follows that
Hilb
x/pN
is a nonsingular quasi-projective manifold.
Q.E.D.
Definition 2.5.3.

rp € {yeaut B2(X,Z)] <v(u),7(s)>=<uu> & 7(L)=L}

Remark 2.5.4,
a) We can define correctly the period map, p:Hilb —-Q(L)/T
) . ¥ ! p X /PN (L)/ L

b) From general Baily-Borel compactification theory, it follows that Q(L)/I‘L is a quasi-

projective manifold.

LEMMA 2.5.5. There exists an open Zariski set Hilb’ N CHilb N such that
X/P X/P

w def o miy ) =p(Hilb

X/P x/pN

is an open Zariski subset in Q(L)/FL and every point of W corresponds to an algebraic Hyper-
Kihler maifold. (p is the period map)
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Proof; From the famous Hironaka’s ”resolution of singulariries” Theorem it follows that we

can find
Hilb
x/pN
such that
1} Hilb CHilb
)T ¢ /pN Iy N

2) Hilb N is a projective manifold obtained from Hilb N by successive blows
X/P . X/P

up on non-singular submanifolds.

3) Hilb Hilb is a divisor with normal crossings.
) Hitby /pN Ty BN ¢
4) g—sHﬁbx/PN is a flat family obtained by the pull back of the family
9 — Hilb on Hilb
x/pN x/pN

Borel proved in [5] that the period map: p:Hilb pi —Q(L)/T'[ can be prolonged to a

X/
holomorphic map:

5:Hilb —Q(L)/T
p x/pN (L)/Ty,

Proposition 2.5.5.1. The map p:Hilb —Q(L)/T; is a surjective map.
X/PN ( )/ L p

Proof of 2.5.5.1.;: In Proposition 2.5.3. we proved that locally Hilb N is a product of
: X/pP

%LXG/GO
where over %L we have a family of marked polarized Hyper-Kihlerian manifolds:

7: $—%y C¥( the base of the Kuranishi family)
and from local Torelli Theorem we know that
From (x) and the fact that the morphism between two projective varieties is proper it follows
that p(Hi.l'b N) is a proper algebraic subsvariety in the projective algebraic variety

X/pP
Q(L)?PL
with the same dimension, so p(Hilb =Q(L)/T
p( X/PN) (L)/ L
Q.E.D.
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Since the map

5:Hilb — Q(LY/T
B X/PN (L)/Ty,

is a proper surjective map, then

5(Hilb Hilb =V
PURITD, N \itby o)

is a proper algebraic submanifold in

Q(L)/T.
Let
(2.5.5.2.) \ défV\(vn(Q(L')T—rL\Q(L)/rL))
Since
(TTMRA(L)/Ty)
is a proper algebraic submanifold in
/Ty
it follows that V is a proper algebraic submanifold in
Q(L)/Ty.
Let
def
(2.5.5.3.) W = (Q(L)/T NV
Let
Hilb' o S Hib\(Hib_ N57H(V))
X/P X/P X /P!

Then we will have p( Hilb’ N):VV. So Hilb’ N is what we need. On the other hand
X/P X/pP :

from the definition of V' it follows immediately that p(Hile/PN)z‘fV.

Q.E.D.
Corollary 2.5.5.4.

In Q(L) there exists countable unions of complex analytic submanifolds V’ such that every
point
veQ(L\V’ %€f W & W is an open subset in Q(L)
corresponds to a marked algebraic polarazid Hyper-K&hlerian manifold Xy, .

Proof of 2.5.5.4.:
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Let 7:Q(L)—Q(L)/T and V’=1"1(V)
where we shall remind that V is a proper subspace in Q(L)/T'[ defined as follows:
(2.5.5.2.) % défV\(Vn(me\n(L)/rL))
Since I'| consists of countable elements, then from the definition of V’ and = we get that
V?* consists of countable number of proper subspaces in Q(L).
. Q.E.D.
Corollary 2.5.5.5. Let ﬁX/PN be the universal f:overing of Hile/PN and let m:P—H

x/pN
be the pullback of the family

—Hilb
? x/pN

then p(ﬁx/PN)=W=Q(L)\V’ where p is the period map and it is well defined since

m( HX/PN)=0

and if we mark one of the fibres of

then we can assume that the whole family
o) —H
) x/PN
is a marked family of polarrized Hyper-K&hlerian manifolds.
Proof: This follows immediately from the way we define W in Q(L).

