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Abstract. We give a geometric definition of a homology theory which agrees with periodic
elliptic homology of Landweber-Ravenel-Stong after inverting the prime 2. We give a similar
geometric description of real K-homology theory.

§1. INTRODUCTION

The (universal) elliptic genus [L1] is a ring homomorphism
$:05° — M. = 7[][6,

from the oriented bordism ring to the graded polynomial ring M, with § = ¢(CP?) and
e = ¢(HP?), where CP? (resp. HP?) is the complex (resp. quaternionic) projective plane
(an introduction and background information on elliptic genera can be found in [Hir),
(L1], [O2], [Se], [W]). The elliptic genus provides a connection between bordism theory,
modular forms and quantum field theory, since M, can be identified with a ring of modular
forms and, following Witten [W], the elliptic genus ¢(M) of a spin manifold M can be
interpreted as the S'—equivariant index of an operator on the loop space on M. In fact,
Witten used this interpretation to provide a heuristic proof for the rigidity of the elliptic
genus. A rigorous proof along those lines was given by Taubes [T] (see also [BT]). The
rigidity is equivalent to the multiplicativity of ¢ for certain fibre bundles E — B [03];
namely, if E, B are closed oriented manifolds, the fibre F' is a spin manifold and the
structure group of the bundle is compact and connected then ¢(E) = ¢(F) ¢(B).

The universal elliptic genus makes M, and hence M,[w™!] for any w € M, a left module
over 50 (recall that M,[w™!} = lim M., where the connecting maps in the sequence are

given by multiplication by w). Landweber, Ravenel and Stong [LRS]}, [L1] showed that
the functor

(1.1) X — QEO(X) ®qso M, w1

is a homology theory if w = € or w = §? — € (or any element having € or §2 — ¢ as factor, like
the discriminant A = (6% — €)?). This 8-periodic homology theory is called (odd primary)
periodic elliptic homology.

In this situation one has the following obvious problems [L2]:

a) Give a geometric description of elliptic (co)homology.
b) Define elliptic (co)homology at the prime 2.

2Partially supported by NSF Grant DHS-88002481, the Max—Planck—Institut in Bonn and the SFB in
Gottingen.



Recently Ochanine [O4] investigated an integral elliptic genus 8 defined for bordism
classes of spin manifolds. This suggests that the coefficients of integral elliptic homology
should be isomorphic to the image of § with an appropriate element inverted.

The main result of this paper is a geometric definition of an (integral) homology theory
which agrees with the Landweber-Ravenel-Stong theory after inverting the prime 2. Asa
by-product we obtain a new geometric description of K OQ,~homology. The idea for these
geometric constructions is to use fibre bundles with fibre the quaternionic projective plane
HP2. This was motivated by the second author’s proof of the Gromov-Lawson conjecture
concerning the existence of positive scalar curvature metrics on simply connected spin
manifolds of dimension > 5 [St1].

We recall that for small n the spin bordism group 5P is as follows (cf. [Mi]): Q77"
Z/2 is generated by S? (with the non-trivial spin structure), the square of S? is a generator
of 257" = 7/2 and the Kummer surface K (a 4-manifold with signature 16) is a generator
of ;7™ = 7. The group 257" = Z @1 is generated by HP? and a manifold B (for ‘Bott’),
characterized by A(B) = 1, sign(B) = 0. The other groups Q57" are zero for n < 8.

For a space X let 25P**(X) be the bordism group of n-dimensional closed spin manifolds
together with maps to the space X. Let T,,(X) be the subgroup of the Q57" (X) consisting
of bordism classes [E, fp], where p: E — B is an HP?-bundle over a closed spin manifold
B of dimension n — 8 and f is a map from B to X. Here an HP?—bundle is a fibre bundle
with fibre HP? and structure group the projective symplectic group PSp(3) (which is the
isometry group of HP? with its standard metric). Let Tn (X) be the subgroup consisting
of all bordism classes [E, fp| as above with the additional assumption that [B, f] is the
trivial element of Q5P (X). Let ell,(X) be the quotient of 257"(X) modulo T, (X).

Cartesian product of manifolds induces a multiplication

(1.2) ellpn(X) X ell(Y) — ellyn(X x Y)

and a natural transformation

(1.3) QP (X) @qsein elly — el (X),

which is compatible with the multiplications on both sides. Here ell, = ell,(pt) where pt
is-a point.

THEOREM A.

(1) ell.(X)® L, is a multiplicative homology theory.
(2) The natural transformation (1.3) is an isomorphism after inverting 2.
(3) ell. = Z[s,k, h,b)/(2s,5% sk, k? — 22(b + 28 1)), where s, k, b, h are the images of

[S1], [K), [B], [HP?], respectively, under the projection map Qdrin s ell,.
We remark that the relations in ell, are consequences of corresponding relations in QP
Combinig Theorem A with the Landweber-Ravenel-Stong result that (1.1) is a homology
theory we obtain our main theorem. For an element v € ell; define

EI(X) = ello(X)[v™"] = im ell4qx(X),
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where the limit is taken over the sequence of homomorphisms given by multiplication by
v. In the special case v = h (i.e. if v is represented by HP?) one has the following nice
description of El%(X):

EL(X) = €D 255 (X)/ ~,
kez

where the equivalence relation ~ is generated by identifying [M, f] € Qsr i"(X ) with
[E, fp] € Q,_S_’;L"(X) for an HP?-bundle p: E — M (i.e. total spaces of HP2-bundles are
identified with their base). i
THEOREM B. For v = h or v = b the functor ElY(X) is a multiplicative homology theory
which agrees with the Landweber-Ravenel-Stong theory Q7°(X) ®qso M.[¢(v)~!] after
inverting 2.

Here, abusing notation, we denote by ¢ the homomorphism ¢: ell, = QP / T, (pt) — M.,
induced by the elliptic genus (note that T, (pt) is in the kernel of the elliptic genus due
to its multiplicative properties for HP?-bundles). We note that ¢(k) = ¢(K) = 2*§,
¢(h) = ¢(HP?) = € and ¢(b) = ¢(B) = 2%(8% — ¢€). Hence by part (3) of theorem A the
elliptic genus induces an isomorphism ell,[3] = M,.

For the proof of Theorem B it suffices to show that ElJ(X) ® Z 3y is a homology theory
and that EI?(X)[}] is canonically isomorphic to the Landweber-Ravenel-Stong theory.
The former is a corollary of part (1) of theorem A (the direct limit of exact sequences is
exact and hence ell,(X)[v™'] ® Z(5) is again a homology theory). The latter follows from
the natural isomorphisms

(1.4) ell.(X)[%] > QSP(X) ®gsrin ell,[%] = Q59(X) ®qso M.

by inverting v resp. ¢(v). The first isomorphism comes from part (2) of theorem A, the
second isomorphism is the tensor product of the isomorphism Q57 (X N3] = Q3o (X)1]
and the isomorphism ell,[1] = M, induced by ¢.

REMARKS:

(1) In§7 we show that the natural transformation (1.3) does not induce an isomorphism
if we invert k € ellg on both sides. In particular, Q57*"(X) ®Qqsrin el (k1] is not a

homology theory. However, Hovey has shown recently that Q27*"(X )®qsein ellu[67]

is isomorphic to our functor E18(X) and thus a homology theory [Ho), indicating
a delicate difference between EI*(X) and EI*(X).

(ii) The isomorphism (1.4) implies that ell.(X)[3] is not a homology theory since the
functor Q7°(X) ®qso M, does not satisfy the conditions of the exact functor the-
orem which by [Ru] are also necessary conditions for such a tensor product to be a
homology theory. In particular, ell,(X) is not the connective homology theory cor-
responding to the periodic homology theory El,(X). Our notation El.(X) (instead
of Ell.(X)) hopefully avoids that possible confusion.

(iii) We show in (5.2) that the 2-local spectrum el corresponding to the homology the-
ory ellu(X) ® Z(3) is homotopy equivalent to \/ 8 ko where ko is the connected
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K O-theory spectrum. However, the ring spectrum structure on el correponding to
the multiplication (1.2) does not correspond to the multiplication on \/ Z8¥ko in-
duced by the multiplication on ko. Otherwise the inclusion of the bottom ko would
give a ring spectrum map bo — el which is impossible: the arguments in [St2, §7]
showing that there is no ring spectrum map ko — M Spin apply since M Spin — el
is a 10-equivalence.

(iv) By Spanier-Whitehead duality there are corresponding multiplicative cohomology
theories El}(X). It is a very interesting open problem to give a geometric con-
struction of El}(X). G. Segal has proposed a construction related to topological
quantum field theory which might lead to such a geometric definition [Se].

(v) By construction of elliptic homology vector bundles with spin structure are ori-
entable with respect to El}(X) and ell,(X) ® Z(3).

