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Abstract. The Reshetikhin-Turaev invariant, Turaev’s TQFT, and many re-

lated constructions rely on the encoding of certain ribbon tangles (n-string
links, or n-ribbon handles) as n-forms on the coend of a ribbon category. We
introduce the monoidal category of Hopf diagrams, and describe a universal
encoding of ribbon string links as Hopf diagrams. This universal encoding is
an injective monoidal functor and admits a straightforward monoidal retrac-
tion. Any Hopf diagram with n legs yields a n-form on the coend of a ribbon
category in a completely explicit way. Thus computing a quantum invariant of
a 3-manifold reduces to the purely formal computation of the associated Hopf
diagram, followed by the evaluation of this diagram in a given category (using
in particular the so-called Kirby elements).
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Introduction

In 1991, Reshetikhin and Turaev [RT91] introduced a new 3-manifold invariant.
The construction proceeds in two steps: representing a 3-manifold by surgery along
a link and then coloring the link to obtain a scalar invariant. Here, colors are
(linear combinations of) simple representations of a quantum group at a root of
unity. Since then, this construction has been re-visited many times.

In particular, Turaev [Tur94] introduced the notion of a modular category, which
is a semisimple ribbon category satisfying a finiteness and a non-degeneracy condi-
tion, and showed that such a category defines a 3-manifold invariant, and indeed a
TQFT. In this approach, colors are simple objects of the category.

Following these ideas, a more general approach on quantum invariants of 3-mani-
folds has been subsequently developed, see [Lyu95] and more recently [KL01, Vir03].
It avoids in particular the semisimplicity condition. Let us briefly outline it: the
initial data used to construct the invariants is a ribbon category C endowed with a

coend A =
∫ X∈C ∨X ⊗X . Let L be a framed n-link. We can always present L as

the closure of some ribbon n-string link T . By using the universal property of the
coend A, to such a string link T is associated a n-form on A, that is, a morphism
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TC : A⊗n →
�

in C. Given a morphism α :
�
→ A (which plays here the role of the

color), set:

τC(L;α) = TC ◦ α⊗n ∈ EndC(
�
).

A Kirby element of C, as defined in [Vir03], is a morphism α :
�
→ A such that, for

all framed link L, τC(L;α) is well-defined and invariant under isotopies of L and
under 2-handle slides. In this case, by the Kirby theorem [Kir78] and under some
invertibility condition, the invariant τC(L;α) can be normalized to an invariant of
3-manifolds.

At this stage, two main questions naturally arise. Firstly, how to recognize the
Kirby elements of a ribbon category? And secondly, how to compute the forms TC

obtained via universal property?
Concerning the first question, recall that the coend A has a structure of a Hopf

algebra in the category C, see [Maj93, Lyu94]. This means in particular that A is
endowed with a product µA : A ⊗ A → A, a coproduct ∆A : A → A ⊗ A, and an
antipode SA : A → A which satisfy the same axioms as those of a Hopf algebra
except one has to replace the usual flip map with the braiding of C. If A admits
a two-sided integral λ :

�
→ A, then λ is a Kirby element and the corresponding

3-manifold invariant is that of Lyubashenko [Lyu95]. More generally, if a morphism
α :

�
→ A in C satisfies:

(idA ⊗ µA)(∆A ⊗ idA)(α ⊗ α) = α⊗ α and SAα = α,

then it is a Kirby element, see [Vir03]. In particular, any Reshetikhin-Turaev
invariant computed from a semisimple sub-quotient of C can be defined directly via
a Kirby element of C satisfying this last equation.

The main motivation of the present paper is to answer the second question.
Given a ribbon string link T , we express TC in terms of some structural morphisms
of A (avoiding the product). This can be done by means of a universal formula,
that is, independently of C. To this end, we introduce the notion of Hopf diagrams.
They are braided planar diagrams (with inputs but no output) obtained by stacking

boxes ∆= , S= , and ω= . These are submitted to relations corresponding
to those of a coproduct, an antipode, and a Hopf pairing. To each Hopf diagram D

with n inputs is associated a ribbon n-string link φ(D):

D =
PSfrag replacements S

∆ ∆

ω

ω

 
PSfrag replacements

S∆
∆ ω

ω

 φ(D) =
PSfrag replacements

∼ .

This gives a universal encoding for ribbon string links for which all the forms ?C
are realizations.

In Section 1, we define the monoidal category of Hopf diagrams, as a convo-
lution category. The category of Hopf diagrams comes in two versions: with, or
without antipode. Both versions are isomorphic, however. In Section 2, we review
the monoidal category of ribbon string links and the related monoidal category
of ribbon handles. These categories are isomorphic. In Section 3, we construct a
monoidal functor φ from the category DiagS of Hopf diagrams to the category RSL
of ribbon string links. We introduce a quotient DiagS of DiagS in such a way that
the monoidal functor φ : DiagS → RSL induced by φ admits a right inverse. More
precisely, in Section 4, we construct a monoidal functor Φ: RSL → DiagS such that
φ ◦ Φ = 1RSL. In particular, φ is surjective. Finally, in Section 5, given a ribbon
category C endowed with a coend A, we explain how to represent the category of
Hopf diagrams into C by using some structural morphisms of A. Moreover, we give
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a general criterion, using Hopf diagrams, for recognizing Kirby elements.

Unless otherwise specified, categories are assumed to be small and monoidal
categories are assumed to be strict.

1. Hopf diagrams

1.1. Categorical (co)algebras. Recall that an algebra in a monoidal category is
an object A endowed with morphisms µ : A⊗ A → A (the product) and η : A →

�

(the unit) which satisfy:

µ(idA ⊗ µ) = µ(µ⊗ idA) and µ(η ⊗ idA) = idA = µ(idA ⊗ η).

Dually, a coalgebra in a tensor category is an object C endowed with morphisms
∆: C → C ⊗ C (the coproduct) and ε : C →

�
(the counit) which satisfy:

(idC ⊗ ∆)∆ = (∆ ⊗ idC)∆ and (ε⊗ idC)∆ = idC = (idC ⊗ ε)∆.

Note that the unit object
�

of a monoidal category C is an algebra and a coalgebra
in C (with trivial structure morphisms).

When the category C is braided with braiding τ , the tensor product A⊗A′ of two
algebras A and A′ in C is an algebra in C with product (µ⊗µ′)(idA⊗ τA,A′ ⊗ idA′)
and unit η ⊗ η′. In particular, for any non-negative integer n, A⊗n is an algebra
in C. Likewise, the tensor product C ⊗C ′ of two coalgebras C and C ′ in a braided
category C is a coalgebra in C with coproduct (idC ⊗ τC,C′ ⊗ idC′)(∆ ⊗ ∆′) and
counit ε⊗ε′. In particular, for any non-negative integer n, C⊗n is a coalgebra in C.

1.2. The convolution product. Let C be a tensor category, (A, µ, η) be an al-
gebra in C, and (C,∆, ε) be a coalgebra in C. The convolution product of two
morphisms f, g ∈ HomC(C,A) is the morphism f ? g = µ(f ⊗ g)∆ ∈ HomC(C,A).
This makes the set HomC(C,A) a monoid with unit ηε : C → A.