Q.E.D.
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#2.6. THE PROOF OF THEQOREM 2.
PROOF: The proof is based on several lemmas and on the THEQREM 2 which will be proved
in #3. Let me remind the statement of THEOREM 2:
THEOREM 2.
There exists a universal family of marked polarized algebraic Hyper-Kahlerian manifolds:
I —M

(L;Tlv"lsz)

From THEOREM 2 it follows that we may consider the family of marked algebraic
polarized Hyper-Kihlerian manifolds
r*:%* - D*

that fulfills the conditions a) and b) of THEOREM 1 as a subfamily of

EL#m(L;71.~~.1b2)
i.e.
*
FTCE
[
E 3
D C!In(l';711“17b )
_ 2
LEMMA 2.6.1. There exists an open set U® in ’.IR(L,T - such that
- P71
a) D*cUu° 2

b) p(U®)=U\A in Q(L), where A=U[\V’ is a complex analytic subspace in U & Uisa
policylinder, which contains p(D*)CQ(L). (V’ was defined in #2.5.5.4. & p is the period map)
Proof: From a Theorem 9 proved by Ph. A. Griffiths in [13] it follows that we can

prolong the period map

p*:D*—»Q(L.)
to a map .
p:D—Q(L)
since the monodromy of the family
*:%* —~D*
is trivial.

Let us denote by z the point p(o)€Q(L), where o=D\D*. We may suppose that p(D*) is
a punctured disc in Q(L). Let U be a policylinder containing p(D)CQ(L). Let {U;} be a
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covering of U[\W by polycylineders. Remember that W=Q(L)\V’, V' is an union of complex
analytic subspaces in Q(L). and every point of W corresponds to a marked algebraic Hyper-
Kahlerian manifolds. {See #2.5.5.4.) Even more for the period map

P:m(L;Tl."db )—*Q(L)
2
we have

-1
Wi=m .
(W) (L;'rl..-.vbQ)

(See 2.5.5.4. & #3.)
We may suppose that over each component of p'lUi we have a family of Hyper-Kihlerian
manifolds.
Clearly {p'lUi} is a covering of

*
D Cm('—;"r]_.--v'rbz)

It is an obvious fact that if we glue all
{P-lUi}
along isomorphic marked polarized Hyper-K&hlerian manifolds then we will get what we need,
i.e. we will construct

[a]
Utc ‘Em(L;‘fl.--.‘rbz)

such that we have a family of marked Hyper-Kihlerina manifolds over U®
%% - U°

and
p(U°)=U\4

where U is a policylinder in (L) and A=U[V’is a comp]exl-a.nalytic subset in U.

Remark 2.6.1.2. A defined as in Lemma 2.6.2. contains the point z=p(0)€eD.

(See Definition 2.6.1.1.})

Remark 2.6.1.3.

Over U° we have a family of marked polarized Hyper-Kiéhlerian manifolds %$° — U°
with a fixed class of polarization L.

Definition 2.6.2. Let Ct,l—»Uo)cS2 be C%° family of isometric deformations with respect to the

Ricci falat metric that corresponds to the class LEHl’l(Xt,Z) for each teU°CM in

(L;71""7b2)
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the family $° —U°.
Remark 2.6.2.1, The family CU--»UDXS2 of isometric deformations with respect to the Ricci-flat

metric that corresponds to the class L that corresponds to a very ample line bundle,is correctly
defined, since the family $° —U® from which we obtained 3 —U®xS? is just the restriction of

the universal family EL—~!IJ?(L which existence is proved in THEOREM 2.

;71.--.Tb2)

Proposition 2.6.3. Let cU.:p(onsz) be the image of U°xS2 under the period map p, then

every point u€? is contained in an open set Uy CQ such that ueU, CUCH i.e. U is an open
subset in Q.
Proof: We will use the following Proposition:

Proposition 2.2.1.