Next we consider the functor X — koo, (X) = Q3P"(X)/T.(X). It is shown in [St2]
that k00,(X) ® Z(2) = k0.(X) ® Z(3), where ko,(X) is the connective real K-theory of X.
In this paper we complete the computation of this functor by analyzing it at odd primes
(the easier part) showing that koo.(X)[]] = Q7P (X) Qg spin ko.(pt)[3]. This leads to the
following geometric description of periodic real K—theory:

THEOREM C. There is a natural multiplicative isomorphism between koo,(X)[b~}] and
KO.(X).

We note that Hopkins and Hovey proved recently that the natural transformation
Q3P (X) Qqsein KO4(pt) — KO.(X) is an isomorphism [HH].

REMARK: One can modify our functors describing El and KO by replacing the category
of spin manifolds by a different category and HP? by a closed manifold F' in that category
(with the action of a suitable Lie group G on it). In general our construction does not give
a homology theory, but we expect this to hold in the following cases:

(1) non-oriented manifolds and F’ the real projective plane
(2) oriented manifolds and F' the complex projective plane

(3) BO<8>-manifolds and F the Cayley plane

Here BO<8> is the 7—connected cover of BO and a BO<8>-manifold is a manifold M
together with a lift M — BO<8> of a classifying map of its tangent bundle. We note that
such a lift exists if and only if the loop space of M admits a spin structure {W]. Recently
the first two cases were confirmed by Rainer Jung [J].

The paper is organized as follows. In §2 we discuss the Atiyah invariant o, the (uni-
versal) elliptic genus and then the Ochanine genus , which can be viewed as a common
generalization of both. Moreover, we prove multiplicativity of the Ochanine genus for fibre
bundles with compact connected structure group and fibre dimension = 0,3 mod 4. In §3
we show that the kernel of 8 is 7., (pt) and go on to prove parts (2) and (3) of theorem A,
as well as theorem C. In §4 we show that the kernel of « is equal to T, (pt) at odd primes.
This section is technical and should be skipped in a first reading. The proof of part (1) of
theorem A is outlined in §5 using some facts which are proved in §6, the homotopy theo-
retic heart of the paper. In §7 we show that Q,.Sp'"(X) ®qsrin ell,[h~1] is not a homology
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§2. THE ELLIPTIC GENUS AND THE OCHANINE GENUS

In this section we give discuss the (universal) elliptic genus and the Ochanine genus, a
generalization of the (universal) elliptic genus. Furthermore we show in propositions 2.7
and 2.8 that the Ochanine genus is multiplicative for suitable fibre bundles. The elliptic
genus (resp. the Ochanine genus) can be thought of as an extension of the A-genus (resp.
the Atiyah invariant) and hence we find it useful to discuss the A-genus first.

The A-genus is a ring homomorphism

A: Qfo — Q.

For a spin manifold M the A-genus A(M) is an integer (namely the index of the Dirac
operator [AS]) and restricted to spin bordism A can be factored in the form

, o h
(2.1) Qsrin % KO, (pt) = Q,

where the ring homomorphism ph (‘Pontrjagin character’) maps an element of KO,(pt) =
I??)(S ™) to the Chern character of its complexification evaluated on the fundamental class
of S™. To define a recall that for a spin manifold M" the projection map #™: M — pt
induces a Gysin map or Umkehr homomorphism nM: KO(M) — KO~ "(pt) = KO,(pt)
in KO-theory [Bo, Ch. V, §6] which is constructed making use of the K O-theory Thom
isomorphism for spin bundles. Then a(M) = M (1) where 1 is the multiplicative unit of
KO(M) (i.e. the trivial real line bundle). The multiplicative properties of the Gysin map
imply that « is a ring homomorphism.

Now we turn to elliptic genera and the Ochanine genus. A rational genus is a ring

homomorphism
$: Q%0 5 A

from the oriented bordism ring to a commutative Q-algebra with unit. Thom showed that
299 ® Q is a polynomial algebra whose generators are the bordism classes of the even
dimensional complex projective spaces CP?". Hence a genus ¢ is determined by the formal

power series
1
l — § CP'Zn Zn+41
Og¢($) = 271 + 1 ¢( )I )

which is called the logarithm of ¢. Following Ochanine [O2] a rational genus ¢ is called
elliptic if its logarithm is an integral of the form

T
:/ )
0 1 — 26t% + ett

)

loge(z)



with 6, ¢ € A. It turns out that if ¢ is the elliptic genus corresponding to arbitrary elements
€,6 € A then 6§ = ¢(CP?) and € = ¢(HP?). It follows that an elliptic genus ¢ is completely
determined by ¢(CP?) and ¢(HP?). The A-genus is an example of an elliptic genus with
§ = A(CP?) = 1/8 and € = A(HP?) = 0. Clearly, every elliptic genus factors through the
untversal elliptic genus
$: Q7 — Q[b, €.

which sends CP? (resp. HP?) to § (resp. €). It turns out that the image of ¢ is contained
in Z[3][6, €.

The Ochanine genus is a ring homomorphism 8: Q57" — K O.(pt)[q] into the ring of
power series with coefficients in K O,(pt). It is a generalization of the elliptic genus in the
sense that the following diagram is commutative [O4, Thm. 1]:

: avn L,k O.(pt)ld}
(2.2) ¢l lph
Z11)i5, ——  Qldl

Here ph is the map KO.(pt) — Q from (2.1) extended to powerseries, and ¢ embeds
Z[%][é, €] as a subring in the power series ring by mapping

(2.3) § to —1/8-35 (> d)g") and € to I.( > &)

n>o din n>o din
d odd nfd odd

We note that (6) and i(e) are g—expansions at the cusp oo of level 2 modular forms of
weight 2 (resp. 4) derived from the Weierstrass p—function (compare [Hir, Appendix 1],
[Z}). Moreover, we can use the embedding ¢ to identify Z[2](6, ¢] with the level 2 modular
forms with g-expansion coeflicients in Z[1] [L2, §4].

To define the Ochanine genus let E be a real vector bundle over a space X. The total
exterior (resp. symmetric) power operations are defined by

ME) =S XN(E)Y  resp.  S(E)=Y S(EM,

i>0 i>0

where A'(E) resp. S*(E) is the i—th exterior (resp. symmetric) power of E. We denote by
©4(E) the following formal power series in ¢ with coefficients in KO(X).

(2.4) 0,(E) =Y OYE)¢" = Q) (A_g2a-1(E) ® Sq2n(E))

i>0 n>1

This expression looks rather artificial but from the physics point of view it appears natu-
ral. According to Witten [W, p.167] the index of the Dirac operator on a spin manifold

M™ twisted by ©,(TM), where TM = TM — n is the reduced tangent bundle, can be
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interpreted as the index of a sort of twisted version of the signature operator on the free
loop space AM. This operator has no finite dimensional analogue, a fact which might be
relevant for the definition of elliptic cohomology.

O, is exponential in the sense that for vector bundles E, F’

(2.5) O E D F) =04(E)Q O, (F)
So B, may be extended to virtual bundles and be considered as an exponential map
0,: KO(X) —» KO(X)lq].

For an n—dimensional spin manifold M the Ochanine genus (M) [O4] is defined as

(2.6) M) =" B(M)¢ =) M0 (TM))q' € KOn(pt)ldl

i>0 i>0

In a more compact notation, we write S(M) = Tr!M(@q(m)). It is easy to see that this
definition agrees with the definition given in [O4]. We note that ©°(E) for any vector
bundle E is the trivial real line bundle and hence %(M) = 7M(1) = a(M). The fact
that O, is exponential (2.5) plus the naturality of the transfer map implies (M x N) =
B(M) - B(N).

Recall that the elliptic genus ¢ is multiplicative for a fibre bundles £ — B whose fibre is
a spin manifold and whose structure group is compact and connected. It is an open problem
whether the Ochanine genus § is multiplicative for such fibre bundles. As a consequence
of the rigidity of the elliptic genus, we get the multiplicativity of # under some conditions.

PRrOPOSITION 2.7. Let G be a compact, connected Lie group acting spin structure pre-
serving on a closed spin manifold F' of dimension k. Assume that k = 0,3 mod 4 or

G = S'. Then for any fibre bundle p: E — B over a closed spin manifold B with fibre F
and structure group G we have §(E) = B(B) - f(F).

This proposition is a consequence of a slightly more general result. To state it, first some
notation: let Kg(pt) (resp. KO%(pt)) be the equivariant complex (resp. real) K-theory

of the point and let I?E.(pt) (resp. I’\.;b:;(pt)) be the cokernel of the map from the non-
equivariant to the equivariant K-theory.

