Max-Planck-Institut für Mathematik Bonn

Dynamic alpha-invariants of del Pezzo surfaces

by

Ivan Cheltsov
Jesus Martinez-Garcia

Dynamic alpha-invariants of del Pezzo surfaces

Ivan Cheltsov
 Jesus Martinez-Garcia

Max-Planck-Institut für Mathematik	University of Edinburgh
Vivatsgasse 7	School of Mathematics
53111 Bonn	James Clerk Maxwell Building
Germany	Kings Buildings, Mayfield Road
	Edinburgh EH9 3JZ
	Scotland
	Johns Hopkins University
	Department of Mathematics
	3400 N. Charles St.
	Baltimore, MD 21218
	USA

DYNAMIC ALPHA-INVARIANTS OF DEL PEZZO SURFACES

IVAN CHELTSOV AND JESUS MARTINEZ-GARCIA

Abstract

For every smooth del Pezzo surface S, smooth curve $C \in\left|-K_{S}\right|$ and $\beta \in(0,1]$, we compute the α-invariant of Tian $\alpha(S,(1-\beta) C)$ and prove the existence of Kähler-Einstein metrics on S with edge singularities along C of angle $2 \pi \beta$ for β in certain interval. In particular we give lower bounds for the invariant $R(S, C)$, introduced by Donaldson as the supremum of all $\beta \in(0,1]$ for which such a metric exists.

1. Introduction

Let X be a normal variety of dimension $n \geqslant 1$, and let Δ be an effective \mathbb{R}-divisor on X. Suppose that (X, Δ) has at most Kawamata log terminal singularities, and $-\left(K_{X}+\Delta\right)$ is ample. Then (X, Δ) is a \log Fano variety. Its α-invariant can be defined as

$$
\alpha(X, \Delta)=\sup \left\{\begin{array}{l|l}
\lambda \in \mathbb{R} & \begin{array}{l}
\text { the log pair }(X, \Delta+\lambda B) \text { is } \log \text { canonical } \\
\text { for any effective } \mathbb{R} \text {-divisor } B \sim_{\mathbb{R}}-\left(K_{X}+\Delta\right)
\end{array}
\end{array}\right\} \in \mathbb{R}_{>0}
$$

Remark 1.1. For every effective \mathbb{R}-Cartier \mathbb{R}-divisor B on X, the number

$$
\operatorname{lct}(X, \Delta ; B)=\sup \{\lambda \in \mathbb{R} \mid \text { the log pair }(X, \Delta+\lambda B) \text { is log canonical }\}
$$

is called the log canonical threshold of B with respect to (X, Δ). Note that

$$
\alpha(X, \Delta)=\inf \left\{\operatorname{lct}(X, \Delta ; B) \mid B \text { is an effective } \mathbb{R} \text {-divisor such that } B \sim_{\mathbb{R}}-\left(K_{X}+\Delta\right)\right\}
$$

If $\Delta=0$, we denote $\alpha(X, \Delta)$ by $\alpha(X)$. Tian introduced α-invariants of smooth Fano varieties in [19]. His definition coincides with ours by [5, Theorem A.3]. In [19], Tian also proved
Theorem 1.2 ([19, Theorem 2.1]). Let X be a smooth Fano variety of dimension n. If $\alpha(X)>\frac{n}{n+1}$, then X admits a Kähler-Einstein metric.

This theorem gives the initial motivation for the study of $\alpha(X, \Delta)$ in the case when $\Delta=0$. In fact, $\alpha(X, \Delta)$ is also important if $\Delta \neq 0$. When X is smooth and $\operatorname{Supp}(\Delta)$ is a smooth irreducible divisor, Theorem 1.2 has been generalized by Jeffres, Mazzeo and Rubinstein as follows

Theorem 1.3 ([11, Theorem 2, Lemma 6.13]). Let X be a smooth projective variety of dimension n, and let D be a smooth irreducible hypersurface in X. Let $\beta \in(0,1]$ and suppose that the divisor $-\left(K_{X}+(1-\beta) D\right)$ is ample. If $\alpha(X,(1-\beta) D)>\frac{n}{n+1}$, then X admits a Kähler-Einstein metric with edge singularities of angle $2 \pi \beta$ along D.

Song computed α-invariants of smooth toric Fano varieties in [18, Theorem 1.1]. The same approach can be used to obtain an explicit combinatorial formula for $\alpha(X, \Delta)$ in the case when X is toric and $\operatorname{Supp}(\Delta)$ consists of torus-invariant divisors (cf. [5, Lemma 5.1]).
Example 1.4 ([6, Remark 6.7]). Let L_{1}, L_{2} and L_{3} be distinct lines on \mathbb{P}^{2} such that $\bigcap_{i} L_{i}=\emptyset$, and let $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ be any point in $(0,1]^{3}$. Then

$$
\alpha\left(\mathbb{P}^{2}, \sum_{i=1}^{3}\left(1-\beta_{i}\right) L_{i}\right)=\frac{\max \left(\beta_{1}, \beta_{2}, \beta_{3}\right)}{\beta_{1}+\beta_{2}+\beta_{3}}
$$

[^0]For smooth del Pezzo surfaces, α-invariants have been explicitly computed in [2, Theorem 1.7] (see [7] and [16] for analytic approach, see [14] for a characteristic free approach). The proof of this theorem implies
Theorem 1.5. Let S be a smooth del Pezzo surface. Then
$\alpha(S)=\inf \left\{\operatorname{lct}(S, 0 ; B)|B \in|-K_{S} \mid\right.$ and $B=\sum B_{i}$, where $B_{i} \cong \mathbb{P}^{1}$ and $\left.-K_{S} \cdot B_{i} \leqslant 3 \forall i\right\}$.
To apply Theorem 1.3, the divisor $-\left(K_{X}+(1-\beta) D\right)$ must be ample. A natural choice for the pair (X, D) considered by Donaldson in his approach to the Yau-Tian-Donaldson conjecture is to let X be a smooth Fano variety and let D be a smooth anticanonical divisor (see [9]).
Remark 1.6. Let X be a smooth Fano variety of dimension n, and let D be a smooth divisor in $\left|-K_{X}\right|$. By [17, Theorem 1.2], such divisor D always exists when $n \leqslant 3$, which is no longer true in general if $n \geqslant 4$ (see [10, Example 2.12]). One has $\alpha(X,(1-\beta) D)=1>\frac{n}{n+1}$ for all positive $\beta \ll 1$ (see Theorem 1.10). In particular, X admits a Kähler-Einstein metric with edge singularities of angle $2 \pi \beta$ along D for all positive $\beta \ll 1$ by Theorem 1.3.

A Kähler-Einstein metric with singularities along D of angle 2π is a Kähler-Einstein metric in the usual sense. So, it is natural to consider the following invariant introduced by Donaldson:
Definition 1.7 ([9]). Let X be a smooth Fano variety, and let D be a smooth divisor in $\left|-K_{X}\right|$. Then $R(X, D)$ is the supremum of all $\beta \in(0,1]$ such that X admits a Kähler-Einstein metric with edge singularities along D of angle $2 \pi \beta$.
It follows from [11] that the smooth Fano variety X admits a Kähler-Einstein metric with edge singularities of angle $2 \pi \beta$ along D for every positive $\beta<R(X, D)$.
Corollary 1.8. Let X be a smooth Fano variety, and let D be a smooth divisor in $\left|-K_{X}\right|$. Suppose that X admits a Kähler-Einstein metric. Then $R(X, D)=1$.

By Tian's theorem (see [20]), a smooth del Pezzo surface S admits a Kähler-Einstein metric if and only if $S \neq \mathbb{F}_{1}$ and $K_{S}^{2} \neq 7$. Thus, we have
Corollary 1.9 ([20]). Let S be a smooth del Pezzo surface such that $S \neq \mathbb{F}_{1}$ and $K_{S}^{2} \neq 7$, and let C be a smooth curve in $\left|-K_{S}\right|$. Then $R(S, C)=1$.

Unless $R(X, D)=1$, we do not know a single example for which the invariant $R(X, D)$ is known precisely (cf. [12, Theorem 1.7]). A lower bound for $R(X, D)$ can be found using
Theorem 1.10 ([1], [15, Corollary 5.5], [6, Proposition 6.10], [6, Remark 6.11]). Let X be a smooth Fano variety of dimension n, and let D be a smooth divisor in $\left|-K_{X}\right|$. Let

$$
M=\left\{\begin{array}{l}
9 \text { if } n=2, \\
64 \text { if } n=3, \\
3^{n}\left(2^{n}-1\right)^{n}(n+1)^{n(n+2)\left(2^{n}-1\right)}(2 n(n+1)(n+2)!)^{n-1} \text { if } n \geqslant 4 .
\end{array}\right.
$$

Then $1 \geqslant \alpha(X,(1-\beta) D) \geqslant \min \left\{1, \frac{1}{M \beta}\right\}$ for every $\beta \in(0,1]$.
Corollary 1.11. In the assumptions and notation of Theorem 1.10 , one has $R(X, D) \geqslant \frac{n+1}{n M}$.
The purpose of this paper is to merge Theorem 1.5 with Theorem 1.10 by proving
Theorem 1.12. Let S be a smooth del Pezzo surface, let C be a smooth curve in $\left|-K_{S}\right|$, and let β be a real number in $(0,1]$. Then

$$
\alpha(S,(1-\beta) C)=\inf \left\{\begin{array}{l|l}
\operatorname{lct}(S,(1-\beta) C ; \beta B) & \begin{array}{l}
B \in\left|-K_{S}\right| \text { such that } B=C \text { or } B=\sum B_{i}, \\
\text { where } B_{i} \cong \mathbb{P}^{1} \text { and }-K_{S} \cdot B_{i} \leqslant 3 \forall i
\end{array}
\end{array}\right\} .
$$

We will prove Theorem 1.12 in Section 4. In Section 2, we will give very explicit formulas for the invariant $\alpha(S,(1-\beta) C)$. Instead of presenting them here, let us consider their applications.
Corollary 1.13. Let S be a smooth del Pezzo surface, and let C be a smooth curve in $\left|-K_{S}\right|$. Then $\alpha(S,(1-\beta) C)$ is a decreasing continuous piecewise smooth function for $\beta \in(0,1]$.
Corollary 1.14. Let S_{1} and S_{2} be smooth del Pezzo surfaces, let C_{1} and C_{2} be smooth curves in $\left|-K_{S_{1}}\right|$ and $\left|-K_{S_{2}}\right|$, respectively. Suppose that there is a birational morphism $f: S_{2} \rightarrow S_{1}$ such that $f\left(C_{2}\right)=C_{1}$. Then $\alpha\left(S_{1},(1-\beta) C_{1}\right) \leqslant \alpha\left(S_{2},(1-\beta) C_{2}\right)$ for every $\beta \in(0,1]$ except the following cases:
(1) $S_{1} \cong \mathbb{P}^{2}, S_{2} \cong \mathbb{F}_{1}$, and f is the blow up of an inflection point of the cubic curve $C_{1} \subset \mathbb{P}^{2}$,
(2) $S_{1} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}, K_{S_{2}}^{2}=7$, and f is the blow up of a point in C_{1}.

If S is a smooth del Pezzo surface such that either $S \cong \mathbb{F}_{1}$ or $K_{S}^{2}=7$, and C is a smooth curve in $\left|-K_{S}\right|$, then $R(S, C) \geqslant \frac{1}{6}$ by Corollary 1.11. We improve this bound:
Corollary 1.15. Suppose that $S \cong \mathbb{F}_{1}$. Let C be a smooth curve in $\left|-K_{S}\right|$. Then $R(S, C) \geqslant \frac{3}{10}$. Furthermore, if C is chosen to be general in $\left|-K_{S}\right|$, then $R(S, C) \geqslant \frac{3}{7}$.
Corollary 1.16. Let S be a smooth del Pezzo surface such that $K_{S}^{2}=7$, and let C be a smooth curve in $\left|-K_{S}\right|$. Then $R(S, C) \geqslant \frac{3}{7}$. Furthermore, if C does not pass through the intersection point of two intersecting (-1)-curves in S, then $R(S, C) \geqslant \frac{1}{2}$.

In [21, Theorem 1], Székelyhidi proved that $R(S, C) \leqslant \frac{4}{5}$ when $S=\mathbb{F}_{1}$, and $R(S, C) \leqslant \frac{7}{9}$ when $K_{S}^{2}=7$ and C passes through the intersection point of two intersecting (-1)-curves in S.

Acknowledgements. Most of the results in this paper were obtained in the Ph.D. Thesis of the second author (see [13]). This paper contains simplified proofs and, in some cases, completely new proofs. A part of this work was done during a visit of both authors to the National Center for Theoretical Sciences in Taipei. We are grateful to Jungkai Chen for making this visit possible. The first author thanks the Max Planck Institute for Mathematics in Bonn, where part of this work was completed. We thank Yanir Rubinstein and Gabor Székelyhidi for useful discussions.