There exists a one-to-one map ¢ between points of Q and all two dimensional oriented
vector subspaces ECH2(X,R) such that <« , > (defines in #2.1.) when restricted to E is
positive, i.e. <u,u>>0 for uek.

Sublemma 2.6.3.1. A point u€U=p(U°xS2)CQ, where UCCQ(L) iff E,=¢(u) and L spanned
a three dimensional subspace E (L) such that:

a) <, >[E (L)>O and b) Ey(L) contains Ey=¢(x), where xe U CQ(L)
u

* Proof of the Sublemma:

From the definition of iscmetric deformations with respect to a Calabi-Yau metric with a
fixed imaginary class L, Proposition 2.2.1. and the way we define the family °U—>U0x82.
Sublemma 2.6.3.1. follows directly. . '

Q.E.D.
Now Proposition 2.6.3. follows immediately from Proposition 2.2.1., Sublemma 4.6.3.1. & the
following fact:
Fact.

The condition that the restriction of < , > on a two-dimensional subbspace in HQ(X,Z)
is strictly positive is an open condition in the Grassmanian of all two dimensional subspaces in
HQ(X,Z). The same is true for the three dimensinal subspaces in HQ(X,Z).

The end of the proof of Proposition 2.6.3.

Indeed if u€U then from Sulemma 2.6.3.1.=that Ey and L spanned a three dimensional
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subspace Ey(L) in HQ(X,Z) on which < , > is strictly positive. From here and continuity
arguments it follows that if u’ is a point which is nearly enouph to the point u€ql, then Eu,

and L will span a three dimensional subapace E (L} in HQ(X,Z) on which

<, >|Eu,(L)>O

and E, ,(L) will contain a two dimensional subspace
Ex 1 to L, where xeU® & ¢(x)=Ey.
Q.E.D.
Proposition 2.6.4. Let 7:3*—D™ be a family of marked Hyper-K#hlerian manifolds that fulfills
the conditions a) and b) of THEOREM 1, then
A) $* as a C* manifold is diffeomorphic to XxD*, where X is a Hyper-Kihlerian manifold.

B) Aim wu(2,0)=w;(2,0) exists and w,(2,0) is a complex non-degenerate C* form on X.
ueD*
Proof of Proposition 2.6.4.:

Let me remind You the following Definition:

Definition 2.6.1.1.

Let us denote by z the point p(0o)€Q(L) where o=D\D*. From the following Lemma
(LEMMA 2.6.1.

There exists an open set U° in M, such that
A (L171c---7b2)

a) D¥cU°

b) p(U°)=U\A in Q(L), where A is a complex analytic subspace in U & U is a policyclinder, which

contains p(D* )CQ(L). (remember p is the period map))

it follows that we may suppose that

z€U & 2eV’CQ(L)(for the defintion of V’ see #2.5.5.4.)

From the definition of Q(L) it follows that
, >0
< 7[Eq(L)

where ¢(z)=Ez and E,;(L) is the 3-dimensional space in HQ(X,Z) spanned by E; and L
So we have a plane quadric
P'(Ez(L))(R) CQ

We can use now Lemma 2.3.12. Let me remind it:
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Main LEMMA 2.3.12.
Let V be a complex analytic submanifold in Q(L), where Q(L) is defined as in 2.3.10.

Let ze V.
Let E;(L) be defined as in Remark 2.3.11.
Let U be any open neighborhood of the point z€ V.

Then there exists a point

yeU & yeV
such that
PL(E, (L))(RYPH(Ez(L))R)%0
PL(E, (L))R)NP (Ex(L))R)=HT
and

P& tgQ(L).

from 2.3.12. it follows that there exists a point

yeUu®
such that

P! (Ey (L)(R)NP!(EZ(L)(R)=t{Jt
and

t & tgQ(L).