ProproSITION 2.8. The conclusion of proposition 2.7 holds if instead of assuming k = 0,3
mod 4 or G = S! we assume that the complexification map I?O;k(pt) — f{'&k(pt) is
injective.
PROOF OF PROPOSITON 2.7: We recall from [ASe, §8] that
Kg'(pt) = R(G) @ K~*(pt)
KOZ*(pt) = Ac ® KO *(pt) ® Bg @ K~ *(pt) ® Cc @ KSp~*(pt),

where R(G) is the complex representation ring of G, Ag (resp. Bg resp. Cg) are the
parts of the Real representation ring (in the sense of Atiyah-Segal) corresponding to the
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commuting fields R, C, H, respectively, and K Sp is symplectic K—theory. Moreover, these
isomorphisms are such that the complexification map K Oak (pt) — Kg k(pt) corresponds
to the obvious maps from KO~ *(pt) (resp. K~*(pt) resp. KSp~*(pt)) into K~*(pt). By
Bott-periodicity K~ *(pt) = Z for k even and K~*(pt) = 0 for k odd and

z for k=0 mod 4
KO *pt) = KSp~***(pt) = { 7/2 for k=1,2 mod 8

0 otherwise

Moreover, the complexification map KO~ *(pt) — K~*(pt) and the forgetful homomor-
phism K Sp~*(pt) — K~ ¥(pt) are injective on the torsion free parts. This shows that the
e, — ~

complexification map KOg (pt) — K;"(pt) is injective if k¥ = 0,3 mod 4 or if all non-
trivial simple Real G-modules have commuting field C, which is the case for G = S'. 1

PRrRoOF OF PROPOSITION 2.8: The following argument follows closely Segal’s argument in
his proof that the rigidity of an elliptic genus implies its multiplicativity for fibre bundles
[Se, §3]. For the fibre bundle p: E — B we have TE = p*TB & Tr, where TF is the
tangent bundle along the fibres. By the functoriality of the transfer 7f = 7 p; and hence

B(E) = ' (0(TE)) = 7 p(p*0g(TB) - 04(Tr)) = nP(04(TB) - p.0,(Tr)).

Now pO,(Tr) is an element of KO*(B)[q] whose augmentation is M, (Oq(TF)) =
B(F) € KO *(pt)[g} (compare the bundle p: E — B to nf: F — pt). It suffices to
show that ng)q(fF) is in the image of (7B)*: KO~*(pt)[¢} — KO~*(B)[q) since this
implies pg@q(fp) = (#B)*(B(F)) and hence

r2(OX(TB) - piOqg(Tr)) = 7 (O(TB) - (x®)"(B(F))) = B(B) - B(F).

To prove that pg@q(j;p) is in the image of (72)* it suffices to prove the corresponding
statement for 7, the tangent bundle along the fibres of m: EG xg F — EG x ¢ pt = BG,
the universal bundle with fibre F and structure group G.

CLAIM 2.9: 7 ©,(7) is in the image of (7B%)*: KO~*(pt)[q] — KO~*(B)[q].

To prove the claim consider the commutative diagram

KOG(F) _— KO(EG XaG F)

l‘mp 1’" )

KOZF(pt) —— KO™*(EG x ¢ pt)
where the horizontal maps take a G—vector bundle over a G-space X to the associated
vector bundle over the Borel construction EG xg X. The equivariant ta.ngent bundle

TF € KOg(F) maps to 1 € KO(EG x¢ F) and hence = (O (TF)) € KOZ*(pt) maps
to m©*(7)). Hence it suffices to show that the equivariant Ochanine genus BL(F) =
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wf(e‘(ﬁ)) € KOZ*(pt) is in the image of KO~*(pt) — KOZ*(pt). Our assumption

e — ke ~
concerning the injectivity of KOg (pt) — Kak(pt) means that it is sufficient to prove
the corresponding statement in complex K-theory. For k odd this is trivially true, for
k even K&k(pt) can be identified with the complex representation ring RG and via the

Atiyah-Singer index theorem = (O'(ﬁ)) € K;*(pt) = RG is the equivariant index of
the Dirac operator on F twisted by ©(TF).

The Witten—Taubes rigidity theorem [T], [BT] says that this index is the trivial repre-
sentation for G = S! and hence for all compact, connected Lie groups G; i.e. mf (G)'(ﬁ)) €
K;*(pt) is in the image of K~*(pt) — K5*(pt). 1

§3. KERNEL AND IMAGE OF THE OCHANINE GENUS

In this section we study kernel and image of the Ochanine genus and prove theorems A
and C of the introduction, except part (1) of theorem A whose homotopy theoretic proof is
defered to §5 and except the determination of ker « at odd primes (proposition 3.3) which
is given in §4. We begin by an analogous discussion of the ring homomorphism

a: P 5 KO, (pt).
By Bott—periodicity,
(3.1) KO.(pt) = Z{n,w, g1, p~']/(21,7°, qw,w® = 2%p1)

where 1, w, p are elements of degree 1, 4, 8, respectively. In fact, for the generators S, K,
HP? and B of the low-dimensional spin bordism groups (cf. §1 after theorem A) we have

(3.2) (S =n aoEK)=w «B)=p aHP?*)=0.

Geometrically a(M) can be interpreted as the index of a family of operators associated to
M parametrized by S™ [Hit, p. 39]. Using this geometric interpretation Hitchin showed
that a(M) = 0 if M has a Riemannian metric of positive scalar curvature [Hit]. In
particular, a(HP?) = 0 since the standard metric on HP? has positive scalar curvature.
More generally, total spaces of HP2-bundles have metrics of positive scalar curvature and
hence the subgroup T,(pt) consisting of bordism classes of such total spaces is in the kernel
of a [St1].

PROPOSITION 3.3. ker a = T,(pt)

Localized at 2 this was proved by the second author in his work on the Gromov-Lawson
conjecture [St1]. The proof at odd primes is easier and is provided in §4 below.
Now we turn to the Ochanine genus

B: Q37" 5 KO, (pt)q].

Proposition 2.7 shows that the Ochanine genus is multiplicative for HP?-bundles (bundles
with fibre HP? and structure group PSp(3)). We stress that the Witten-Taubes rigidity in
this special case is not a deep fact, since it can be proved by writing down the equivariant
elliptic genus in terms of the fixed point data which are known explicitely.

The multiplicativity for HP?—bundles implies in particular that the subgroup T, (pt) of
Q37" (consisting of total spaces of HPZ-bundles over a zero bordant base) is contained in
the kernel of 8. The converse holds, too, and it is basically a corollary of proposition 3.3.
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PROPOSITION 3.4.
(1) ker = f‘n(pt)
(2) im B =2 Z[B(SY), B(K), B(B), B(HP?)]/I, where I is the ideal generated by 28(S!),
B(S')?, B(ST) - B(K) and B(K)? — 2°(B(B) + 2°(HP?)).

Part (2) is a result of Ochanine [O4, Thm. 3] which he proves by studying the modular

properties of (M) for a spin manifold M. Below we give a different proof which makes
use of (3.3). We note that proposition 3.4 implies part (3) of theorem A.
PROOF: Recall from the introduction that le‘” " &2 7/2 is generated by S* (with the non-
trivial spin structure), Q7™ = 7 is generated by the Kummer surface K, and Q‘:P R~ £y 4
is generated by HP? and a manifold B (for ‘Bott’), characterized by A(B) = 1, sign(B) = 0.
There are the following obvious relations between these bordism classes:

(3.5) 2[s'1=0 [S'P=0 [S'Ix[K]=0 [K]*=2%[B]+ 2°[HP?))

The first three relations follow from pr in o Z/2 resp. Q5P" = Q for n = 3,5, the last
relation follows from the fact that Q7™ 2 7 @ Z is detected by A-genus and signature
and the calculation

A(K x K) = (A(K)> =2 sign(K x K) = (sign(K))? = 2%.

Let S, be the subalgebra of Q57" spanned by [S'], [K], [B], and [HP?].
CLAIM: The restriction of 8: 237" — KO,(pt)[q] to S« is injective.

To prove the claim we note that

B =n(i4..)  BE) =w(l+..)
BB)=wp(l+...) BHP)=pu(g+...).

The first three equalities follow from 3°(M) = a(M) and the information about e in (3.2).
The last equality follows from diagram (2.2) using the fact that $(HP?) = € and ph(p) = 1.
These equalities show that the elements S(B)¢ S(HP?)? resp. B(K)pB(B)? B(HP2)P are
linear independent over Z and that the elements 8(S')"3(B)? B(HP?)? for r = 1,2 are
linear independent over Z/2. Hence there are no other relations between the elements
B(SY), B(K), B(B) and B(HP?) besides the obvious ones coming from the relations (3.5).