1.3. Convolution categories. Let C be a braided category, A be an algebra in C,
and C be a coalgebra in C. Let us define the convolution category ConvC(C,A) as
follows: the objects of ConvC(C,A) are the non-negative integers � . For m,n ∈

� , the set of morphisms from m to n is empty if m 6= n and is the monoid
HomC(C⊗n, A) endowed with the convolution product if m = n, see Section 1.2
(recall indeed that C⊗n is a coalgebra in C). In particular, the identity of an object
n ∈ � is:

idn = ηε⊗n : C⊗n → A,

and the composition of two endomorphisms f, g ∈ HomC(C⊗n, A) of an object
n ∈ � is given by the convolution product:

f ◦ g = f ? g = µ(f ⊗ g)∆C⊗n : C⊗n → A,

where ∆C⊗n denotes the coproduct of the coalgebra C⊗n.
Note that the category ConvC(C,A) is a monoidal category: the monoidal prod-

uct of two objects m,n ∈ � is given by m⊗n = m+n, the unit object is 0 ∈ � , and
the monoidal product of two morphisms f : m→ m and g : n→ n (where m,n ∈ � )
is the morphism f ⊗ g = µ(f ⊗C g) : m+ n→ m+ n.
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1.4. The category Diag. Let D be the braided category freely generated by one
object ∗ and the following morphisms:

∆: ∗ → ∗ ⊗ ∗, ω+ : ∗ ⊗∗ →
�
, θ+ : ∗ →

�
,

ε : ∗ →
�
, ω− : ∗ ⊗∗ →

�
, θ− : ∗ →

�
,

where
�

denotes the unit object of the tensor product. Let D0 be the quotient of
the category D by the following relations:

(id∗ ⊗ ∆)∆ = (∆ ⊗ id∗)∆,(1.1)

(id∗ ⊗ ε)∆ = id∗ = (ε⊗ id∗)∆.(1.2)

The category D0 is still braided (with induced braiding) and (∗,∆, ε) is a coalgebra
in D0. We define the category Diag to be the convolution category ConvD0(∗,

�
),

see Section 1.3, where
�

is endowed with the trivial algebra structure.

1.5. The category DiagS. Let DS be the braided category freely generated by
one object ∗ and the following morphisms:

∆: ∗ → ∗ ⊗ ∗, ω+ : ∗ ⊗∗ →
�
, θ+ : ∗ →

�
,

ε : ∗ →
�
, ω− : ∗ ⊗∗ →

�
, θ− : ∗ →

�
,

S : ∗ → ∗, S−1 : ∗ → ∗.

Let DS
0 be the quotient of the category DS by the relations (1.1) and (1.2), and the

following relations:

SS−1 = id∗ = S−1S,(1.3)

∆S = (S ⊗ S)τ∗,∗∆,(1.4)

εS = ε,(1.5)

θ±S = θ±,(1.6)

ω+(S ⊗ id∗) = ω− = ω+(id∗ ⊗ S),(1.7)

ω+(S−1 ⊗ id∗) = ω−τ∗,∗ = ω+(id∗ ⊗ S−1),(1.8)

where τ∗,∗ : ∗ ⊗∗ → ∗ ⊗ ∗ denotes the braiding of the object ∗ with itself in DS .
The category DS

0 is still braided (with induced braiding) and (∗,∆, ε) is a
coalgebra in DS

0 . We define the category DiagS to be the convolution category
ConvDS

0
(∗,

�
), see Section 1.3, where

�
is endowed with the trivial algebra struc-

ture.

1.6. Relations between Diag and DiagS. The inclusion functor D ↪→ DS in-
duces a functor D0 → DS

0 and so a functor ι : Diag → DiagS. Note that ι is the
identity on the objects.

Theorem 1.1. ι : Diag → DiagS is an isomorphism of categories.

Proof. Let C be the quotient of the category DS by the relations (1.4)-(1.8) together
with the following additional relations (which can be shown to be satisfied in DS

0

by using (1.3)):

∆S−1 = (S−1 ⊗ S−1)τ−1
∗,∗∆, εS−1 = ε, θ±S

−1 = θ±,

ω−(S ⊗ id∗) = ω+τ
−1
∗,∗ = ω−(id∗ ⊗ S),

ω−(S−1 ⊗ id∗) = ω+ = ω−(id∗ ⊗ S−1).
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From these rules, we can show that if m is a word in S and S−1, then εm = ε and
θ±m = θ±. Moreover if m1 and m2 are words in S and S−1, then

ω+(m1 ⊗m2) = ω+ τ
−k
∗,∗ if e(m1) + e(m2) = 2k,

ω+(m1 ⊗m2) = ω− τ
−k
∗,∗ if e(m1) + e(m2) = 2k + 1,

ω−(m1 ⊗m2) = ω+ τ
−k−1
∗,∗ if e(m1) + e(m2) = 2k + 1,

ω−(m1 ⊗m2) = ω− τ
−k
∗,∗ if e(m1) + e(m2) = 2k,

where e(Sα1Sα2 · · ·Sαr ) = α1 + α2 + · · · + αr with αi = ±1.
Denote by ρ : D → C the composition of the inclusion functor D ↪→ DS with the

projection functor DS
� C. Let n be a non negative integer and f ∈ HomC(∗⊗n,

�
).

By using the above relations, one can remove all the generators S and S−1 from
an expression of f in a unique way. Therefore there exists a unique morphism
f̃ ∈ HomD(∗⊗n,

�
) such that ρ(f̃) = f . This means that ρ induces a bijection

between HomD(∗⊗n,
�
) and HomC(∗⊗n,

�
).

Let C0 be the quotient of the category C by the relations (1.1) and (1.2). Note
that the object ∗ is then a coalgebra in C0. By definition of convolution categories
and by using the preceding, ρ induces an isomorphism ρ̄ : Diag = ConvD0(∗,

�
) →

ConvC0(∗,
�
).

Now remark that the relation (1.3) holds in HomC(∗⊗n,
�
). Indeed let f ∈

HomC(∗⊗n,
�
). Suppose for example that f = g(idi−1

∗ ⊗ S−1S ⊗ idm−i
∗ )h for some

g ∈ HomC(∗⊗m,
�
) and h ∈ HomC(∗⊗n, ∗⊗m). Recall that g = ρ(g̃) where g̃ ∈

HomD(∗⊗m,
�
). Since ρ(g̃) is expressed without using S or S−1 and since the

morphism S−1S satisfies:

∆S−1S = (S−1S ⊗ S−1S)∆, εS−1S = ε, θ±S
−1S = θ±,

ω+(S−1S ⊗ id∗) = ω+ = ω+(id∗ ⊗ S−1S),

ω−(S−1S ⊗ id∗) = ω− = ω−(id∗ ⊗ S−1S),

we have that ρ(g̃)(idi−1
∗ ⊗ S−1S ⊗ idm−i

∗ ) = ρ(g̃) and so f = gh.
Since (1.3) holds in HomC(∗⊗n,

�
), the projection functor DS → C induces a

isomorphism π : DiagS → ConvC0(∗,
�
) such that ρ̄ = π ◦ ι. Hence ι is an isomor-

phism. �

1.7. Hopf diagrams. By a Hopf diagram, we shall mean a morphism of Diag or
DiagS. Hopf diagrams can be represented by plane diagrams: we draw one of their
preimage in the braided category D0 or DS

0 by using Penrose graphical calculus with
the ascending convention (diagrams are read from bottom to top) as for instance
in [Tur94]. We depict the generators as in Figure 1 except Figure 1(e) which depicts
∆(n) : ∗ → ∗⊗(n+1) defined inductively by:

∆(0) = id∗, ∆(1) = ∆ and ∆(n+1) = (∆(n) ⊗ id∗)∆.

The relations defining DiagS (except those concerning the braiding) are depicted
in Figure 2. Recall that the composition D1 ◦D2 = D1 ? D2 of two Hopf diagrams
D1 and D2 is given by the convolution product, see Figure 3.

2. Ribbon string links and ribbon handles

2.1. Ribbon string links. Let n be a positive integer. By a ribbon n-string link
we shall mean a framed (n, n)-tangle T ⊂ � 2 × [0, 1] consisting of n arc compo-
nents, without any closed component, such that the kth arc (1 ≤ k ≤ n) joins the
kth bottom endpoint to the kth top endpoint. Note that a ribbon string link is
canonically oriented by orienting each component from bottom to top.
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(a) ∆: ∗ → ∗⊗∗ (b) ε : ∗ → � (c) S : ∗ → ∗ (d) S−1 : ∗ → ∗

PSfrag replacements
...