Definition 2.5.4.1. Let Ui be a policylinder in U with the following properties:
a) The closure UiCU and zeﬁi

b) Uiﬂp(D*)zDi;é@ & D, is a disk in p(D*).

c) y€U,, where y is defined by Lemma 2.3.12.

b) The closure of D, is contained in p(D).
It is an obvious fact that such Ui exists. Even more from local Torelli Theorem we may
suppose that p'l(U-) is a disjoint union of policylinders in I,
1 ('-,71.--,71,2)

(Remark 2.6.4.1,

From now on we will denote one of the components of p'l(Ui) again by U;, where p:UCQ(L))

then we have a family of marked Hyper-Ki hlerian manifolds °.5i—>Ui
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Definition 2.6.4.2. Let ‘lli—ﬂui be a family of marked polarized Hyper-K&hierian manifolds

that corresponds to all isometric deformation with respect to the Ricci-flat metric that

corresponds to the polarization class L of all fibers of the family

i i
which is subfamily of the universal family of marked polarized Hyper-Kihlerian manifolds
IL_'m(L;vl....‘rbz)

Proposition 2.6.4.2. The period map p restricted to U.(may be after shrinking U.) is an

embedding, i.e.

p:‘ll-lCQ
Proof: By assumption we have:

U, cQ(L)cq
On the other hand from the definition of isometric deformation and Proposition 2.4.5.4. it
follows dirctly that p restricted to ‘U.i is an embedding.

Q.E.D.
Remark 2.6.4.2.1. From now on we will suppose that CU.i is contained in §.
2.6.4.3. From the proof of Proposition 2.6.3. it follows that every point x of cU.i is contained in
‘U.i with on open neighborhood in , i.e. cui is an open set in .
2.6.4.4. Since
. yEU-l, where y is defined as in Lemma 2.3.12.

it folows from the defintion of ‘U..l and the isometric deformations that

Pl(I*Z.y(L))(R)C"'LI.i
where ¢(y)=Ey & Ey(L) is the subspace in HQ(X,Z) spanned by Ey and L, ¢ is defined in
2.2.1.
2.6.4.5. From Lemma 2.3.12. and the Definition of U, it follows that

teU,
where

PH(Ey(L)(R)NP(EL(L))R)=tJt (See Lemma 2.3.12.)
2.6.4.6. Since

yeu; & the Definition of U,
we get that the point y corresponds to a marked Hyper-Kihlerian manifold Xy. So every point
tePl(Ey(L))(R) corresponds to a marked Hyper-Kahlerian manifold X;.
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2.6.4.7.a. Since < , >|Ez(L)>0 then the group SO(3) acts on E;(L) and this action is defined
in the followin way:

First we fix an orthonormal basis, namely let {e,,e,} be an orthonormal basis in E,
and e;=L. Then if AESO§3) and '
V=E a;e; €E4(L)
then i=1 3
A(v) % 3 aa(e)eE (L)
2.6.4.7.b. We know from Lemmai:Z..k.12. that
E;(L)NEy(L)=E;=E;CEz(L)
Let
A€SO(3)
and such that
A(Ez)=E, .

2.6.4.8. For each
u€U,D*=D{'CM

(Li'rl.--.‘rbz)
we will define on X, 2 new comp,ex structure Xé' in the following way:

Let
,EU(L);{Reuu(z,O), Imwu(z,O),ga"F(u)}cr(x,A‘JT*)

where g, E(u) is the Calabi-Yaun metric on X, that corresponds to the class L.

From #2.1. & #2.4. we know that we mau suppose that

{Rewu(Q,O), Imwu(Q!O),ga,'ﬁ(u)}

is an orthonormal basis in Ey(L), which is defined by wy(2,0) depending holomorphically on u.
From #2.4. we know that
A(Ey)={A(Rewy(2,0)),A(Imwy (2,0))} CT(X,AT*)

defines a new complex structure on Xy, which we will denote by X‘{}. So we get a new family:
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def
%iA-—»D-l’A, where D; = U.ND

In the same way we can get a new family
*A *
from the family
L*—~D*
in the way described above.
Remark. The family $iA_'Di A is not a holomorphic family but only a C® family of complex

structures over the disc Di A
2.6.4.9. From the way we defined Cl.li it follows that D.i Ac"-U.i even more

2.6.4.9.a. Proposition.

