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NONLINEAR SMOOTH GROUP ACTIONS

ON DISKS, SPHERES, AND EUCLIDEAN SPACES

Krzysztof Pawalowski(l)

Disks Dn , spheres Sn, and Euclidean spaces {Rn are among the most important

manifolds to deal with in the study of smooth actions of compact Lie groups. Here are same

reasons which make them outstanding.

(i) Dn, Sn, and !Rn are homologically simple. In particular, the celebrated Smith

Theory can be applied to smooth actions of a torus, a finite p-group or its extension by a

torus.

(ii) Dn, Sn, and !Rn admit linear actions which are among the simplest and most

natural examples of smooth actions.

(iii) Unlike manifolds not admitting smooth compact Lie-group actions, Dn, Sn and

!Rn are among manifolds with the highest degree of symmetry, 80 that one expects a varie

ty of smooth actions on these manifolds.

(l)This research was carried out during a visit to the Max-Planck-Institut für Mathe
matik in Bann whose financial support and hospitality is gratefully acknowledged by the
author. The author also wish to thank M. Grau for her beautiful job oI typing the
manuscript.
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Here, a natural approach is to eompare the geometrie behavior of general smooth

actions with the geometrie behavior of linear adions. There is a number of regularity theo

rems which assert that, to some degree, smooth a.ctions satisfying some regularity condi

tions resemble linear actions (see, e.g., the paper of Hsiang [H] for an excelent survey of

related results). On the other hand, during the past twenty years, a number of authors

have constructed many examples of smooth actions showing that the regularity theorems

faH in general. Therefore, one may ask to what extend smooth actions cau dirrer from linear

actions. The goal of tbis paper is to deal with some related specific problems.

In Section 1, we state nine related problems. For linear actions, the answers to all

quoted problems are affirmative. In Section 2, we coUect first examples of smooth actions

which provide negative answers to some of the problems. In Section 3, we discuss same

results obtained by the author wbieh allow us to give further negative answers. In Section

4, we construet new exampes of smooth actions which give negative answers to all of the

problems.

Section 1

Lei G be a compact Lie group and let M be a smooth manifold. We are interested

in~~ of G on M; Le. smooth maps

G )( M ----+ M, (g,x)~ gx

fulfilling the following two conditions.

(1) ex = x for all x EM and the neutral element e EG .
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(2) g(hx) = (gh)x for all x E M and g,h E G .

The simplest and most natural examples of smooth actions of G on IRn are Iineat

~ ; Le., actions given via linear representations p: G ----+ GL(n,lR) by the formula

G )( [Rn ----+ !Rn, (g,x) t-----+ p(g) •X •

A linear action of G on [Rn is also called a representation of G on [Rn. The existence of

a positive definite inner product on IRn ~ invariant under a given linear action of G ,

allows us to assume that the action of G on !Rn is~; Le., it is given via an

orthogonal representation p: G ----+ O(n) . Clearly, such an action restricts to an ortho-

n n-lgonal action of G on D ,as weil as on S and on

sn-1)( [0,1] ~ {x E !Rn 11 ~ IIxll ~ 2} .

Assume G actslinearlyon IRn . Let H be a subgroup of G occuring aB the iso

tropy subgroup at a point x E IRn i Le.,

H = {g E G 1 gx =x} .

H x f 0 ,then H occurs also as the isotropy subgroup at any point y t- 0 lying on the

line passing throught 0 and x. Moreover, the H-fixed point set

F(H,lRn) = {x E IRn 1 hx = x for all h E H}

is a k-dimensionallinear subspace of IRn for k ~ n , so that F(H,lRn) ia diffeomorphic to

IRk . Clearly, for an orthogonal action of G on Dn , the H-fixed point set F(H,Dn) is
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diffeomorphic to nk .

Any smooth action of G on M induces (via the differential of the action) a linear

representation of G on the tangent space TxM at any point x E MIeft fixed by the

action of G . If M = IRn and the action islinear, then the representation of G on T Mx

ia equivalent to the original action on M.

Now we wish to state some specific problems in transformation groups. These prob

lems are interrelated and it follows easily from the above discussion that all of them have

affirmative answers in the case of linear actions. Unless otherwise stated, G is a compact

Lie group and H is a closed subgroup of G . As usual, M(H) consists of all orbits in M

oftype G/H .

.9~ 1. If G acts on On with the origin as a fixed point, then for H *G with

D(H) =1= 0 ,is S(H) =1= 0 ? 18 this the case when the action on the boundary 8Dn = Sn-l

ia orthogonal ?