(e) ∆(n) : ∗ → ∗
⊗(n+1) (f) τ∗,∗ : ∗⊗∗ → ∗⊗∗ (g) τ−1

∗,∗ : ∗ ⊗∗ → ∗ ⊗ ∗

(h) ω+ : ∗ ⊗∗ → � (i) ω− : ∗ ⊗∗ → � (j) θ+ : ∗ → � (k) θ− : ∗ → �

Figure 1. Generators of DiagS

, ,

, , , ,

, .

Figure 2. Relations in DiagS

PSfrag replacements

D ?D′ DD D′D′

◦

Figure 3. Composition in DiagS

We will represent ribbon string links by plane diagrams. Recall that two such
diagrams represent the same isotopy class of a ribbon string link if and only if one
can be obtained from the other by deformation and a finite sequence of ribbon
Reidemeister moves depicted in Figure 4.

We denote by RSL the category of ribbon string links. The objects of RSL
are the non-negative integers. For two non-negative integers m and n, the set of
morphisms from m to n is

HomRSL(m,n) =

{
∅ if m 6= n,

RSLn if m = n,
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(a) Type 0 (b) Type 1’ (c) Type 2

(d) Type 2’ (e) Type 3

Figure 4. Ribbon Reidemeister moves

where RSLn denotes the set of (isotopy classes) of ribbon n-string links. The com-
position is given by the stacking product (with ascending convention) and identities
are the trivial string links.

Note that the category RSL is a monoidal category: m⊗ n = m+ n on objects
and the monoidal product T ⊗T ′ of two ribbon string links T and T ′ is the ribbon
string link obtained by stacking T on the left of T ′ (see, e.g., [Tur94]).

2.2. Ribbon handles. Let n be a positive integer. By a ribbon n-handle we shall
mean a framed (2n, 0)-tangle T ⊂ � 2×[0, 1] consisting of n arc components, without
any closed component, such that the kth arc (1 ≤ k ≤ n) joins the (2k−1)-th bottom
endpoint to the 2k-th bottom endpoint. Note that a ribbon handle is canonically
oriented by orienting each component upwards near its right bottom input.

As for ribbon string links, we will represent ribbon handless by plane diagrams.
Two such diagrams represent the same isotopy class of a ribbon handle if and only if
one can be obtained from the other by deformation and a finite sequence of ribbon
Reidemeister moves depicted in Figure 4.

We denote by RHand the category of ribbon handles. The objects of RHand
are the non-negative integers. For two non-negative integers m and n, the set of
morphisms from m to n is

HomRHand(m,n) =

{
∅ if m 6= n,

RHandn if m = n,

where RHandn denotes the set of (isotopy classes) of ribbon n-handles. The com-
position of two ribbon n-handles T and T ′ is the ribbon n-handle defined in Fig-
ure 5(c). The identity for this composition consists in n caps, see Figure 5(d).

PSfrag replacements

T

(a) T

PSfrag replacements

T ′

(b) T ′

PSfrag replacements T T ′

◦

(c) T ◦ T ′ (d) id

PSfrag replacements
T T ′

(e) T ⊗ T ′

Figure 5. Composition, identity, and monoidal product in RHand

Note that the category RHand is a monoidal category: m⊗n = m+n on objects
and the monoidal product T ⊗ T ′ of two ribbon handles T and T ′ is the ribbon
handle obtained by stacking T on the left of T ′, see Figure 5(e)
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2.3. An isomorphism between ribbon handles and string links. Let us con-
struct functors F : RSL → RHand and G : RHand → RSL as follows. On objects,
set F (n) = n and G(n) = n for any non-negative integer n. For any ribbon n-string
link S, let F (S) be the ribbon n-handle defined in Figure 6(b). For any ribbon
n-handle T , let G(T ) be the ribbon n-string link defined in Figure 6(d).

PSfrag replacements

S

(a) S

PSfrag replacements

S

(b) F (S)

PSfrag replacements

T

(c) T

PSfrag replacements

T

(d) G(T )

Figure 6. Definition of the functors F and G

Proposition 2.1. The functors F and G are mutually inverse monoidal functors.

In particular, the categories RSL and RHand are isomorphic. In the following,
depending on the context, we will use indifferently the notions of ribbon string link
and of ribbon handle as more convenient.

Proof. Straightforward! �

3. From Hopf diagrams to ribbon string links

3.1. From Hopf diagrams to ribbon handles. Let us define a functor φ from
the category DiagS of Hopf diagrams to the category RHand of ribbon handles.
For any non-negative integer n, let φ(n) = n. If D is a Hopf diagram, we construct
a diagram of ribbon handle φD by using the rules of Figure 7 and the stacking
product (with ascending convention). See Figure 8 for an example. Then let φ(D)
be the isotopy class of the ribbon handles defined by φD .

PSfrag replacements

,,,

,,

,,,,

.

Figure 7. Rules for defining φ

D = φD =PSfrag replacements ∼

Figure 8
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Theorem 3.1. The functor φ : DiagS → RHand is well-defined, monoidal and
surjective.

Proof. Let us first verify that φ is well-defined. We just have to verify both sides
of the relations defining DiagS are transformed by the rules of Figure 7 to isotopic
tangles. Examples of such verifications are depicted in Figure 9. The fact that
φ is a monoidal functor comes from the definitions of composition and monoidal
product in DiagS and RHand. The fact that φ is surjective is a direct consequence
of Corollary 4.5 proved below. �

PSfrag replacements

,

, ,

.∼∼

∼ ∼

Figure 9

3.2. From Hopf diagrams to ribbon string links. Let us define a functor
ψ : DiagS → RSL as follows. For any non-negative integer n, let ψ(n) = n. If D is
a Hopf diagram, we construct a diagram of ribbon string link ψD as in Figure 10(a),
where φD is defined as above. For an example, see Figure 10(b). Then we let ψ(D)
be the isotopy class of the ribbon string link defined by ψD.

PSfrag replacements

φ
DψD

(a)

PSfrag replacements
 ∼

(b)

Figure 10

Corrolary 3.2. The functor ψ : DiagS → RSL is well-defined and surjective.
Moreover F ◦ψ = φ and G ◦φ = ψ, where F and G are the functors of Section 2.3.

Proof. This is an immediate consequence of Theorem 3.1 and Proposition 2.1. �

3.3. More relations on Hopf diagrams. In this section, we quotient DiagS by
additional relations which will allow us to construct right inverses of the functors φ
and ψ (see Section 4). Denoting by ? the convolution product on Hopf diagrams,
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these relations are the following:

(id∗ ⊗ θ±)∆ = (θ± ⊗ id∗)∆,(3.1)

(θ+ ⊗ θ−)∆ = ε,(3.2)

(θ+ ⊗ θ+)∆ = ω+τ
−1
∗,∗∆,(3.3)

(θ− ⊗ θ−)∆ = ω−∆,(3.4)

ω+ ? ω− = ε⊗ ε = ω− ? ω+,(3.5)

ω+12 ? ω+13 ? ω+23 = ω+13 ? ω+23 ? ω+12 = ω+23 ? ω+12 ? ω+13,(3.6)

ω+13 ? ω+23 ? ω+24 ? ω−23 = ω+23 ? ω+24 ? ω−23 ? ω+13.(3.7)

Graphically, Relations (3.1)-(3.7) can be depicted as in Figure 11.

PSfrag replacements
, ,,

.

PSfrag replacements
, ,

.

PSfrag replacements
,

.

PSfrag replacements

,
.

Figure 11

Let DiagS be the quotient of the categoryDiagS by Relations (3.1)-(3.7). We will
still call the morphisms of DiagS by Hopf diagrams. Denote by π : DiagS → DiagS

the projection functor.