CLAIM: QSP™ = S, + T,(pt)

The proof of this claim is by induction over n. Q5P" = §, for n < 9. Now assume
that the claim is true for n < 8k and that [M] € st,f;':. with 0 < r < 8. Subtracting if
necessary a multiple of [B]*[S?]" (for r = 0,1,2) or a multiple of [B}¥[K] (for r = 4) we
can assume that a(M} = 0. Thus by proposition 3.3 M is bordant to the total space of an
HP2-bundle over some manifold N implying [M] = [N] x [HP2] mod T.(pt). This proves
the claim since [N] and hence [N] x [HP?] are in S, + T.(pt) by the induction assumption.

Those two claims and the multiplicativity of the Ochanine genus for HP?~bundles now
imply both parts of proposition 3.3. 1

(3.6)
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PROOF OF PART (2) OF THEOREM A: First we provide a different description of the
subgroups T.(X) and i(X ) which will also be useful for the proof of theorem C, as well
as for the proof of part (1) of thm. A in §5.

Given a manifold N and maps f: N — BG = BPSp(3), ¢ N — X let p:N — N be
the pull back of the fibre bundle

HP? — EG x HP? 5 BG

via f. A spin structure on N induces a spin structure on N and hence we can define a
homomorphism

(3.7) U: Q5P (BG x X) — Q3P

by mapping the bordism class of (N, f x ¢g) to the bordism class of (N,g p). Note that
Tn(X) is the image of ¥ and T,(X) is the image of ¥, the restriction of ¥ to

(prz).

ker (QEP'(BG x X) — Q2PP(X)) = Q5PM(BG A X4) = ASP™(S8BG A Xy).

In other words, there is an exact sequence of (left) modules over Q77"

o ¥ .
(3.8) QIPN(EEBG A Xy ) — QP X) — ell (X) — 0.

Replacing X by a point and applying the right exact functor Q257*(X) ®qsrin — gives
another exact sequence which maps to the first one via maps induced by Cartesian product
of manifolds. Hence we get the following commutative diagram with exact rows (tensor
products are tensor products over Q2F l'"):

(3.9)

0P(X) @ QP (D8 BG) —— QSPM(X) @ QP — QFP(X) @ell, ——— 0

! ! !

QP(SBBGAXY) —— QX)) —— el (X) —— 0

The middle vertical map is clearly an isomorphism and the vertical map on the left is
an isomorphism after inverting 2 for the following reasons: after inverting 2 the integral
homology of BG is concentrated in even dimensions, hence the Atiyah—Hirzebruch spectral
sequence converging to (5P"*(28 BG) collapses and so 25P**(EZ8 BG) is a free module over
Q7™ This implies that Q57"(X) @ Q:P"(28BG) is a homology theory. Thus the left
vertical map is a natural transformation between homology theories (with 2 inverted). It
is an isomorphism for X = pt and hence an isomorphism for all X (cf. [CF, thm. 18.1,
thm. 44.1]). Thus the five lemma implies that the vertical map on the right, which is the
natural transformation of part (2) of theorem A, is an isomorphism after inverting 2. B

PROOF OF THEOREM C: For a space X let ko.(X) be the connected real K-homology
of X. Then kon(pt) = KOu(pt) for n > 0 and hence a can be considered a ring ho-
momorphism a: Q27" — KO,(pt) which is surjective by (3.1) and (3.2). Recall from
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(3.3) that the kernel of a is the subgroup T.(pt). Hence the induced map koo.(pt) =
QP /T, (pt) — ko.(pt) is an isomorphism. As explained in [St2] there is a natural trans-
formation koo.(X) — ko.(X) restricting to this isomorphism for X = pt. Moreover,
this map is an isomorphism when localized at 2 [St2, Thm. A} and is compatible with
inverting b resp. u in the domain resp. range. Hence we get a natural transformation
koo (X)[d7!] — ko.(X){p~'] which is an isomorphism localized at 2. The range can be
identified with the periodic theory KO.(X) since there is a natural transformation of ho-
mology theories ko.(X){p™!] — KO.(X)[p™!] = KO.(X) which is an isomorphism for
X = pt and hence for all X.

Hence it suffices to show that koo,(X)[6™!] ® Z{}] is a homology theory. We note
that replacing ell, by koo, and BG by BG. in diagram (3.9) above and using the same
arguments it follows that the natural transformation Q27™"(X) ®gqsrin koo, — koo, (X)
induced by Cartesian product of manifolds is an isomorphism after in\:erting 2. This implies
that koo.(X)[b™'] ® Z[}] is isomorphic to Q7"™(X) ®gs»sin KO.[}], which is a homology
theory (cf. [HH, §7]). 1

§4. TOTAL SPACES OF HP2—BUNDLES AT ODD PRIMES

In this section we prove proposition 3.3, i.e. we show that the kernel of the Atiyah
invariant a: Q37" — K O.(pt) is equal to the subgroup T,(pt) consisting of bordism classes
represented by total spaces of HP?~bundles. The only thing left to show is that ker o C
T.(pt) after inverting 2. We recall from [S, p. 180] that pr'"(pt)[%] is a polynomial algebra
generated by elements [M*"] in degree 4n where M*" is any spin manifold with

24 if 2n + 1 is not a prime power

satr*) = {

2%p if 2n + 1 is a power of some prime p.

Here s,(M) is the characteristic number < s,(TM),[M] >€ Z, defined by evaluating a
certain characteristic class s,(TM) € H**(M; Z) of the tangent bundle on the fundamental
class of M. For a real vector bundle F, s,(F) (defined e.g. in [MS,§16]) is a polynomial
in the Pontrjagin classes p;(F’). Due to the splitting principle, it can be characterized by
the following properties:

(4.1) $u(F@® F') = s,(F) + sa.(F') and  su(F)=p(F)" ifp(F)=0fori>1

We note that if E is a 3—dimensional quaternionic vector bundle then its associated
projective bundle PE is a bundle with fibre HP? and structure group Sp(3). In particular,
it is an HP2-bundle in the sense of the introduction.

PROPOSITION 4.2. For eachn > 2 there exists a 3—dimensional quaternionic vector bundle
E over a (4n — 8)-dimensional spin manifold such that

29"} if2n + 1 is not a prime power

sa(PE) = {

2¢(")p  if 2n 4+ 1 is a power of some prime p,
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where a(n) =2 if n = 2' — 1 and a(n) = 1 otherwise.

This shows that we can choose the generators [M*"] of the polynomial algebra Q57 i"[%]
to be in in the ideal Tu(pt) for n > 2. This implies ker a[3] C T.(pt)[3] and proves
proposition 3.3.

PROOF OF PROPOSITION 4.2: For fixed n > 2 and 0 < r € n—2 let E, be the 3-
dimensional quaternionic vector bundle (v; x 72) @ H over the product HP™ x HP™~"=2 of
quaternionic projective spaces. Here v; and 7, are the canonical quaternionic line bundles
over the factors and H is the trivial quaternionic line bundle. We choose the orientation
on quaternionic projective space such that < y*,[HP*] >= 1, where y is the generator of
H*(HP*; Z) whose pull-back to CP?¥+! is the square of the 2~dimensional generator.

LEMMA 4.3. s,(PE,) = —2a, wherea, = (2(311)) -1

Before we prove the lemma we will apply it to finish the proof of proposition (4.2) by
computing ged s, (P;) for 0 < r < n — 2. Note that

(4.4) ap=2n+1)n-1) and a; = n(n - 1)(2116— (2 -1) -1

This implies that gcd a, is not divisible by 4. On the other hand, gecd a, is divisible by 2
if and only if (2(?_:1)) is odd for 0 < r < n — 2 which holds if and only if n + 1 is a power
of 2.

If p is an odd prime divisor of gcda, then (4.4) implies that p divides 2n + 1 (in the
case p = 3 observe that if 3 divides (2rn +1)(n — 1) then it also divides 2n 4+ 1). Note that

ays — G,_; can be written in the form

(4.5) 2n 2n 2n+1 2n+1
; a, —a,_1 = — = — .
YT\ +1) 2r 2r +2 or +1
Now assume that 2n + 1 = pFq with ¢ prime to p. Then for r = (p¥ — 1)/2 we have

ar — ar—1 # 0 mod p since p’,’,:?l) =0 mod p and (’;:,,q) # 0 mod p. Hence p does not
divide gcd a,, provided ¢ > 1 (for ¢ = 1 the number r = (p* — 1)/2 does not satisfy the
condition r < n — 2). '

For 2n + 1 = p* we claim that gcda, is not divisible by p?. This is clear from (4.4) for
k = 1. For k > 2 it follows from a, —a,_; #0 mod p? for r = (p*~! —1)/2 which in turn
follows from (p,f1+1) =0 mod p? and (pf_1) # 0 mod p°.