.9~ 2. If G acta on On and if F(G,On) eint On ,does F(G,On) contain at

most one point?

.9~ 3. H G acts on Sn)( [0,1] 80 that the set F of fixed points touches

Sn )( {O} , does F also touch Sn)( {1} ? Is tbis the case when the action on both ends ia

orthogonal?

.9~ 4. Let G act on IR
n

with a fixed point x. If IR(H) *0 for H*G ,

must x be in the closure of IR(H) ? In the case of smooth actions, by the Slice Theorem,

this amounts to asking whether each isotropy subgroup in IRn occurs also in the
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representation on the tangent space T IRn .
x

.9~ 5. Let G be a torus acting on (Rn. For H f G ,is F(H,lRn) connected?

Is it connected when G = 51 ?

.9~ 6. Let G act smoothly on IR
n

. If IR(H) f 0 for H f G , is it true that

the isotropy subgroup representations on the normal spaces of orbits at two points in IR(H)

are equivalent?

.9~ 7. If G acta on IRn and if F(G,lRn) is compact, does F(G,lRn) contain

at most one point? If F(H,lRn) is also compact for H f G ,does F(H,lRn) = F(G,lRn) ?

.9~ 8. Let G act on IRn , On ,or Sn with fixed point set F. Is it true that

each connected component of F has the same dimension?

.9~ 9. Let G act smoothly on M = !Rn or nn (resp., Sn) with at least two

(resp., three) fixed points. Is it true that for any two fixed points x and y, the represen

tations of G on the tangent spa.ces T M and T M are equivalent?x y

Problems 1, 2, 3, and 4 are listed in the Bredon'a book [B; p. 205]. Problem 4 was

posed by Raymond for G = 51 , and Problem 5 ia due to Mostert; see [M; Problems 11

and 12 on p. 353]. Problem 6 goes back to Hsiang and Hsiang [RH; Problem 16] . Problem

7 was posed by Smith [Sm; Question on p. 412] for G"= llpq , the cyclic group of order

pq for two relatively prime integers p and q. Problems 8 and 9 are stated in the

Bredon'8 book [Bi the second remark on p. 58]. In Problem 9, we exc1uded the special and

important case cf smooth acticns of G on Sn with exactly two fixed points. In this case,

the question of the equivalence of the representations of G at two fixed points goes back
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to Smith [Smj the footnote on p. 406]. The complete list of groups G for which the

answer to the Smith question is negative, is still unknown, and we will not discuss this

question here.

Finally, observe that if G (resp., H ) is a torus, a finite p-group or its extension by

a torus, then it follows from Smith Theory that the answers to Problems 1-9 all are affir-

mative.

Section 2

In this section, we collect first examples of smooth actions which provide negative

answers to some of the problems stated in Section 1. First recall that a smooth manifold F

is called~~ if there exists a smooth embedding of F into some Euclidean

space such that the normal bundle of the embedding admits a complex structure. In parti

cular, a stably complex manifold F ia orientable and all connected components of F are

either even or odd dimensional.

Example 2.1. Let p and q be two relatively prime integers and let F be a closed

smooth manifold such that each connected component of F has the same dimension.

Edmonds and Lee [EL] showed that there is a smooth action of llpq on some IRn with

fixed point set F ia the following two cases.

(i) F ia stably parallelizable.

(ü) F is stably complex and the integera p and q are sufficiently large with

respect to the dimension of F .

This provides negative answers to the first question in Problem 7.



-7-

Enmple 2.2. For two relatively prime integers p and q) Edmonds and Lee [EL]

constructed a smooth action of 11pq on some Rn with exactly two fixed points and in

equivalent respresentations there at, providing a negative answer to Problem 9 in the case

G = 71 and M = IRn
.pq

Enmple 2.3. For G = SI and H = 116 ( SI , Stein [St] constructed a smooth

action of G on S5 with isotropy subgroups G, H, ll3' ll2' and the trivial subgroup 0,

such that F(G,S5) ~ SI and S(H) consists of just one orbit. By taking the equivariant

connected SUDl of k copies of S5 for any k ~ 1 , we get a smooth action of G on S5

with the same isotropy subgroups as before, such that F(G,S5) ~ SI and S(H) consists of

korbits. By removing !rom S5 a sufficiently small open invariant disk around a fixed

point, we get a smooth action of G on n5 (orthogonal on 805 = 84 ) with isotropy

subgroups G, H, ll3' ll2' and 0, such that F(G,05) ~ 0
1

and O(H) consists of korbits.