Proposition 3.3. The functors φ and ψ factorize through π to surjective functors
φ and ψ so that φ = F ◦ ψ.

Proof. We have to verify both sides of Relations (3.1)-(3.7) are transformed by the
rules of Figure 7 to isotopic tangles. Examples of such verifications are depicted in
Figure 12. Note that in the first picture, we used the fact that the (2i− 1)-th and
2i-th inputs of a ribbon handle are connected. �

PSfrag replacements

,

,

,

.

∼

∼ ∼

∼

Figure 12
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4. From ribbon string links to Hopf diagrams

In this section, we construct right inverses of the functors φ and ψ, that is,
monoidal functors Φ: RHand → DiagS and Ψ: RSL → DiagS such that:

φ ◦ Φ = 1RHand and ψ ◦ Ψ = 1RSL.

4.1. From ribbon pure braids to Hopf diagrams. Let RPB the subcategory
of RSL made of ribbon pure braids. The objects of RPB are the non-negative
integers. For two non-negative integers m and n, the set of morphisms from m to
n is

HomRPB(m,n) =

{
∅ if m 6= n,

RPBn if m = n,

where RPBn ⊂ RSLn denotes the set of (isotopy classes) of ribbon pure n-braids.
The composition is given by the stacking product (with ascending convention) and
identities are the trivial braids. Note that RPB is a monoidal subcategory of RSL.

Recall we have a canonical group isomorphism:

(u, t1, . . . , tn) : RPBn
∼
−→ PBn ×

� n,

where PBn denotes the group of pure n-braids, u : RPBn → PBn is the forgetful
morphism, and ti the self-linking number of the i-th component. Hence, using a
presentation of PBn by generators and relations due to Markov [Mar45], we get
that RPBn is generated by tk (1 ≤ k ≤ n) and σi,j (1 ≤ i < j ≤ n) subject to the
following relations:

tktl = tltk for any k, l;(4.1)

tkσi,j = σi,j tk for any i < j and k;(4.2)

σi,jσk,l = σk,lσi,j for any i < j < k < l or any i < k < j < l;(4.3)

σi,jσi,kσj,k = σi,kσj,kσi,j = σj,kσi,jσi,k for any i < j < k;(4.4)

σi,kσj,kσj,lσ
−1
j,k = σj,kσj,lσ

−1
j,kσi,k for any i < j < k < l.(4.5)

Graphically, the generators may be represented as:

σi,j =

PSfrag replacements

1 i j n

and tk =

PSfrag replacements

1

i

j

n

1 k n

.

Let us define a functor Ψ0 : RPB → DiagS as follows: for any non-negative
integer n set Ψ(n) = n. For 1 ≤ i < j ≤ n and 1 ≤ k ≤ n, set

Ψ0(σ
±1
i,j ) = Σ±1

i,j and Ψ0(t
±1
k ) = Ω±1

k ,

where

(4.6) Σ±1
i,j =

PSfrag replacements

1 i j n

and Ω±1
k =

PSfrag replacements

1

i

j

n

1 k n

.

Lemma 4.1. The functor Ψ0 : RPB → DiagS is well defined, monoidal, and is
such that ψ ◦ Ψ0(P ) = P for all ribbon pure braid P .

Proof. Firstly, from Relation (3.5) (resp. Relations (3.1) and (3.2)), we have that
the Hopf diagrams Σ−1

i,j and Σi,j (resp. Ω−1
k and Ωk) are inverse each other.
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Secondly Relations (4.1)-(4.5) hold in DiagSn , where we replace σi,j and tk with
Σi,j and Ωk respectively. Indeed Relations (4.1) and (4.2) follow from (3.1). Re-
lation (4.3) follows from (1.2). Relations (4.4) and (4.5) correspond to (3.6) and
(3.7) respectively.

Finally the isotopies depicted in Figure 13 show respectively that ψ ◦Ψ0(σi,j) =

σi,j and ψ ◦ Ψ0(tk) = tk. Hence ψ ◦ Ψ0(P ) = P for all ribbon pure braid P . �

PSfrag replacements

11 ii jj nn

∼

PSfrag replacements

1
i
j

n

∼

1 1k kn n

∼

Figure 13

4.2. Contractions. Let n ≥ 3 and 1 < i < n. For a ribbon n-string link T ,
we define the i-th left contraction of T to be the ribbon (n − 2)-string link ci(T )
defined as in Figure 14(a). For a Hopf diagram D with n inputs, we define the i-th
contraction of D to be the Hopf diagram with (n − 2) inputs Ci(D) defined as in
Figure 14(b).

PSfrag replacements

Tci(T ) =

i−2︷︸︸︷ n−i−1︷︸︸︷

︸︷︷︸
i−2

︸︷︷︸
n−i−1

(a)

PSfrag replacements D

Ci(D) =

︸︷︷︸
i−2

︸︷︷︸
n−i−1

(b)

Figure 14

Lemma 4.2. Let n ≥ 3 and 1 < i < n. For any Hopf diagram D with n inputs,
we have that ci(ψ(D)) = ψ(Ci(D)).

Proof. This follows from the following equalities:

ψ(Ci(D)) =PSfrag replacements

φ
(D

)

φ
(D

)

∼∼

φ
(C

i (D
))

= ci(ψ(D)),

where we used that the (2i− 1)-th and 2i-th inputs of φ(D) are connected (since it
is a ribbon handle). �

Lemma 4.3. cicj = cjci+2 and CiCj = CjCi+2 for any i ≥ j.

Proof. This results directly from the definitions of the contraction operators. �
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4.3. From ribbon string links to Hopf diagram. In this section, we extend
the functor Ψ0 : RPB → DiagS to a functor Ψ: RSL → DiagS . The construction of
this extension follows, broadly speaking, the same pattern as the proof of [Bru04,
Theorem 3]. The point is to see that a ribbon string link can be obtained from
a ribbon pure braid by a sequence of contractions. This will at least show that
Ψ extends uniquely and suggest a construction for it. We then must check the
coherence of this construction, that is, its independence from the choices we made.

The main trick we use consists in “pulling a max to the top line”. Let Γ be a
tangle diagram with a local max m, with n outputs. We may write Γ as in Fig-
ure 15(a), where U , V are tangle diagrams. Let i be an integer, 1 ≤ i ≤ n + 1.
Let j be the number of strands to the left of m on the same horizontal line. Let
U ∪ ` be a tangle diagram obtained from U by inserting a new component ` going
from a point between the j-th and (j + 1)-th inputs of U to a point between the
(i − 1)-th and i-th outputs of U , see Figure 15(b). We assume also that ` has no
local extremum. Let U` = ∆`(U ∪ `) be the tangle diagram obtained from U ∪ ` by
doubling `. Set Γ` = U`V , see Figure 15(c). We say that Γ` is obtained from Γ by
pulling m to the top in the i-th position (along the path `). Likewise, one defines
the action of pulling a local min to the bottom.

PSfrag replacements
U

V

m

(a) Γ

PSfrag replacements

U

`
1

1

i

j

n

(b) U ∪ `

PSfrag replacements

U`

V

(c) Γ`

Figure 15. Pulling a max to the top line

Let us define Ψ: RSL → DiagS as follows: on objects n ∈ � , set Ψ(n) = n.
Let n be a positive integer and T be a ribbon n-string link. Consider a diagram
of T . For each local extremum pointing to the right (once the strands canonically
oriented from bottom to top), modify the diagram using the following rule:

(4.7) or .

