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INTRODUCTION

The ground field k is algebraically closed and of characteristic zero. Let G be a semisim-
ple simply-connected algebraic group over k and U a maximal unipotent subgroup of
G. One of the fundamental invariant-theoretic facts, which goes back to HadZiev [9], is
that k|G /U] is a finitely generated k-algebra and regarded as G-module it contains every
tinite-dimensional simple G-module exactly once. From this, one readily deduces that
the algebra of U-invariants, k|G /U]Y, is polynomial. More precisely, choose a maximal
torus 7' C Normg(U). Let r be the rank of G, wy, ..., w, the fundamental weights of T
corresponding to U, and ay, ..., «, the respective simple roots. Set X, = >_._, Nw;, and
let R(\) denote the simple G-module with highest weight A € X. Then

k[G/U]~ @B R(N).
AeX,
Let f; be a non-zero element of one-dimensional space R(w;)V C k[G/U]Y. Then k|G /U]Y
is freely generated by fi,..., f;.

For an affine G-variety X, the algebra of U-invariants, k[X]", is multigraded (by T-
weights). If X = V' is a G-module, then there is an integral formula for the corresponding
Poincaré series [4, Theorem 1]. Using that formula, M. Brion discovered useful “symme-
tries” of the Poincaré series and applied them (in case G is simple) to obtaining the clas-
sification of simple G-modules with polynomial algebras k[V]" [4, Ch.III]. Afterwards, I
proved that similar “symmetries” of Poincaré series occur for conical factorial G-varieties
with only rational singularities [16], [17, Ch.5]. Since there is no integral formula for
Poincaré series in general, another technique was employed. Namely, I used the trans-
fer principle for U, “symmetries” of the Poincaré series of k[G/U], and results of F. Knop
relating the canonical module of an algebra and a subalgebra of invariants [13].

Our objective is to extend these results to the derived group U’ = (U,U). In Sec-
tion 1, we prove that R(\)Y" is a cyclic U/U’-module for any A € X, and dimR(\)Y" =
ITi-, (N, o) + 1), where o = 2a;/(a;, «;), see Theorem 1.6. From these properties, we
deduce that k[G/U]Y" is a polynomial algebra of Krull dimension 2r. More precisely, we

have dim R(w;)V" = 2 for each i, and if (f;, f;) is a basis in R(zw;)”, then {f;, f; | i = 1,...,r}
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freely generate k|G /U]Y" (see Theorem 1.8). This fact seems to have remained unno-
ticed before. As a by-product, we show that the subgroup 7U" C G is epimorphic (i.e.,
k[G]"Y" = k) if and only if G # SLs, SLs.

Section 2 is devoted to general properties of U'-actions on affine G-varieties. We show
that k[G/U’] is generated by fundamental G-modules sitting in it, and using this fact we
explicitly construct an equivariant affine embedding of /U’ with the boundary of codi-
mension > 2 (Theorem 2.2). Since k|[G/U’] is finitely generated, k[X]V" is finitely gener-
ated for any affine G-variety X [8]. Furthermore, Spec(k[X]"") inherits some other good
properties of X (factoriality, rationality of singularities) (Theorem 2.3). We also give an
algorithm for constructing a finite generating system of k[X]", if generators of k[X]"
are already known (Theorem 2.4). This appears to be very helpful in classifying simple
G-modules with polynomial algebras of U’-invariants (for G' simple).

In Section 3, we study the Poincaré series of multigraded algebras k[X]"', where X is
factorial affine G-variety with only rational singularities (e.g. X can be a G-module). As-
suming that G # SL,, SL3, we obtain analogues of our results for Poincaré series of k[ X Y.
One of the practical outcomes concerns the case in which V is a G-module and k[V]"" is
polynomial. If dy,...,d,, (resp. p,..., ) are the degrees (resp. T-weights) of basic
U'-invariants, then 3, d; < dimV and »_, ;s < 2p — 37, o, where p = 377 ;. The
second inequality requires some explanations, though. Unlike the case of U-invariants,
there is no natural free monoid containing the T-weights of all U’-invariants. But for
G # SLy, SL3, these T-weights generate a convex cone. Therefore, such a free monoid
does exist, and the above inequality for ), i; is understood as componentwise inequal-
ity with respect to any such monoid and its basis. Moreover, ). d; = dimV if and only
if . = 2p— Z;Zl a;. Again, these relations are to be useful for our classification of
polynomial algebras k[V]", which is obtained in Section 5. Note that 2p — _"_, a; is the
sum of all positive non-simple roots, i.e., the roots of U".

Section 4 is a kind of combinatorial digression. Let C be the cone generated by all 7-
weights occurring in k[G/U]Y". Our description of generators shows that C is actually
generated by w;, w; — a; (i = 1,...,7). We prove that the dual cone of C is generated by
the non-simple positive roots (Theorem 4.2). We also obtain a partition of C in simplicial
cones, which is parametrised by the disjoint subsets on the Dynkin diagram of G.

My motivation to consider U’-invariants arose from attempts to understand the struc-
ture of centralisers of certain nilpotent elements in simple Lie algebras. For applications to
centralisers one needs Theorem 1.6 in case of S L3, and this was the result initially proved.
This application will be the subject of a subsequent article.

Notation. If an algebraic group () acts on an irreducible affine variety X, then

o (), ={q € Q| gx = x} is the stabiliser of z € X;
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e k[X] is the algebra of Q-invariant polynomial functions on X. If k[X]? is finitely
generated, then X /@ := Spec(k[X]%), and the quotient morphism 7x g : X — X//Q is the
mapping associated with the embedding k[X]? — k[X].

e k(X)¥ is the field of Q-invariant rational functions;

Throughout, G is a semisimple simply-connected algebraic group and r = rk G.