If u—2z(convrging), where u€D,(remember that the closere of D, contains z) then
A(u)y—A(z)=t(converging), where
PL(Ey (L))(R)NPH(E5(L))(R)=tUE
and A(u) corresponds in 4. to the comlex structure Xé on X. Clearly A(u)EDi,ACCU.i.
Proof: 2.6.4.9.a. follows from the way we define the family Sf*—»Di’A
Q.E.D.

Sublemma 2.6.4.10.

Let X, be the the marked Hyper-Kdhlerian manifold that corresponds to the point
teP!(Ey(L))(R)NP!(Ey (L))(R)C CO
let u—z, where u€D;, let w"u\(Q,O) be the holomorphic two-form on Xf{‘ (where A€S0O(3) and
A(Ez)=E,.) normalized in the following way <w‘é(‘2,0_),w{}(2,0)>=1 then
Jim wf}(2,0)=w,(2,0)

where A(z)=t & u€D; and w;(2,0) is the holomorphic two form on X;.
Proof: From 2.6.4.3. we know that every point t€L; is contained in °U.i together with an open
neighborhood in Q. From the fact that we have a holomorphic family of marked Hyper-
Kzhlerian manifolds over "'U.i, i.e.

B, —~U,
the fact that
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2
QLiCQCP(H (X,€)
and the normalization condition, i.e.
<wf(2,0),w8 (2,0)>=1
we get that as cohomology classes .

Jim Wi (2,0))=(w,(2,0)]

where A(z)=t & u€D; & and w;(2,0) is the normalized holomorphic two form on X,.

From

Jim, [ (2,0)]={wy(2,0)]

we obtain that

lliﬂzw{}(’),O):wt(?,O)

This is so since dimCHO(Xt,Qg)=1 for all t€U; and we have a holomorphic family
B, — .
i i
of marked Hyper-K&hlerian manifolds and u—z in U;. This follows from 2.6.4.3.

Q.E.D.
Cor. 2.6.4.10.1. The family

*A ¥

defined in 2.6.4.8. can be embedded in C°° family of non-singular marked Hyper-K&hlerian

manifolds over the disk DA’ where DA is the closure of DR, l.e. in ‘EEA—-»DA.

Proof of 2.6.4.10.1.: Since

a) Di,ACDZC“iC“

b} The closure of Di,A contains t=A(z.) and is contained in D ,

c) Every point of °l.l.i is contained together with an open set in

d) the closure D, of the punctured disc D} is contained in U

e) Over U we have a holomorphic family %— 4l of marked Hyper-Kahlerian manifolds
and from 2.6.4.10. we get immediately that 2.6.4.10.1. is proved.

Q.E.D.
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From 2.6.4.10.1. =that the family %A—rDA as C® manifold is diffeomorphic to DxX, where
X is Hyper-Kahlerian manifold . From here we obta.in that °.5*A—-*D:\ is topologocally the
same as $*—D* . This follows directly from the Definition of Isometric deformations. So
2.6.4.A) is proved.

Q.E.D.
Proof of 2.6.4.B):

From Lemma 2.3.12. it follows that there exists a point t€P!(E,(L))(R) such that
HUJF =P (E4(L))(RINP (Ey (L))(R)
where
yeU\V’
and so y is the image under the period map of marked Hyper-K&hierian manifold with a class
of polarization L. See Lemma 2.6.1.
Let
Sy 98 {ueP! (E,(L))(R)|Ey=¢(u) & E, contains L}
(4 is defined in 2.2.1.)
It is easy to prove that as C® manifold Sy ={teC] [t|=1}.

Sublemma 2.6.4.B.1. t|_t €S, where tJt =P (Ey (L)} R)NP(EZ(L))(R) forVyeU, CQ(L).
Proof of Sublemma 2.6.4.B.1.: From the definition of

| PH(Ey(L))(R) & P} (E5(L))(R)
it follows that a point u

uEPl(Ey(L))(R)nPl(EZ(L))(R)

iff

- $(u)=Ey=Ey(L)NE,(L)( See 2.2.1.)
so LeE, and Sublemma 2.6.4.B.1. follows from the definition of SL'

Q.E.D.