2. Explicit formulas

Let S be a smooth del Pezzo surface. If $K_{S}^{2} \geqslant 3$, then $-K_{S}$ is very ample. In this case, we will identify S with its anticanonical image, and we will call a curve $Z \subset S$ such that $Z \cdot\left(-K_{S}\right)=1,2,3$ a line, conic, cubic, respectively. Let C be a smooth curve in $\left|-K_{S}\right|$, and let β be a positive real number in $(0,1]$. Let

$$
\check{\alpha}(S,(1-\beta) C)=\inf \left\{\begin{array}{l|l}
\operatorname{lct}(S,(1-\beta) C ; \beta B) & \begin{array}{l}
B \in\left|-K_{S}\right| \text { such that } B=C \text { or } B=\sum B_{i}, \\
\text { where } B_{i} \cong \mathbb{P}^{1} \text { and }-K_{S} \cdot B_{i} \leqslant 3 \forall i
\end{array}
\end{array}\right\} .
$$

Then $\alpha(S,(1-\beta) C) \leqslant \check{\alpha}(S,(1-\beta) C)$. Theorem 1.12 states that $\alpha(S,(1-\beta) C)=\check{\alpha}(S,(1-\beta) C)$. In this section, we will define a number $\hat{\alpha}(S,(1-\beta) C)$ such that $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$. In Section 4, we will prove that $\alpha(S,(1-\beta) C) \geqslant \hat{\alpha}(S,(1-\beta) C)$. The latter inequality implies Theorem 1.12, since $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C) \geqslant \alpha(S,(1-\beta) C)$.
2.1. Projective plane. Suppose that $S \cong \mathbb{P}^{2}$. Then C is a smooth cubic curve on S. Let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+3 \beta}{9 \beta}, \frac{1}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{6}, \\
\frac{1+3 \beta}{9 \beta} \text { for } \frac{1}{6} \leqslant \beta \leqslant \frac{2}{3}, \\
\frac{1}{3 \beta} \text { for } \frac{2}{3} \leqslant \beta \leqslant 1 .
\end{array}\right.
$$

Let P be an inflection point of the curve C, and let T be the line in \mathbb{P}^{2} that is tangent to C at the point P. Then $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$, since

$$
\hat{\alpha}(S,(1-\beta) C)=\min \{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}(S,(1-\beta) C ; 3 \beta T)\} .
$$

2.2. Smooth quadric surface. Suppose that $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+2 \beta}{6 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{4} \\
\frac{1+2 \beta}{6 \beta} \text { for } \frac{1}{4} \leqslant \beta \leqslant 1
\end{array}\right.
$$

Let T be a divisor of bi-degree $(1,1)$ on S that is a union of two fibers of each projection from S to \mathbb{P}^{1}. Suppose in addition that one component of T is tangent to C at some point, and another component of T passes through this point. Then $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$, since

$$
\hat{\alpha}(S,(1-\beta) C)=\min \{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}(S,(1-\beta) C ; 2 \beta T)\} .
$$

2.3. First Hirzebruch surface. Suppose that $S \cong \mathbb{F}_{1}$. Let Z be the unique (-1)-curve in S, and let F be the fiber of the natural projection $S \rightarrow \mathbb{P}^{1}$ that passes through the point $C \cap Z$. Then $C \sim 2 Z+3 F$. If F is tangent to C at the point $C \cap Z$, let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+2 \beta}{8 \beta}, \frac{1}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{6} \\
\frac{1+2 \beta}{8 \beta} \text { for } \frac{1}{6} \leqslant \beta \leqslant \frac{5}{6}, \\
\frac{1}{3 \beta} \text { for } \frac{5}{6} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If F is not tangent to C at the point $C \cap Z$, let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+\beta}{5 \beta}, \frac{1}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{4} \\
\frac{1+\beta}{5 \beta} \text { for } \frac{1}{4} \leqslant \beta \leqslant \frac{2}{3}, \\
\frac{1}{3 \beta} \text { for } \frac{2}{3} \leqslant \beta \leqslant 1 .
\end{array}\right.
$$

In both cases, we have $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$, because

$$
\hat{\alpha}(S,(1-\beta) C)=\min \{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}(S,(1-\beta) C ; \beta(2 Z+3 F))\} .
$$

2.4. Blow up of \mathbb{P}^{2} at two points. Suppose that $K_{S}^{2}=7$. Then there exists a birational morphism $\pi: S \rightarrow \mathbb{P}^{2}$ that is the blow up of two distinct points in \mathbb{P}^{2}. Denote by E_{1} and E_{2} two π-exceptional curves, and denote by L the proper transform of the line in \mathbb{P}^{2} that passes through $\pi\left(E_{1}\right)$ and $\pi\left(E_{2}\right)$. Then E_{1}, E_{2}, and L are all (-1)-curves in S.

The pencil $\left|E_{2}+L\right|$ contains a unique curve that passes though $C \cap E_{1}$. Similarly, $\left|E_{1}+L\right|$ contains a unique curve that passes though $C \cap E_{2}$. Denote these curves by L_{1} and L_{2}, respectively. Then L_{1} is irreducible and smooth unless $L_{1}=E_{2}+L$ (in this case $E_{1} \cap L \in C$). Similarly, the curve L_{2} is irreducible and smooth unless $L_{2}=E_{1}+L$ and $L \cap E_{2} \in C$.

If C does not contain the points $E_{1} \cap L$ nor $E_{2} \cap L$, then there exists a unique smooth irreducible curve $R \in\left|E_{1}+E_{2}+L\right|$ such that R passes though $C \cap L$ and is tangent to C at the point $C \cap L$. If either $E_{1} \cap L \in C$ or $E_{2} \cap L \in C$, we let $R=E_{1}+E_{2}+L$. In the former case, either R and C have simple tangency at the point $C \cap L$ or the curve R is tangent to C at the point $C \cap L$ with multiplicity 3 (in this case, we must have $R \cap C=C \cap L$, because $R \cdot C=3$).

If either $E_{1} \cap L \in C$ or $E_{2} \cap L \in C$ (but not both, since $C \cdot L=1$), then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+\beta}{5 \beta}, \frac{1}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{4} \\
\frac{1+\beta}{5 \beta} \text { for } \frac{1}{4} \leqslant \beta \leqslant \frac{2}{3} \\
\frac{1}{3 \beta} \text { for } \frac{2}{3} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If the curve C does not contain the points $E_{1} \cap L$ nor $E_{2} \cap L$, and either L_{1} is tangent to C at the point $C \cap E_{1}$ or L_{2} is tangent to C at the point $C \cap E_{2}$, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+2 \beta}{6 \beta}, \frac{1}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{4} \\
\frac{1+2 \beta}{6 \beta} \text { for } \frac{1}{4} \leqslant \beta \leqslant \frac{1}{2} \\
\frac{1}{3 \beta} \text { for } \frac{1}{2} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If the curve C does not contain the points $E_{1} \cap L$ nor $E_{2} \cap L$ (this implies that the curve R is smooth), neither L_{1} is tangent to C at the point $C \cap E_{1}$ nor L_{2} is tangent to C at the point $C \cap E_{2}$, and the curve R is tangent to C at the point $C \cap L$ with multiplicity 3, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+3 \beta}{7 \beta}, \frac{1}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{4} \\
\frac{1+3 \beta}{7 \beta} \text { for } \frac{1}{4} \leqslant \beta \leqslant \frac{4}{9}, \\
\frac{1}{3 \beta} \text { for } \frac{4}{9} \leqslant \beta \leqslant 1 .
\end{array}\right.
$$

Finally, if the curve C does not contain the points $E_{1} \cap L$ nor $E_{2} \cap L$ (and hence the curve R is smooth), neither L_{1} is tangent to C at the point $C \cap E_{1}$ nor L_{2} is tangent to C at the point $C \cap E_{2}$, and R is tangent to C at the point $C \cap L$ with multiplicity 2 , then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{3} \\
\frac{1}{3 \beta} \text { for } \frac{1}{3} \leqslant \beta \leqslant 1
\end{array}\right.
$$

We have $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$. Indeed, if either $E_{1} \cap L \in C$ or $E_{2} \cap L \in C$, then

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(3 L+2 E_{1}+2 E_{2}\right)\right)\right\}
$$

which implies that $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$. If neither $E_{1} \cap L \in C$ nor $E_{2} \cap L \in C$, then

$$
\min \left\{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(3 L+2 E_{1}+2 E_{2}\right)\right)\right\}=\min \left\{1, \frac{1}{3 \beta}\right\}
$$

If the curve C does not contain the points $E_{1} \cap L$ nor $E_{2} \cap L$, and L_{1} is tangent to C at the point $C \cap E_{1}$, then

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1}{3 \beta}, \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(2 L_{1}+2 E_{1}+L\right)\right)\right\},
$$

and similarly if L_{2} is tangent to C at the point $C \cap E_{2}$. If the curve C does not contain the points $E_{1} \cap L$ nor $E_{2} \cap L$ (this implies that the curve R is smooth), neither L_{1} is tangent to C
at the point $C \cap E_{1}$ nor L_{2} is tangent to C at the point $C \cap E_{2}$, and the curve R is tangent to C at the point $C \cap L$ with multiplicity 3 , then

$$
\min \left\{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(3 L+2 E_{1}+2 E_{2}\right)\right), \operatorname{lct}(S,(1-\beta) C ; \beta(L+2 R))\right\}
$$

equals $\hat{\alpha}(S,(1-\beta) C)$. We conclude that $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$ in every case.
2.5. Blow up of \mathbb{P}^{2} at three points. Suppose that $K_{S}^{2}=6$. Then there exists a birational morphism $\pi: S \rightarrow \mathbb{P}^{2}$ that is the blow up of three non-colinear points. Denote the π-exceptional curves by E_{1}, E_{2}, E_{3}, denote the proper transform on S of the line in \mathbb{P}^{2} that passes through $\pi\left(E_{1}\right)$ and $\pi\left(E_{2}\right)$ by L_{12}, denote the proper transform on S of the line in \mathbb{P}^{2} that passes through $\pi\left(E_{1}\right)$ and $\pi\left(E_{3}\right)$ by L_{13}, and denote the proper transform on S of the line in \mathbb{P}^{2} that passes through $\pi\left(E_{2}\right)$ and $\pi\left(E_{3}\right)$ by L_{23}. Then $E_{1}, E_{2}, E_{3}, L_{12}, L_{13}$ and L_{23} are all lines in S.

If the curve C contains an intersection point of two intersecting lines in S, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+\beta}{4 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{3} \\
\frac{1+\beta}{4 \beta} \text { for } \frac{1}{3} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If the curve C does not contain the intersection points of any two intersecting lines, and there are a line Z_{1} and an irreducible conic Z_{2} in S such that Z_{2} is tangent to C at the point $C \cap Z_{1}$, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+2 \beta}{5 \beta}, \frac{1}{2 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{3}, \\
\frac{1+2 \beta}{5 \beta} \text { for } \frac{1}{3} \leqslant \beta \leqslant \frac{3}{4}, \\
\frac{1}{2 \beta} \text { for } \frac{3}{4} \leqslant \beta \leqslant 1 .
\end{array}\right.
$$

If C does not contain the intersection point of any two intersecting lines, and for every line Z_{1} in S, there exists no irreducible conic Z_{2} in S such that Z_{2} is tangent to C at $C \cap Z_{1}$, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1}{2 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{2} \\
\frac{1}{2 \beta} \text { for } \frac{1}{2} \leqslant \beta \leqslant 1 .
\end{array}\right.
$$

One has $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$. Indeed, we have $2 E_{1}+2 L_{12}+L_{13}+E_{2} \sim-K_{S}$. Thus, if $E_{1} \cap L_{12} \notin C, E_{1} \cap L_{13} \notin C$ and $E_{2} \cap L_{12} \notin C$, then
$\min \left\{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(2 E_{1}+2 L_{12}+L_{13}+E_{2}\right)\right)\right\}=\left\{\begin{array}{l}1 \text { for } 0<\beta \leqslant \frac{1}{2}, \\ \frac{1}{2 \beta} \text { for } \frac{1}{2} \leqslant \beta \leqslant 1 .\end{array}\right.$
Otherwise, this minimum is $\hat{\alpha}(S,(1-\beta) C)$. This shows that $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$ except for the case when C does not contain the intersection point of any two intersecting lines, but there are a line Z_{1} and a conic Z_{2} in S such that Z_{2} is tangent to C at the point $C \cap Z_{1}$. In the latter case, we may assume that $Z_{1}=E_{1}$ and $Z_{2} \in\left|L_{12}+E_{2}\right|$, which implies that

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(2 Z_{2}+E_{1}+L_{23}\right)\right)\right\},
$$

since $2 Z_{2}+E_{1}+L_{23} \sim-K_{S}$. Thus, in all cases we have $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$.
2.6. Blow up of \mathbb{P}^{2} at four points. Suppose that $K_{S}^{2}=5$. Then there exists a birational morphism $\pi: S \rightarrow \mathbb{P}^{2}$ that contracts four smooth rational curves to four points such that no three of them are colinear. Denote these curves by $E_{1}, E_{2}, E_{3}, E_{4}$. For and integers i and j such that $1 \leqslant i<j \leqslant 4$, denote by $L_{i j}$ the proper transform on S via π of the line in \mathbb{P}^{2} that passes through $\pi\left(E_{i}\right)$ and $\pi\left(E_{j}\right)$. These gives us six lines $L_{12}, L_{13}, L_{14}, L_{23}, L_{24}$ and L_{34}. Moreover, $E_{1}, E_{1}, E_{2}, E_{3}, E_{4}, L_{12}, L_{13}, L_{14}, L_{23}, L_{24}$ and L_{34} are all lines in S. Let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1}{2 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{2} \\
\frac{1}{2 \beta} \text { for } \frac{1}{2} \leqslant \beta \leqslant 1
\end{array}\right.
$$

Then $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$, since $2 E_{1}+L_{12}+L_{13}+L_{14} \sim-K_{S}$ and

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(2 E_{1}+L_{12}+L_{13}+L_{14}\right)\right)\right\} .
$$

2.7. Complete intersections of two quadrics. Suppose that $K_{S}^{2}=4$. Then there exists a birational morphism $\pi: S \rightarrow \mathbb{P}^{2}$ that is the blow up of five points such that no three of them are colinear. Denote by $E_{1}, E_{2}, E_{3}, E_{4}$ and E_{5} the π-exceptional curves. For any integers i and j such that $1 \leqslant i<j \leqslant 5$, denote by $L_{i j}$ the proper transform via π on S of the line in \mathbb{P}^{2} that passes through $\pi\left(E_{i}\right)$ and $\pi\left(E_{j}\right)$. Denote by E the proper transform on S of the unique smooth conic in \mathbb{P}^{2} that passes through $\pi\left(E_{1}\right), \pi\left(E_{2}\right), \pi\left(E_{3}\right), \pi\left(E_{4}\right)$ and $\pi\left(E_{5}\right)$. Then $E_{1}, E_{2}, E_{3}, E_{4}$, $E_{5}, L_{12}, L_{13}, L_{14}, L_{15}, L_{23}, L_{24}, L_{25}, L_{34}, L_{35}, L_{45}$ and E are all the lines in S.