Clearly, O(H) ( int 0 5 , so that we get a negative answer to Problem 1. Ey restricting the

action to int n5 , we get a smooth action of G on 1R5 with isotropy subgroups G, H, 113,

ll2' and 0, such that F(G,1R5) ~ IR l
and IR(H) consists of korbits. This provides nega

tive answers to Problems 4 and 5. However, note that the representations of H on the

normal spaces of orbits at any two points in IR(H) are equivalent, so that this example

does not provide a negative answer to Problem 6.

Enmple 2.4. For G = llpqr and H = llpq ,where p, q ,and r are three distinct

mutually prime integers, AssaW [Aj pp. 91-92] constructed a smooth action of G on

some Rn with isotropy subgroups G, H, IIp' llq , and °,such that F(G,lRn) is just one

point and F(H,lRn) consists of r+l points, so that IR(H) ia juat one orbit. This provides

negative answers to Problems 4 and 7.

Enmple 2.5. For G = llpqr mllpqr mlls and H = llpqr EB llpqr ,where p, q, r,
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and s all are distinct and mutuaily prime, Assadi [Ai pp. 92-94] constructed a smooth

action of G on a disk Dn such that F(G,Dn) consists of k points for any k ~ 1 , and

F(H,Dn) consists of k+s points, so that D(H) is just one orbit. Clearly,

F(G,Dn) ( int DU . Hence, for k > 1 , tbis provides a negative answer to Problem 2. Hy

setting k = 1 and taking the equivariant double of nn , he obtained a smooth action of

G on Sn such that F(G,Sn) consists of two points and S(H) consists of two orbits. Hy

removing from Sn a sufficiently smail open invariant disk around a fixed point, he

obtained a smooth action of G on Dn (orthogonal on DDn = Sn-I) such that F(G,nn)

is just one point and D(H) consists of two orbits lying in the interior of Dn . This pro

vides a negative answer to Problem 1. Hy restricting the action to int Dn , he obtained a

smooth action of G on IRn such that F(G,lRn) is just one point and IR(H) consists of

two orbits. This, in turn, provides negative &nBwers to Problems 4 and 7.

Section 3

In tbis section, we wish to diSCUSB same results obtained by the author. First, we

point out that for a compact Lie group G, the answers to Problems 8 and 9 depend only

on the quotient group GIGo' where GO is the identity connected component of G .

More specifically, the following two theorems hold.

Theorem 3.1. $d G &a~~~. ::rMn&~~~

~~.

(1) ~<U a1IJ' 6?JUJdl ad6an <J/ G on a di.d (~., ~od«Iean~), d <UZJ'~

fumeI~tk~~ G ate~.

(2) .!Yo-t <UZJ' 6?JUJdl ad6an <J/ G <Jn a &d (~., 8~~) J eod fumeI

jvJUtIJd~aMJt~Md ~~~ .
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Theorem 3.2. .!U G &<Z~.:k~ . :Tidna.e~tua:~

~~aIm/.

(1) :Yo-f,aIIJ'~~oI G O#Ia~ (~., ~~) .uad

laultua:fumd'~, dmt;fkafumd'~&~aI G ~~.

(2) :Y<U4nJ'~~4 G ana~ (~., ~~), eudpma'

~Jd~~M4&6a?M~ .

(3) J" GIGa' ead~i06~~~ .

In Theorems 3.1 and 3.2, (3) implies (1) by [P2; Propositions 7.1 and 7.2] and (1)

implies (2) because, by the Slice Theorem, the trivial summand of the representation of G

at a fixed point x has the same dimension a.s does the fixed point set connected camper

nent containing x. In order to show that (2) implies (3), for any compact Lie group G

such thai GIGa has a cyclic subgroup not of prime power order, the author haB construc

tOO smooth actions of G on disk, spheres, and Euclidean SpateS with fixed point set

connecied components of different dimensions (see [P2; Example 6.1], (P4; Theorems (1)

and (2)], and Examples 3.3 and 3.4 below). Therefore, the anBwers to Problems 8 and 9 are

negative if and only if GIGa has a cyclic subgroup not of prime power order.

Eumple 3.3. Let G be a compact Lie group and let F be a smooth manifold with

oui boundary. The author (P3] proved that there is a sIDooth action of G on some IRn

with fixed point set F in the following two cases (cf. Example 2.1).

(i) Either Ga ia abelian and GIGa is not of prime power order, or Ga ia non

abelian, ud F ia a stably parallelizable manifold with a1l connected components of the

same dimension.