Sublemma 2.6.4.B.2. There exist three points t,, t, & t; on SL CP!(Ez(L))(R) such that:
a) t;, t; & t3€U; and t), t; & t3 are three diiferent points.
b) t;, t; & t; define three classes of cohomologies [w(2,0)], [w2(2,0)] & [w3(2,0)] that are
linearly independent in E5(L)CH2(X,C).
Proof of Sublemma 2.6.4.B.2.:

From Lemma 2.3.12. and the definition of U, it follows that CiliﬂSL#@, i.e. te‘ﬂiﬂSL. From
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2.6.4.3.we get that t is contained in U, together with an open set. From.here 2.6.4.B.2.a.
follows immediately.
Q.E.D.

In order to prove 2.6.4.B.2.b. we need to notice that if {; %t in Sy, then the classes of
cohomologies {[w;(2,0)] & [w,(2,0)] that are defined by t, & t, are linearly independent in
H“Z(X,C). If [w4(2,0)] is a linear combination of {w,(2,0)] & [w,(2,0)], then -

t3€P(Eyyy )P (Eo(L))(R)
where E;,, is the plane in H2(X,C) spanned by [w,(2,0)] & [w,(2,0)}(This is an easy exersice.)
but

P(Ey,2 JOP'(Ez(L))(R)
consists of at most of two points, since P!(E,(L))(R) is plane quadric and so have deg 2. Now
2.6.4.B.2.b. follows from 2.6.4.B.2.a. and the fact that S; U, is an open set in S .(See
2.6.4.3.)

Q.E.D.

Remark. Since t;, t, & tSESLﬂc’U.i so they corresponds to three marked Hyper-Kihlerian
manifolds Z,,Z, & Z, that are in isometric families of three Hyper-K&hlerina manifolds X, X,
& X5 with respect to the Calabi-Yau metric that correponds to L. X,, X, & Xj are fibres in

°.6i—>UiCQ(L)
over the points u,, u; & uz€U;. This follows from the definition of U,. See 2.6.4.
Definition. Let A, B & Ce&SO(3) such that A(Ez)=Et1, B(Ez)zli}t2 & C(EZ)"—‘EtB' From
2.6.4.7. we know that SO(3) acts on Ez(L).
Sublemma 2.6.4.B.3.

a) For each ueD™* the forms w{}(2,0), uE(Q,O) & w,(;(Q,O) defined three linearly independent
classes of cohomologies in Eu(L)CHz(X,C) where Ey(L) is the three dimensional space
spanned by [Rewy(2,0)], [Imwy(2,0)] & L. and this is an orthonormal basis for each u€D* in.
Ey(L).

b) There exists three constants a, b & c€C such that uu(Q,O)-_—a.wﬁ(2,0)+bw§(2,0)+cw§(2,0)
as a form for each uéD*. where A, B & C are fixed elements in SO(3) and A(z)=t,,
B(z)=t, & C(z)=tj3 and t;, t, & t5 are defined as in 2.6.4.B.2.

Proof of a): 2.6.4.B.3.

a) follows immediately from 2.6.4.B.2. and continuity arguments.

Q.E.D.
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Proof of b):
From 2.6.4.B.3.a) it follows that there exists three constants a, b & c€C such that
[w2(2,0)]=aluz (2,0)}+b[w7 (2,0))+clws (2,0)]
Now we must prove that:
() wy(arbye,) Eawl (2,0)+bwd(2,0)+cw (2,0

is a form on X, for YueD*.