This leads to a diagram Γ which is left handed, that is, with all local extrema
pointing to the left. Pulling all local max to the top and all local min to the
bottom, we obtain a diagram of a pure braid. Here is an algorithm. Denote by mi

the number of local max (which is equal to the number of local min) on the i-th
component of Γ. Let m(Γ) = m1 + · · · +mn be the number of local max of Γ. If
m(Γ) = 0, we are already done. Otherwise, chose i maximal so that mi > 0. Let
m be the first max and m′ be the first min you meet on the i-th component, going
from bottom to top. Pull m to the top, in the (i + 1)-th position, and m′ to the
bottom, in the i-th position. Let Γ′ be the diagram so constructed. Then Γ′ is a
string link diagram, with m(Γ′) = m(Γ)−1. Let us denote by {Γ} the ribbon string
link defined by the diagram Γ. Then {Γ} = ci+1{Γ′}, where ci+1 is the (i+1)-th left
contraction as in Section 4.2. Repeating m(Γ) times this transformation yields a
pure braid diagram P with n+2m(Γ) strands, and we have {Γ} = cjm(Γ)

· · · cj1{P}
where 1 ≤ j1 ≤ · · · ≤ jm(Γ) ≤ n, and jk takes mi times the value i+ 1. Note that

T = (tα1
1 · · · tαn

n ) cjm(Γ)
· · · cj1{P},
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where αi is the number of modifications (4.7) made on the i-th component and
ti ∈ RPBn is as in Section 4.1. Finally, as suggested by Lemmas 4.1 and 4.2, set:

Ψ(T ) = (Ωα1
1 · · ·Ωαn

n )Cjm(Γ)
· · ·Cj1Ψ0({P}),

where Ψ0 : RPB → DiagS is the functor of Lemma 4.1, the Ωj = Ψ0(tj) are the
Hopf diagrams of Section 4.1, and the Cj are the contractions on Hopf diagrams
defined in Section 4.2.

Theorem 4.4. The functor Ψ: RSL → DiagS is well-defined, monoidal, and is
the only functor from RSL to DiagS satisfying:

(a) Ψ(P ) = Ψ0(P ) for any ribbon pure braid P ;
(b) Ψ(ci(T )) = CiΨ(T ) for any ribbon n-string link T and 1 < i < n.

Moreover ψ ◦Ψ = 1RSL.

Remark in particular that Ψ is injective and ψ (and so ψ) is surjective.
We prove the theorem in Section 4.5.

Set Φ = Ψ ◦ G : RHand → DiagS , where G : RHand → RSL is the monoidal
isomorphism defined in Section 2.3. From Proposition 2.1 and Theorem 4.4, we
immediately deduce that:

Corrolary 4.5. The functor Φ: RHand → DiagS is monoidal and satisfies φ◦Φ =
1RHand.

Note in particular that Φ is injective and that φ (and so φ) is surjective.

4.4. A summary and an open question. The preceding results may be sum-
marized in the commutativity of the following diagram:

RHand oo
= RHand

G

��

ΦrrDiag
ι

∼
//DiagS

ψ ,, ,,

φ
22 22

π // //DiagS

ψ
�� ��

φ

AA AA

RSL oo =
RSL

F

KK

Ψ
ll

The main open question concerning Hopf diagram is: are the relations we put
on them (that is, those defining DiagS) sufficient to insure that the functors φ and
Φ (resp. ψ and Ψ) are isomorphisms (and so inverse each other)?

4.5. Proof of Theorem 4.4. Before proving Theorem 4.4, we first establish some
lemmas.

Lemma 4.6. Let P be a ribbon pure n-braid and 1 ≤ i ≤ n + 1. Insert a new
component ` between the (i − 1)-th and i-th strand of P so that P ∪ ` is a ribbon
pure (n+ 1)-braid. Let P` = ∆`(P ∪ `) be the ribbon pure (n+ 2)-braid from P ∪ `
by doubling `. Then:

(a) The equalities of Figure 16 hold;
(b) Ci

(
Ψ0(P`)D

)
= Ψ0(P )Ci(D) and Ci+1

(
DΨ0(P`)

)
= Ci+1(D)Ψ0(P ) for

any Hopf diagram D with (n+ 2) inputs.

Proof. Let us prove Part (a) by induction on the length m of P ∪ l in the generators
σ±1
k,l and t±1

k of RPBn+1. If m = 0, then it is an immediate consequence of (1.2)

and (1.5). Suppose that m = 1. Given a ribbon pure braid Q, denote by ∆i(Q)
(resp. δi(Q)) the ribbon pure braid obtained from Q by doubling (resp. deleting)
its i-th component. We have to verify that the statement is true for P = δi(σ

±1
k,l )
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PSfrag replacements

Ψ0(P`) Ψ0(P`)Ψ0(P )
i iii+ 1 i+ 1i− 1

Figure 16

and P` = ∆i(σ
±1
k,l ), and for P = δi(t

±1
k ) and P` = ∆i(t

±1
k ). This can be done case

by case by using the descriptions of Table 1. Examples of such verifications are
depicted in Figure 17.

∆i(σ
±1
k,l ) δi(σ

±1
k,l )

i < k σ±1
k+1,l+1 σ±1

k−1,l−1

i = k (σi,l+1σi+1,l+1)
±1 In

k < i < l σ±1
k,l+1 σ±1

k,l−1

i = l (σk,iσk,i+1)
±1 In

l < i σ±1
k,l σ±1

k,l

∆i(t
±1
k ) δi(tk)

i < k t±1
k+1 t±1

k−1

i = k σ±1
i,i+1t

±1
i t±1

i+1 In

k < i t±1
k t±1

k

Table 1

PSfrag replacements

Ψ0(δi(σ
−1
i,l ))

Ψ0(∆i(σ
−1
i,l ))

Ψ0(∆i(ti))

Ψ0(δi(ti))

,

.

i

i

i

i

i+ 1

i+ 1

i− 1

i− 1

l + 1

Figure 17

Let m ≥ 1 and suppose the statement true for rank m. Let P and ` such
that P ∪ ` = w1 . . . wm+1 where the wj are generators of RPBn+1. Remark that
P` = ∆i(w1)∆i(w2 · · ·wm+1) and P = δi(w1)δi(w2 · · ·wm+1). By using (1.4), (1.2),
and the statement for ranks 1 and m, we get the equalities depicted in Figure 18.
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The left equality of Figure 16 is then true for P and `. The right equality can
be verified similarly by remarking that P` = ∆i(w1 · · ·wm)∆i(wm+1). Hence the
statement is true for rank m+ 1.

PSfrag replacements

Ψ0(∆i(w1))

Ψ0(∆i(w1))

Ψ0(∆i(w1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(δi(w1))

Ψ0(δi(w1))

Ψ0(δi(w1)) Ψ0(δi(w2 · · ·wm+1))

Ψ0(P`)

Ψ0(P )
i

i

ii

i i

i

i

i i

i+ 1

i+ 1

i+ 1i+ 1

i+ 1 i+ 1

i+ 1

i+ 1 i+ 1

i− 1

Figure 18

Let us prove Part (b). Let D be a Hopf (n+ 2)-diagram. By using (1.1), (1.2),
(1.4), and Part (a) of the lemma, we get the equalities of Figure 19, which mean
that Ci

(
Ψ0(P`)D

)
= Ψ0(P )Ci(D). Likewise, one can show that Ci+1

(
DΨ0(P`)

)
=

Ci+1(D)Ψ0(P ). �

PSfrag replacements

Ψ0(P`) Ψ0(P`)

Ψ0(P ) Ψ0(P )D

D D

Ci(D)
i

i i i i

i+ 1

i+ 1 i+ 1 i+ 1 i+ 1

i− 1 i− 1 i− 1 i− 1

i− 1 i− 1 i− 1 i− 1

Figure 19

Lemma 4.7. Let n ≥ 3 and 1 < i < n (resp. 0 < i < n− 1). Let P and P ′ be two
pure n-braids which have diagrams which differ only inside a disk. Inside this disk,
the i-th and (i+ 1)-th strands pass respectively to the front and the back of another
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strand. Suppose also that above (resp. below) the disk, the i-th and (i+1)-th strands
run parallel, see Figure 20. Then:

CiΨ0(P ) = CiΨ0(P
′) (resp. Ci+1Ψ0(P ) = Ci+1Ψ0(P

′)).