— A is the root system of (G, T), Il = {cy, ..., a,} are the simple roots corresponding to
U, and @y, ..., w, are the corresponding fundamental weights.

— The character group of 7" is denoted by X. All roots and weights are regarded as
elements of the r-dimensional vector space X ® Q =: Xq. For any A € X, \* is the highest
weight of the dual G-module. The p-weight space of R(\) is denoted by R(A),..

Acknowledgements. This work was done during my stay at the Max-Planck-Institut fiir Math-

ematik (Bonn). I am grateful to this institution for the warm hospitality and support.

1. THE ALGEBRA OF U’-INVARIANTS ON G /U

For any A € X, we wish to study the subspace R(\)V". First of all, we notice that B C
Norm¢ (U') (actually, they are equal if G has no simple factors SL,) and therefore R(\)V" is

! . . .
U" is a direct sum of its own

a B/U’-module. In particular, 7" normalises U’ and hence R())
weight spaces. Let P(\) be the set of weights of R(\). It is a poset with respect to the root
order. This means that i covers v if i — v € II. Then X is the unique maximal element of

P(X). Lete; € g = Lie (G) be a root vector corresponding to «; € II.

Given a nonzero = € R(\)Y, consider
Mm = {(n17 cee ,nr> c N" ‘ 67111 .. .6:}7‘(%‘) ;é 0}

We also write n = (n4,...,n,) and e™ = e}" ...e"". Notice that e™(z) does not depend on
the ordering of ¢;’s since [e;, ¢;] € Lie (U’) for all 4, j and R(A\)Y" is an U/U’-module. We
regard M, as poset with respect to the componentwise inequalities, i.e., n = n' if and
only if n; > n! for all i. Clearly, M, is finite and (0, ...,0) is the unique minimal element
of it.

Lemma 1.1. Let 2 € R(\)Y' be a weight vector. The poset M, contains a unique maximal element,
say m = (my, ..., m,). Furthermore, €™ (x) is a highest vector of R(\).

Proof. If n € M, is maximal, then e;(e™(z)) = 0 for each i. Hence e™(x) is a highest vector
of R(\). Next,

the weight of e™(x) = (the weight of z) + Zniai .
i=1
Hence all nonzero vectors of the form e™(z) are linearly independent. This yields the
uniqueness of a maximal element. O



4 D.PANYUSHEV

Corollary 1.2. M, is a multi-dimensional array, i.e., M, = {(n1,...,n,) | 0 < n; < m; Vi}.

Let I, denote the set of T-weights in R(A\)V". It is a subset of P()).

Proposition 1.3. Forany A € X, RO\ is a multiplicity free T-module. More precisely,

RV = DRV,

REIN

where diim R(A){" = 1 for each pand I, € {X = Y, a;05 | 0 < a; < (A, o) }.

Proof. If x € R()\)g/ and (my, ..., m,) is the maximal element of M,, then 1 + . m;a; = A
and p+ ). nyo; € P(A) for any (nq,...,n,) € M,. In particular, A — m;c; € P(A). Whence
m; < (A, o)and I C{A=> " a4 | 0 < a; < (N )}

Assume that z,y € R()\)g/ are linearly independent. It follows from Lemma 1.1 that
M, = M,. Since e™(z),e™(y) € R()\),, we have e™(z — cy) = 0 for some ¢ € k™. This

means that M,_., # M,, a contradiction! Thus, each R()\)g' is one-dimensional. O

Lemma 1.4. [, is a connected subset in the Hasse diagram of P(\) that contains \.

Proof. Indeed, suppose 0 # v € R(A)Y". If e,,-v = 0 for all i, then v is a U-invariant and
hence ;1 = \. Otherwise, we have e,,-v # 0 for some i and therefore ;1 + «; is also a weight
of R(\)Y". Then we argue by induction. O

Proposition 1.5. For any fundamental weight w;, we have R(w;)V" = R(w@;)w, © R(@;)w, a;-
In particular, I,, = {w;, @; — oy} and dim R(w;)V" = 2.

Proof. Note that w; — o; € P(w;) and dim R(@;)w,—a; = 1, while w; — 2a; & P(w;). We
obviously have R(w;)"" O R(®;)w, ® R(®i)w, o;- Any weight of R(zw;) covered by w; —
«; is of the form w,; — a; — a;, where «; is a simple root adjacent to «; in the Dynkin
diagram of G. Since w; — o; ¢ P(w;), Kostant’s weight multiplicity formula shows that
dim R(@;)w;—a;—a; = 1. Since a; + a; is a root of U’, we have R(@;)w,—a;—a; € R(w;)Y" and
it follows from Lemma 1.4 that there cannot be anything else in R(z;)V". O

Set X = Spec(k[G]Y). It is an affine G-variety containing G'/U as a dense open subset.
Recall that X has the following explicit model, see [25]. Let v_,, be a lowest weight vector
in R(w;)*. Then the stabiliser of (v_,,...,v_»,) € R(w1)* @ ... ® R(w,)* is the maximal
unipotent subgroup that is opposite to U and

X~GW .m0 ) CR(@) ®...0R(w@,)".

Let p; : X — R(w;)* be the projection to the i-th component. Then the pull-back of the

linear functions on R(w;)* yields the unique copy of the G-module R(w;) in k[X]. The

additive decomposition k[X] = €D,.x, R(}) is a polygrading; i.e., if f; € R(A;) C k[X],
1=1,2, then f1f2 c R()\l + )\2)
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Definition 1. Let () be an algebraic group with Lie algebra q. A )-module V" is said to be
cyclic if there is v € V such that U(q)-v = V, where U(q) is the enveloping algebra of g.
Such v is called a cyclic vector.