If the curve C contains the intersection point of any two intersecting lines, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+\beta}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{2} \\
\frac{1+\beta}{3 \beta} \text { for } \frac{1}{2} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If the curve C does not contain the intersection point of any two intersecting lines, but there are two conics C_{1} and C_{2} in S such that $C_{1}+C_{2} \sim-K_{S}$, and C_{1} and C_{2} both tangent C at one point, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+2 \beta}{4 \beta}, \frac{2}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{2} \\
\frac{1+2 \beta}{4 \beta} \text { for } \frac{1}{2} \leqslant \beta \leqslant \frac{5}{6} \\
\frac{2}{3 \beta} \text { for } \frac{5}{6} \leqslant \beta \leqslant 1
\end{array}\right.
$$

Finally, if the curve C does not contain the intersection point of any two intersecting lines, and for every two conics C_{1} and C_{2} in S such that $C_{1}+C_{2} \sim-K_{S}$, the conics C_{1} and C_{2} do not tangent C at one point, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{2}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{2}{3} \\
\frac{2}{3 \beta} \text { for } \frac{2}{3} \leqslant \beta \leqslant 1
\end{array}\right.
$$

We claim that $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$. Indeed, the lines L_{12} and L_{34} intersect at a single point. Let Z be the proper transform on S of the line in \mathbb{P}^{2} that passes through $\pi\left(E_{5}\right)$
and $\pi\left(L_{12} \cap L_{34}\right)$. Then $L_{12}+L_{34}+Z \sim-K_{S}$. Moreover, if $L_{12} \cap L_{34} \in C$, then

$$
\min \left\{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(L_{12}+L_{34}+Z\right)\right)\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{2} \\
\frac{1+\beta}{3 \beta} \text { for } \frac{1}{2} \leqslant \beta \leqslant 1
\end{array}\right.
$$

However, if $L_{12} \cap L_{34} \notin C$, then this minimum equals $\min \left\{1, \frac{2}{3 \beta}\right\}$. Since we can repeat these computations for any pair of intersecting lines in S, we see that $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$ except possibly the case when C does not contain the intersection point of any two intersecting lines, but there are two conics C_{1} and C_{2} in S such that $C_{1}+C_{2} \sim-K_{S}$, and C_{1} and C_{2} both tangent C at one point. In the latter case, $\hat{\alpha}(S,(1-\beta) C)$ is equal to

$$
\min \left\{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(L_{12}+L_{34}+Z\right)\right), \operatorname{lct}\left(S,(1-\beta) C ; \beta\left(C_{1}+C_{2}\right)\right)\right\},
$$

since $C_{1}+C_{2} \sim-K_{S}$. This shows that $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$ in all three cases.
2.8. Cubic surfaces. Suppose that $K_{S}^{2}=3$. Then S is a smooth cubic surface in \mathbb{P}^{3}. Recall that an Eckardt point in S is a point of intersection of three lines contained in S. General cubic surface contains no Eckardt points. If S contains an Eckardt point that is contained in C, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{1+\beta}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{1}{2} \\
\frac{1+\beta}{3 \beta} \text { for } \frac{1}{2} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If S contains an Eckardt point and C contains no Eckardt points, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{2}{3 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{2}{3} \\
\frac{2}{3 \beta} \text { for } \frac{2}{3} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If S contains no Eckardt points, but S contains a line L and a conic M such that L is tangent to M and $L \cap M \in C$, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{2+\beta}{4 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{2}{3} \\
\frac{2+\beta}{4 \beta} \text { for } \frac{2}{3} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If S contains no Eckardt points, for every line L and every conic M on S such that L is tangent to M, we have $L \cap M \notin C$, but there is a cuspidal curve $T \in\left|-K_{S}\right|$ such that $T \cap C=\operatorname{Sing}(T)$, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{2+3 \beta}{6 \beta}, \frac{3}{4 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{2}{3} \\
\frac{2+3 \beta}{6 \beta} \text { for } \frac{2}{3} \leqslant \beta \leqslant \frac{5}{6} \\
\frac{3}{4 \beta} \text { for } \frac{5}{6} \leqslant \beta \leqslant 1
\end{array}\right.
$$

Finally, if S contains no Eckardt points, for every line L and every conic M on S such that L is tangent to M we have $L \cap M \notin C$, and every irreducible cuspidal curve $T \in\left|-K_{S}\right|$ intersects
C by at least two point, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{3}{4 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{3}{4} \\
\frac{3}{4 \beta} \text { for } \frac{3}{4} \leqslant \beta \leqslant 1
\end{array}\right.
$$

One can easily check that $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$ (see [13, Theorem 4.9.1]).
2.9. Double covers of \mathbb{P}^{2}. Suppose that $K_{S}^{2}=2$. If $\left|-K_{S}\right|$ contains a tacnodal curve whose singular point is contained in C, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{2+\beta}{4 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{2}{3} \\
\frac{2+\beta}{4 \beta} \text { for } \frac{2}{3} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If $\left|-K_{S}\right|$ contains a tacknodal curve, but C does not contain singular points of all tacknodal curves in $\left|-K_{S}\right|$, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{3}{4 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{3}{4} \\
\frac{3}{4 \beta} \text { for } \frac{3}{4} \leqslant \beta \leqslant 1
\end{array}\right.
$$

If $\left|-K_{S}\right|$ contains no curves with tacnodal singularities, but C contains the cuspidal singular point of a cuspidal rational curve in $\left|-K_{S}\right|$, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{3+2 \beta}{6 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{3}{4} \\
\frac{3+2 \beta}{6 \beta} \text { for } \frac{3}{4} \leqslant \beta \leqslant 1
\end{array}\right.
$$

Finally, if $\left|-K_{S}\right|$ contains no curves with tacnodal singularities, and C does not contain cuspidal singular points of all cuspidal rational curves in $\left|-K_{S}\right|$, then we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{5}{6 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{5}{6} \\
\frac{5}{6 \beta} \text { for } \frac{5}{6} \leqslant \beta \leqslant 1
\end{array}\right.
$$

One can easily check that $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$ (see [13, Theorem 4.10.1]).
2.10. Double covers of quadric cones. Suppose that $K_{S}^{2}=1$. If $\left|-K_{S}\right|$ contains no cuspidal curves, then we let $\hat{\alpha}(S,(1-\beta) C)=1$ for every $\beta \in(0,1]$. Otherwise, we let

$$
\hat{\alpha}(S,(1-\beta) C)=\min \left\{1, \frac{5}{6 \beta}\right\}=\left\{\begin{array}{l}
1 \text { for } 0<\beta \leqslant \frac{5}{6} \\
\frac{5}{6 \beta} \text { for } \frac{5}{6} \leqslant \beta \leqslant 1
\end{array}\right.
$$

In the former case, we have $\hat{\alpha}(S,(1-\beta) C)=\operatorname{lct}(S,(1-\beta) C ; \beta C)$. In the latter case, we have

$$
\hat{\alpha}(S,(1-\beta) C)=\min \{\operatorname{lct}(S,(1-\beta) C ; \beta C), \operatorname{lct}(S,(1-\beta) C ; \beta Z)\}
$$

where Z is a cuspidal curve in $\left|-K_{S}\right|$. Thus, $\underset{9}{\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C) \text { in both cases. }}$

3. Local inequalities

Let S be a smooth surface, let D be an effective \mathbb{R}-divisor on S, and let P be a point in S.
Lemma 3.1. Suppose that (S, D) is not \log canonical at P. Then $\operatorname{mult}_{P}(D)>1$.
Proof. This is a well-known fact. See [8, Exercise 6.18], for instance.
Lemma 3.2. Suppose that (S, D) is not \log canonical at P. Let B be an effective \mathbb{R}-divisor on S such that (S, B) is \log canonical and $B \sim_{\mathbb{R}} D$. Then there exists an effective \mathbb{R}-divisor D^{\prime} on S such that $D^{\prime} \sim_{\mathbb{R}} D$, the \log pair $\left(S, D^{\prime}\right)$ is not \log canonical at P, and $\operatorname{Supp}\left(D^{\prime}\right)$ does not contain at least one irreducible component of $\operatorname{Supp}(B)$.
Proof. Let μ be the greatest real number such that $D^{\prime}:=(1+\mu) D-\mu B$ is effective. Since $D \neq B$, the number μ does exist. Then $D^{\prime} \sim_{\mathbb{R}} D$, the \log pair $\left(S, D^{\prime}\right)$ is not \log canonical at P, and $\operatorname{Supp}\left(D^{\prime}\right)$ does not contain at least one irreducible component of $\operatorname{Supp}(B)$.

Let $\pi_{1}: S_{1} \rightarrow S$ be a blow up of the point P, let F_{1} be the π-exceptional curve, and let D^{1} be the proper transform of D via π_{1}. Then $K_{S_{1}}+D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) F_{1} \sim_{\mathbb{R}} \pi_{1}^{*}\left(K_{S}+D\right)$.
Lemma 3.3. Suppose that (S, D) is not \log canonical at P. Then $\operatorname{mult}_{P}(D)>1$ and there exists a point $P_{1} \in F_{1}$ such that $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) F_{1}\right)$ is not \log canonical at P_{1}. Moreover, one has mult $P(D)+\operatorname{mult}_{P_{1}}\left(D^{1}\right)>2$. If, in addition, $\operatorname{mult}_{P}(D) \leqslant 2$, then such point P_{1} is unique.
Proof. This is a well-known fact. See, for example, [4, Remark 2.5].
Let C be an irreducible curve on S that contains P. Suppose that C is smooth at P. Write $D=a C+\Omega$, where $a \in \mathbb{R} \geqslant 0$, and Ω is an effective \mathbb{R}-divisor on S with $C \not \subset \operatorname{Supp}(\Omega)$.
Theorem 3.4. If $(S, a C+\Omega)$ is not \log canonical at P and $a \leqslant 1$, then $\operatorname{mult}_{P}(\Omega \cdot C)>1$.
Proof. See, for example, [8, Exercise 6.31], [14, Lemma 2.5] or [3, Theorem 7].
Denote the proper transform of the curve C on the surface S_{1} by C^{1}, and denote the proper transform of the \mathbb{R}-divisor Ω on the surface S_{1} by Ω^{1}.
Lemma 3.5. Suppose that $a \leqslant 1$, the \log pair $(S, a C+\Omega)$ is not \log canonical at the point P, and $\operatorname{mult}_{P}(\Omega) \leqslant 1$. Then $\left(S_{1}, a C^{1}+\Omega^{1}+\left(a+\operatorname{mult}_{P}(\Omega)-1\right) F_{1}\right)$ is not \log canonical at $C^{1} \cap F_{1}$, it is log canonical at every point in $E_{1} \backslash\left(C^{1} \cap F_{1}\right)$, and $\operatorname{mult}_{P}(\Omega \cdot C)>2-a$.

Proof. Since $a \leqslant 1$ and $\operatorname{mult}_{P}(\Omega) \leqslant 1$, we have $\operatorname{mult}_{P}(D) \leqslant 2$. By Lemma 3.3, there exists a unique point $P_{1} \in F_{1}$ such that the \log pair $\left(S_{1}, a C^{1}+\Omega^{1}+\left(a+\operatorname{mult}_{P}(\Omega)-1\right) F_{1}\right)$ is not \log canonical at P_{1}. If $P_{1} \notin C^{1}$, then $\operatorname{mult}_{P}(\Omega)=F_{1} \cdot \Omega^{1} \geqslant \operatorname{mult}_{P_{1}}\left(\Omega^{1} \cdot F_{1}\right)>1$ by Theorem 3.4, which is impossible, since $\operatorname{mult}_{P}(\Omega) \leqslant 1$. Thus, $P_{1} \in C^{1}$. Then, by Theorem 3.4 again:

$$
\operatorname{mult}_{P}(\Omega \cdot C) \geqslant \operatorname{mult}_{P}(\Omega)+\operatorname{mult}_{P_{1}}\left(\Omega^{1} \cdot C^{1}\right)>2-a
$$

Let us consider an infinite sequence of blow ups

such that each π_{n} is the blow up of the point in the proper transform of the curve C on the surface S_{n-1} that dominates P. Denote the π_{n}-exceptional curve by F_{n}, and denote the proper transform of C on S_{n} by C^{n}. For every $n \geqslant 1$, write $P_{n}=C^{n} \cap F_{n}$, denote the proper transform of the divisor Ω on S_{n} by Ω^{n}, let $m_{n}=\operatorname{mult}_{P_{n}}\left(\Omega^{n}\right)$ and let $m_{0}=\operatorname{mult}_{P}(\Omega)$. For every positive integers $k \leqslant n$, denote the proper transform of the curve F_{k} on S_{n} by F_{k}^{n}. Finally, we let

$$
D^{S_{n}}=a C^{n}+\Omega^{n}+\sum_{k=1}^{n}\left(k a-k+\sum_{i=0}^{k-1} m_{i}\right) F_{k}^{n}
$$

for every $n \geqslant 1$. Then $K_{S_{n}}+D^{S_{n}} \sim_{\mathbb{R}}\left(\pi_{1} \circ \pi_{2} \circ \cdots \circ \pi_{n}\right)^{*}\left(K_{S}+D\right)$ for every $n \geqslant 1$.

Theorem 3.6. Suppose that $(S, a C+\Omega)$ is not \log canonical at P and $a \leqslant 1$. Then $m_{0}+a>1$ and $\operatorname{mult}_{P}(\Omega \cdot C)>1$. Moreover, the following additional assertions hold:
(i) if $m_{0} \leqslant 1$, then the \log pair $\left(S_{1}, D^{S_{1}}\right)$ is not \log canonical at P_{1},
(ii) if $\left(S_{n}, D^{S_{n}}\right)$ is not \log canonical at some point in F_{n}, then $D^{S_{n}}$ is an effective divisor,
(iii) if $\left(S_{n}, D^{S_{n}}\right)$ is not \log canonical at some point in F_{n} and $\sum_{i=0}^{n-1} m_{i} \leqslant n+1-n a$, then such point in F_{n} is unique,
(iv) if $\left(S_{n}, D^{S_{n}}\right)$ is not \log canonical at P_{n}, then $(n+1) a+\sum_{i=0}^{n} m_{i}>n+2$, the \log pair $\left(S_{n+1}, D^{S_{n+1}}\right)$ is not \log canonical at some point in F_{n+1}, and mult ${ }_{P}(\Omega \cdot C)>n+1-n a$,
(v) if $n \geqslant 2, m_{n-1} \leqslant 1$ and $\sum_{i=0}^{n-1} m_{i} \leqslant n+1-n a$, then $\left(S_{n}, D^{S_{n}}\right)$ is \log canonical at every point of F_{n} different from P_{n} and $F_{n} \cap F_{n-1}^{n}$,
(vi) if $n \geqslant 2$ and $\sum_{i=0}^{n-1} m_{i} \leqslant n-(n-1) a$, then $\left(S_{n}, D^{S_{n}}\right)$ is \log canonical at $F_{n} \cap F_{n-1}^{n}$,
(vii) if $n \geqslant 2, \sum_{i=0}^{n-2} m_{i} \leqslant n-(n-1) a$, and $\sum_{i=0}^{n-3} m_{i}+2 m_{n-2} \leqslant n+1-n a$, then $\left(S_{n}, D^{S_{n}}\right)$ is \log canonical at $F_{n} \cap F_{n-1}^{n}$.
Proof. By Lemma 3.1, we have $m_{0}+a>1$. By Theorem 3.4, we have $\operatorname{mult}_{P}(\Omega \cdot C)>1-a$. Assertion (i) follows from Lemma 3.5. If $\left(S_{n}, D^{S_{n}}\right)$ is not \log canonical at some point in F_{n}, then $\left(S_{n-1}, D^{S_{n-1}}\right)$ is not \log canonical at P^{n-1}. Thus, assertion (ii) follows from Lemma 3.1. Inequality $\sum_{i=0}^{n-1} m_{i} \leqslant n+1-n a$ is equivalent to $\operatorname{mult}_{P_{n-1}}\left(D^{S_{n-1}}\right) \leqslant 2$. Thus, assertion (iii) follows from Lemma 3.3. If $\left(S_{n}, D^{S_{n}}\right)$ is not \log canonical at P_{n}, then $(n+1) a+\sum_{i=0}^{n} m_{i}>n+2$ by Lemma 3.1, the pair $\left(S_{n+1}, D^{S_{n+1}}\right)$ is not \log canonical at some point in F_{n+1} by Lemma 3.3, and