P = and P ′ =
(
resp. P = and P ′ =

)

Figure 20

Proof. Let us denote by k the other component. Suppose that above the disk,
the i-th and (i + 1)-th strands run parallel (the resp. case can be done similarly).
Assume first that k < i. We can write P = Aσk,iσk,i+1B and P ′ = AB where
A and B are ribbon pure n-braids. Moreover A = ∆`(E ∪ `) where E is ribbon
pure braid with n − 2 strands and ` is a new component inserted in E in i-th
position. Now remark that σk,iσk,i+1 = ∆γ(In−2 ∪ γ) where In−2 is the trivial
braid with n− 2 strands and γ is new component added to In−2 in i-th position so
that In−2 ∪ γ = σk,i in RPBn−1. Therefore, by using Lemma 4.6, we get:

CiΨ0(P ) = CiΨ0(Aσk,iσk,i+1B) = CiΨ0

(
∆`(E ∪ `)∆γ(In−2 ∪ γ)B

)

= Ψ0(E) Ψ0(In−2)CiΨ0(B) = Ψ0(E)CiΨ0(B)

= CiΨ0

(
∆`(E ∪ `)B

)
= CiΨ0(AB) = CiΨ0(P

′).

The case k > i+1 is done similarly by writing P = Aσi,kσi+1,kB and P ′ = AB. �

Let us now prove Theorem 4.4. Let n be a positive integer and T be a ribbon
n-string link. Consider a diagram ΓT of T . Applying rules (4.7) changes (in a unique
manner) ΓT to a left handed diagram. Denote by αi is the number of modifications
(4.7) made on the i-th component of ΓT . Then pulling maxima to the top and
minima to the bottom as explained in Section 4.3 leads to a diagram P of a ribbon
pure braid so that T = (tα1

1 · · · tαn

n )cjm · · · cj1{P} for some 1 ≤ j1 ≤ · · · ≤ jm ≤ n.
Pulling extrema in another way may lead to another diagram P ′ of a ribbon pure
braid so that T = (tα1

1 · · · tαn

n )cjm · · · cj1{P
′}. Now the ribbon pure braids {P} and

{P ′} are related by moves described in Figure 20. Therefore, by using Lemmas 4.3
and 4.7, we get that Cjm · · ·Cj1Ψ0({P}) = Cjm · · ·Cj1Ψ0({P ′}). Hence

ΨΓT
= (Ωα1

1 · · ·Ωαn

n )Cjm · · ·Cj1Ψ0({P})

only depends on the diagram ΓT of T .
Let us verify that ΨΓT

remains unchanged when applying to ΓT a Reidemeister’s
move, see Figure 4. Invariance under moves of type 2 or type 3 is a consequence of
the existence of the functor Ψ0. Invariance under moves of type 2’ is a consequence
of Lemmas 4.3 and 4.7.

Suppose that a Reidemeister move of Type 0 is applied to ΓT , and denote by
Γ′
T the so-obtained diagram. There are four cases to consider, depending on the

orientation of the considered strand and the direction (left or right handed) of the
move. These cases, together with the way we apply the algorithm, are depicted in
Figure 21. Let us for example verify invariance in the case depicted in Figure 21(d).
Recall that applying the algorithm to ΓT gives rise to a diagram P of a pure braid
such that {ΓT } = (tα1

1 · · · tαn

n ) cjm · · · cj1{P}. Let i be the number of the component
of ΓT on which the move is performed. Since the orientation of the strand is
downwards and T is a (canonically oriented) string link, we know that there exist
a maximum just before and a minimum just after the place where the move is
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ΓT = 7→ Γ′
T =  

(a)

ΓT = 7→ Γ′
T =   

(b)

ΓT = 7→ Γ′
T =  

(c)

ΓT = 7→ Γ′
T =   

(d)

Figure 21

performed, when going through the component i from bottom to top (see the left
picture of Figure 21(d)). Let cjr be the contraction corresponding to this pair of
extrema when applying the algorithm to ΓT (we have jr = i+ 1). Denote by k the
number of the component of P where the move is performed. Up to using invariance
under Reidemeister’s moves of type 2 and type 3, we can write {P} = UV , with U
and V pure braids, so that the move is performed on the k-th component between
U and V . Insert a new component ` in U in k-th position and a new component `′

in V in (k+ 1)-th position. Set U` = ∆`(U ∪ `) and V`′ = ∆`′(V ∪ `′). As depicted
in Figures 21(d) and 22, we can apply the algorithm to Γ′

T in such a way that:

{Γ′
T} = (tα1

1 · · · tαi+2
i · · · tαn

n )cjm · · · cjrci+1cjr−1 · · · cj1(U`σk+1,k+2V`′).

Now, by using (1.4), (1.6) and (4.8), we have that, for any Hopf diagram D,

(4.8) Cj(ΩpD) =





ΩpCj(D) for p < j,
Ωj−1Cj(D) for p = j,
Ωp−2Cj(D) for p > j.
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ΓT =

PSfrag replacements

ik

U

V

 

PSfrag replacements

i

k

U

V

 cjm · · · cj1

(
PSfrag replacements

i

k

U

V

)

7→

Γ′
T =

PSfrag replacements

i

k

U

V
U`
V`′

 

PSfrag replacements

i

k

U

V
U`
V`′

 cjm · · · cjr ci+1cjr−1 · · · cj1

(

PSfrag replacements

i

k

U

V

U`

V`′

)

Figure 22

PSfrag replacements

Ψ0(U`) Ψ0(U`)Ψ0(V`′) Ψ0(V`′)

Ψ0(U) Ψ0(V ) Ψ0(U)Ψ0(V )
k − 1k − 1 k − 1

k − 1k − 1 k − 1k − 1

k k k

k k k k

k + 1 k + 1 k + 1

k + 1 k + 1 k + 1 k + 1k + 2 k + 2 k + 2 k + 2k + 3k + 3 k + 3k + 3

Figure 23

Moreover we have the equalities of Figure 23 where are used in particular (1.7),
(3.1), (3.4) and Lemma 4.6(a). Then we get that:

CkCkΨ0(U`σk+1,k+2V`′) = CkCk+2Ψ0(U`σk+1,k+2V`′)

= CkCk+2

(
Ψ0(U`)Σk+1,k+2Ψ0(V`′)

)

= Ω−2
k−1Ck

(
Ψ0(U)Ψ0(V )

)

= Ω−2
k−1CkΨ0({P}).

Therefore we can conclude that:

ψΓ′
T

= (Ωα1
1 · · ·Ωαi+2

i · · ·Ωαn

n )Cjm · · ·CjrCi+1Cjr−1 · · ·Cj1Ψ0(U`σk+1,k+2V`′)

= (Ωα1
1 · · ·Ωαi+2

i · · ·Ωαn

n )Cjm · · · Ĉjr · · ·Cj1CkCkΨ0(U`σk+1,k+2V`′)

= (Ωα1
1 · · ·Ωαi+2

i · · ·Ωαn

n )Cjm · · · Ĉjr · · ·Cj1
(
Ω−2
k−1CkΨ0({P})

)

= (Ωα1
1 · · ·Ωαi+2

i · · ·Ωαn

n )Ω−2
i Cjm · · · Ĉjr · · ·Cj1CkΨ0({P}) by (4.8)

= (Ωα1
1 · · ·Ωαn

n )Cjm · · ·Cj1Ψ0({P}) = ψΓT
.

Invariance in the cases depicted in Figures 21(a), 21(b), and 21(c) can be checked
as above.
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By using similar techniques, one can show the invariance of ΨΓT
under Reide-

meister’s moves of type 1’. Hence we conclude that ΨΓT
remains unchanged when

applying to ΓT a Reidemeister’s move, and so Ψ(T ) = ΨΓT
is well-defined.