Theorem 1.6. For any A € X, we have

O L={A=Xi @i 0<a <\ a)y;
(i) R(\)Y" is a cyclic U/U'-module of dimension [],_,((\, o) + 1). Up to a scalar multiple,
there is a unique cyclic vector that is a T-eigenvector.

Proof. In view of Lemma 1.1 and Proposition 1.3, it suffices to prove that R(\)V" contains
a vector of weight A — >~"_ (A, ;). This vector have to be cyclic, because applying the
e;’s to it we obtain weight vectors with all weights from {A\—>""_ a,a; | 0 < a; < (A, )},
hence the whole of R(\)Y'

Let f; be a nonzero vector in one-dimensional space R(w; )., o, Using the unique copy
of R(w;) inside k[X], we regard f; as U’-invariant polynomial function on X. Take the

product (monomial) F' : Hl 1 f(Aa k[X]. Since k[X] is a domain, F # 0. The
multiplicative structure of k[X] shows that F € R(\)Y and the weight of F equals
DoimiN o J(@i — i) = A= 30 (A o ). O

Remark 1.7. For the group TU' C B, we have dimTU’ = dim U. It is well known that TU’
is a spherical subgroup of G (e.g. apply [5, Prop.1.1]). The sphericity also follows from
the fact R(\)"" is a multiplicity free T-module (Proposition 1.3). That R(\)Y" is a multi-
plicity free T-module follows also from [10, Corollary 8]. However, we obtain the explicit
description of the corresponding weights and the U/U’-module structure of R(\)Y"

Theorem 1.8. Let f; (resp. fl) be a nonzero vector in one-dimensional space R(w;), (resp.
R(@i)w,a;)- Then the algebra of U'-invariants, k[G U]V, is freely generated by f,, fiyeeis fos fo

Proof. It follows from (the proof of) Theorem 1.6 that the monomials [];_, f* fi@’aiv)_

0 < ¢; < () a)), form a basis for dim R(\)Y" for each A € X,. Hence k[G/U]Y" is generated
by fi, fi,..o) fos fr. Since U’ is unipotent and dim(G/U) —dim U’ = 2r, the Krull dimension
of k[G/U]Y" is at least 2r. Hence there is no relations between the above generators. 0

Recall that a closed subgroup H C G is said to be epimorphic if k|G / H| = k or, equivalently,
R(A\)# = {0} unless \ = 0, see e.g. [8, § 23B].

Proposition 1.9. Suppose G is simple. The subgroup TU' is epimorphic if and only if G # SL,
or SLs.
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Proof. The case of SL, is obvious, so we assume that » > 2. In view of Theorem 1.8, we
have to check that neither of the monomials [];_, (f* fi(k’ai )_C"), 0 < ¢ < (N ), has zero
weight if G # SLs. The weight in question equals

T

o= Z()\, o) Yw; — iciai .
i=1

i=1
Setp¥ =1 3 4. Then (u,p") = >, (A\ o)) (@i, p¥) — >.I_; ;. Notice that
yeAt
2Awi,p’) = Y (@i,7") = #{y € AV | (v,@:) > 0}
~yeAT
Thatis, 2(w;, p”) is at least the dimension of the nilpotent radical of the maximal parabolic
subalgebra corresponding to w;. This readily implies that (w;, p*) > 1 for all i whenever
g # sl3. Whence (p, pY) is positive.
For SLs, the monomial (f, f,)* has zero weight. That is, R(a(w; + @,))"V" # {0}. O

Remark 1.10. If G = SLj, then TU' is a Borel subgroup of a reductive subgroup GL, C SLs.
Proposition 1.9 can also be deduced from a result of Pommerening [18, Korollar 3.6].

Example 1.11. Let U,, be a maximal unipotent subgroup of G = SL,, and let U,_; be a
maximal unipotent subgroup of a standardly embedded group SL,_1 C SL,. Itis well
known that k[SL,,/U,]""~! is a polynomial algebra of Krull dimension 2(n — 1) and its
generators have a simple description, see e.g. [1, Sect.3]. The reason is that SL,,/U, is
a spherical SL,_-variety and the branching rule SL,, | SL,_; is rather simple. That is,
k[SL, /U, and k[SL, /U, are polynomial rings of the same dimension, and also
dimU,_; = dimU,. However, the subgroups U}, U,_; C SL, are essentially different
unless n = 2, 3.

2. SOME PROPERTIES OF ALGEBRAS OF U’-INVARIANTS

The main result of Section 1 says that k|G /U]"" is a polynomial algebra of Krull dimension
2r. This can also be understood in the other way around, since k[G/U]Y" and k[G/U'|V are
canonically isomorphic. Indeed, for any closed subgroup H C G, we regard k|G/H] as
subalgebra of k[G]:

K[G/H) = {f € KIG] | f(gh) = f(g) for any g € G,h € H}.

Any subgroup of G acts on GG/ H by left translations. Therefore
K[G/U" ~ {f € K[G] | f(urgus) = f(g) for any g € G,uy € U',up € U},
k[G/UNY ~{f €k[G] | f(uagui) = f(g) for any g € G,uy € U',uy € U}.

The involutory mapping (f € k[G]) — f, where f(g) = f(g7"), takes k[G/U]"" to
k[G/U'Y, and vice versa.