On the other hand, p divides ged a, for 2rn41 = p*, since p is a divisor of ay and a,—a,_;

for 0 £ r < r — 2, which follows from (4.5) and (p:) =0 mod p for all 0 < ¢ < p*. This
finishes the proof of proposition (4.2). I

PROOF OF LEMMA 4.3: Consider the following general situtation. Let p: N* — N 8 bea
fibre bundle with fibre HP? and structure group G = Sp(3). Such a bundle is the pull-back
of the fibre bundle m: E = EG xg HP? — BG via the classifying map f: N — BG of the
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associated principal bundle. Then the tangent bundle TN is isomorphic to p*TN @ T,
where Tr is the tangent bundle along the fibres of p: N — N. Hence

< 3,-,(T]\7), [IV] > =< p*sn(TN) + 3.(TF), [N] >

4.6
(0 =< Pn(T)) IN] >=< £ (m(sa(r)). V] >
Here pi: H*(N;Z) — H"8(N; 1) (resp. m: H*(E;2) — H"8(BG;1)) is the Gysin map
(integration over the fibre) associated to p (resp. 7) [Bo, Ch. V, 6.14] and 7 is the tangent
bundle along the fibres of 7: E — BG.

To identify 7 we note that the isotropy subgroup of the G-action on HP? at the point
[0,0,1} € HP? is H = Sp(2) x Sp(1). Hence we can identify the fibre bundle

HP? — EG xo HP? 5 BG
with the fibre bundle
B
(4.7) HP? = G/H — BH — BG

induced by the inclusion i: H — G. Let g = h @ bh* be the decomposition of the Lie algebra
of G into the Lie algebra of H and an orthogonal subspace (with respect to the Killing
form). The adjoint action of G on g restricts to an H-action on h*. The associated vector
bundle EH x i bt is isomorphic to 7.

Before we can calculate s,(7) we have to discuss the cohomology of BG. We note that
the inclusions

T% = §' x S' x S' 5 H = Sp(2) x Sp(1) — G = Sp(3)

induce monomorphisms of the integral cohomology of the corresponding classifying spaces
(here j is the standard inclusion of a maximal torus which maps (z1, 22, 23) € T? to the
diagonal matrix with these entries). Hence we can identify H*(BG;Z) (resp. H*(BH;1))
with its image in H*(BT?;Z) = Z[z,, 22, z3] (z; are elements of degree 2), which consists
of the subring of polynomials invariant under the Weyl group of G (resp. H). Hence

H*(BG; Z) = Z[:C%axg’xg]zs and H*(BH; Z) = Z[I%,.’ng,l‘g]z’,

where the symmetric group 23 acts on Z[z?, 22, z2] by permuting the generators and %,
is the subgroup of £; fixing z3.

To calculate $,(7) = sp(EH x g h*) we describe the representation hL more explicitely
as H? with (a,b) € H = Sp(2) x Sp(1) mapping a point £ € H? to azb (here b € H is
the quaternionic conjugate of & € H and the multiplication is the matrix product). In
particular,

(4.8) bl 2 HiQH;' @ Hi ® Hy & H, @ H; ' & Hy ® Hi,
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where H; is the 1-dimensional complex representation of T2 with (21, 29, 23) € T? acting
by multiplication by z;. Hence the pull-back of 7 to BT? is a sum of complex line bundles
and it follows from (4.1) and (4.8) that

(49) 8,,(1‘) = (:1:1 - 33)2n + (.’B] -+ 323)2n + (:I:Q - z3)2" + (.1':2 + 33)2n.

For the calculation of m we observe that H*(BH;Z) is a free module over H*(BG; 1)
with basis {1, 23, z3} (this follows e.g. from the Leray—Hirsch theorem applied to the fibre
bundle (4.7)). Hence each s € H*(BH;Z) can be written uniquely in the form s = 59 +
5123 + soxy with s; € H*(BG; Z). 1t follows from the Serre spectral sequence description
of m [Bo, Ch. V, 6.14] that m(s) = s,. Using this we can calculate m(s,(7)) for small
n, but it soon becomes very tedious to express sp(7) as a linear combination of the basis
elements. In this situation the following commutative diagram is useful:

Z[22, 23,23 —— Z[c}, 23, 23]
(4.10) :fxl lwx
A
Z[z%,x%,zg] — Z[xf,m%,zg]

Here w = A(z%z}) and A is the anti-symmetrization map which sends a polynomial p
to ) sign(o)o(p), where the sum extends over all ¢ € %3 and sign(o) is the sign of
the permutation o. To prove the commutativity of the diagram we note that all maps are
module maps over Z[z?, 22, 22)%>. Hence it suffices to check commutativity on the elements
of the basis {1,z2, z3} which is a short calculation.

Now we calculate m(s,(7)) or rather Bk*(m(s,(7))), where k: Sp(1)x Sp(1) — Sp(3) is
the embedding which sends (h;, h2) to the diagonal matrix with entries hy, ko, 1 in Sp(3).
For this we compute p(A(z?s,(7))) where p is the projection from Z[z%, 2, z2] to Z[z3, z3].

P(A(z1 3(7)))

=p( ) sign(o)z2)[(Toqr) = Zo3))*" + (To(1) + Toz)?"))
oE€Xls

— 2$2"+2 + I%[(Ig _ ml)Zn + (33‘2 + $1)2n] _ 2$§n+2 _ 1?[(131 _ $2)2n + (:1:1 + $2)2n]

= 2(a? xg)(z i 3 (5 )atiar)
1

1=0

= 2z223(z} - 23) Z( (2(; | 1)) £2iz2n=i=2)

With regard to the first equality we note that the terms z%(z; + z, are in the kernel
of A since they are symmetric with respect to interchanging z2 and z;. Since p(w) =
z3z2(z? — z2) the above calculation and the commutative diagram (4.10) imply together

with (p(w)x )Bk* = p(wx )

)‘Zn

n-2

Bk*(m(s.(7))) = Z?(l - (2(i2n ))) 2:32(ﬂ i-2)

1=0
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Now the statement of the lemma follows from (4.6), since the classifying map of E, is the
inclusion of HP™ x HP™?~"=% into HP*° x HP*® = B(Sp(1) x Sp(1)) composed with Bk and
22122*7=% evaluated on the fundamental class [HP™ x HP®~7=2] is one for i = r and zero
otherwise. I

§5. TOTAL SPACES OF HP2-BUNDLES AT THE PRIME 2

In this section we outline the proof that ell.(X) ® Z(;) is a homology theory using a
splitting result (proposition 5.1) we prove in the next section. The strategy is to produce
a 2-local spectrum el and a natural isomorphism ell,(X) ® Z(g) — w.(el A X;). We
will actually show that the spectrum el is homotopy equivalent to the wedge \/ Z8 ko of
suspensions of the connective real K-theory spectrum (corollary 5.2). Unfortunately we
are unable to describe directly a map from M Spin to \/ £8%ko which factors through the
connective elliptic homology inducing an isomorphism. The difficulties are related to the
fact that el and \/ £8 ko are not homotopy equivalent as ring spectra (cf. remark (iii) of
the introduction). ;From now on all spectra and abelian groups are localized at the prime
2. In particular, we write ell.(X) instead of ell,(X) @ Z(3).

To construct el recall from (3.8) that ell,(X) fits into the exact sequence

Q5Pm(SPBG A Xy ) — Q5P™(X) — ell(X) — 0.

As in [St1, §3] the reduced transfer map ¥ can be identified via the Pontrjagin—-Thom
construction with

('IA:/\I).
T(MSpin ASBBG A Xy) —— 7. (MSpin A X3).

Here T is the restriction of the map T: M Spin AL BG, — M Spin of [St1, §3] to M SpinA
¥ BG.

Since ell,(X) is the cokernel of the transfer map the cofibre spectrum of T seems to be
a good candidate for the spectrum representing ell.(X). But this is not the case since the
map (ff” A 1). is not injective. To overcome this difficulty we split M Spin A 28 BG in an
appropriate way.

PROPOSITION 5.1.

(1) The spectrum M SpinAZ® BG splits as AV B such that TIA induces a monomorphism
and T|p induces the trivial map in 7 /2-homology.

Tiavs
(2) There is a map S:\/ £ ko — M Spin such that AV \/ % ko 7 MSpin is a

homotopy equivalence.

Now we define the spectrum el as the cofibre spectrum of Tv| 4 and denote the projection
from MSpin to el by 7. Part (2) implies
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s
COROLLARY 5.2. The composition \/ £8%ko — M Spin Delisa homotopy equivalence.

(rAl).
In particular, the map m.(MSpin A X;) —— w.(el A X4) is surjective for all X.
The relation between the homology theory corresponding to el and the functor ell, (X)) is
described by the following diagram with exact rows:

(Tjan1). _ (xA1),
T(AAX) — T (MSpinAXy) —— m(edlAXy) —— 0
(f/\l).