We get directly from its construction that the functor Ψ is monoidal and sat-
isfies Condition (a). Let us check that it satisfies Condition (b). Let T be a
ribbon n-string link and 1 < i < n. By applying the algorithm we have that
T = (tα1

1 · · · tαn

n )cjm · · · cj1(P ) for some 1 ≤ j1 ≤ · · · ≤ jm ≤ n and some pure
braid P . We can apply the algorithm to a diagram of ci(T ) in such a way that:

ci(T ) = (tα1
1 · · · t

αi−2

i−2 t
αi−1+αi+αi+1

i−1 t
αi+2

i · · · tαn

n−2)cjm−2 · · · cjk+1−2cicjk · · · cj1(P ),

where k is such that jk+1 > i+ 1 ≥ jk. Hence:

Ci(Ψ(T )) = Ci
(
Ωα1

1 · · ·Ωαn

n Cjm · · ·Cj1Ψ0(P )
)

= (Ωα1
1 · · ·Ω

αi−1+αi+αi+1

i−1 · · ·Ωαn

n−2)CiCjm · · ·Cj1 (P ) by (4.8)

= (Ωα1
1 · · ·Ω

αi−1+αi+αi+1

i−1 · · ·Ωαn

n−2)Cjm−2 · · ·Cjk+1−2CiCjk · · ·Cj1 (P )

= Ψ(ci(T )).

Uniqueness of a functor DiagS → RSL satisfying (a) and (b) comes from the fact
that every ribbon string link can be realized as a sequence of contractions of a
ribbon pure braid.

Finally, let T be a ribbon string link. We can always write T = cjm · · · cj1(P )
for some ribbon pure braid P . Then we have:

ψΨ(T ) = ψΨ(cjm · · · cj1(P ))

= ψ
(
Cjm · · ·Cj1Ψ0(P )

)
by Conditions (a) and (b)

= cjm · · · cj1
(
ψΨ0(P )

)
by Lemma 4.2

= cjm · · · cj1(P ) = T by Lemma 4.1.

Hence ψ ◦ Ψ = 1RSL. This completes the proof of Theorem 4.4.

5. Quantum invariants via Hopf diagrams and Kirby elements

A general method is given in [Vir03] for defining quantum invariants of 3-man-
ifolds starting from a ribbon category (or a ribbon Hopf algebra). In this section,
we explain the role played by Hopf diagrams in this theory. Note that this was the
initial motivation of this work.

5.1. Dinatural transformations and coends. We give here definitions adapted
to our purposes. For more general situations, we refer to [Mac98].

Let C be a category with left duals. By a dinatural transformation of C, we shall
mean a pair (Z, d) consisting in an object Z of C and a family d, indexed by Ob(C),
of morphisms dX : ∨X ⊗X → Z in C satisfying dY (id∨Y ⊗ f) = dX(∨f ⊗ idX) for
any morphism f : X → Y .

By a coend of C, we shall mean a dinatural transformation (A, i) which is uni-
versal in the sense that, if (Z, d) is any dinatural transformation, then there exists
a unique morphism r : A → Z such that dX = r ◦ iX for all object X in C, see
Figure 24. Note that a coend, if it exists, is unique (up to isomorphism).

Remarks. 1) In general, the coend of C always exists in a completion Ĉ of C, namely
the category of Ind-objects of C (see [Lyu94]). In the following, for simplicity, we will
restrict to our definition, that is, to the case where the coend exists in C (although

most of the material still remains true when working with Ĉ).
2) The coend always exists (in C) when C is the category of representations of a

finite-dimensional Hopf algebra or is a premodular category, see [Vir03].
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Assume that (A, i) is the coend of C. The following dinatural transformations:

(iX ⊗ iX)(1 ⊗ coevX ⊗ 1) : ∨X ⊗X → A⊗A and evX : ∨X ⊗X →
�

factorize respectively to morphisms ∆A : A→ A⊗A (the coproduct) and εA : A →
�

(the counit). This makes A being a coalgebra in the category C.

5.2. The coend of a ribbon category. Let C be a ribbon category (see [Tur94])
and assume that the coend (A, i) of C exists. We denote the braiding of C by
cX,Y : X ⊗ Y → Y ⊗X .

The coalgebra structure (∆A, εA) on the object A (see Section 5.1) extends to a
structure of a Hopf algebra, see [Lyu94]. This means that there exist morphisms
µA : A ⊗ A → A (the product), ηA :

�
→ A (the unit), and SA : A → A (the

antipode). They satisfy the same axioms as those of a Hopf algebra except the
usual flip is replaced by the braiding cA,A : A ⊗ A → A ⊗ A. Namely, the unit
morphism is ηA = i � :

�
= ∨�

⊗
�
→ A. By using the universal property of a

coend1, the product µA and the antipode SA are defined as follows:

µA(iX ⊗ iY ) = iY⊗X(1∨X ⊗ cX,∨Y⊗Y ) : ∨X ⊗X ⊗ ∨Y ⊗ Y → A,

SAiX = i∨X(θX ⊗ id∨X)c∨X,X : ∨X ⊗X → A.

Here, the morphisms θX : X → X denote the twist of C. Note that SA is invertible,
with inverse S−1

A : A→ A coming from:

S−1
A iX = i∨X (θ−1

X ⊗ idX)c−1
X,∨X

: ∨X ⊗X → A.

Let us define morphisms ωA : A⊗A →
�

and θ±A : A →
�

as follows:

θ±A iX = evX(id∨X ⊗ θ±1
X ) : ∨X ⊗X →

�
,

ωA(iX ⊗ iY ) = (evX ⊗ evY )(id∨X ⊗ c∨Y,XcX,∨Y ⊗ id∨Y ) : ∨X ⊗X ⊗ ∨Y ⊗ Y →
�
.

It can be shown that ωA is a Hopf pairing (see [Vir03]). Finally, we set:

ω+
A = ωA(S−1

A ⊗ idA) and ω−
A = ωA.

5.3. Hopf diagrams and factorization. Let C be a ribbon category. Assume
that the coend (A, i) of C exists. Consider the Hopf algebra structure of A and the
morphisms ω±

A and θ±A as in Section 5.2.
Let T be a ribbon n-handle. Recall that for any objects X1, . . . , Xn of C, the

handle T defines a morphism TX1,...,Xn
: ∨X1 ⊗ X1 ⊗ · · · ⊗ ∨Xn ⊗ Xn →

�
by

canonically orienting T (see Section 2.2) and decorating the kth component of T
by Xk. Hence it can be factorized thought the coend to a morphism TC : A⊗n →

�

so that:

(5.1) TX1,...,Xn
= TC ◦ (iX1 ⊗ · · · ⊗ iXn

)

for all objects X1, . . . , Xn of C.

1For the product µA, use it twice.
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Theorem 5.1. There exists a unique braided functor EC : DiagS → C sending:

• the objects n ∈ � to A⊗n;
• the morphisms ∆, ε, S±1, ω±, θ± to ∆A, εA, S±1

A , ω±
A , θ±A respectively.

Furthermore, for any ribbon n-handle T , the factorization morphism TC : A⊗n →
�

defined by T is given by TC = EC(D) where D is any Hopf diagram with φ(D) = T .
In particular, TC = EC ◦ Φ(T ).

Remark 5.2. We expect to construct such functors EC : DiagS → C for cate-
gories C which are not ribbon but only turban, see [Bru04].