ON THE DERIVED GROUP OF A MAXIMAL UNIPOTENT SUBGROUP 7

One can deduce some properties of k|G/U’] using the known structure of k|G /U’]Y. Set
A =k[G/U]. It is a rational G-algebra, which can be decomposed as G-module:
A= maaRMN).
AeX,
By Frobenius reciprocity, the multiplicity m, 4 is equal to dim R(A\*)V". Therefore, it is
finite. In our situation,
dimR(\)Y" = dimR(N)Y = JJ((A, o) +1).
i=1
In particular, m, 4 = 2 for any i. One can also argue as follows.
The group G x G acts on G by left and right translations and the decomposition of k|G]
as G x G-module is of the form:
k[G] = @ ROV @R(N),
AeX,
where the first (resp. second) copy of GG in G' x G acts on the first (resp. second) factor of
tensor product in each summand [14, Ch.2, § 3, Theorem 3]. Then

2.1) A=KG/U = @ RN) @ RN,
AEX,
(2:2) A” = P ROV @ RV
AEX,

In this context, Theorem 1.8 asserts that any basis of the 2r-dimensional vector space
@_, R(@)Y @ R(w;)V" freely generates the polynomial algebra .A". It is known that
k[G/U’] is finitely generated (see [7, Theorem 7]). Below, we obtain a more precise asser-
tion.

Lemma 2.1. A is generated by the copies of fundamental G-modules, i.e., by the subspace
D, R(@}) ® R(@)""

Proof. We know that AV = k[G/U'V is a polynomial algebra, generated by 2r functions.
Using Equations (2:1) and (2-2), one sees that the generators of A" are just the highest
vectors of all fundamental G-module sitting in 4. It follows that the subalgebra of A
generated by all fundamental G-modules is G-stable and contains the highest vectors of
all simple G-modules inside A. Hence it is equal to A. O

For a quasi-affine G/ H, it is known that k[G// H] is finitely generated if and only if there
is a G-equivariant embedding i : G/H — V, where V is a finite-dimensional G-module,
such that the boundary of i(G/H) is of codimension > 2 [8, §4]. As U’ is unipotent, G /U’
is quasi-affine. Hence such an embedding of G/U’ exists and, making use of Lemma 2.1,
we explicitly construct it.
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Recall that f; and f; are nonzero weight vectors in R(w;)w, and R(w;)w, _a,, respectively.

Theorem 2.2. Let p = (f1, fiveoisfo o) € 2R(w) @ ... ® 2R(w;). Then
(i) G,=U’;
(i) k[G-p] =k[G/U’') and G-p ~ Spec(A) is normal;
(ii) codim(G-p\ G-p) > 2.

Proof. Part (i) is obvious. Then G-p ~ G//U’ and hence B := k[Gp] is a subalgebra of A. By
the very construction, m.,. 5 > 2. (Consider different non-trivial projections G-p — R(w;)
for all i.) Since m, g < M, 4 = 2 and A is generated by the fundamental G-modules, we
must have B = A. This yields the rest. 0

Let X be an algebraic variety equipped with a regular action of G. Then X is said to be a
G-variety. The “transfer principle” ([3, Ch.1], [20, § 3], [8, §9]) asserts that

k[X]" ~ (k[X] @ k[G/H])°

for any affine G-variety X and any subgroup H C G. In particular, if k|G /H] is finitely
generated, then so is k[X]*. In view of Lemma 2.1, this applies to H = U’, hence k[X]V
is always finitely-generated. Moreover, the polynomiality of k[G//U’]V implies that k[X ]V’
inherits a number of other good properties from k[X]. Recall that Spec(k[X]"") is denoted
by X/U’; hence k[ X JU’] and k[ X" are the same objects.

We often use below the notion of a variety with rational singularities. Let us provide some
relevant information for the affine case.

a)If ¢ : X — X is a resolution of singularities, then X is said to have rational singu-
larities if H°(X,0%) = k[X] and H'(X,Oz) = 0 for i > 1. In particular, X is necessarily
normal.

b) If X has only rational singularities and G is a reductive group acting on X, then X /G
has only rational singularities (Boutot [2]).

c) If X has only rational singularities, then X is Cohen-Macaulay (Kempf [12]). It fol-
lows that if X is factorial and has rational singularities, then X is Gorenstein.

Theorem 2.3. Let X be an irreducible affine G-variety. If X has only rational singularities, then
so has X JU'. Furthermore, if X is factorial, then X /U’ is factorial, too.

Proof. This is a straightforward consequence of known technique. Since k[G/U'V is a
polynomial algebra, G /U’ has rational singularities by Kraft’s theorem [3, Theorem 1.6],
[20]. By the transfer principle for H = U’, we have XU’ ~ (X x (GJU"))/G. Ap-
plying Boutot’s theorem [2] to the right-hand side, we conclude that X /U’ has rational
singularities. The second assertion stems from the fact that U’ has no non-trivial rational
characters. O
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We have k[X]V c k[X]Y, and both algebras are finitely generated. Assuming that
generators of k[.X]V are known, we obtain a finite set of generators for k[X]V', as follows.

Theorem 2.4. Suppose that fi,..., f,, is a set of T-homogeneous generators of k| XV and the
weight of f; is \;. (That is, there is a G-submodule V; C k[X| such that V;, ~ R(\;) and f €
(V;)Y.) Then the union of bases of the spaces (V;)V',i = 1,...,m, generate k| X|V". In particular,
k[X]"" is generated by at most Y, TTi_, ((\i, o)) + 1) functions.

J

Proof. Let B be the algebra generated by the spaces (V;)V". Clearly, B is B/U’-stable and
contains k[ X]Y. Hence it meets every simple G-submodule of k[X]. Therefore, it is suffi-
cient to prove that 5 contains U/U’-cyclic vectors of all simple G-submodules.