(ii) GIGa haB a cyclic subgroup not of prime power order, and F is a stabIy com-
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plex manifold.

By chOO8ing compact F, we get negative answers to the first question in Problem 7.

In (ii), by choosing F with fixed point set connected components of different dimensions,

we get negative &nswers to Problems 8 and 9 for M = !Rn .

In the case of smooth actions of G on diaks for a compact Lie group G such that

either GO is not of prime power order, or GO ia nonabelian, there is a restriction on the

Euler charaeteristic of the fixed point set F. Namely, it follows from the work of Oliver

X(F) =1 (mod nG) ,

where nG is the integer defined and calculated by Oliver [°1], [°2], and [°3], Recall

thai nG = nG/G
o

when GO ia abelian and nG = 1 when GO ia nonabelian.

Example 3.4. Let G be a compact Lie group and let F be a compact smooth mani

fold. The author [P3] proved that there ia a sIDooth action of G on some Dn with fixed

point set F in the following two Case8.

(i) Either GO is abelian and GIGa ia not of prime power order, or GO ia non

abelian, and F is a stably parallelizable manifold with all connected components of the

same dimension and with X(F) =1 (mod nG) .

(ü) GIGa has a cyclic subgroup not of prime power order, and F is a stably com

plex manifold with X(F) =1 (mod nG) .

Hy chOO8ing closed F, we have F ( int Dn , 80 that we get negative answers to

Problem 2. In (ii), by choosing F with fixed point set connected components of different

dimensions and taking the equivariant double of Dn , we get a sIDooth action of G on Sn
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with fixed point set connected components of different dimension. Thus, we get negative

answers to Problems 8 and 9 for M = Dn and Sn.

Example 3.5. In Example 3.4 (ii), choose F 80 that it contains at least one isolated

point and one connected component oI positive dimension. Hy taking the equivariant

double of Dn , we get a smooth action of G on Sn with fixed point set containing an

i80lated point x and a point y in a connected component of positive dimension. Hy remo

ving from Sn sufficiently small open invariant disks around x and y, we get a smooth

action of G on 8n- l x [0,1] which is orthogonal on both enda Sn-l x {O} and

Sn-l )( {I} , and the fixed point set touches only one end. Thus, we get a negative answer

to Problem 3.

Note that if in G/Go' each element has prime power order, then such an action of

G on Sn-l)( [0,1] does not exist. In fact, if this can happen, then there would exist a

sIDooth action of G on Dn , as well as on Sn, with fixed point set connected components

of different dimensions which is impossible by Theorems 3.1 and 3.2. Therefore, the answer

to Problem 3 is negative if and only if GIGa has a cyclic Bubgroup not of prime power

order.

Example 3.6. For G = llpqr and H = llpq , where p, q, and r are three distinct

mutually prime integers, the author [P2; Example 6.2] has constructed a smooth action of

G on BOrne D
n

with isotropy subgroups G, H, IIp' llq' llr ,and 0, such thai F(G,On)

is just one point and O(H) consists of r copies of 0 1 )( SI . Hy taking the equivariant

double 01 Dn , we get a smooth action of G on Sn such that F(G,Sn) consists 01 two

points and S(H) consists of r copies of the torus T2 = SI )( SI . Hy removing from Sn

a sufficiently small open invariant disk around a fixed point, we get a smooth action of G

on On (orthogonal on BOn = Sn-I) such that F(G,On) is just one point and O(H)

consists of r copies of the torus T 2 . Clearly, O(H) ( int On , so that we get a negative
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answer to Problem 1. By restricting the action to int Dn , we get a smooth action of G

on IRn such that F(G,lRn) is just one point and IR(H) consists of r copies of the torus.

Clearly, F(H,lRn) = F(G,lRn) UIR(H) . Thus, we get negative answers to Problems 4 and 7.

Compare the results obtained here with those in Examples 2.4 and 2.5.

Section 4

In tbis aection, we conatruct new exampIes of smooth actions of G on disks, apheres,

and Euclidean spaces with prescribed H-fixed point sets for a proper subgroup H of G .

In order to construct these actions, we apply the equivariant thickening procedure obtained

by the author [PI] (see [Pg] for the details). The procedure requires the existence of a

suitable G-vector bundle over a G-CW complex X. In order to get Buch a G-vector

bundle, we UBe the space Map.(G,SU(n)) of maps f): G --+ SU(n) preserving the neu

tral elements of G and SU(n) , with the action of G giyen by g lJ(a) = 0(ag) IJ(g)-1 .