Proof. Uniqueness of the functor EC is clear since we impose the image of all its
generators. Its existence comes from the fact that the relations imposed on the
generators ∆, ε, S±1, ω±, θ± and τ±1

∗,∗ in DiagS are still true in C when replacing

them by ∆A, εA, S±1
A , ω±

A , θ±A and c±1
A,A respectively. This is because A is a Hopf

algebra in C, ωA is a Hopf pairing, and θA is defined using the twist θX of C.
Using the uniqueness of the factorization morphism via a coend, it remains to

show that if D is a Hopf diagram with n inputs, then

(5.2) φ(D)X1 ,...,Xn
= EC(D) ◦ (iX1 ⊗ · · · ⊗ iXn

)

for any objects X1, . . . , Xn of C. Clearly, we have that if (5.2) is true for two Hopf
diagrams D and D′, then it is also true for the Hopf diagram D ⊗D′. Moreover,
by definition of φ (see Figure 7) and of εA, ω±

A and θ±A , we have that (5.2) is true

for the trivial Hopf diagram ε ⊗ · · · ⊗ ε and for the Hopf diagrams Σ±1
i,j and Ω±1

k

depicted in (4.6). Now suppose that (5.2) is true for some Hopf diagram D. Then,
by definition of φ (see Figure 7) and of ∆A, S±1

A and c±1
A,A, (5.2) remains true for

the following diagrams:

PSfrag replacements D ,

PSfrag replacements

D
D ,

PSfrag replacements

D

D
D , and

PSfrag replacements

D

D

D
D .

Hence we can deduce that (5.2) is always true. �

5.4. Kirby elements. Let C and A be as in Section 5.3. Let L be a framed link
in S3 with n components. Choose an orientation for L. There always exists a ribbon
n-handle T (not necessarily unique) such that L is isotopic T ◦ (∪− ⊗ · · · ⊗ ∪−),
where ∪− denotes the cup with clockwise orientation and T is canonically oriented.
For α ∈ HomC(

�
, A), set:

(5.3) τC(L;α) = TC ◦ α⊗n ∈ EndC(
�
),

where TC : A⊗n →
�

is defined as in (5.1). Following [Vir03], by a Kirby element
of C, we shall mean a morphism α ∈ HomC(

�
, A) such that, for any framed link L,

τC(L;α) is well-defined and invariant under isotopies and 2-handle slides of L.
In general, determining the set of morphisms TC when T runs over ribbon han-

dles is quite difficult. Nevertheless, by Theorem 5.1, the TC belong to the set of
morphisms given by evaluations of Hopf diagrams. Hence we have a manner of
verifying that a morphism is a Kirby element:

Corrolary 5.3. Let α :
�
→ A in C. Suppose that the two following conditions are

satisfied:

(a) for any integer n ≥ 1 and any Hopf diagram D with n entries, we have:

PSfrag replacements

ααααα

EC(D) EC(D)

SA
;
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(b) for any integer n ≥ 2 and any Hopf diagram D with n entries, we have:

PSfrag replacements

αααααααα

EC(D)EC(D)

,

where and denote µA : A⊗A→ A and ∆A : A→ A⊗A respectively.

Then α is a Kirby element of C.

Remark 5.4. One recovers the fact (see [Vir03, Theorem 2.5]) that a morphism
α :

�
→ A is a Kirby element if it satisfies:

{
SAα = α,

(µA ⊗ idA)(idA ⊗ ∆A)(α⊗ α) = α⊗ α,

or, in case C is linear, if the morphisms
{
SAα− α,

(µA ⊗ idA)(idA ⊗ ∆A)(α ⊗ α) − α⊗ α,

are negligible.

Proof. We just have to adapt the proof of [Vir03, Theorem 2.5] to our more general
situation. Let L = L1 ∪ · · · ∪ Ln be a framed link. Choose an orientation of L and
a ribbon n-handle T such that L is isotopic T ◦ (∪− ⊗ · · · ⊗ ∪−).

Suppose firstly that we reverse the orientation of Li. As in the proof of [Vir03,
Theorem 2.5], we can choose a ribbon n-handle T ′ such that new oriented framed
link L′ is isotopic to T ′ ◦ (∪−⊗· · ·⊗∪−) and T ′

C = TC ◦ (idA⊗(i−1) ⊗SA⊗ idA⊗(n−i)).

Now let D be a Hopf diagram such that φ(D) = T . Then TC = EC(D) and so

τC(L′;α) = EC(D)(idA⊗(i−1) ⊗ SA ⊗ idA⊗(n−i))α⊗n

= EC(D)(cA,A⊗(i−1) ⊗ idA(n−i))(SAα⊗ α⊗n−1)

= EC(D′)(SAα⊗ α⊗n−1)

= EC(D′)α⊗n by Condition (a)

= EC(D)(cA,A⊗(i−1) ⊗ idA(n−i))α⊗n

= EC(D)α⊗n = τC(L;α).

where

D′ =

PSfrag replacements
D i .

Hence τC(L;α) does not depend on the choice of an orientation for L.
Suppose now that the component L2 slides over the component L1. Let L′

1 be
a parallel copy of L1 and set L′ = L1 ∪ (L′

1#L2) ∪ L3 ∪ · · · ∪ Ln. As in the proof
of [Vir03, Theorem 2.5], we can choose a ribbon n-handle T ′ such L′ is isotopic to
T ′ ◦ (∪− ⊗ · · · ⊗ ∪−) and T ′

C = TC ◦
(
(µA ⊗ idA)(idA ⊗ ∆A) ⊗ idA⊗(n−2)

)
. Hence,

choosing a Hopf diagram D such that φ(D) = T , we get that TC = EC(D) and so

τC(L′;α) = EC(D)
(
(µA ⊗ idA)(idA ⊗ ∆A) ⊗ idA⊗(n−2)

)
α⊗n

= EC(D)α⊗n by Condition (b)

= τC(L;α).

Likewise, using the braiding, we can show that τC(L;α) is invariant under the other
handle slides. Hence α is a Kirby element of C. �
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5.5. Quantum invariants of 3-manifolds. Recall (see [Lic97]) that every closed,
connected and oriented 3-dimensional manifold can be obtained from S3 by surgery
along a framed link L ⊂ S3.

For any framed link L in S3, we will denote by S3
L the 3-manifold obtained from

S3 by surgery along L, by nL the number of components of L, and by b−(L) the
number of negative eigenvalues of the linking matrix of L.

A Kirby element α of C is said to be normalized if θ+
Aα and θ−Aα are invertible

in the semigroup EndC(
�
). To each normalized Kirby element α is associated an

invariant τC(M ;α) of (closed, connected, and oriented) 3-manifolds M with values
in EndC(

�
), see [Vir03, Proposition 2.3]. From Theorem 5.1, we immediately deduce

that:

Corrolary 5.5. For a normalized Kirby element α and any framed link L, we have

τC(S3
L;α) = (θ+Aα)b−(L)−nL (θ−Aα)−b−(L) EC(D)α⊗n,

where D is any Hopf diagram such that L is isotopic to φ(D) ◦ (∪ ⊗ · · · ⊗ ∪).

Remarks. 1) Corollary 5.5 gives an intrinsic description, in terms of Hopf algebraic
structures, of quantum invariants of 3-manifolds.

2) In Corollary 5.5, we can in particular take D = Ψ(T ) where Ψ is as in
Theorem 4.4 and T is a ribbon sting link such that L is isotopic to closure of T .
Recall also that the constructive proof of Theorem 4.4 provides us with an algorithm
for computing D = Ψ(T ) starting from a diagram of T .

Let us conclude by giving an example. Recall that the Poincaré sphere
�

can be
presented as

�
' S3

K where K is the right-handed trefoil with framing +1. Now
this trefoil can be represented as K = φ(D) ◦ ∪ where D = (ω+∆ ⊗ θ−)∆. Indeed,
we have that:

K = and D = φ(D) =
PSfrag replacements

∼ .

Hence, if α :
�
→ A is a normalized Kirby element of C, then:

τC(
�
;α) =

PSfrag replacements
θ+A

α

−1

PSfrag replacements

θ+A

α
−1 ∆A

∆A

θ−A

ω+
A

α

.
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