We argue by induction on the root order ‘<’ on the set of dominant weights. Let
¢; € (V)Y be the unique U/U’-cyclic weight vector. By definition, ¢; € B. We nor-
malise f; and ¢; such that E(\;)(¢;) = f;, where the operator E()\), A € X, is defined
by E(\) == []_, e?’aiv ). Assume that for any simple G-module W of type R(¢) occurring
in k[X], with 1 < A, the cyclic vector of W belong to B. Consider an arbitrary sim-
ple submodule V C k[X] of type R(\). Take a polynomial P in m variables such that

f=P(f1,..., fm) is a highest vector of V. Without loss of generality, we may assume that

every monomial of P is of weight \. We claim that P(cy,...,c,) # 0. Indeed, it is easily
seen that E(A\)P(cy,...,cn) = P(E(M)(c1),..., E(An)(cm)) = f. The last equality does
not guarantee us that P(c,...,c,) € V. However, this means that the projection of this

element to V is well-defined and it must be a U/U’-cyclic vector of V, say c. More pre-
cisely, P(ci, ..., cn) = ¢+ ¢, where ¢ belong to a sum of simple submodules of types R(v;)
with v; < A. If P is a monomial, then this follows from the uniqueness of the Cartan
component in tensor products. In our case, the Cartan component of the tensor product
associated with every monomial of P is R()), which easily yields the general assertion.
By definition, P(cy, ..., ¢,) € B, and by the induction assumption, ¢ € B. Thus,c € B. O

This theorem provides a good upper bound on the number of generators of k[X]V".
However, it is not always the case that a minimal generating system of k[ X]Y is a part of
a minimal generating system of k[X]"". (See examples in Section 5.)

Since U’ has no rational characters, dim X /U’ = trdegk(X)V" = dim X — dim U’ +
min,e x dim(U’),.. To compute the last quantity, we use the existence of a generic stabiliser
for U-actions on irreducible G-varieties [6, Thm. 1.6].

Lemma 2.5. Let U, be a generic stabiliser for (U : X). Then min,ex dim(U’), = dim(U, N U").

Proof. Let ¥ C X be a dense open subset of generic points, i.e., U, is U-conjugate to U, for
any x € U. Since U’ is a normal subgroup, U, N U’ is also U-conjugate to U, N U’. Thus, all
U’-orbits in ¥ are of dimension dim U’ — dim(U, N U"). O
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Remark 2.6. 1) If X is (quasi)affine, then one can choose U, in a canonical way. Let M (X)
be the monoid of highest weight of all simple G-modules occurring in k[X]. Then U, is
the product of all root unipotent subgroup U* (u € AT) such that (u, M(X)) = 0[17,
Ch.1, §3]. Equivalently, U, is generated by the simple root unipotent subgroups U such
that (o;, M(X)) = 0. It follows that U, N U’ = (U,, U,). This also means that if M (X) is
known, then min,¢x dim(U’), can effectively be computed.

2) The group U, is a maximal unipotent subgroup of a generic stabiliser for the diag-
onal G-action on X x X* [17, Theorem 1.2.2]. Here X* is the so-called dual G-variety. It
coincides with the dual G-module, if X is a G-module. Using tables of generic stabilisers
for representations of GG, one can again compute U, and (Uy, Uy).

3. POINCARE SERIES OF MULTIGRADED ALGEBRAS OF U’-INVARIANTS

Let X be an irreducible affine G-variety. (Eventually, we impose other constraints on X.)
Since T normalises U, it acts on X /U’ and the algebra k[X ]V’ acquires a multigrading (by
T-weights). Our objective is to describe some properties of the corresponding Poincaré
series. Before we stick to considering U’-invariants, let us give a brief outline of notation
and results to be used below.

Let R be a finitely generated N""-graded k-algebra such that k[R], = 0. Set X = Spec(R).

e The Poincare series of R is (the Taylor expansion of) a rational functioninti, ..., ¢,,:

F(R;t) = P(t)/Q(1)

for some polynomials P, ().
e If R is Cohen-Macaulay, then 2 (or {2x) stands for the canonical module of R;
is naturally Z™-graded such that the Poincaré series of () is

FQmit) = (=)™ F (Rt
e If R is Gorenstein, then the rational function F(R; t) satisfies the equality
f‘(fR, tfl) _ (—1)dimX§Q(X)f(fR; z),

for some ¢(X) = (¢1(X),...,qgn(X)) € Z™, and the degree of a homegeneous gen-
erator wg of Qg is deg(wx) = q(X) [22, Theorem 6.1], [23, 1.12].

e If X has only rational singularities, then ¢;(X) > 0 and ¢(X) # (0, ...,0) [3, Propo-
sition 4.3]

e Let GG be a semisimple group acting on X (of course, it is assumed that GG preserves
the N-grading of R). Then there is a relationship betweem Q¢ and Q¢ [13] and
hence between ¢(X) and ¢(X//G), see below.
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We begin with the case of X = G, where G is regarded as G-variety with respect to right
translations. That is, we are going to study the graded structure of A = k[G//U’]. Since G
is simply-connected, it is a factorial variety. Therefore, Spec(A) = G /U’ is factorial (and
has only rational singularities). In particular, G/U’ is Cohen-Macaulay (= CM). There is

A=EPA,

yeX
where A, = {f € A | f(gt) = v(t)f(g) for any ¢ € G,t € T}. The weights v such
that A, # 0 form a finitely generated monoid, which is denoted by I'. Since R(\)V" is a
multiplicity free T-module, it follows from Eq. (2-1) that, for any A € X, different copies

the direct sum decomposition

of R(A\*) lie in the different weight spaces A,. More precisely, the corresponding set of
weights is I, (see Section 1). In particular, two copies of R(w;) belong to A, and A, _,,.
Therefore, I' is generated by the weights w;, @, — oy, © = 1,...,r. Note that the group
generated by I' coincides with X, since I" contains all fundamental weights.