$$
\operatorname{mult}_{P}(\Omega \cdot C)-\sum_{i=0}^{n-1} m_{i}=\operatorname{mult}_{P_{n}}\left(\Omega^{n} \cdot C^{n}\right)>1-\left(n a-n+\sum_{i=0}^{n-1} m_{i}\right)
$$

by Theorem 3.4. This proves assertion (iv).
Suppose that $n \geqslant 2$. Let $O=F_{n} \cap F_{n-1}^{n}$. If $\sum_{i=0}^{n-1} m_{i} \leqslant n+1-n a$ and $\left(S_{n}, D^{S_{n}}\right)$ is not \log canonical at some point in $F_{n} \backslash\left(P_{n} \cup O\right)$, then $m_{n-1}=F_{n} \cdot \Omega^{n}>1$ by Theorem 3.4, which implies assertion (v). If $\left(S_{n}, D^{S_{n}}\right)$ is not \log canonical at O and $\sum_{i=0}^{n-1} m_{i} \leqslant n+1-n a$, then

$$
m_{n-1}=F_{n} \cdot \Omega^{n} \geqslant \operatorname{mult}_{O}\left(F_{n} \cdot \Omega^{n}\right)>1-\left((n-1) a-n+1+\sum_{i=0}^{n-2} m_{i}\right)
$$

by Theorem 3.4. If $\left(S_{n}, D^{S_{n}}\right)$ is not \log canonical at O and $\sum_{i=0}^{n-2} m_{i} \leqslant n-(n-1) a$, then

$$
m_{n-2}-m_{n-1}=F_{n-1}^{n} \cdot \Omega^{n} \geqslant \operatorname{mult}_{O}\left(F_{n-1}^{n} \cdot \Omega^{n}\right)>1-\left(n a-n+\sum_{i=0}^{n-1} m_{i}\right)
$$

by Theorem 3.4. This proves assertions (vi) and (vii).
Corollary 3.7. Suppose that $(S, a C+\Omega)$ is not \log canonical at $P, C \not \subset \operatorname{Supp}(\Omega), a \leqslant 1$ and $m_{0} \leqslant \min \left\{1,1+\frac{1}{n}-n a\right\}$ for some integer $n \geqslant 1$. Then $\operatorname{mult}_{P}(\Omega \cdot C)>n+1-n a$.
Corollary 3.8. Suppose that $(S, a C+\Omega)$ is not \log canonical at $P, a \leqslant 1$ and $m_{0} \leqslant 1$. Suppose that $2 m_{0} \leqslant 3-2 a$ or $m_{0}+m_{1} \leqslant 2-a$. Suppose that $m_{0}+2 m_{1} \leqslant 4-3 a$ or $m_{0}+m_{1}+m_{2} \leqslant 3-2 a$. Then $\operatorname{mult}_{P}(\Omega \cdot C)>4-3 a$. If $m_{0}+m_{1}+2 m_{2} \leqslant 5-4 a$ or $m_{0}+m_{1}+m_{2}+m_{3} \leqslant 4-3 a$, then $\operatorname{mult}_{P}(\Omega \cdot C)>5-4 a$.

Let us conclude this section by recalling
Theorem 3.9 ([3, Theorem 13]). Let C_{1} and C_{2} be two irreducible curves on S that are both smooth at P and intersect transversally at P. Let $D=a_{1} C_{1}+a_{2} C_{2}+\Delta$, where a_{1} and a_{2} are non-negative real numbers, and Δ is an effective \mathbb{R}-divisor on S whose support does not contain the curves C_{1} and C_{2}. If (S, D) is not \log canonical at P and mult ${ }_{P}(\Delta) \leqslant 1$, then $\operatorname{mult}_{P}\left(\Delta \cdot C_{1}\right)>2\left(1-a_{2}\right)$ or $\operatorname{mult}_{P}\left(\Delta \cdot C_{2}\right)>2\left(1-a_{1}\right)$.

4. The proof

Let us use the notation of Section 2. The goal of this section is to prove
Theorem 4.1. One has $\alpha(S,(1-\beta) C)=\hat{\alpha}(S,(1-\beta) C)$ for every $\beta \in(0,1]$.
This theorem implies Theorem 1.12, since $\hat{\alpha}(S,(1-\beta) C) \geqslant \check{\alpha}(S,(1-\beta) C)$ (see Section 2) and $\check{\alpha}(S,(1-\beta) C) \geqslant \alpha(S,(1-\beta) C)$ (by definition) for every $\beta \in(0,1]$.

Let D be any effective \mathbb{R}-divisor such that $D \sim_{\mathbb{R}}-K_{S}$, and let P be any point in S. Since $\alpha(S,(1-\beta) C) \leqslant \hat{\alpha}(S,(1-\beta) C)$, to prove Theorem 4.1, it is enough to show that the log pair

$$
\begin{equation*}
(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta D) \tag{4.2}
\end{equation*}
$$

is \log canonical at P for every $\beta \in(0,1]$. We will do this in several steps.
Lemma 4.3. Suppose that (4.2) is not \log canonical at P. Then $P \in C$, we have

$$
\operatorname{mult}_{P}(D)>\frac{1}{\hat{\alpha}(S,(1-\beta) C)} \geqslant 1
$$

and (4.2) is \log canonical outside of the point P. Moreover, if there exists a (-1)-curve $Z \subset S$ such that $P \in Z$, then $Z \subset \operatorname{Supp}(D)$. Furthermore, there exists an effective \mathbb{R}-divisor $D^{\prime} \sim_{\mathbb{R}} D$ such that $C \not \subset \operatorname{Supp}\left(D^{\prime}\right)$ and $\left(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta D^{\prime}\right)$ is not \log canonical at P.

Proof. If $P \notin C$, then $(S, \hat{\alpha}(S,(1-\beta) C) \beta D)$ is not \log canonical at P, which is impossible, since $\alpha(S) \leqslant \beta \hat{\alpha}(S,(1-\beta) C)$ by [2, Theorem 1.7]. We have $\hat{\alpha}(S,(1-\beta) C) \operatorname{mult}_{P}(D)>1$ by Lemma 3.1. In particular, if there exists a (-1)-curve $Z \subset S$ such that $P \in Z$, then Z must be contained in $\operatorname{Supp}(D)$, because otherwise we would have $1=Z \cdot D \geqslant \operatorname{mult}_{P}(D)>1$.

We see that (4.2) is \log canonical outside of the curve C. Moreover, the coefficient of the curve C in the divisor $(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta D$ does not exceed 1 , since $D \sim_{\mathbb{R}} C$. Hence, the \log pair (4.2) is log canonical outside of finitely many points. Now the connectedness principle (see, for example, [8, Theorem 6.32]) implies that (4.2) is \log canonical outside of P.

Since $(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta C)$ is \log canonical, it follows from Lemma 3.2 that there is an effective \mathbb{R}-divisor $D^{\prime} \sim_{\mathbb{R}} D$ such that $C \not \subset \operatorname{Supp}\left(D^{\prime}\right)$ and $\left(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta D^{\prime}\right)$ is not \log canonical at P.

Thus, to prove that (4.2) is \log canonical at P, we may assume that $P \in C \not \subset \operatorname{Supp}(D)$.
Lemma 4.4. If $S \cong \mathbb{P}^{2}$, then (4.2) is \log canonical at P.
Proof. Suppose (4.2) is not log canonical at P. Let L be a general line in S that contains P. Then $\operatorname{mult}_{P}(D) \leqslant D \cdot L=3$. But $3 \hat{\alpha}(S,(1-\beta) C) \beta \leqslant \frac{1}{3}+\beta$ (see $\left.\S 2.1\right)$. Thus, if $\beta \leqslant \frac{2}{3}$, then

$$
\hat{\alpha}(S,(1-\beta) C) \beta \operatorname{mult}_{P}(D) \leqslant 3 \hat{\alpha}(S,(1-\beta) C) \beta \leqslant \frac{1}{3}+\beta \leqslant 1
$$

Similarly, if $\frac{2}{3} \leqslant \beta \leqslant 1$, then $\hat{\alpha}(S,(1-\beta) C) \beta \operatorname{mult}_{P}(D) \leqslant \frac{1}{3}$ mult $_{P}(D) \leqslant 1$. Applying Corollary 3.7 with $n=3$ to (4.2), we get

$$
9 \beta \hat{\alpha}(S,(1-\beta) C)=\hat{\alpha}(S,(1-\beta) C) \beta(C \cdot D) \geqslant \hat{\alpha}(S,(1-\beta) C) \beta \operatorname{mult}_{P}(C \cdot D)>1+3 \beta
$$

which contradicts the definition of $\hat{\alpha}(S,(1-\beta) C)$ in $\S 2.1$.
Lemma 4.5. Suppose that $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Then (4.2) is \log canonical at P.
Proof. Suppose that (4.2) is not \log canonical at P. Let L_{1} and L_{2} be the fibers of two different projections $S \rightarrow \mathbb{P}^{1}$ that both pass through P. Since $\left(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta\left(2 L_{1}+2 L_{2}\right)\right)$ is
\log canonical and $2 L_{1}+2 L_{2} \sim_{\mathbb{R}} D$, we may assume that either $L_{1} \not \subset \operatorname{Supp}(D)$ or $L_{2} \not \subset \operatorname{Supp}(D)$ by Lemma 3.2. This implies that $\operatorname{mult}_{P}(D) \leqslant 2$, since $D \cdot L_{1}=D \cdot L_{2}=2$. Then

$$
\hat{\alpha}(S,(1-\beta) C) \beta \operatorname{mult}_{P}(D) \leqslant 2 \hat{\alpha}(S,(1-\beta) C) \beta \leqslant \min \left\{1, \frac{1}{4}+\beta\right\},
$$

(see $\S 2.2$). Applying Corollary 3.7 with $n=4$, we get

$$
8 \hat{\alpha}(S,(1-\beta) C) \beta=\hat{\alpha}(S,(1-\beta) C) \beta(C \cdot D) \geqslant \hat{\alpha}(S,(1-\beta) C) \beta \operatorname{mult}_{P}(C \cdot D)>1+4 \beta
$$

which contradicts the definition of $\hat{\alpha}(S,(1-\beta) C)$ in $\S 2.2$.
Lemma 4.6. Suppose that $K_{S}^{2} \leqslant 3$. Then (4.2) is \log canonical at P.
Proof. Suppose that (4.2) is not \log canonical at P. By [4, Theorem 1.12], there is $T \in\left|-K_{S}\right|$ such that (S, T) is not \log canonical at P, and all irreducible components of the curve T are contained in the support of the divisor D. Moreover, such T is unique.

Since (S, T) is not \log canonical at P, we have very limited number of choices for $T \in\left|-K_{S}\right|$. Going through all of them, we see that $(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta T)$ is \log canonical at P (for details, see the proofs of [13, Theorems 4.9.1, 4.10.1, 4.11.1]).

By Lemma 3.2, there is an effective \mathbb{R}-divisor D^{\prime} on the surface S such that $D^{\prime} \sim_{\mathbb{R}} D$, the \log pair $\left(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta D^{\prime}\right)$ is not \log canonical at P, and $\operatorname{Supp}\left(D^{\prime}\right)$ does not contain at least one irreducible component of T. The latter contradicts [4, Theorem 1.12].

Corollary 4.7. Theorem 4.1 holds in the following cases: $S \cong \mathbb{P}^{2}, S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $K_{S}^{2} \leqslant 3$.
Lemma 4.8. Suppose that $4 \leqslant K_{S}^{2} \leqslant 7$, and P is the intersection point of two intersecting (-1)-curves in S. Then (4.2) is \log canonical at P.