This G-ßpace is useful because there is a natural one-one correspondence between special

unitary G-vector bundle structures on X x (n over X and equivariant maps from X

into Map.(G,SU(n)). For a given map

the corresponding action of G on X x (0 is defined by

g(x,v) = (gx, f)x(g) · v)

cf. [Bi Chapter VI, Proposition 11.1] and [P2; Proposition 4.1].
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Example 4.1. Let B be a finite group not of prime power order, such that any two

Sylow subgroups of B intersect trivially. Let F l'".,Fk be parallelizable sIDooth manifolds

all either even or odd dimensional, such that each Fi has the structure of a CW complex

containing as adeformation retract a subcomplex Li which is either a point or a wedge of

circles. ASBume also that each Fi is compact and

where nB is the Oliver integer of B , (resp., assume that each Fi is without boundary;

no restriction on the Euler characteristic). Let F and L be the disjoint unions of all Fi

and Li' respectively. Since L has finitely many cells and X(L):= 0 (mod nB) (resp., L

has countably many cells), and B is not of prime power order, it follows from the work of

Oliver [01] (resp.) Assadi [A]) that there ia a finite (resp., finite dimensional, infinite,

countable) contractible H-eW complex Y with fixed point set

H
Y = {b} lLL ,

the disjoint union of a point band L. Moreover, we may assume that for each proper

subgroup I of H not of prime power order, each equivariant ceil H/I)( Dm in Y has

an attching map, defined on H/I)( Sm-I, that ia constant on each copy {hI} )( Sm-l of

the sphere Sm-l (resp., there ia no equivariant ceIl of the form HII )( Dm in Y). Since

any two Sylow subgroups of G intersect trivially, we may also assume that for each equi

variant ceIl G11 )( Dm in Y , m ~ 2 when I ia nontrivial, and m ~ 3 when I is trivialj

cf. [P2; Remarks 2.5 and 2.6] (resp., [Aj Corollary 11.7.3]).

Now, conBider Y UL F , the sum of Y and F along L, with the obvioUB action of

H (trivial on F). Let C be a finite group. Put
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G=H)(C

and consider (Y UL F) )( C with the product action of G . Let F0 be a contractible

smooth manifold with dim F0 == dim Fi (mod 2) for i = 1,... ,k , and a8sume F0 is com

pact (resp., without boundary). Let X be the G--6pace obtained from (Y UL F) )( C and

F0 by identifying all points (b,c), c E C , with a point in the interior of F0 . Then X is

a finite (resp., finite dimensional, infinite, countable) contractible G-CW complex with

Gfixed point set X = F0 and

X(H) = F )( C .

Moreover, the family of isotropy subgroups in X-XG consists of the Bubgroups I )( {e}

of G for all I occuring as the isotropy subgroups in Y . In particular,

HX = FO11 (F )( C) .

Let V1'".,Vk be unitary representations of H with ViH = {O} for i = 1,... ,k .

Assume that the following two conditions hold.

~'6~. For all 1 ~ i , j ~ k ,

dim F. + diIILn V. = dim F. + dimn V. .
1 lK 1 J lK J

ctI-dl'6~. For each prime power order subgroup P of H and all 1 ~ i ,

H Hj ~ k , the nontrivilsummands of the restricted representations resp Vi and resp Vj are

equivalent.



-15-

For i = 1,... ,k ,put ni = [(dirn Fi + 1)/2] ,the greatest integer in

n.
(dirn Fi + 1)/2 . Consider the representation ( 1 ED Vi of H ,where H acts triviallyon

n. n.
( 1 • It follows !rom the Dimension Condition that the representations ( 1 E9 V. all have

1

the same dimension, say n. Let O'i : H ---+ U(n) be the homomorphism corresponding

n.
to ( 1 ED Vi . It follows from the Smith Condition thai O'i IP and O'j IP are equivalent for

each prime power order subgroup P of H . Therefore, by adding (if necessary) to each O'i

the same 1-dimensional complex representation of H , we may assume that ui all are

sPecial unitary representationB; Le., O'i(H) ( SU(n) ; see [P2; Lemma 7.3] .