Lemma 3.1. If G has no simple factors S Ly or SLs, then '\ {0} lies in an open half-space of X,
Ao =k, and dim A, < oo forall y € T

Proof. It is shown in the proof of Proposition 1.9 that (p¥,w; — a;) > 0 for all .. Hence
the half-space determined by p¥ will do. We have A, = k[G/TU’] = k, since TU' is
epimorphic. This also implies the last claim, because A is finitely generated. O

The algebra A is I'-graded, and we are going to study the corresponding Poincaré se-
ries. Unfortunately, I is not always a free monoid. Therefore we want to embed I' into a
free monoid N". This is always possible, if I' generates a convex cone in Xy, see e.g. [15,
Corollary 7.23]. For this reason, we assume below that G has no simple factors SL, or
SLs, and choose an embedding I' — N". In other words, we find vy, ..., v, € X such that
X =@,_,Zvy and T' C @;_, Nvy. Furthermore, one can achieve that (v;, p¥) > 0 for all
i. Then (v, ...,v,) is said to be a I'-adapted basis for X. Thus, every v € I' gains a unique
expression of the form v = >~ k;(y)v;, ki(y) € N.

Now, we define the multigraded Poincaré series of A as the power series

F(Aity,... t) = F(AD) =) (dim AL,
vyel’

k

where 7 = 7' #5"0) " Ag is well-known, F(A: ) is a rational function. Since A is a

factorial CM domain, it is Gorenstein. Therefore, there exists a = (ay,...,a,) € Z" such
that

(3:1) F(A L") = (=)™ F (A1),

where t71 = (t71,..., 1) [22, §6]. Moreover, since G//U’ has only rational singularities,

all a; are actually non-negative, and a # (0, ..., 0) [3, Proposition 4.3].
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Set b(A) := >_'_,a;v; € X. A priori, this element might depend on the choice of an
embedding I' — N". Fortunately, it doesn’t. Roughly speaking, this can be explained via
properties of the canonical module 2 4, which is a free .A-module of rank one. However,
even if we accurately accomplish this program, then we still do not find the very element
b(A) € X. Therefore, we choose another path. Our plan consists of the following steps:

(1) AY is a polynomial algebra and its Poincaré series can be written down explicitly;
(2) Using the formula for this Poincare series, we determine b(AY) € X;
(3) Using results of [17, 5.4], we prove that b(A) = b(A"Y).

The algebra AV is acted upon by 7' x T. Two copies of T acts on AV C k|G| via left and
right translations. For the presentation of Eq. (2:2), the first (resp. second) copy of 71" acts
on the first (resp. second) factor in tensor products. Then

AV= P AL,

AeXy yel

where AV = {f € AV CK[G]| f(tgt') = \(t)"'7(¢') f(g) forallt,t’ € T}, and we set
F(AY:5,1) = > (dim AY )™t

Ay

Here s = (s1,...,s,) and s* = s ... s™ if A = > . n;w;.

Proposition 3.2. We have

T

1
U.g ) —
F( A% s 1) 11(1—si*§wi)(1—8i*tm_ai)7

1=

where i* is defined by (w;)* = w;.

Proof. This follows from the fact that AY is freely generated by the space R =
@,_, R(@)Y ® R(w;)V', and the (T x T)- weights of a bi-homogeneous basis of R are

(wfawi)v(wgkawi_ai>/i:1,--.,7’. 0

Of course, t*i should be understood as tlfl(wl) .. .tfr(m), and likewise for w; — «;. Since

Yoi(wi + @ — ;) = 2p — |II| = |AT \ II], we readily obtain

Corollary 3.3. F(AY;s7 1 t71) = (s1...8.) 2t M F(AY; 5, 1).

One can disregard (for a while) the X, -grading of A" and consider only the I'-grading
induced from A. This amount to letting s; = 1 for all i. Then we obtain b(A") = 2p — |II|,
and, surely, this does not depend on the choice of I' — N". Thus, we have completed
steps (1) and (2) of the above plan.

Now, we recall a relationship between the multigraded Poincaré series of algebras k[.X|
and k[X]Y. For G-modules, these results are due to M. Brion [3, Ch.1V], [4, Theorem 2].
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A general version is found in [16], [17, Ch.5]. We will consider two types of conditions
imposed on G-varieties X:

X 1is an irreducible factorial G-variety with only rational singularities and
(61) G _
k[X]¢ = k.
@ X is an irreducible factorial G-variety with only rational singularities; k[ X] is
2) N™-graded, k[X] = @, cym k[X]n, and k[X]o = k.

In particular, X is Gorenstein in both cases. Suppose X satisfies (¢;). The Poincaré series
of the Gorenstein algebra k[X| satisfies an equality of the form

(3-2) Fk[X]t™) = (1) O F(k[X]; 1),

wheret = (t1,...,t,) and ¢(X) = (¢1(X), ..., ¢n(X)). The affine variety X /U inherits all
good properties of X, i.e., it is irreducible, factorial, etc. Furthermore, k[.X |V is naturally
X, x N™-graded, and one defines the Poincaré series

FKX]Y;st)= > (dimk[X]],)s*t".
AEX ,neN™
Since X /U is again Gorenstein, this series satisfies an equality of the form
f(]k[X]U; §717 tfl> — (_1)dimX//U§Qtq(X//U)f(k[X]U; s, t)
for some b = b(XU) = (by,...,b,) and ¢(XJU) = (1 (XJU), ..., qu(X)JU)).
Theorem 3.4 (see [17, Theorem 5.4.26]). Suppose that X satisfies condition (€,). Then
oKL
(2) 0 < q;(X)U) < q;(X) for all i;
(3) the following conditions are equivalent:
e b=1(2,...,2);
e For D ={z € X | dimU, > 0}, we have codimx D > 2;
* ¢(X)U) = a(X);