T (MSpin A\ZBBGAX,) —— m(MSpinAXy) —— el (X) —— 0

The vertical map on the right is surjective due to the surjectivity of (7 A 1)., which is
a consequence of (5.2). The next proposition and a diagram chase imply that it is also
injective, which proves part (1) of theorem A.

PROPOSITION 5.3. The composition of T and = is homotopic to zero.

The rest of §5 is devoted to the proof of this proposition. The idea is to compare
p: MSpin — el to a map B: MSpin — KOJq] which is a homotopy theoretic version of
the Ochanine genus. Here KQ[q] is the product of countably many copies K O; indexed by
the non-negative integers. We think of an element of 7,(KO[gq]) as a formal power series
of ¢ with coefficients in 7, (KO) = KO, (pt) which motivates our notation. To construct B
consider the projection map v: BSpin — BO as an element of K O(BSpin) and define B* =
®(0(—7)) € KO°(MSpin), where &: KO*(BSpin) — KO*(MSpin) is the K O-theory
Thom isomorphism. Let B: M Spin — K O[q] be the map with components B*: M Spin —
KO,

. B.
LEMMA 5.4. The induced map Q%™ & 7, (MSpin) — m.(KO[q}) = KO.(pt) is the
Ochanine genus f.

PROOF: Let M™ be a spin manifold. Recall that the Pontrjagin-Thom isomorphism maps
the bordism class [M] € Q7P*" to the element of 7,(MSpin) represented by the composi-

tion S™ R M(-TM) e MSpin. Here M(—TM) is the Thom spectrum of the inverse
of the tangent bundle, Mc is the map of Thom spectra induced by the classifying map
M — BSpin of —TM, and T is the Thom (collapsing) map. Hence, using naturality of
©* and naturality of the Thom isomorphism we get

Bi({M]) = $(©/(~)) McT = §(0/(THM)) T

To identify this with {(M) = wﬂ(@‘(m)) recall that the Gysin map m associated to a
fibre bundle n: E — B with fibre a manifold F'* 1s the composition

(5.5) i KO*(E) < KO*(M(~7)) 2y KO*(S"B,) = KO*~"(By).
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Here 7 is the tangent bundle along the fibres which is assumed to be a spin bundle,
® is the Thom isomorphism, and T(7) is the Thom map associated to w. Interpreting
T:S™ — M(—TM) as the Thom map T(r™) associated to the fibre bundle 7M: M — pt
we conclude . L

®(O(TM)) T(x™) = nM(0'(TM)) = F'(M),
which proves the lemma.

We recall that the multiplicativity of the Ochanine genus § for certain fibre bundles
(proposition 2.7) implies that the subgroup Ty, (pt) of 257 (consisting of total spaces of
HP?-bundles) is in the kernel of the Ochanine genus. Homotopy theoretically, Tn(pt) is
the image of the reduced transfer map_ T: MSpin A£8 BG — M Spin on homotopy groups.

This implies that the composition of T and B is trivial on homotopy groups. In fact, more
is true:

T B
LEMMA 5.6. The composition M Spin A L8 BG — M Spin — KOl[q] is zero homotopic.

PROOF: By construction [Stl, §3], the transfer map 7' is the composition

idat
(5.7) T: MSpin A BG4 — MSpin A MSpin — MSpin,
where g is the multiplication of the ring spectrum M Spin, and ¢ is the map

8 T(x) Mc .
t:2°BGy —— M(—1) — MSpin.

Here T(r) is the Thom map associated to the fibre bundle HP? — EG x ¢ HP? 5 BG, r
is the tangent bundle along the fibres and Mc is the map of Thom spectra induced by the
classifying map of —.

We consider first the composition of ¢t and B'. By naturality of ©¢, naturality of the
Thom isomorphism and the construction of m (see 5.5) we get:

Bit = 8(6/(—)) McT(x) = B(8(9) T(x) = m(O'(7)).
By (2.9) m(©%(7)) is in the image of KO~ ¥(pt) — KO~8(BG,), i.e. the restriction of
B't:£8BG, — KO to Z8BG is trivial.

Note that this implies that B f, the restriction of BT to MSpin ALEBG, is trivial using
the following fact. I

LEMMA 5.8. There is a multiplication map u: KO[¢q] A KO|q] — KO[q] such that
B: M Spin — KO[q] is a ring spectrum map.

PROOF: The multiplication p on KOfq] = [{;5, KO; is given by ‘multiplication of power

series’. Its KO,—component is the composition of the projection map

(5.9) [[KO:in][KO:i—~ [] KO:in [ KO:i= \/ KO:n \/ KO;— KO,
i>0 i>0 0<i<s 0<i<s 0<i<s 0<i<s
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where the first map is the projection map and the second map restricted to the summand
KO; A KOj is the trivial map for 1 + j # s and is the multiplication of KO (induced by
the tensor product of vector bundles) for i +j = s.

After applying the Thom isomorphism (making use of its multiplicative properties) the
proof that B = ®(04(—+)) is a ring spectrum map follows from the following facts:

(1) The multiplication on M Spin is induced by the Whitney sum.
(2) The multiplication on K Ofgq] is induced by the tensor product.
(3) O, is exponential (cf. (2.5))

This proves lemma 5.8. |

PROOF OF PROPOSITION 5.3: To show that the composition

~

T b
g: MSpin A L8 BG — MSpin — el

is trivial we recall that el is homotopy equivalent to \/ 28 ko by (5.2) and note that
the natural map \/ £8 ko — [],5, £%%ko is a homotopy equivalence since it induces an

isomorphism in homotopy. Hence g is equivalent to a sequence of maps g*: M Spin A
L8BG — T8kko.

We note that 2%*ko is homotopy equivalent to ko<8k>, the (8k — 1)-connected cover
of KO and hence by [St 2, Theorem 5.2] ¢g* is homotopic to zero if and only if it induces
zero in Z/2-homology (which is clear by construction of el) and the composition with the
projection pgx from L3%ko = ko<8k> to KO is zero-homotopic. We know from lemma 5.3
that the composition B T is trivial. In particular, B factors through a map B: el — KO[q],
and the composition

. g B
MSpin A £8BG = el — KOq]

is trivial. Let B': el — KO be the i-th component of B (recall that KO[q] = [];5, KO:),
let B be the restriction of B to the summand %% ko of el = V ©8% ko and let E;‘ be the
restriction of B’ to £8ko.
CLAIM: B, is trivial for k > 1 and F: is the projection map pgx: L8 ko = ko<8k>— KO.
Assuming the claim and assuming inductively that g* is trivial for k < 1 it follows that
0=B'g=) B,s*= > Big*=puyg
0<k 0<k<i
is trivial. This implies that ¢* is trivial and proves proposition 5.3.

To prove the claim we note that if we identify el with \/ Z8%ko via (5.2) then B corre-
sponds to the composition

S|nﬁkh

S ko — =, MSpin —» KO[q).

Recall that S|gsky, is the ko-extension of s;: S8k —» M Spin (regarding M Spin as homol-
ogy ko-module spectrum via s:ko — MSpin). It follows that By is the ko-extension
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s B
of SS" M Spin — KO[q] (regarding M Spin as homology ko-module spectrum via

ko — MSpin 24 KO[q]). Recall that s; € wsk(MSpm) = Q57" is the k-th power of the
bordism class of HP? and hence

B sg = By(sk) = B(HPY*) = p*(¢* +...) € s (KO)[q]

— s . B
by (5.4) and (3.6). This implies that B,, the ko-extension of S%* BN MSpin — KO,
is trivial for £ > 7 and that -E: is the ko-extension of u*: §8% — KO, which agrees with

B°
psr: 28Fko = ko<8k>— KO by Bott-periodicity (note that ko 5 MSpin — KO is the
canonical projection map po). i

§6. A SPLITTING OF M Spin

This section is devoted to the proof of the splitting result (5.1). The strategy of the
proof is to show first that the statement of the proposition holds on the level of homology
groups. Then we use a result of [St2] to show that the splitting of H.MSpin AL8BG as a
comodule over the dual Steenrod algebra can be realized geometrically. The study of the
maps induced by T and S in homology is made a lot easier by the fact that the spectra
involved are ‘homology ko-module spectra’ which implies that their homology groups have
a nice structure (they are extended A(1),—comodules).

For the convenience of the reader we begin by recalling the definitions of ring spectra
and (homology) module spectra (cf. {Sw, (13.50) and (13.51)], [St2]). Then we construct
the map S and state the result concerning the homology of homology ko-module spectra
before calculating the maps induced by T and S.