Proof. Suppose that (4.2) is not \log canonical at P. Denote by Z_{1} and Z_{2} two (-1)-curves in S that contains P. We write $D=a Z_{1}+b Z_{2}+\Omega$, where a and b are non-negative real numbers, and Ω is an effective \mathbb{R}-divisor that whose support does not contain Z_{1} and Z_{2}. By Lemma 4.3, one has $a>0$ and $b>0$. Let $x=\operatorname{mult}_{P}(\Omega)$. Then $1-b+a=\Omega \cdot Z_{1} \geqslant x$, which gives $b-a+x \leqslant 1$. Similarly, we obtain $a-b+x \leqslant 1$. Then $a \leqslant 1+b, b \leqslant 1+a$ and $x \leqslant 1$. Thus, we have
$\operatorname{mult}_{P}((1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta \Omega)=1-\beta+\hat{\alpha}(S,(1-\beta) C) \beta x \leqslant 1-\beta+\hat{\alpha}(S,(1-\beta) C) \beta \leqslant 1$, because $\hat{\alpha}(S,(1-\beta) C) \leqslant 1$. Applying Theorem 3.9 to (4.2), we see that
$2(1-\hat{\alpha}(S,(1-\beta) C) \beta a)<Z_{1} \cdot(\hat{\alpha}(S,(1-\beta) C) \beta \Omega+(1-\beta) C)=\hat{\alpha}(S,(1-\beta) C) \beta(1-a+b)+1-\beta$, or
$2(1-\hat{\alpha}(S,(1-\beta) C) \beta b)<Z_{2} \cdot(\hat{\alpha}(S,(1-\beta) C) \beta \Omega+(1-\beta) C)=\hat{\alpha}(S,(1-\beta) C) \beta(1-b+a)+1-\beta$.
In both cases, we obtain $\hat{\alpha}(S,(1-\beta) C) \beta(1+a+b)>1+\beta$.
Suppose that $K_{S}^{2}=7$. Let us use the notation of $\S 2.4$. We may assume that $Z_{1}=E_{1}$ and $Z_{2}=L$. Since $3 L+2 E_{1}+2 E_{2} \sim-K_{S}$ and $\left(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta\left(3 L+2 E_{1}+2 E_{2}\right)\right.$ is \log canonical, we may also assume that $E_{2} \not \subset \operatorname{Supp}(\Omega)$ by Lemma 3.2 . Then $1-b=E_{2} \cdot \Omega \geqslant 0$, which gives $b \leqslant 1$. Since $a \leqslant 1+b$, we get $a+b \leqslant 3$. Thus, we have

$$
4 \beta \hat{\alpha}(S,(1-\beta) C) \geqslant \hat{\alpha}(S,(1-\beta) C) \beta(1+a+b)>1+\beta,
$$

which contradicts the definition of $\hat{\alpha}(S,(1-\beta) C)$.
Suppose that $K_{S}^{2}=6$. Let us use the notation of $\S 2.5$. Without loss of generality, we may assume that $Z_{1}=E_{1}$ and $Z_{2}=L_{12}$. Since $\left(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta\left(2 L_{12}+2 E_{1}+L_{13}+E_{2}\right)\right)$ is \log canonical and $2 L_{12}+2 E_{1}+L_{13}+E_{2} \sim-K_{S}$, we may assume that $\operatorname{Supp}(\Omega)$ does not contain L_{13} or E_{2} by Lemma 3.2. If $L_{13} \not \subset \operatorname{Supp}(\Omega)$, then $1-a=\Omega \cdot L_{13} \geqslant 0$, which implies
that $a \leqslant 1$. Similarly, if $E_{2} \not \subset \operatorname{Supp}(\Omega)$, then $b \leqslant 1$. Since $a \leqslant 1+b$ and $b \leqslant 1+a$, we see that $a+b \leqslant 3$. Thus, we have

$$
4 \beta \hat{\alpha}(S,(1-\beta) C) \geqslant \hat{\alpha}(S,(1-\beta) C) \beta(1+a+b)>1+\beta,
$$

which contradicts the definition of $\hat{\alpha}(S,(1-\beta) C)$.
Suppose that $K_{S}^{2}=5$. Let us use the notation of $\S 2.6$. Without loss of generality, we may assume that $Z_{1}=E_{1}$ and $Z_{2}=L_{12}$. Since $\left(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta\left(2 E_{1}+L_{12}+L_{13}+L_{14}\right)\right)$ is \log canonical and $2 E_{1}+L_{12}+L_{13}+L_{14} \sim-K_{S}$, we may assume that $\operatorname{Supp}(\Omega)$ does not contain L_{13} or L_{14} by Lemma 3.2. Since $\left(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta\left(E_{1}+2 L_{12}+E_{2}+L_{34}\right)\right)$ is \log canonical and $E_{1}+2 L_{12}+E_{2}+L_{34} \sim-K_{S}$, we may assume that $\operatorname{Supp}(\Omega)$ does not contain E_{2} or L_{34} by Lemma 3.2. If $L_{13} \not \subset \operatorname{Supp}(\Omega)$, then $1-a=\Omega \cdot L_{13} \geqslant 0$, which gives $a \leqslant 1$. Similarly, if $L_{14} \not \subset \operatorname{Supp}(\Omega)$, then $a \leqslant 1$. If $E_{2} \not \subset \operatorname{Supp}(\Omega)$, then $1-b=\Omega \cdot E_{2} \geqslant 0$, which gives $b \leqslant 1$. Similarly, if $L_{34} \not \subset \operatorname{Supp}(\Omega)$, then $b \leqslant 1$. Thus, we have $a \leqslant 1$ and $b \leqslant 1$. Then

$$
3 \beta \hat{\alpha}(S,(1-\beta) C) \geqslant \hat{\alpha}(S,(1-\beta) C) \beta(1+a+b)>1+\beta
$$

which contradicts the definition of $\hat{\alpha}(S,(1-\beta) C)$.
We have $K_{S}^{2}=4$. Let us use the notation of $\S 2.7$. Without loss of generality, we may assume that $Z_{1}=L_{12}$ and $Z_{2}=L_{34}$. Let Z be the proper transform on S of the line in \mathbb{P}^{2} that passes through $\pi\left(E_{5}\right)$ and $\pi\left(L_{12} \cap L_{34}\right)$. Since $\left(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta\left(L_{12}+L_{34}+Z\right)\right)$ is log canonical and $L_{12}+L_{34}+Z \sim-K_{S}$, we may assume that $Z \not \subset \operatorname{Supp}(\Omega)$ by Lemma 3.2. Then $2-a-b=\Omega \cdot Z \geqslant 0$, which implies that $3 \beta \hat{\alpha}(S,(1-\beta) C) \geqslant \hat{\alpha}(S,(1-\beta) C) \beta(1+a+b)>1+\beta$. The latter contradicts the definition of $\hat{\alpha}(S,(1-\beta) C)$.

Lemma 4.9. Suppose $S \cong \mathbb{F}_{1}$, and P is contained in a unique (-1)-curve in S. Then (4.2) is log canonical at P.

Proof. Let us use the notation of $\S 2.3$. Then $P=Z \cap C$, since $P \in C$. Suppose that (4.2) is not \log canonical at P. By Lemma 4.3, we have $Z \subset \operatorname{Supp}(D)$. By Lemma 3.2, we may assume that $F \not \subset \operatorname{Supp}(D)$, since $(S,(1-\beta) C+\hat{\alpha}(S,(1-\beta) C) \beta(2 Z+3 F))$ is \log canonical and $2 Z+3 F \sim-K_{S}$. Then $\operatorname{mult}_{P}(D) \leqslant F \cdot D=2$. On the other hand, we have $2 \hat{\alpha}(S,(1-\beta) C) \beta \leqslant \frac{1}{4}+\beta$ and $2 \hat{\alpha}(S,(1-\beta) C) \beta \leqslant 1$. Applying Corollary 3.7 with $n=4$ to (4.2), we get

$$
8 \hat{\alpha}(S,(1-\beta) C) \beta=\hat{\alpha}(S,(1-\beta) C) \beta(C \cdot D) \geqslant \hat{\alpha}(S,(1-\beta) C) \beta \operatorname{mult}_{P}(C \cdot D)>1+4 \beta
$$

which contradicts the definition of $\hat{\alpha}(S,(1-\beta) C)$.
Lemma 4.10. Suppose that $4 \leqslant K_{S}^{2} \leqslant 7$, and P is contained in a (-1)-curve in S. Then (4.2) is \log canonical at P.

Proof. See Section 5.

The following result implies Corollary 1.14 modulo Theorem 4.1.
Theorem 4.11. Let S_{1} and S_{2} be smooth del Pezzo surfaces, let C_{1} and C_{2} be smooth curves in $\left|-K_{S_{1}}\right|$ and $\left|-K_{S_{2}}\right|$, respectively. Suppose that there exists a birational morphism $f: S_{2} \rightarrow S_{1}$ such that $f\left(C_{2}\right)=C_{1}$. Then $\hat{\alpha}\left(S_{1},(1-\beta) C_{1}\right) \leqslant \hat{\alpha}\left(S_{2},(1-\beta) C_{2}\right)$ for every $\beta \in(0,1]$ except the following cases:
(1) $S_{1} \cong \mathbb{P}^{2}, S_{2} \cong \mathbb{F}_{1}$, and f is the blow up of an inflection points of the cubic curve $C_{1} \subset \mathbb{P}^{2}$,
(2) $S_{1} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}, K_{S_{2}}^{2}=7$, and f is the blow up of a point in C_{1}.

Proof. Since $f\left(C_{2}\right)=C_{1}$, the morphism f is the blow up of $K_{S_{1}}^{2}-K_{S_{2}}^{2} \geqslant 0$ distinct points on the curve C_{2}. Suppose that $\hat{\alpha}\left(S_{1},(1-\beta) C_{1}\right)>\hat{\alpha}\left(S_{2},(1-\beta) C_{2}\right)$. Going through all possible cases considered in Section 2, we end up with the following possibilities:
(1) $S_{1} \cong \mathbb{P}^{2}, S_{2} \cong \mathbb{F}_{1}$, and f is the blow up of an inflection points of the cubic curve $C_{1} \subset \mathbb{P}^{2}$,
(2) $S_{1} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}, K_{S_{2}}^{2}=7$, and f is the blow up of a point in C_{1},
(3) $K_{S_{1}}^{2}=4, K_{S_{2}}^{2}=3$, the morphism f is the blow up of a point in C_{1}, the curve C_{1} does not contain intersection points of any two lines, for every two conics Z_{1} and Z_{2} in S_{1} such that $Z_{1}+Z_{2} \sim-K_{S_{1}}$, the conics Z_{1} and Z_{2} do not tangent C_{1} at one point, and S_{2} contains an Eckardt point and this point is contained in C_{2},
(4) $K_{S_{1}}^{2}=3, K_{S_{2}}^{2}=2$, the morphism f is the blow up of a point in C_{1}, the surface S_{1} contains no Eckardt points, for every line L and every conic M on S_{1} such that L is tangent to M we have $L \cap M \notin C_{1}$, and every irreducible cuspidal curve $T \in\left|-K_{S_{1}}\right|$ intersects C_{1} by at least two point, the linear system $\left|-K_{S_{2}}\right|$ contains a curve with a tacnodal singularity and this tacnodal singular point is contained in C_{2}.
The first two cases are indeed possible. Let us show that the last two cases are impossible. Denote by E the f-exceptional curve. Then $f(E) \in C_{1}$.

Suppose that $K_{S_{1}}^{2}=4$ and $K_{S_{2}}^{2}=3$. Then C_{2} contains an Eckardt point O. Denote by L_{1}, L_{2}, L_{3} the lines in S_{2} that passes through O. Then either E is one of these three lines, or E intersects exactly one of them. Without loss of generality, we may assume that either $E=L_{3}$ or $E \cap L_{1}=E \cap L_{3}=\varnothing$. In the former case, $f\left(L_{1}\right)$ and $f\left(L_{2}\right)$ are two conics in S_{1} such that $f\left(L_{1}\right)+f\left(L_{2}\right) \sim-K_{S_{2}}$, and both $f\left(L_{1}\right)$ and $f\left(L_{2}\right)$ tangent the curve $C_{1}=f\left(C_{2}\right)$ at the point $f(P) \in C_{1}$. Since we know that such conics do not exist by assumption, we conclude that $E \cap L_{1}=E \cap L_{3}=\varnothing$. Then $f\left(L_{1}\right)$ and $f\left(L_{2}\right)$ are two lines in S_{1} that both pass through the point $f(P) \in C_{1}$. Such lines do not exist either. Thus, this case is impossible.

Now we suppose that $K_{S_{1}}^{2}=3$ and $K_{S_{2}}^{2}=2$. Let Z be a curve in $\left|-K_{S_{2}}\right|$ such that Z has tacnodal singularity $Q \in C_{2}$. Then $Z=L_{1}+L_{2}$, where L_{1} and L_{2} are two (-1)-curves in S_{2} that are tangent each other at the point $Q \in C_{2}$. Then either E is one of these two curves, or E intersects exactly one of them. Without loss of generality, we may assume that either $E=L_{2}$ or $E \cap L_{1}=\varnothing$. In the former case, $f\left(L_{1}\right)$ is a cuspidal curve in $\left|-K_{S_{1}}\right|$ whose intersection with the curve C_{1} consists of the point $f(Q)=\operatorname{Sing}\left(f\left(L_{1}\right)\right)$. By assumption, such a cuspidal curve does not exist. Thus, $E \cap L_{1}=\varnothing$. Then $f\left(L_{1}\right)$ is a line, and $f\left(L_{2}\right)$ is a conic. Moreover, the line $f\left(L_{1}\right)$ tangents to $f\left(L_{2}\right)$ at the point $f(Q) \in C_{1}$. The latter is impossible by assumption.

To prove Theorem 4.1, we have to prove that (4.2) is \log canonical at P, where P is a point in $C \not \subset \operatorname{Supp}(D)$. The latter follows from Corollary 4.7, Lemmas 4.8, 4.9, 5.9, 4.10 and

Lemma 4.12. Suppose that $K_{S}^{2} \geqslant 3$, and neither $S \cong \mathbb{P}^{2}$ nor $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Suppose that P is not contained in any (-1)-curve in S. If Theorem 4.1 holds for all smooth del Pezzo surfaces of degree $K_{S}^{2}-1$, then (4.2) is \log canonical at P.

Proof. Suppose that (4.2) is not \log canonical at P. Let $f: \tilde{S} \rightarrow S$ be a blow up of P. Then \tilde{S} is a smooth del Pezzo surface of degree $K_{\tilde{S}}^{2}=K_{S}^{2}-1$, since P is not contained in any (-1)-curve in S. Denote the f-exceptional curve by E, denote the proper transform of C on \tilde{S} by \tilde{C}, and denote the proper transform of D on \tilde{S} by \tilde{D}. Then $\tilde{C} \in\left|-K_{\tilde{S}}\right|$, since $P \in C$. The \log pair

$$
\begin{equation*}
\left(\tilde{S},(1-\beta) \tilde{C}+\hat{\alpha}(S,(1-\beta) C) \beta\left(\tilde{D}+\left(\operatorname{mult}_{P}(D)-\frac{1}{\hat{\alpha}(S,(1-\beta) C)}\right) E\right)\right) \tag{4.13}
\end{equation*}
$$

is not \log canonical by Lemma 3.3. Let $\tilde{D}^{\prime}=\tilde{D}+\left(\operatorname{mult}_{P}(D)-1\right) E$. Then $\tilde{D}^{\prime} \sim_{\mathbb{R}}-K_{\tilde{S}}$, and \tilde{D}^{\prime} is effective by Lemma 4.3. Furthermore, the \log pair $\left(\tilde{S},(1-\beta) \tilde{C}+\hat{\alpha}(S,(1-\beta) C) \beta \tilde{D}^{\prime}\right)$ is not log canonical, because (4.13) is not log canonical. This shows that $\hat{\alpha}(S,(1-\beta) C)>\alpha(\tilde{S},(1-\beta) \tilde{C})$. But it follows from Theorem 4.11 that $\hat{\alpha}(\tilde{S},(1-\beta) \tilde{C}) \geqslant \hat{\alpha}(S,(1-\beta) C)$. Thus, we see that $\hat{\alpha}(\tilde{S},(1-\beta) \tilde{C})>\alpha(\tilde{S},(1-\beta) \tilde{C})$. Hence, Theorem 4.1 does not hold for \tilde{S}.