Proof of(*): () follows from the way we define the action of SO(3) on
Ey(L)CT(X,A?T*X)
Let me remind You how we define this action. First we fixed an orthonormal basis that
depends holomorphically on ueD*.
e,(u)=Rewy(2,0), e;=Imwy(2,0) & ea(u)=Im(ga,E)
where
fes(u)]=L in H2(X,Z)
if A€SO(3) and

3
v(u)=z ae;(u)
i=1

then
def 3

AC() Y 2 Al (w)
From the Definition of wy(a,b,c) ié'_f(}llows that
(1 ' wy(a,b,c)EEL(LYCT(X,A*T*X®C)
From the defintion of the isometric deformations we know that
(I1) wy(a,b,c) is a holomorphic two-form on Xy © <wy(a,b,c),es(u)>=0
So if we prove that

<wy(a,b,c),ez{u)>=0
then (%) will be proved. So we need to prove (II).
Proof of (II):

From the defintion of the isometric deformations it follows that we need to prove (II) on

the level of cohomology classes, since e;(u) are parallel forms with respect to the metric (g

L

From the definition of wy(a,b,c) we get that

3 3 3
(F) wu(a.,b,c)=a..z:1a1iei(u)+b.z:1b21ei(u)+c.zzlc3iei(u)
i= i= i=
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From (F) follows that

(F1) 3 3 3

<wu(a,b,c),e3(u)>=aza1i<ei(u),e3(u)>+b2 b2i<ei(u),e3(u)>+cz cq; <e;(u),es(u)>
i=1 i= i

i=1 i=1

From the definition of the orthonormal basis we obtain that the formula (F1) does not depend

on u€D. From definition of the constants a, b, & ¢, i.e.

[wz(2,0)]=afwf! (2,0)]+b[wh (2,0)]+c[wF (2,0)
and since
z€Q(L)= <[w3(2,0)],[es(2)]=L>=0
we obtain what we need, i.e.
<wy(a,b,c),e3(n)>=0
So (x) is proved and with this 2.6.4.B.3.b).
Q.E.D.

From 2.6.4.10. it follows that all the limits as C® forms of the following forms exist
J@Zué(z,O)mtl(z,O)
lim wB(2,0)=w, (2,0)
u—z 4N to %
lim w$(2,0)=w, (2,0)
u—z u 3 t3 '

where

A(z)=t, & ueD; & and wt1(2,0) is the holomorphic two form on th.
B(z)=t, & u€D; & and w; (2,0) is the holomorphic two form on X .
C(z)=t, & u€D, & and “’t3(2’0) is the holomorphic two form on th.

From here and the fact that:
There exists three constants a, b & c¢€C such that
wu(2,0)=awh (2,0)+bwB(2,0)+cw§ (2,0)

as forms on X.
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So we get that
uli_r'nowu(.?,O):wz(Q,U)

ueD*
exists as a C° form on X.

In order to finish the proof of 2.6.4.B. we need to show that w;(2,0) is a non degenerate
two-form on X. Clearly
dw,(2,0)=0
From the Definiton of isometric deormations we get that for each A€S50(3) we have:

APwy (20 A AT (Z0)=vol(g, Z)=Aul (0)AA v (20))

(111) Jim ATwy(2,0)A(ATwy(2,0)) = Jim ARwd(2,0)A(APwE(2,0))
Since
(IV) im_ i (2,0)=wf (2,0)

and wé(Q,O) is a2 non-degenerate form defined by the Hyper-K&@hlerian manifold X, where
t=A(z).
From (III) & (IV) 2.6.4.B. follows directly.
Q.E.D.

In order to finish the proof of THEOREM 1. we need to use first the fact that the family
%* ~D*as C® manifold is diffecomorpfic to D*xX, where X is a Hyper-Kahlerian manifold. So
we can compactify topologocally the family %*—D* to DxX.
From the fa..ct that

J@zwu(210)=wz(2s0) exists

and w,(2,0) is a non-degenerate form, we need to chek that the 2n-form Awy(2,0) fulfills
conditions a), b) & c) of the Andreotti-Weil remark. Clearly
d(APur(2,0))=0

AWz (2,00 A(ARw,(2,0)) >0
So b) & c) are filfilled.

page
50



PR R A Y U D U

Let P be the Pliicker relations. Since they are polynomial relations, it follows that these

are closed relations, i.e.

Jim P(Awy(2,0))=P( lim wy(2,0))=0

So THEOREM 1. is proved.
Q.E.D.
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#3. CONSTRUCTION OF THE MODULI SPACE.
The construction is based on the following Lemma:
LEMMA 3.1.