<
<

Let us apply this theorem to the G-variety Spec(A) = G /U’. The algebra A is I'-graded
and hence suitably N"-graded, as explained before. Note that Spec(.A) satisfies both con-
ditions (¢;) and (¢;). At the moment, we consider X = Spec(.A) as variety satisfying
condition (€;), with m = r. Comparing Eq. (3-1) and (3-2), we see that a = ¢(X). Proposi-
tion 3.2 and Corollary 3.3 show that here b(X/U) = (2,...,2) and ¢q(XJU) corresponds to
b(AY) = 2p — |I1|. Now, Theorem 3.4(3) guarantee us that ¢(X) = ¢(X/U), i.e.,

(33) b(A) = b(AY) = 2p — [TI.

This completes our computation of b(.A). Note that we computed b(.A) without knowing
an explicit formula of the Poincaré series F(A;1).
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Our next goal is to obtain analogues of results of [17, 5.4], where U is replaced with U’,
i.e., results on Poincaré series of algebras k[X]V".

Suppose X satisfies (¢;). The algebra k[X]"" is '-graded, and we consider the Poincaré
series
F&IX]51) = dimk[X]Y ¢,
yerl’
where k[X]V" = {f e k[X]V" | f(t.z) = ~(t)"'f(z)} and, as above, {" is determined via the

choice of a '-adapted basis (vy, . . ., v,) for X. The assumption k[ X]¢ = k and the convexity

U
5

dimensional. Since X /U’ is again factorial, with only rational singularities (Theorem 2.3),

of the cone generated by I' guarantee us that k[X]J" = k and all spaces k[X]V" are finite-

it is Gorenstein and hence
FERXI ) = (1) X0 1 F((X]V 1)

for some a = (ay,...,a,) € N". Using the basis (vy,...,v,), weset (X JU') = >, a;v; €
X.

Theorem 3.5. Suppose that X satisfies (€,). Then

(1) 0 <b(X)JU") < b(A) =2p — [I]]
(componentwise, with respect to any I'-adapted basis vy, . .., v,);
(2) the following conditions are equivalent:
a) b(X/U") = 2p — |11}
b) For D ={z € X | dim(U"), > 0}, we have codimx D > 2;

Proof. Using our results on A and AY obtained above, one can easily adapt the proof of
[17, Theorem 5.4.21]. For the reader’s convenience, we recall the argument.

(1) We have 0 < b(X JU’), since X JU’ has rational singularities.
Set Z = X x (GJU’). It is a factorial G-variety with only rational singularities and
k[Z] = k[X] ® A. Define the I'-grading of k[Z] by k[Z]; = k[X] ® A, § € T. By the

U/

transfer principle, k[Z]¢ ~ k[X]"" and the I'-grading of k[X]Y" corresponds under this

isomorphism to the I'-grading of k[Z]“ as subalgebra of k[Z].

In this situation (a semisimple group G acting on a factorial variety Z with only rational
singularities), one can apply results of Knop to the quotient morphism 7 : Z — Z/G.
Set m = max,cz dim G.z. Recall that Q2x is the canonical module of k[ X]. By Theorems 1,2
in [13], there is an injective G-equivariant homomorphism of degree 0 of graded k[Z]-
modules

v QZ — /\mg* ®7TZ‘(QZ//G)
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Here Q7 = Qx ®{g )y and grading of 2; comes from the grading of {1 j. The injectivity
of 7 implies that

b(XJU") = {

This yields the rest of part (1).

degree of a homogeneous} < {degree of a homogeneous} b,

generator of Qx/yr ~ Q)¢ generator of (¢

(2) To prove the equivalence of a) and b), we replace each of them with an equivalent
condition stated in terms of Z:

a’) deg(wz)c) = deg(wz);
b’) codimyzD > 2, where D = {z € Z | dim G, > 0}.

The argument in part (1) shows that a) and a’) are equivalent. The equivalence of b) and
b’) follows from the fact that G/U’ is dense in G /U’ and the complement is of codimension
> 2, see Theorem 2.2.

The injectivity and G-equivariance of 7 means that there is ¢ € (A™g* ®k[Z]) such that
Y(wz) = cwzyc. We can regard c as G-equivariant morphism ¢’ : Z — A™g". It is shown
in [13] that if dimG.z = m and z € Z,.,, then ¢/(z) is nonzero and it yields (normalised)
Pliicker coordinates of the m-dimensional space g C g*.

Assume a’), i.e., deg(wz)) = deg(wz). Then degc =0, i.e.,
ce (N"g* @k[Z]0)¢ = (\"g" @ k[X])“.
This means that ¢’ can be pushed through the projection to X:
Z=Xx(GJU")— X — N"g".

Let z = (z,v) € X x (G//U’) be a generic point, i.e., x € X,.5, v € G/U’, and dim G.z = m.
Since ¢/(z) depends only on x, we see that g, does not depend on v. But this is only
possible if dimg, = 0, that is, m = dimG. This already proves that codimyzD > 1. If
codimzD = 1, then formulae (6), (7), (12) in [13] show that D = {z € Z | ¢(z) = 0}.
However, A™g* is the trivial 1-dimensional G-module, hence ¢ € k[X]“ = k. That is, ¢ is
a constant (nonzero) mapping. This contradiction shows that codim,D > 2.