This completes the proof of Theorem 4.1 modulo Lemma 4.10.

5. The proof of Lemma 4.10

In this section, we will prove Lemma 4.10. Let us use its notation and assumptions. Then $4 \leqslant K_{S}^{2} \leqslant 7$ and P is a point in $C \not \subset \operatorname{Supp}(D)$ that is contained in a (-1)-curve in S. Let us denote this (-1)-curve by \mathcal{L}. We must prove that (4.2) is \log canonical at P. By Lemma 4.8, we may assume that \mathcal{L} is the only (-1)-curve in S that contains P. We write $D=a \mathcal{L}+\Omega$, where a is a non-negative real number, and Ω is an effective \mathbb{R}-divisor such that $\mathcal{L} \not \subset \operatorname{Supp}(\Omega)$. By Lemma 4.3, we have $a>0$. Let $x=\operatorname{mult}_{P}(\Omega)$. Then $1+a=\mathcal{L} \cdot \Omega \geqslant x$.
Corollary 5.1. One has $x \leqslant 1+a$.
Let $\lambda=\hat{\alpha}(S,(1-\beta) C)$. Consider a sequence of 4 blow ups

$$
S_{4} \xrightarrow{\pi_{4}} S_{3} \xrightarrow{\pi_{3}} S_{2} \xrightarrow{\pi_{2}} S_{1} \xrightarrow{\pi_{1}} S
$$

such that π_{1} is the blow up of the point P, π_{2} is the blow up of the intersection point of the π_{1}-exceptional curve and the proper transform of the curve C on S_{1}, π_{3} is the blow up of the intersection point of the π_{2}-exceptional curve and the proper transform of the curve C on S_{2}, and π_{4} is the blow up of the intersection point of the π_{3}-exceptional curve and the proper transform of the curve C on S_{3}. Denote by F_{1}, F_{2}, F_{3} and F_{4} the exceptional curves of the blow ups π_{1}, π_{2}, π_{3} and π_{4}, respectively. Denote by C^{1}, C^{2}, C^{3} and C^{4} the proper transforms of the curve C on the surfaces S_{1}, S_{2}, S_{3} and S_{4}, respectively. Let $P_{1}=C^{1} \cap F_{1}, P_{2}=C^{2} \cap F_{2}, P_{3}=C^{3} \cap F_{3}$ and $P_{4}=C^{4} \cap F_{4}$. Denote the proper transform of the divisor Ω on the surfaces S_{1}, S_{2}, S_{3} and S_{4} by $\Omega^{1}, \Omega^{2}, \Omega^{3}$ and Ω^{4}, respectively. Let $x_{1}=\operatorname{mult}_{P_{1}}(\Omega), x_{2}=\operatorname{mult}_{P_{2}}(\Omega)$ and $x_{3}=\operatorname{mult}_{P_{3}}(\Omega)$.

Lemma 5.2. Suppose that (4.2) is not log canonical at P. Then at least one of the following four conditions is not satisfied:
(i) $\lambda \beta(a+x) \leqslant 1$,
(ii) $2 \lambda \beta(a+x)-2 \beta \leqslant 1$ or $\lambda \beta\left(a+x+x_{1}\right)-\beta \leqslant 1$,
(iii) $\lambda \beta\left(a+x+2 x_{1}\right)-3 \beta \leqslant 1$ or $\lambda \beta\left(a+x+x_{1}+x_{2}\right)-2 \beta \leqslant 1$,
(iv) $\lambda \beta\left(a+x+x_{1}+2 x_{2}\right)-4 \beta \leqslant 1$ or $\lambda \beta\left(a+x+x_{1}+x_{2}+x_{3}\right)-3 \beta \leqslant 1$.

If $\lambda \beta K_{S}^{2} \leqslant 1+3 \beta$, then at least one of the conditions (i), (ii) or (iii) is not satisfied.
Proof. If conditions (i), (ii), (iii) and (iv) are satisfied, then Corollary 3.8 gives

$$
K_{S}^{2}=D \cdot C \geqslant \operatorname{mult}_{P}(D \cdot C)>\frac{1+4 \beta}{\lambda \beta}
$$

which is impossible, since $\lambda \beta K_{S}^{2} \leqslant 1+4 \beta$ by the definition of $\lambda=\hat{\alpha}(S,(1-\beta) C)$ for $4 \leqslant K_{S}^{2} \leqslant 7$. Similarly, if conditions (i), (ii), (iii) are satisfied, then $\lambda \beta K_{S}^{2}>1+3 \beta$ by Corollary 3.8.
Lemma 5.3. Suppose that $K_{S}^{2}=7$. Then (4.2) is \log canonical at P.
Proof. Suppose that (4.2) is not \log canonical at P. Let us use the notation of $\S 2.4$. Without loss of generality, we may assume that either $\mathcal{L}=E_{1}$ or $\mathcal{L}=L$ (but not both).

Suppose that $\mathcal{L}=L$. Since $P \notin E_{1} \cup E_{2}$, the curve R is smooth and irreducible. Since $(S,(1-\beta) C, \lambda \beta(L+2 R))$ is \log canonical and $L+2 R \sim-K_{S}$, we may assume that $R \not \subset \operatorname{Supp}(\Omega)$. Denote the proper transform of the curve R on S_{1} by R^{1}, and denote its proper transform on S_{2} by R^{2}. Then $3-a-x-x_{1}=R^{2} \cdot \Omega^{2} \geqslant 0$, which gives $a+x+x_{1} \leqslant 3$. Since $x-a \leqslant 1$ by Corollary 5.1, then $x_{1} \leqslant \frac{4}{3}$ and all conditions of Lemma 5.2 are satisfied, giving a contradiction.

We have $\mathcal{L}=E_{1}$. Then L_{1} is irreducible, since $P \notin L$. Since $\left(S,(1-\beta) C, \lambda \beta\left(2 L_{1}+2 E_{1}+L\right)\right)$ is \log canonical and $2 L_{1}+2 E_{1}+L \sim-K_{S}$, we may assume that L_{1} or L is not contained in $\operatorname{Supp}(\Omega)$ by Lemma 3.2. We write $\Omega=b L_{1}+\Delta$, where b is a non-negative real number, and Δ is an effective \mathbb{R}-divisor on S such that $L_{1} \not \subset \operatorname{Supp}(\Delta)$ and $E_{1} \not \subset \operatorname{Supp}(\Delta)$. Then $1-b+a=E_{1} \cdot \Delta \geqslant y$, which gives $b+y \leqslant 1+a$. If $b>0$, then $a \leqslant 1$. Indeed, if $L \not \subset \operatorname{Supp}(\Delta)$, then $1-a=L \cdot \Delta \geqslant 0$.

Denote the proper transform of the divisor Δ on S_{1} by Δ^{1}, denote the proper transform of the divisor Δ on S_{2} by Δ^{2}, and denote the proper transform of the divisor Δ on S_{3} by Δ^{3}. Let $y=\operatorname{mult}_{P}(\Delta), y_{1}=\operatorname{mult}_{P_{1}}\left(\Delta^{1}\right), y_{2}=\operatorname{mult}_{P_{2}}\left(\Delta^{2}\right)$ and $y_{3}=\operatorname{mult}_{P_{3}}\left(\Delta^{3}\right)$. Then $x=b+y$. Since $L_{1} \cdot C=2$, either $\operatorname{mult}_{P}\left(L_{1} \cdot C\right)=1$ or mult $\left(L_{1} \cdot C\right)=2$. Thus, we have, $x_{2}=y_{2}$ and $x_{3}=y_{3}$.

Suppose that $\operatorname{mult}_{P}\left(L_{1} \cdot C\right)=1$. Then $x_{1}=y_{1}$ and $2-a=L_{1} \cdot \Delta \geqslant y$. We have $b+y \leqslant 1+a$ by Corollary 5.1. If $b>0$, then $a \leqslant 1$. Therefore, we have $\lambda \beta(a+x) \leqslant 1, \lambda \beta\left(a+x+x_{1}\right)-\beta \leqslant 1$, $\lambda \beta\left(a+x+2 x_{1}\right)-3 \beta \leqslant 1$ and $\lambda \beta\left(a+x+x_{1}+2 x_{2}\right)-4 \beta \leqslant 1$, which contradicts Lemma 5.2.

Thus we see that $\operatorname{mult}_{P}\left(L_{1} \cdot C\right)=2$. Then $x_{1}=y_{1}+b$ and $2-a=L_{1} \cdot \Delta \geqslant y+y_{1}$, which gives $a+y+y_{1} \leqslant 2$. Since L_{1} is tangent to C at the point P, we have

$$
\lambda=\hat{\alpha}(S,(1-\beta) C) \leqslant \min \left\{1, \frac{1+2 \beta}{7 \beta}, \frac{1}{3 \beta}\right\} .
$$

Moreover, we have $b+y \leqslant 1+a$ by Corollary 5.1. Furthermore, if $b>0$, then $a \leqslant 1$. This gives $\lambda \beta(a+x) \leqslant 1,2 \lambda \beta(a+x)-2 \beta \leqslant 1, \lambda \beta\left(a+x+x_{1}+x_{2}\right)-2 \beta \leqslant 1$ and $\lambda \beta\left(a+x+x_{1}+2 x_{2}\right)-4 \beta \leqslant 1$, which is impossible by Lemma 5.2.

Lemma 5.4. Suppose that $K_{S}^{2}=6$. Then (4.2) is \log canonical at P.
Proof. Suppose that (4.2) is not \log canonical at P. Let us use the notation of $\S 2.5$. Without loss of generality, we may assume that $\mathcal{L}=E_{1}$. Denote the proper transform of the curve E_{1} on the surface S_{1} by E_{1}^{1}. Let L be the proper transform on S of the line in \mathbb{P}^{2} that is tangent to $\pi(C)$ at the point $\pi(P)$. Then $-K_{S} \cdot L=2$, since $P \notin L_{12} \cup L_{13} \cup L_{23}$. Denote the proper transform of the curve L on S_{1} by L^{1}, denote the proper transform of the curve L on S_{2} by L^{2}, and denote the proper transform of the curve L on S_{3} by L^{3}.

We claim that $L \subset \operatorname{Supp}(\Omega)$. Indeed, suppose that $L \not \subset \operatorname{Supp}(\Omega)$. Then $a+x \leqslant 2$, since $2-a=\Omega \cdot L \geqslant x$. But $x \leqslant 1+a$ by Corollary 5.1. Therefore, we have $x_{1} \leqslant x \leqslant \frac{3}{2}$. These inequalities give $\lambda \beta(a+x) \leqslant 1,2 \lambda \beta(a+x)-\beta \leqslant 1$ and $\lambda \beta\left(a+x+2 x_{1}\right)-3 \beta \leqslant 1$. Therefore, $\lambda \beta\left(a+x+x_{1}+2 x_{2}\right)-4 \beta>1$ and $6 \lambda \beta>1+3 \beta$ by Lemma 5.2. The former inequality implies that $a+x+x_{1}+2 x_{2}>6$. The latter inequality implies that L is not tangent to C at the point P (see §2.5).

Let Z be the proper transform on S of the conic in \mathbb{P}^{2} that passes through the points $\pi\left(E_{1}\right)$, $\pi\left(E_{2}\right), \pi\left(E_{3}\right)$, and is tangent to $\pi(C)$ at the point $\pi(P)$. Then Z is irreducible, $E_{1}+L+Z \sim-K_{S}$ and $-K_{S} \cdot Z=3$, since L is not tangent to C at P. Then $\operatorname{mult}_{P}(Z \cdot C) \leqslant 3$, since $-K_{S} \cdot Z=3$.

We write $\Omega=c Z+\Upsilon$, where c is a non-negative real number, and Υ is an effective \mathbb{R}-divisor on S whose support does not contain Z. Denote the proper transform of the divisor Υ on S_{1} by Υ^{1}, denote the proper transform of the divisor Υ on S_{2} by Υ^{2}, and denote the proper transform of the divisor Υ on S_{3} by Υ^{3}. Let $z=\operatorname{mult}_{P}(\Upsilon), z_{1}=\operatorname{mult}_{P_{1}}\left(\Upsilon^{1}\right), z_{2}=\operatorname{mult}_{P_{2}}\left(\Upsilon^{2}\right)$, $z_{3}=\operatorname{mult}_{P_{3}}\left(\Upsilon^{3}\right)$. Then $x=c+z, x_{1}=c+z_{1}, x_{3}=z_{3}$. If $\operatorname{mult}_{P}(Z \cdot C)=2$, then $x_{2}=z_{2}$ and $3-a-c-z=Z^{1} \cdot \Upsilon^{1} \geqslant \operatorname{mult}_{P_{1}}\left(Z^{1} \cdot \Upsilon^{1}\right) \geqslant z_{1}$, which implies that

$$
6<a+x+x_{1}+2 x_{2}=a+z+z_{1}+2 z_{2}+2 c \leqslant 3+2 z_{2}+c \leqslant 3+2 z_{2}+2 c \leqslant 3+2 x \leqslant 6,
$$

since $z+c \leqslant \frac{3}{2}$ and $a+c+z \leqslant 2$. Thus, we see that $\operatorname{mult}_{P}(Z \cdot C)=3$. Then $x_{2}=c+z_{2}$ and $3-a-c-z-z_{1}=Z^{2} \cdot \Upsilon^{2} \geqslant \operatorname{mult}_{P_{2}}\left(Z^{2} \cdot \Upsilon^{2}\right) \geqslant z_{2}$, which gives $a+c+z+z_{1}+z_{2} \leqslant 3$. Then

$$
6<a+x+x_{1}+2 x_{2}=a+z+z_{1}+2 z_{2}+3 c<3+z_{2}+2 c \leqslant 3+2 z_{2}+2 c \leqslant 3+2 x \leqslant 6,
$$

which is absurd. This shows that $L \subset \operatorname{Supp}(\Omega)$.
We write $\Omega=b L+\Delta$, where b is a positive real number, and Δ is an effective \mathbb{R}-divisor on S such that $L \not \subset \operatorname{Supp}(\Delta)$. Let $y=\operatorname{mult}_{P}(\Delta)$. Then $2-a=\Delta \cdot L \geqslant y$. Denote the proper transform of the divisor Δ on S_{1} by Δ^{1}, denote the proper transform of the divisor Δ on S_{2} by Δ^{2}, and denote the proper transform of the divisor Δ on S_{3} by Δ^{3}. Let $y_{1}=\operatorname{mult}_{P_{1}}\left(\Delta^{1}\right)$, $y_{2}=\operatorname{mult}_{P_{2}}\left(\Delta^{2}\right)$ and $y_{3}=\operatorname{mult}_{P_{3}}\left(\Delta^{3}\right)$. Then $x=b+y, x_{2}=y_{2}$ and $x_{3}=y_{3}$, which implies
that $b+y \leqslant 1+a$ by Corollary 5.1. Then