Let g be a holomorphic automorphism of X such that g*=id, where
g"H2(X,1)—:H2%(X,2)
then g induces the identity map on the Kuranishi space of X, i.e on
XCcs%
Ll
Oe%

Proof: See {12].
Q.E.D.
LEMMA 3.2. Let
Xc®
Ll
Oex%
be the
Kuranishi family of marked Hyper-Kahlerian manifolds,
(X,‘yl,....,jbg)
then $—% is the local universal family of marked Hyper-Kdhlerian manifolds,
(Xa‘?‘l,--..;‘l’b?)
Proof: We need to prove that if
Xo— Y
Lol
Xg€ W
is a family of marked Hyper-Kihlerian manifolds, where W is a ”small” policylinder, then
there exists a unique map f of families:
Y— %
ool
W— %
such that:

a) f(x0)=0 and f:Xy —+ X, is an isomorphism of marked Hyper-Kihlerian manifolds.
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b) the family Y —W is the pull back of the
Kuranishi family.
We know that the Kuranishi family is complete. See [14]. This means that there exists
a holomorphic map f of families:
Y—-%
Ll
W—-%
such that:
a) f(x0)=0 and f:X5—X, is an isomorphism of marked Hyper-Kahlerian manifolds.
b) the family Y—W is the pull back of the Kuranishi family.
Let g be a map between the families
Y—Wand $—-%
which fulfills the conditions a) and b) as for the map f, then from [14] it follows
that we must have:
f(x)=0(g(x)) for xe W
where o is an isomorphism of the Kuranishi family such that
0:Xo—Xo
preserve the marking, i.e.
o*=id on H2(X,Z)

From 2.1. it follows that o=id on %, so

f=g
Q.E.D.
#3.3. The construction of the moduli space.
Let
Xo—%
[
Xo€E %

be the Kuranishi family of marked polarized algebraic Hyper-Kahlerian manifolds,
(X0371i""’7b2;L)

where 71"""7b., is a fixed basis in HQ(X,Z) and L is a fixed class of cohomology in HQ(X,Z)
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corresponding to an imaginary part of a Hodge metric on X4. From the local Torelli theorem

it follows that we may consider % as an open subset in

QCP(H2(X,2)®C)
Let
Hp ={xeP(A%(X,2)8C)| <x,L>=0}

From the local Torelli Theorem it follows that if we restrict the Kuranishi family
L—%

to the family
%y =%, where %y =%H

we will get the local universal family of all Hyper-Kahlerian manifolds for which L is the
imaginary part of a Hodge metric on X, for every t€%y .
From 3.1. it follows that we can glue all families
{BL-%.}
by identifying isomorphic marked algebraic Hyper-Kahlerian manifolds with fixed class of
polarization L. In such a way we get an universal family
IL‘"m(L

;71---.7[32)

of marked polarized Hyper-K&hlerian manifolds. This is so since if
$: X=X
is a biholomorphic map of X such that
¢*(L)=L
then ¢ must be an isometry with respect to Calabi-Yau metric that corresponds to L and so
for generic X ¢*=id on H2(X,Z). See [6] and [11}.
So we have proved the following THEOREM:
THEOREM 2.
There exists a universal family of marked polarized a.lgébraic Hyper-Kahlerian manifolds:
I —M

(L;‘!]_.---‘Tb2)
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REMARK.

There is another way of constructing the universal family of marked polarized algebraic

Hyper-K&dhlerian manifolds:

Namely let H N be the universal coveriﬁg of Hilb N and let
X/P X/p

be the pullback of the family
m9—H

I=Hy/pN
Then it is easy to see that

G/Gq acts on EX/PN , where G and G are defined in #2.5,

It is not very difficult to prove that this action is a free and proper using a Theorem by

Mumford and Mutsusaka. See [25]. So by a general Theorem due to Palais we get that

fIx/PN /(G/GO)ém(L;vl....vbz) . See [26].

From this we get the following fact:

Fact

p(T. 1) Y=Q(L)\V’'=W

for the Definitions of V’ and W see #2.5.5.4.
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