Let V0 be a special unitary representation of G with V~ = {O} , and assume that

dim F0 + ditnm V0 = dim Fi + dimm Vi and for each prime power order subgroup P of

H , the nontrivial summands of the restricted representations res~ V0 and res~ Vi are

n
equivalent. Put nO= [(dirn F0 + 1)/2] and consider the representation ( 0 mv0 of

o
G , where G acts triviallyon ( 0 . Let PO: G~ SU(n) be the homomorphism corres-

0 0ponding to ( ED V0 •

According to [P2; Proposition 4.2] I the map

H .
f : Map.(G,SU(n)) -------. Hom(H,SU(n)) )( Map.(C,SU(n))

(Ja------:t ((JI H,(JI C)

is a homeomorphisID. Hereafter, H = H )( {e} and C = {e} )( C . For i = 1,... ,k , let

Pi : G --t SU(n) be given by Pi = r 1
(ui'POIC) . Explicitely,

p.(g) = PO(c)u.(h)
1 1
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for g = (h,c), h EH, c E C .

Recall that XH = F0 lL (F x C) and consider the G-map

defined by mapping all points in F. to p. for i = O,l, ... ,k , and extending thus obtained
1 1

map on F0 lL F to the unique G-map on XH . We claim that 1] extends to a G-map

e:X ------+ Map.(G,SU(n)) .

Recall that the family of isotropy subgroups in X-XH consists of the subgroups

I = I x {e} of G for all proper subgroups I of H occuring aB the i80tropy subgroups in

Y . Let B be the disjoint union of XH and all equivariant D--cells G/I in X-XH . Ex

tend " on B by mapping each G/I into PO'

H I is not of prime power order, 1] extends on cells GI! x Dm in X-XH because

the attaching maps are constant on each copy {gi} x Sm-l of the sphere Sm-l .

H I is of prime power order, Pi II ~ Pj II and tms amounts to saying that Pi and

Pj lie in the same connected component of the fixed point set MaP.(G,SU(n))I j cf. [P2 i

Corollary 4.3]. Thermore, 'I'J extends on cells GI! x n1 in X-XH . Since each connected

component of MaP.(G,SU(n))I is l-eonnected; cf. [P2 i Corollary 4.5], 1] extends also

on cells GII x D2 in X-XH . Finally, 'I'J extends on cells G x n1 , G x D2 , and

G x n3 in X-XH because SU(n) is 2--eonnected, and thus, so is Map.(G,Sp(n)).

Let E be the G-vector bundle over X corresponding to the G-map

e:X --+ Map.(G,SU(n)) . For i = 1,... ,k ,put Mi = Fi xe. Since el XH = 'I'J , the

n.
restricted G-vector bundle E IMi splits into the product bundles Mi x ( 1 and Mi x Vi

over Mi . Similarly, as G-vector bundles,
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no
ElF0 ~ (F0 )( ( ) 4B (F0 )( v0) .

Since each Fi is parallelizable, the tangent bundle TMi (resp., TMi 4B (Mi )( IR l
)) ad

n.
mits the strueture of the product bundle M. )( ( lover M. when dim F. is even (resp.,

1 1 1

odd). Similarly, TF0 (resp., TF0 4B (F0 )( IR!)) admits the structure of the product bundle

nOF0 )( ( , when dim F0 is even (resp., odd). Therefore,

EI B ~ TB E9 U (resp., TB EB U EI (B )( IR!)) ,

where U is the G-vector bundle over B with U IF0 = F0 )( V0' U IMi = Mi )( Vi and

U I(B-XH) = EI (B-XH) .

Now, take the disk bundle of U over B , and then replace inductively equivariant

cells in X-B by equivariant handles in a way prescribed by E. This converts X into a

smooth G-manifold M of dimension 2n (resp., 2n-l ), where n is the fiber dimension of

E , such that M contains B as a smooth G-invariant submanifold with equivariant nor

mal bundle U ,M-B and U-B have the same isotropy subgroups and TM (resp.,

TM E9 (M )( IR!) ) is induced !rom E via a G-homotopy equivalence f: M ---+ X coin

ciding with the identity on B (see (P3; § 2] for the details of the equivariant thickening

procedure that we use here, and observe that in order to apply the procedure we add, if

necess&ry, to E and U the product bundles X)( W over X and B )( W over B , re

spectively, for a suitable complex representation W of G ). In particular, TM (resp.

TM 4B (M )( Rl ) ) admits the structure of a complex G-vector bundle. Since neither G nor

H occurs as an isotropy subgroup in U-B, thuB
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H G
Clea.rly, M = F0 ilM(H) . Moreover, Vi (or Vi ED resHW) occurs as t he normal repre-

sentation at any point in Mi for i = 1,... ,k , and V0 (or V0 S W) occurs as the normal

representatiom at any point in F0 .