$$
\begin{equation*}
\left(S_{1},(1-\beta) C^{1}+\lambda \beta a E_{1}^{1}+\lambda \beta b L^{1}+\lambda \beta \Delta^{1}+(\lambda \beta(a+b+y)-\beta) F_{1}\right) \tag{5.5}
\end{equation*}
$$

is not \log canonical at some point $Q_{1} \in F_{1}$ by Lemma 3.3.
We claim that L is tangent to C at the point P. Indeed, suppose that L is not tangent to C at P. Then $x_{1}=y_{1}$. Let Z be the proper transform on S of the conic in \mathbb{P}^{2} that passes through $\pi\left(E_{1}\right), \pi\left(E_{2}\right), \pi\left(E_{3}\right)$, and is tangent to $\pi(C)$ at $\pi(P)$. Then Z is irreducible and $-K_{S} \cdot Z=3$. Moreover, we have $E_{1}+L+Z \sim-K_{S}$, and the log pair $\left(S,(1-\beta) C+\lambda \beta\left(E_{1}+L+Z\right)\right)$ is log canonical. Thus, we may assume that $Z \not \subset \operatorname{Supp}(D)$ by Lemmas 3.2. Then $3-a-b-y=$ $Z^{1} \cdot \Delta^{1} \geqslant \operatorname{mult}_{P_{1}}\left(Z^{1} \cdot \Delta^{1}\right) \geqslant y_{1}$. Since we also have $b+y \leqslant 1+a, a+y \leqslant 2, x=y+b, x_{1}=y_{1}$ and $x_{2}=y_{2}$, we see that

$$
\begin{align*}
& \lambda \beta y_{1} \leqslant 1, \quad \lambda \beta(a+b+y)-\beta \leqslant \lambda \beta\left(a+b+y+y_{1}\right)-\beta \leqslant 1 \\
& \lambda \beta\left(a+b+y+2 y_{1}\right)-3 \beta \leqslant 1, \quad \lambda \beta\left(a+b+y_{1}+2 y_{2}\right)-4 \beta \leqslant 1 \tag{5.6}
\end{align*}
$$

In particular, (5.5) is \log canonical at every point of F_{1} that is different from Q_{1} by Lemma 3.3. If $Q_{1} \neq L^{1} \cap F_{1}$ and $Q_{1} \neq P_{1}$, then $\lambda \beta(a+y)=F_{1} \cdot\left(\lambda \beta\left(a E_{1}+\Delta^{1}\right)\right)>1$, by Theorem 3.4. But $\lambda \beta(a+y) \leqslant 1$, since $a+y \leqslant 2$. This shows that $Q_{1}=L^{1} \cap F_{1}$ or $Q_{1}=P_{1}$. Since $b-a+y \leqslant 1$ and $a+b+y+y_{1} \leqslant 3$, we have $b+y \leqslant 2$. So, if $Q_{1}=L^{1} \cap F_{1}$, then

$$
1<\lambda \beta F_{1} \cdot\left(b L^{1}+\Delta^{1}\right)=\lambda \beta(b+y) \leqslant 2 \lambda \beta \leqslant 1
$$

by Theorem 3.4. If $Q_{1}=P_{1}$, then $6=D \cdot C>\frac{1+4 \beta}{\lambda \beta}$ by (5.6) and Theorem 3.6. The latter contradicts $6 \lambda \beta \leqslant 1+4 \beta$.

We see that L is tangent to C at the point P. Then $x_{1}=y_{1}+b$ and

$$
\lambda \leqslant \min \left\{1, \frac{1+2 \beta}{5 \beta}, \frac{1}{2 \beta}\right\}
$$

which gives $6 \lambda \beta \leqslant 1+3 \beta$. Moreover, we have $a+y+y_{1} \leqslant 2$, because $2-a-y-y_{1}=L^{2} \cdot \Delta^{2} \geqslant 0$. Furthermore, since $2 L+L_{23}+E_{1} \sim-K_{S}$ and $\left(S,(1-\beta) C+\lambda \beta\left(2 L+L_{23}+E_{1}\right)\right.$ is log canonical, we may assume that $L_{23} \not \subset \operatorname{Supp}(\Delta)$ by Lemma 3.2. This gives us $b \leqslant 1$, because $1-b=\Delta \cdot L_{23} \geqslant 0$. Since $L+L_{12}+L_{13}+2 E_{1} \sim-K_{S}$ and $\left(S,(1-\beta) C+\lambda \beta\left(L+L_{12}+L_{13}+2 E_{1}\right)\right)$ is log canonical, we may assume that $L_{12} \not \subset \operatorname{Supp}(\Delta)$ or $L_{13} \not \subset \operatorname{Supp}(\Delta)$ by Lemma 3.2. If $L_{12} \not \subset \operatorname{Supp}(\Delta)$, then $1-a=\Delta \cdot L_{12} \geqslant 0$, which gives $a \leqslant 1$. Similarly, we get $a \leqslant 1$ if $L_{13} \not \subset \operatorname{Supp}(\Delta)$. Thus, we have

$$
\begin{equation*}
a \leqslant 1, \quad b \leqslant 1, \quad b-a+y \leqslant 1, \quad a+y+y_{1} \leqslant 2 \tag{5.7}
\end{equation*}
$$

which implies that $\lambda \beta(a+b+y)-\beta \leqslant 1$. In particular, (5.5) is log canonical at every point of F_{1} that is different from Q_{1} by Lemma 3.3. If $Q_{1} \neq P_{1}$ and $Q_{1} \neq E_{1}^{1} \cap F_{1}$, then $\lambda \beta y=\lambda \beta \Delta^{1} \cdot F_{1}>1$ by Theorem 3.4. The latter is impossible, since $\lambda \beta y \leqslant 2 \lambda \beta \leqslant 1$ by (5.7). If $Q_{1}=E_{1}^{1} \cap F_{1}$, then

$$
1<E_{1}^{1} \cdot\left(\lambda \beta \Delta^{1}+(\lambda \beta(a+b+y)-\beta) F_{1}\right)=\lambda \beta(1+2 a)-\beta
$$

by Theorem 3.4. The latter is impossible, since $\lambda \beta(1+2 a)-\beta \leqslant 3 \lambda \beta-\beta \leqslant 1$ by (5.7). Thus, we see that $Q_{1}=P_{1}$.

By (5.7), one has $a+2 b+y+y_{1} \leqslant 4$. This implies that $\lambda \beta\left(a+2 b+y+y_{1}\right)-2 \beta \leqslant 1$. Then

$$
\left(S_{2},(1-\beta) C^{2}+\lambda \beta b L^{2}+\lambda \beta \Delta^{2}+(\lambda \beta(a+b+y)-\beta) F_{1}^{2}+\left(\lambda \beta\left(a+2 b+y+y_{1}\right)-2 \beta\right) F_{2}\right)
$$

is not \log canonical at a unique point $Q_{2} \in F_{2}$ by Lemma 3.3. If $Q_{2} \notin L^{2} \cup F_{1}^{2} \cup C^{2}$, then $\lambda \beta y_{2}=\lambda \beta \Delta^{2} \cdot F_{2}>1$ by Theorem 3.4, which is impossible, since $\lambda \beta y_{2} \leqslant 1$ by (5.7). Similarly, if $Q_{2}=F_{2} \cap L^{2}$, then $\lambda \beta\left(b+y_{2}\right)=\lambda \beta\left(b L^{2}+\Delta^{2}\right) \cdot F_{2}>1$ by Theorem 3.4 , which is impossible, because $b+y_{2} \leqslant b+y \leqslant 2$ by (5.7). If $Q_{2}=F_{2} \cap F_{1}^{2}$, then

$$
\lambda \beta\left(y+y_{1}+a+b\right)-\beta=\left(\lambda \beta \Delta^{2}+(\lambda \beta(a+b+y)-\beta) F_{1}^{2}\right) \cdot F_{2}>1
$$

by Theorem 3.4, which is impossible, since $y+y_{1}+a+b \leqslant 3$ by (5.7). Then $Q_{2}=P_{2}$.
We have $\lambda \beta\left(a+2 b+y+y_{1}+y_{2}\right)-3 \beta \leqslant 1$, since $a+2 b+y+y_{1}+y_{2} \leqslant 5$ by (5.7). Then
$\left(S_{3},(1-\beta) C^{3}+\lambda \beta \Delta^{3}+\left(\lambda \beta\left(a+2 b+y+y_{1}\right)-2 \beta\right) F_{2}^{3}+\left(\lambda \beta\left(a+2 b+y+y_{1}+y_{2}\right)-3 \beta\right) F_{3}\right)$.
is not \log canonical at a unique point $Q_{3} \in F_{3}$ by Lemma 3.3. If $Q_{3} \notin F_{2}^{3} \cup C^{3}$, then $\lambda \beta y_{3}=$ $\lambda \beta \Delta^{3} \cdot F_{3}>1$ by Theorem 3.4, which is impossible, because $\lambda \beta y_{3} \leqslant 1$ by (5.7). If $Q_{3}=F_{3} \cap F_{2}^{3}$, then Theorem 3.4 gives
$1<F_{2}^{3} \cdot\left(\lambda \beta \Delta^{3}+\left(\lambda \beta\left(a+2 b+y+y_{1}+y_{2}\right)-3 \beta\right) F_{3}\right)=\lambda \beta\left(a+2 b+y+2 y_{1}\right)-3 \beta \leqslant 5 \lambda \beta-3 \beta$, which is impossible, since $a+2 b+y+2 y_{1} \leqslant 5$ by (5.7). Thus, we see that $Q_{3}=P_{3}$. By Theorem 3.6 (iv), we have $6=D \cdot C \geqslant \operatorname{mult}_{P}(D \cdot C)>\frac{1+3 \beta}{\lambda \beta}$. The latter is impossible, since we already proved earlier that $6 \lambda \beta \leqslant 1+3 \beta$.

Lemma 5.8. Suppose that $K_{S}^{2}=5$. Then (4.2) is \log canonical at P.
Proof. Suppose that (4.2) is not \log canonical at P. Let us use the notation of $\S 2.5$. Then $\lambda=\min \left\{1, \frac{1}{2 \beta}\right\}$. This implies that $5 \lambda \beta \leqslant 1+3 \beta$. By Lemma 5.2, at least one of the conditions (i), (ii) and (iii) in Lemma 5.2 is not satisfied. In particular, if $a+x \leqslant 2$, then $\lambda \beta\left(a+x+2 x_{1}\right)-3 \beta>1$.

Without loss of generality, we may assume that $\mathcal{L}=L_{12}$. Let B_{3} be the proper transform on S of the line in \mathbb{P}^{2} that passes through $\pi(P)$ and $\pi\left(E_{3}\right)$, and let B_{4} be the proper transform on S of the line in \mathbb{P}^{2} that passes through $\pi(P)$ and $\pi\left(E_{4}\right)$. Since $L_{12}+B_{3}+B_{4} \sim-K_{S}$ and $\left(S,(1-\beta) C+\lambda \beta\left(L_{12}+B_{3}+B_{4}\right)\right)$ is \log canonical, we may assume that at least one curve among B_{3} and B_{4} is not contained in $\operatorname{Supp}(\Omega)$. Intersecting this curve with Ω, we get $a+x \leqslant 2$. Then $\lambda \beta\left(a+x+2 x_{1}\right)-3 \beta>1$. This implies that $a+x+2 x_{1}>5$.

Denote the proper transform of the curve B_{3} on the surface S_{1} by B_{3}^{1}, and denote the proper transform of the curve B_{4} on the surface S_{1} by B_{4}^{1}. Recall $P_{1}=C^{1} \cap F_{1}$.

Suppose that $P_{1} \notin B_{3}^{1} \cup B_{4}^{1}$. Then B_{3} and B_{4} do not tangent C at P. Let R be the proper transform on S of the line in \mathbb{P}^{2} that is tangent to $\pi(C)$ at the point $\pi(P)$, let R_{1} be the proper transform on S of the conic in \mathbb{P}^{2} that tangents to $\pi(C)$ at the point $\pi(P)$ and passes through the points $\pi\left(E_{2}\right), \pi\left(E_{3}\right)$ and $\pi\left(E_{4}\right)$, and let R_{2} be the proper transform on S of the conic in \mathbb{P}^{2} that tangents to $\pi(C)$ at the point $\pi(P)$ and passes through the points $\pi\left(E_{1}\right), \pi\left(E_{3}\right)$ and $\pi\left(E_{4}\right)$. Since $P_{1} \notin B_{3}^{1} \cup B_{4}^{1}$, the curves R_{1} and R_{2} are irreducible. Hence $\frac{1}{2} L_{12}+\frac{1}{2} R+\frac{1}{2} R_{1}+\frac{1}{2} R_{2} \sim_{\mathbb{R}}-K_{S}$ and $\left(S,(1-\beta) C+\lambda \beta\left(\frac{1}{2} L_{12}+\frac{1}{2} R+\frac{1}{2} R_{1}+\frac{1}{2} R_{2}\right)\right)$ is log canonical. By Lemma 3.2, we may assume that one curve among R, R_{1} and R_{2} is not contained in $\operatorname{Supp}(D)$. Denote this curve by Z, and denote its proper transform on S_{1} by Z^{1}. Then $P_{1} \in Z^{1}$ and $3-a-x=Z^{1} \cdot \Omega^{1} \geqslant x_{1}$, which is impossible, since $a+x \leqslant 2$ and $a+x+2 x_{1}>5$.

We see that $P_{1}=B_{3}^{1} \cap F_{1}$ or $P_{1}=B_{4}^{1} \cap F_{1}$. Without loss of generality, we may assume that $P_{1}=B_{3}^{1} \cap F_{1}$. Then $B_{3} \subset \operatorname{Supp}(\Omega)$, since otherwise we would have $2-a-x=B_{3}^{1} \cdot \Omega^{1} \geqslant x_{1}$, which is impossible, since $a+x \leqslant 2$. We write $\Omega=b B_{3}+\Delta$, where $b \in \mathbb{R}_{>0}$ and Δ is an effective \mathbb{R}-divisor on S such that $B_{3} \not \subset \operatorname{Supp}(\Delta)$. Denote the proper transform of the divisor Δ on S_{1} by Δ^{1}. Let $y=\operatorname{mult}_{P}(\Delta)$ and $y_{1}=\operatorname{mult}_{P_{1}}\left(\Delta^{1}\right)$. Then $x=b+y$ and $x_{1}=b+y_{1}$. We have $b-a+y \leqslant 1$ by Corollary 5.1 and $a+b+y=a+x \leqslant 2$, which implies a contradiction $a+x+2 x_{1} \leqslant 2+2 y+2 b \leqslant 5$.