A ring spectrum is a spectrum E with a ‘product’ y: EA E — FE and and a ‘unit’
t: S — E such that the diagrams expressing the associativity of u resp. that ¢ is a unit
for u are commutative up to homotopy. A map f: E — E’' between two ring spectra is a
ring spectrum map if the appropriate diagrams comparing the multiplication and the unit
in E with those in E’ are homotopy commutative.

For example, the Whitney sum of vector bundles induces a multiplication MSpin A
M Spin — M Spin which makes M Spin a ring spectrum (the unit is given by the inclusion
of the bottom cell). Similarly, the tensor product of vector bundles induces a product
koAko — ko which makes ko a ring spectrum (again, the unit is given by the inclusion of the
bottom cell). The KO-theory Thom class for spin bundles gives a map D: MSpin — ko.
The multiplicativity of the Thom class implies that D is a ring spectrum map. As shown in
[St 2] a ring spectrum map ko — M Spin doesn’t exist, but there is a map s: ko — MSpin
which is a right inverse to D and induces an algebra map in homology.

An E-module spectrum is a spectrum F' with an action map a: E A F — F such
that appropriate diagrams are commutative up to homotopy. These diagrams encode the
associativity of the action and the fact that the unit acts trivially. A F-module spectrum
map is a map f: FF — F' between E-module spectra such that the diagram comparing
the E-action on F' with the action on F' is homotopy commutative. The simplest kind of
E-module spectrum is of the form E A X where X is some spectrum and the E-action is
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given by the multiplication in E. If f: X — F' is a map from a spectrum X to a F-module
spectrum F' we can form the composition

- 1A
FEAX L EAFRSF

which is an E-module map we call the E-eztenston of f.

For example, the transfer map T: MSpin A 28 BG4 — MSpin is (by definition) the
M Spin—extension of a map t: L8 BG, — M Spin (cf. (5.7) and [St1, §4]). In particular, T
is an M Spin-module map. The corresponding statement holds when we remove the base
point from BG and replace T (resp. t) by their restrictions T (resp. ).

As in [St2] we generalize the notion of E-module spectra and E-module map by replac-
ing ‘homotopy commutative’ by ‘commutative in homology’. Such spectra (resp. maps)
we call homology E-module spectra (resp. homology E-module maps). We note that we
can regard every M Spin—-module spectrum as a homology ko-module spectrum via the
map s: ko — M Spin which looks like a ring spectrum map in homology. Moreover, every
M Spin-module map such as T can be considered as a homology ko-module map.

Now we construct the map S. For k > 0 let sx: $8¥ — M Spin be the map corresponding
to the bordism class of the k-th power of HPZ. Let S be the ko—extension of the map
Vsy: S8 — MSpin. More explicitely, S is the composition

(6.1) \/ Z%ko = koA (V& > 05%%) 2225 MSpin A MSpin —» MSpin,

where p is the multiplication map of the ring spectrum M Spin.

Recall that the homology of a spectrum X is a (left) comodule over the dual Steenrod
algebra A,, i.e. there is a homomorphism ¢: H, X — A,QH., X satisfying a ‘coassociativity’
condition. The Hopf algebra A. can be described explicitely as the polynomial algebra
Z/2[(1, 2, - . -] with generators (; of degree 2/ — 1 (the (;’s are the conjugates of the usual
generators £;). The coproduct is given by the formula

(6.2) W)=Y GedE,

=0

(cf. [Ra, Thm. 3.1.1]).

It turns out that the homology of ko as A.—comodule is closely related to the Hopf algebra
A1), = AL/(C},¢2,(3,¢4,--- ) (A(1). is the Hopf algebra dual to the subalgebra A(1) of
A generated by Sq¢' and S¢?). Note that we can view A4, as a (right) A(1).—comodule
by composing the coproduct (6.2) with the projection map on A(1).. Let M be a (left)
A(1l).—comodule. Recall that the cotensor product 4,0 A(1).N is defined by the exact
sequence

D1-1
0— A,.DA(I).M — A QM u A, ® A(l)* Q@ M,

where 1 denotes the A(1),-comodule structure maps for both, A, and M. We note that the
(left) A.—comodule structure on A, ® M induces a A.—comodule structure on 4,0 AQ1). M.
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Such A,—comodules are refered to as ‘extended’ A(1).—comodules. The homology of ko is
an example of such a comodule: H.ko = A,04(1),Z/2 (cf. [Ra, p. 76]). It turns out that
the homology of every homology ko—module spectrum Y is an extended A(1),-module.
More precisely, the map on homology induced by the action map ko AY — Y makes H,Y
a module over H,ko. Let 7: H,Y — H,Y be the projection onto the indecomposables of
this module. Note that H,Y is an A(1).-comodule since the augmentation ideal of H,ko
is an A(1l),-comodule.

PROPOSITION 6.3 [St 2, §2]. For a homology ko-module spectrum Y the composition

Y 1 —-
dy:HY —m A, H,Y — A, HY

is an A,—comodule isomorphism onto A.Ox(1), H.Y .

As remarked above, an M Spin—-module spectrum Y can be considered as a homology
ko-module spectrum via the map s:ko — MSpin. Then the above definition of the
A(1)s—comodule HY agrees with the definition of H.Y for the M Spin—-module spectrum
Y in [St 1, §6] as explained in [St 2, §2].

Note that a homology ko-module map f:Y — Z induces a A(1).—comodule map

foHY - H.Z.

It is clear that the definition of the isomorphism @y is functorial, and hence we can i1dentify
the induced map f,: H.Y — H,Z with the ‘extended’ homomorphism

id0f.: ADuny, HY — A0 H.Z.

The following proposition is then the analogue of (5.1) on homology level.

PROPOSITION 6.4. The A(l),-comodule H M Spin A 38 BG can be decomposed in the
form A @ B such that

el

| a®S
A@HFoA (VS — 2, H,MSpn

is an isomorphism and T, g is trivial.

This result implies proposition 5.1 since the splitting H. MSpin AX®BG = A@ B is
induced by a splitting of M Spin A £8 BG as homology ko-module spectrum by [St2, Prop.
8.11].

PROOF OF (6.4): To make the structure of the proof transparent we subdivide it into
a sequence of claims and their proofs which together imply proposition 6.4. Recall that
H,MSpin is a polynomial algebra with a generator y, in each degree n > 8, n # 2! +1
[St1, (9.2)].
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CLaIM 1. im(S,) = Z/2[ys) ¢ H. MSpin

By construction, S is of the form § = Vi3, where §;: ko A S%% — MSpin is the
ko-extension of s;: 8% — M Spin. By Lemma 2.9 of [St2] the homomorphism ‘

(3:)w: H,S® = H,ko A S8% — H, MSpin

agrees with
Sk )t

( —
H.S% 7, H,MSpin — H.MSpin

where p is the projection on the H.ko-indecomposables. Hence m maps the generator
of H,(S%) to (p(z))*, where z € Hg(MSpin) is the image of [HP?] € Q57" (M Spin) =
7g(M Spin) under the Hurewicz map. Note that z is non-trivial since HP? has non-zero
mod 2 characteristic numbers (e.g. the mod 2 Euler characteristic).

Recall from proposition 6.3 that

Y 1® -
(6.5) H.(MSpin) 5 A, ® H.(MSpin) — A, ® H,MSpin

is a monomorphism with image 4.04(;), H. M Spin. Under this composition the element
z maps to 1 ® p(z) since z is in the image of the Hurewicz map and hence ¢(z) =1 @ z.
It follows that p{z) is non-zero and thus p(z) = ys, the only non-trivial element in degree
8. We conclude that the image of S, is the subalgebra Z/2[ys].

CLaM 2. H, MSpin is spanned by im(S,) and im(T,).

Recall that T* MSpin/\EsBG_—> M Spin is the M Spin—extension of t: £ BG — M Spin.
It follows that the image of T. is the ideal in H,MSpin generated by the image of
H.Z8BG = H.MSpin 2 H,MSpin. According to [St1, (8.8)] the homomorphism

t. —_—
H.BG, 1= H.MSpin — H.MSpin

is onto in positive degrees, where the unlabeled map is the projection on the indecompos-
ables of the algebra H, M Spin. Hence, if we replace BG4 by BG and ¢ by its restriction ¢
,the corresponding homomorphism is surjective in degrees > 8. It follows that H.MSpin

is spanned (as a vector space) by the images of S, and T..

CLAIM 3. The intersection of im(S,) and im(ﬁ) is trivial.

The idea of the proof is to find a ko-module map W: M Spin — K such that W, maps
im(T,,) trivially and im(S,) injectively.