Since the finite (resp., infinite) complex X ia contractible, so is M, and it follows

from the construction that M is diffeomorphic to either n2n or n2n- l (resp., 1R2n or

1R2n- 1 ).

Using the actions just constructed, it ia easy to get negative answers to Problem 1-9

(except for Problem 5) by taking the equivariant doubles of n2n and n2n- 1 , removing

sufficiently small open invariant disks around fixed points in S2n and S2n-l , and restric-

. h . t' 02n d' n2n- l H . d t t .tlng t e actlOns 0 Int an Int . owever, In or er 0 ge negatIve answers to

Problems 6, 8, and 9, it is necessary to assume that H has a cyclic subgroup not of prime

power order (otherwise the representations of H on the normal spaces of orbits at two

points in M(H) are equivalent; cf. Theorem 3.1). Now, if H has a cyclic subgroup not of

prime power order, then there are unitary representations V1'... ,Vk of H with

V~ = {O} fulfilling both the Dimension Condition and Smith Condition, such that Vi

and V. are inequivalent when i j j (see, e.g., [P4; Comments (1) and (2)].
J .

Example 4.2. Let G = S1 , the group of complex numbers of absolute value 1, and

let H = 71 , the cyclic subgroup of order pq generated by the primitive pq-th root ofW '
unity. For any integer n, write t n : G -------t U(I) for the unitary representation of G

defined by tn(z) = zn .

Consider the action of G on ( given by the representation t 1 , and the trivial

action of G on IR. This yields an orthogonal action of G on 1R3 = ( SIR. Take the

dosed unit disk 0 3 in 1R3 with the action of G , and the decomposition of the boundary

on3 = S2 into the elosed upper hemisphere S~ , the elosed lower hemisphere S:., and

the equator SI. Let Y be the quotient space obtained from n3 by taking the following
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quotients: S~rllp' S:rllq, and Sl /H . Then Y admits the structure of a finite G-CW

complex whose fixed point set yG is a line segment. It follows from the Van Kampen

Theorem and the Mayer-Vietoris exact sequence that Y is contractible. By contracting

yG into a point, we may assume that yG = pt . Note that Y is buHt up from pt by

adding one equivariant G-eel1 G/H, attaching one equivariant 1--eell GI7lp )( n1 and

one equivariant 1--eell GI7lq )( n1 , and finally attaching one equivariant 2--eell G)( n2 .

Choose a sequence of integera nl' ... ,nk with ni ~ 1 for i = 1,... ,k , consider

2n.-1
D 1 with the trivial action of G , and put

2n.-1
Xi = Y UGIH (G IH )( n 1 ),

2n.-l G
the aum of Y and G/H)( D 1 along GIB == GIB )( {O} . Then Xi ia just one point

2n
xi . Now, choose an integer nO~ 0 , consider D 0 with the trivial action of G , and take

2n
the space X obtained from Xl, .. "Xk and D 0 by identifying all isolated fixed points

2n
x1,... ,xk with the origin in n O. Then X ia a finite contractible G-eW complex with

iaotropyaubgroups G, H, 7lp' 7lq , and the trivial subgroup {I}, such that

2nO 2n.-l
where BQ = D and Bi = G/H )( D 1 for i = l, ... ,k . Put

Choose special unitary representation V0' V1'... ,Vk of G without trivial

n.
summands, such that the representations ( 1 tB Vi all have the same dimension, say n,
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n.
where G acts triviallyon ( 1 , and for P = 1lp and llq' the restricted representations

are equivaJent for all 0 Si, j Sk . Let p.: G --+ SU(n) be the homomorphism corres
1

n.
ponding to ( 1 $ Vi .

Now, consider the map

B-i Hom(G,SU(n)) C Map.(G,SU(n))

which maps a.ll points in Bi into Pi for i = O,l, ... ,k . Clearly, its restriction to Bi

n·
correslX>nds to the product bundle Bi )( (( 1 $ Vi) over Bi .

We claim that the map defined on B extends to a G-map

X-i Map.(G,SU(n)) .

First, recall that X ia built up from B by attaching equivariant cells of the form

G/ll )( n1
I G/ll )( n1 ,and G)( n2 . The extension on cells G/ll )( n1 andp q p

G/ll )( n1 exists because p·1 P ~ p·1 P , so thai p. and p. lie in the same connectedq 1 - J 1 J
P

componeni of Map.(G,SU(n)) for P = IIp and llq'

The extension on cells G x n2 exists aB weIl because the space

Map.(G,SU(n)) ~ nSU(n)

is l~onnected, proving the claim.