Lemma 5.9. Suppose that $K_{S}^{2}=4$. Then (4.2) is \log canonical at P.
Proof. Suppose that (4.2) is not \log canonical at P. Let us use the notation $\S 2.7$. Then $\lambda \beta<\frac{2}{3}$. Without loss of generality, we may assume that $P \in E$. Then $P=E \cap C$. By Lemma 4.8, the point P is not contained in any other (-1)-curve. By Lemma 4.3, we have $E \subset \operatorname{Supp}(D)$.

The \log pair $\left(S,(1-\beta) C+\lambda \beta\left(\frac{3}{2} E+\frac{1}{2}\left(E_{1}+E_{2}+E_{3}+E_{4}+E_{5}\right)\right)\right)$ is \log canonical and $\frac{3}{2} E+\frac{1}{2}\left(E_{1}+E_{2}+E_{3}+E_{4}+E_{5}\right) \sim_{\mathbb{R}}-K_{S}$. By Lemma 3.2, we may assume that $\operatorname{Supp}(\Omega)$ does
not contain one curve among $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$. Intersecting this curve with Ω, we get $a \leqslant 1$. Let $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$ be the proper transforms on S of the lines in \mathbb{P}^{2} that pass through $\pi(P)$ and $\pi\left(E_{1}\right), \pi\left(E_{2}\right), \pi\left(E_{3}\right), \pi\left(E_{4}\right), \pi\left(E_{5}\right)$, respectively. Then $\frac{2}{3} E+\frac{1}{3}\left(L_{1}+L_{2}+L_{3}+L_{4}+L_{5}\right) \sim_{\mathbb{R}}-K_{S}$, and $\left(S,(1-\beta) C+\lambda \beta\left(\frac{2}{3} E+\frac{1}{3}\left(L_{1}+L_{2}+L_{3}+L_{4}+L_{5}\right)\right)\right)$ is log canonical. By Lemma 3.2, we may assume that $\operatorname{Supp}(\Omega)$ does not contain one curve among $L_{1}, L_{2}, L_{3}, L_{4}$, L_{5}. Intersecting this curve with Ω, we get $a+x \leqslant 2$. Recall that $a \leqslant 1$ by Corollary 5.1. Thus, we have

$$
\begin{equation*}
a \leqslant 1, \quad x-a \leqslant 1, \quad a+x \leqslant 2, \tag{5.10}
\end{equation*}
$$

which implies that $x \leqslant \frac{3}{2}$ and $\lambda \beta(a+x)-\beta \leqslant 1$. In particular, we have $\lambda \beta x \leqslant 1$.
Denote the proper transform of the curve E on S_{1} by E^{1}. Then $\lambda \beta(a+x)-\beta \leqslant 1$, since $a+x \leqslant 2$. Thus, the log pair $\left(S_{1},(1-\beta) C^{1}+\lambda \beta a E^{1}+\lambda \beta \Omega^{1}+(\lambda \beta(a+x)-\beta) F_{1}\right)$ is not log canonical at the unique point $Q_{1} \in F_{1}$ by Lemma 3.3. Note that $\lambda \beta(a+x)-\beta>0$ by Lemma 3.1. Moreover, either $Q_{1}=P_{1}$ or $Q_{1}=E^{1} \cap F_{1}$, since otherwise we would have $\lambda x=\lambda \beta \Omega^{1} \cdot F_{1}>1$ by Theorem 3.4. If $Q_{1}=E^{1} \cap F_{1}$, then Theorem 3.9 implies

$$
\lambda \beta(1+a-x)=\lambda \beta \Omega^{1} \cdot E^{1}>2(1+\beta-\lambda \beta(x+a))
$$

or $\lambda \beta x=\lambda \beta \Omega^{1} \cdot F_{1}>2(1-\lambda \beta a)$. The former inequality gives $\lambda \beta(1+3 a+x)>2+2 \beta$, which is impossible since $1+3 a+x \leqslant 5$ by (5.10). The latter inequality gives that $\lambda \beta(x+2 a)>2$, which is impossible since $x+2 a \leqslant 3$ by (5.10). Thus, we see that $Q_{1}=P_{1}$.

Let R be the proper transform on S of a line in \mathbb{P}^{2} that is tangent to $\pi(C)$ at the point $\pi(P)$. Then either $-K_{S} \cdot R=3$ or $-K_{S} \cdot R=2$. Moreover, $-K_{S} \cdot R=3$ if and only if $\pi(R)$ does not contain any of the points $\pi\left(E_{1}\right), \pi\left(E_{2}\right), \pi\left(E_{3}\right), \pi\left(E_{4}\right), \pi\left(E_{5}\right)$.

Suppose that $-K_{S} \cdot R=2$. Without loss of generality, we may assume that $R=L_{1}$. We write $\Omega=b L_{1}+\Delta$, where b is a non-negative real number, and Δ is an effective \mathbb{R}-divisor on S whose support does not contain the curve L_{1}. Denote the proper transform of the curve L_{1} on S_{1} by L_{1}^{1}, and denote the proper transform of Δ on S_{1} by Δ^{1}. Let $y=\operatorname{mult}_{P}(\Delta)$ and $y_{1}=\operatorname{mult}_{P_{1}}\left(\Delta^{1}\right)$. Then $x=y+b$. Since $\left(S,(1-\beta) C+\lambda \beta\left(E+E_{1}+L_{1}\right)\right)$ is \log canonical and $E+E_{1}+L_{1} \sim-K_{S}$, we may assume that $b=0$ or $\operatorname{Supp}(\Delta)$ does not contain E_{1} by Lemma 3.2. Thus, if $b \neq 0$, then $1-a-b=\Delta \cdot E_{1} \geqslant 0$. With (5.10), this gives $y+2 b \leqslant 2$ and $2+a+y+2 b \leqslant \frac{9}{2}$. On the other hand, we have $2-a-y=\Delta^{1} \cdot L_{1}^{1} \geqslant y_{1}$, which implies that $a+2 y_{1} \leqslant 2$, since $y \geqslant y_{1}$. Thus, we see that $y_{1} \leqslant 1$. Then $\operatorname{mult}_{P_{1}}\left((1-\beta) C^{1}+\lambda \beta \Delta^{1}\right)=1-\beta+\lambda \beta y_{1} \leqslant 1$. Applying Theorem 3.9, we see that

$$
1-\beta+\lambda \beta(2-a-y)=\left((1-\beta) C^{1}+\lambda \beta \Delta^{1}\right) \cdot L_{1}^{1}>2(1+\beta-\lambda \beta(a+b+y))
$$

or $1-\beta+\lambda \beta y=\left((1-\beta) C^{1}+\lambda \beta \Delta^{1}\right) \cdot F_{1}>2(1-\lambda \beta b)$. This gives $\lambda \beta(2+a+y+2 b)>1+3 \beta$ or $\lambda \beta(y+2 b)>1+\beta$. The former inequality is impossible, because $2+a+y+2 b \leqslant \frac{9}{2}$. The latter inequality is also impossible, because $y+2 b \leqslant 2$.

We have $-K_{S} \cdot R=3$. Then R is irreducible and $R+E \sim-K_{S}$. Since $(S,(1-\beta) C+\lambda \beta(R+E))$ is \log canonical, we may assume that $R \not \subset \operatorname{Supp}(\Omega)$ by Lemma 3.2. Denote the proper transform of the curve R on the surface S_{1} by R^{1}. Then $3-2 a-x=\Omega^{1} \cdot R^{1} \geqslant x_{1}$, which gives $x+x_{1}+2 a \leqslant 3$. Then $\lambda \beta\left(a+x+x_{1}\right)-2 \beta \leqslant 1$ by (5.10). Thus, the \log pair

$$
\left(S_{2},(1-\beta) C^{2}+\lambda \beta \Omega^{2}+(\lambda \beta(a+x)-\beta) F_{1}^{2}+\left(\lambda \beta\left(a+x+x_{1}\right)-2 \beta\right) F_{2}\right)
$$

is not \log canonical at a unique point $Q_{2} \in F_{2}$ by Lemma 3.3. Note that $\lambda \beta\left(a+x+x_{1}\right)-2 \beta>0$ by Lemma 3.1. If $Q_{2} \neq P_{2}$ and $Q_{2} \neq F_{1}^{2} \cap F_{2}$, then Theorem 3.4 gives $\lambda \beta x_{1}=\lambda \beta \Omega^{2} \cdot F_{2}>1$, which is impossible, since $\lambda \beta x_{1} \leqslant \lambda \beta x \leqslant 1$ by (5.10). If $Q_{2}=F_{1}^{2} \cap F_{2}$, then Theorem 3.4 gives

$$
\lambda \beta(a+2 x)-2 \beta \geqslant\left(\lambda \beta \Omega^{2}+\left(\lambda \beta\left(a+x+x_{1}\right)-2 \beta\right) F_{2}\right) \cdot F_{1}^{2}>1
$$

which is impossible, since $a+2 x \leqslant \frac{7}{2}$, by (5.10). Hence, we see that $Q_{2}=P_{2}$.

One has $\lambda \beta\left(a+x+x_{1}+x_{2}\right)-3 \beta \leqslant 1$ by (5.10), since $x+x_{1}+2 a \leqslant 3$ and $x_{2} \leqslant x_{1} \leqslant x$. Thus, it follows from Lemma 3.3 that

$$
\left(S_{3},(1-\beta) C^{3}+\lambda \beta \Omega^{3}+\left(\lambda \beta\left(a+x+x_{1}\right)-2 \beta\right) F_{2}^{3}+\left(\lambda \beta\left(a+x+x_{1}+x_{2}\right)-3 \beta\right) F_{3}\right)
$$

is not \log canonical at a unique point $Q_{3} \in F_{3}$. Note that $\lambda \beta\left(a+x+x_{1}+x_{2}\right)-3 \beta>0$ by Lemma 3.1. If $Q_{3} \neq P_{3}$ and $Q_{3} \neq F_{2}^{3} \cap F_{3}$, then Theorem 3.4 gives $\lambda \beta x_{2}=\lambda \beta \Omega^{3} \cdot F_{3}>1$, which is impossible, since $\lambda \beta x_{2} \leqslant \lambda \beta x \leqslant 1$ by (5.10). If $Q_{3}=F_{2}^{3} \cap F_{3}$, then Theorem 3.4 gives

$$
\lambda \beta\left(a+x+2 x_{1}\right)-3 \beta=\left(\lambda \beta \Omega^{3}+\left(\lambda \beta\left(a+x+x_{1}+x_{2}\right)-3 \beta\right) F_{3}\right) \cdot F_{2}^{3}>1
$$

which contradicts (5.10), since $x+x_{1}+2 a \leqslant 3$. Thus, we have $Q_{3}=P_{3}$. Then Theorem 3.4 gives

$$
\beta \geqslant 4 \lambda \beta-3 \beta=C^{3} \cdot\left(\lambda \beta \Omega^{3}+\left(\lambda \beta\left(a+x+x_{1}+x_{2}\right)-3 \beta\right) F_{3}\right)>1
$$

which is impossible, since $\beta \in(0,1]$.
This completes the proof of Lemma 4.10.

References

[1] R. Berman, A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, preprint, arxiv:1011.3976 (2011).
[2] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18 (2008), 1118-1144.
[3] I. Cheltsov, Del Pezzo surfaces and local inequalities, to appear in Proceedings of the Trento conference "Groups of Automorphisms in Birational and Affine Geometry", November 2012, Springer.
[4] I. Cheltsov, J. Park, J. Won, Affine cones over smooth cubic surfaces, preprint, arXiv:1303.2648 (2013).
[5] I. Cheltsov, C. Shramov, Log canonical thresholds of smooth Fano threefolds, with an appendix by J.-P. Demailly, Russian Math. Surv. 63 (2008), 859-958.
[6] I. Cheltsov, Y. Rubinstein, Asymptotically log Fano varieties, preprint, arXiv:1308.2503 (2013).
[7] D. Coman, V. Guedj, Quasiplurisubharmonic Green functions, Journal de Math. Pures et Appliquées 92 (2009), 456-475.
[8] A. Corti, J. Kollár, K. Smith Rational and nearly rational varieties, Cambridge University Press, 2003.
[9] S. Donaldson, Kähler metrics with cone singularities along a divisor, in: Essays on Mathematics and its applications (P. Pardalos et al., Eds.), Springer (2012), 49-79.
[10] A. Höring, C. Voisin, Anticanonical divisors and curve classes on Fano manifolds, Pure Appl. Math. Q. 7 (2011), 1371-1393.
[11] T. Jeffres, R. Mazzeo, Y. Rubinstein, Kähler-Einstein metrics with edge singularities, with an appendix by C. Li and Y. Rubinstein, to appear in Ann. of Math.
[12] C. Li, S. Sun, Conical Kahler-Einstein metrics revisited, preprint, arxiv:1207.5011 (2012).
[13] J. Martinez-Garcia, Dynamic Alpha-Invariants of del Pezzo Surfaces with Boundary, Ph.D. Thesis, University of Edinburgh, 2013.
[14] J. Martinez-Garcia, Log canonical thresholds of Del Pezzo Surfaces in characteristic p, to appear in Manuscripta Math.
[15] Y. Odaka, S. Sun, Testing log K-stability by blowing up formalism, preprint, arxiv:1112.1353 (2011).
[16] Y. Shi, On the α-invariants of cubic surfaces with Eckardt points, Adv. Math. 225 (2010), 1285-1307.
[17] V. Shokurov, Smoothness of a general anticanonical divisor on a Fano variety, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 430-441.
[18] J. Song, The α-invariant on toric Fano manifolds, Amer. J. Math. 127 (2005), 1247-1259.
[19] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$, Invent. Math. 89 (1987), 225-246.
[20] G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101-172.
[21] G. Székelyhidi, A remark on conical Kähler-Einstein metrics, Math. Res. Lett. 20 (2013), 581-590.

[^0]: Throughout this paper, we assume that all considered varieties are projective and defined over \mathbb{C}.