Let w,, € H* MO be the element corresponding to the n-th Stiefel-Whitney class under
the Thom isomorphism. Consider w, as a map w,: MO — L™ H into the n—th suspension
of the 7 /2-Eilenberg-MacLane spectrum H. Define

w=Hw,,:MO —bI\':HE"H
n mn
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where n runs through the non-negative integers. Note that the Cartan formula for the
Stiefel-Whitney classes imples that w is a ring spectrum map if we equip K with the
‘power series multiplication’ (cf. (5.9)). In particular, we can regard K as a ko-module

spectrum via the ring spectrum map ko SHZE MoS K , where ¢ corresponds to the

non-zero class of H%o and Sy is the ring spectrum map from proposition 6.1 in [St2].
r

This composition agrees with ko N MSpin Z MO S K by [St2, Prop. 6.7] and hence

the composition W: M Spin M0 L Kisa homology ko-module map. The element
W.(z*) of H3 (K) is non-trivial, since the Euler characteristic of (HP?)* is odd. Hence
W.(y§) is non-zero and W, maps im(S.) = Z/2[ys| injectively.

It remains to be shown that im(f..,) is in the kernel of W,. Consider the commutative
diagram

T
MSpin ANX8BG ——— MSpin

prAll lpr

T w
MOAY!BG —— MO —— K

where 7 is the MO-extension of S8 BG — MSpin 7, mo. Identifying m, (M O) with the
unoriented bordism ring M, the image of the induced map T': 7,(MO A BG) — ,(MO)
consists of the bordism classes represented by total spaces of HP?~bundles over manifolds
which represent zero in M,_g. In particular, the mod 2 Euler characteristic of such a
bordism class [M] is zero. It follows that [M] is in the kernel of w,: 7,(MO) — 7,(K)
since the mod 2 Euler characteristic is w,(M) evaluated on the fundamental class of M.
Thus the composition wT" induces the zero homomorphism on homotopy. We note that
this composition is an M O- and hence H-module map. The following lemma then implies
that w7T' and hence W T is zero homotopic which proves claim 3.

LEMMA 6.6. Let X and Y be H-module spectra and let f: X — Y be an H-module map.
Assume that f induces the trivial map in homotopy. Then f is zero homotopic.

We prove this lemma at the end of the section, after proving the following claim which
finishes the proof of proposition 6.4.

CrLAaM 4. H.MSpin A £8 BG can be decomposed in the form A @ B such that EM 1S a

monomorphism and i| g is trivial.

It suffices to show that T, is a split surjection on its image (take A to be the image of a
split and take B = keri). The proof of this fact is parallel to the proof of proposition 8.5 in

[St1]. By lemma 8.6 of that paper it suffices to show that T,: H, M Spin A 26 BG — im(’lh'"')
induces a surjection in Qg—homology (@ = S¢' acts on an A(l).—comodule M as a
differential and the corresponding homology groups are denoted H,.(M;@Qo)). Moreover,
it follows from results proved there that

H.(H.L:BG; Qo) — H.(H.MSpin; Qo) — QH.(H,MSpin; Qo)
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is onto in degrees > 8. Here the first map is induced by prt and the second map is the
projection on the indecomposables of the algebra H.(H.M Spin; Qo ), which is a polynomial
algebra with generators of degree 4n > 8 [Stl, Lemma 9.4]. Thus it follows that we can
choose these generators 24, to be in the image of prf except for z5. Hence the image of

(6.7) T.: H.(H.MSpin A °BG; Qo) — H.(H.MSpin; Qo)

is the ideal generated by z4,, 4n > 8. On the other hand, the direct sum decomposi-

tion of A(1).-comodules H. M Spin = im(ﬁ) ® Z/2[ys] induces a corresponding decom-
position of H.(H.MSpin; Qo). Comparision implies that the image of (6.7) is equal to

H,(im(T.); Qo). 1
ProoOF OF 6.6: Let X be an H-module spectrum. Then H,X is a module over H.H and
abusing notation we denote by pr: H,X — H,X the projection on the indecomposables.

The composition H.X —‘i A.@H.X ﬂ A,® H,X is an isomorphism of A,-comodules
(cf. proposition 6.7 in [St1]). In particular, H,X is a free A.~comodule, hence X is a
(generalized) Z/2-Eilenberg-MacLane spectrum and the Hurewicz homomorphism map-
s m,(X) isomorphically onto the primitives P(H,X) C H.X. On the other hand the
above isomorphism shows that P(H,X) maps isomorphically onto H,X under pr. Finally,
the functoriality of these isomorphisms implies that the induced map f, on homology is
determined by the induced map on homotopy. I

§7. QIP"(X) ®qsein ell [h7!] IS NOT A HOMOLOGY THEORY
In this section we show that the natural transformation
(71) ’ QfPin(X) @nfp.‘n 6”.[’1_1] — 6”,(){)[’1_1]

induced by the Cartesian product of manifolds (cf. 1.3) is not injective for suitable X (it
is always surjective). This implies in particular that the left hand side is not a homology
theory since a natural transformation between homology theories which is an isomorphism
for X = pt is an isomorphism for all X. In this section we localize again all Z-modules
and spectra at the prime 2.

To show that (7.1) is not injective we find (for a sultable X) an element [M, f] €

Q5P™(X) such that
(a) [M, f] ®1 is a non-trivial element of Q57™(X) Rqspin ell [h~1].
(b) [M, f] ® 1 maps to zero under (7.1)

We choose X to be a finite CW-complex such that fI,.(X ;2/2) as A(1)«—comodule is
isomorphic to L7 A(1). for some r (such a space exists [DM]). Regarding X A M Spin as
an M Spin-module spectrum proposition 6.3 gives an A,—comodule isomorphism

(7.2) H.(X A MSpin) = A,O 4. (H.(X) ® N),

where the quotient N = H,(MSpin) of H,(MSpin) is a polynomial algebra with a gen-
erator y, of degree n for each n > 8 n # 2' 4+ 1. Note that with our choice of X the

25



A(1)s—comodule I?*(X ) ® N is free and hence X A M Spin is a (generalized) Eilenberg-
MacLane spectrum. In particular, the Hurewicz homomorphism maps Q37"(X) = 7, (X A
M Spin) isomorphically onto the primitive elements P(H,(X A MSpin)). Another conse-
quence of (7.2) is the isomorphism

P(H.(X A MSpin)) = P(H.(X) ® H.(MSpin)) — P(H.(X)® N),
which is given by the restriction of 1@, where 7 is the the projection map from H,(M Spin)
to N. Let o
h: mo(X A MSpin) — P(H.(X)® N)

be the composition of the Hurewicz map and the isomorphism above. We sum up the
discussion by saying that h is an isomorphism for our choice of X.

To study P(H.(X)® N) we note that the image of the diagonal map ¥: N — A(1).®N,
which is injective, is P(A(1). ® N). Hence it gives an isomorphism

TN —i+ P(STA(1). ® N) = P(H,(X)® N).

Let [M, f] € Q5P (X) = 7411 (X A MSpin) be the element with A([M, f]) = $(o7y11) €
N.

Then [M, f] ® 1 is in the kernel of the natural transformation (7.1) since by part (1) of
theorem A and corollary 5.2

ellu(X) = mi(el AX) 2 7. (\/ E% ko A X) & 1 (Vipo D7 H)

which is zero in degree r +11. The last isomorphism follows from the fact that H, koA X =
A0401). He X = E7A, which implies that ko A X is homotopy equivalent to the r-th
suspension of the Z/2-Eilenberg-MacLane spectrum H.

This proves (b) above. To prove (a) we have to show that for all k > 0 [M, f] x [HP?)*
1s not in the image of the multiplication map

Qrn(X) ® T.(pt) — QF"(X).
To prove this we translate into stable homotopy theory and consider the following diagram: .
(X A MSpin) @ m.(MSpin A L8 BG)

197,
T (X A MSpin) ® m.(MSpin) — (X A M Spin)
h@h h
-~ m®1 ~
PH.(X)®@N)®P(N) — PHJ(X)®N)
v'el !
%TN @ P(N) N STN
PoP P

E

LN(N/3) @ (P(N)/S N P(N)) ZT(N/3)
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Here X is the obvious multiplication map, % is the Hurewicz homomorphism followed by
the projection from P(H.(MSpin)) to P(N) and m is the multiplication in N. < is the
ideal in N = Z/2[y,|n > 8,n # 2' & 1] generated by y?, and y, for # 8,11. 7 is the map
induced by m, p is the projection and p its restriction to P(N).

By (GP, Theorem 3.2] P(N)/SNP(N) 2 Z/2[ys] and hence it follows froms claims 1 and
3 in the proof of proposition 6.4 that phT, is trivial. This shows that [M, f] x [HP2)¥ is not
in the image of the multiplication map (7.2) since py~1h([M, f]x [HP?]*) = o y119y5 #0. 11
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