Let E be the resulting G-vector bundle over X. Clearly,
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EI B. ~ TB. e (B. )( V.) .
1 - 1 1 1

Let U be the G-vector bundle over B defined by U IB. = B. )( V.. Then
1 1 1

EI B ~ TB eu . Hy adding (if oecessary) to E and U the product bundles X x W over

X and B )( W over B , respectively, tor a suitable representation W o{ G , we may

apply the equivariant thickeniog procedure described in [P3; § 2], 80 that X cooverts

into a smooth G-manifold M diffeomorphic to n2n , with isotropy subgroups G, H, "D. ,p

7lq ,and {I}, such that

Hy taldng the equivariant double o{ n 2n , we get a smooth action o{ G on S20 such that

20 2°0 20
F(G,S ) = S and S(H) = MI 11··· 11 Mk '

I 20.-1
where Mi = S )( S 1 for i =1,... ,k . Hy removing from S20 a sufficieotly small open

invariant disk Mound a fixed point, we get a smooth action o{ G on n2n (orthogonal on

the boundary) such that

20
F(G,n2n

) = n 0 d n 20 M 11 11 Man (H) = I ... k .

Finally, by restricting the action to int n 2n , we get a smooth action o{ G on 1R2n such

that

2n 2nO 20
F(G,IR ) = IR and IR(H) = MI 11 ..·11 Mk .
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In all ca8eS, res*(Vi E9 W) occurs as the normal representation at any point in Mi for

i = l, ... ,k .

These actions provide negative answers to Problems 1,4,5,6, and 7. However, in

order to get such answers to Problems 6 and 7, we need to put na= 0 and choose special

unitary representations Vo' V1'.."Vk of G fu1filling the required conditions, such that

res~ Vi and res~ Vj are inequivalent when i:f: j . Far example, assume that

o= nO< n1 < ... < nk ' take

defined by

2nk-n.+l
and consider the representation Vi of G on ( 1 given via Bi for i = O,I, ... ,k .



-23-

References

[A] Assadi, A.: 9mde~~MJ~~~and~YawJt"

~ . Mem. Amer. Math. Soc. 257 (1982).

[B] Bredon,G.E.: .7~I«mIa~~~.Pureand

Applied Math. 46, Academic Press, 1972.

[EL] Edmonds, A.L., and Lee, R.: ~mrdfvui'/dd6<A/~~on K~

~ . Topology 14 (1975), 339-345.

[H] Hsiang,W.-Y.: A~<lR~~m~~

~~ft6 . In: Proceedings of the Conference on Transformation

Groups (New Orleans, 1967), Springer-Verlag, 1968, 77-124.

[HH] Hsiang, W.-e., and Hsiang, W.-Y.: c!/<lIPM~Ul~~

~~ . In: Proceedings of the Conference on Transformation Groups

(New Orleans, 1967), Springer-Verlag, 1968,223-234.

[M] Mostert, P.S. (ed.): Proceedings of the Conference on Transformation Groups

(New Orleans, 1967)j Springer-Verlag, 1968.

[01] Oliver, R.: :Ymrdfvui'/dd6a1~ti~an~~~.

Comment. Math. Helv. 50 (1975), 155-177.

[02] Oliver, R.: rJI~~$M~~an&d.J, Math. Z. 149

(1976), 79-96.

[03] Oliver, R.: G-~M1&d.Jand~~ II. Math. Z.

157 (1977), 237-263.

[PI] Pawalowski, K.: rI/~~aI~~<Ml,&d.J.Ph.D. Thesis,

University of Warsaw, 1981.



-24-

[P2] Pawalowski, K.: '§~~4IJdl~IAn/~dfuu4

~ . Math. Z. 187 (1984), 29-47.

[P3] Pawalowski, K.: :Ymzd'~~aI~~~<J.ndt:d&aquz'6~

<:km~ . Topology 28 (1989).

[P4] Pawalowski, K.: A'o-UJud~~a.e~~4f

f:ozd~ Jd& . To appear in the proceedings of the International

Conference on Transformation Groups held in Osaka, 1987.

[Sm] Smith, P.A.: A'«4~a.ndald~m~~~/'J'
Bull. Amer. Math. Soc. Soc. 66 (1960),401-415.

[St] Stein, E.: ()naelU4d~macadeaclitm. Proc. Amer. Math. Soc. 66

(1977), 143-147.