Conversely, if b’) holds, then D is a proper subvariety of Z, i.e, m = dimG and ¢ €
(AmGg* k[ Z])¢ = k[Z]“. Furthermore, since codimyz D > 2, c has no zeros on Z (because
Zisnormal and ¢/(z) = ¢(z) # 0 forany z € Z,.,\ D.) It follows that ¢ is constant, deg ¢ = 0
and hence deg(wz)¢) = deg(wz). O

If X satisfies (¢,), then the algebra k[X]"" is naturally I' x N"-graded, and we consider
the Poincaré series

Fk[X]Y;s,1) = Z dimk[X]gjvgnﬁ,

neN™ yel
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where k[ XU = {f e kK[X]V" | f(t.z) =~(t)"' f(2)} and ¢” is as above. Since X /U’ is again
Gorenstein, we have

!

./T(k[X]U ;§_1,t_1) — (—1)dimX//U,ta§q(X//U/)F(k[X]U

/

;5 1)

for some a = (ay,...,a,) € N" and ¢(X/U’) € N™. Using the basis (v1,...,v,), we set
b(X)U') =3I, a;v; € X. The following is a U’-analogue of Theorem 3.4.

Theorem 3.6. Suppose that X satisfies (€5). Then

(1) 0 < bXJT") < b(A) = 2p — [T
(componentwise, with respect to any I'-adapted basis v, . .. ,v,);
(2) 0 < qi(XJU") < qi(X) for all i;
(3) the following conditions are equivalent:
(0 b(XJU") = 2p — [II};
(i) For D ={z € X | dim(U’"), > 0}, we have codimx D > 2;
(i) ¢(X/U") = q(X).

We leave it to the reader to adapt the proof of Theorem 5.4.26 in [17] to the U’-setting.

These results may (and will) be applied to describing G-varieties X with polynomial
algebras k[X|V". Suppose for simplicity that k[X] is N-graded (i.e., m = 1). If f,..., f, are
algebraically independent homogeneous generators of k| X]V', then " deg f; = ¢(XJU’) <
q(X). In particular, if X is a G-module with the usual N-grading of k[.X|, then > deg f; <
dim X. Similarly, if w; is the T-weight of f;, then >, w; < 2p — |II|. The idea to use an
a priori information on the Poincaré series for classifying group actions with polynomial
algebras of invariants is not new. It goes back to T.A.Springer [21]. Since then it was
applied many times to various group actions.

4. SOME COMBINATORICS RELATED TO U’-INVARIANTS

In previous sections, we have encountered some interesting objects in X related to the
study of U'-invariants. These are b(.A) = 2p — |II|, the set of T-weights in R(\)V" (denoted
I,), and the monoid I" generated by w;, w; — «; foralli € {1,...,r} =:[r].

Proposition 4.1.

(i) If G has no simple ideals S L, then 2p — |11| is a strictly dominant weight;
(ii) For any \ € X, the weight |I,| is dominant. Furthermore, (|1,|, ;) > 0 if and only if
there is j such that (\, ) > 0 and (o, a;) > 0.

Proof. (i) is obvious.
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(ii) Recallthat Iy = {A = > i |0 < ¢ < (N )), i =1,...,r}. Choose i € [r] and slice
I, into the layers, where all coordinates c; with j # i are fixed, i.e., consider

Lcr, .o Cyeeyen) ={N — Z cjay; — oy | 0 <o < (N o))}
Jig#
Then one easily verifies that (|1 (c1,...,G,...,c.)|, o) = (A, o) + 1)(— Dz G 0y ) =
0. Hence (]1,[, ;) > 0, and the condition of positivity is also inferred. O

Let C be the cone in X generated I, i.e., by all weights w;, wv; — a;. Consider the dual
cone C := {n € Xg| (n, @) > 0& (n,wm; — ;) > 0 for all 4}.

Theorem 4.2. The cone C is generated by the non-simple positive roots.

Proof. 1) Let K denote the cone in Xq generated by A* \ II. It is easily seen that X C C.
Indeed, let 6 € AT \ II. Then (w;,d) > 0. If s; € W is the reflection corresponding to
o; € H, then sl(wl) =w; — Q4 and SZ((S) € A*. Hence (wl — Qy, (5) = (wi, 81(5)) > 0.

2) Conversely, we prove that K C C. We construct a partition of K into finitely many
simplicial cones, and show that each cone belong in C.

Suppose that n € X and (i,9) > Oforall o € AT\IL Set J = Jy,y = {j € [r] | (p, ;) < 0}.
We identify the elements of [r] with the corresponding nodes of the Dynkin diagram of
G. The obvious but crucial observation is that the nodes in J are disjoint on the Dynkin
diagram. (Such subsets J are said to be disjoint.)

Claim. The r vectors w; (i ¢ J), w; — a; (j € J) form a basis for Xq.

Proof. Since J is disjoint, [ [, s; € W takes these r vectors to wy, ..., w@,.

jeJ

Thus, we can uniquely write

= Zbiwi + Zaj(wj — ), bi,a; €Q.
idJ jeJ

By the assumption, (x, ;) > 0if and only if i ¢ J. For j € J, we have (y, o)) = —a; <0,
i.e., a; > 0. It is therefore suffices to prove that all b; are nonnegative. Choose any i ¢ J.
Let J[i] denote the set of all nodes in J that are adjacent to i. Set w; = [[;c,;s5 € W.
(If J[i] = @, then w = 1.) Then w;(«;) is either «; or a non-simple positive root. In both
cases, we know that (u, w;(e;)) = 0. On the other hand, this scalar product is equal to
(wi(p), ;) = bi(w;, ;). Thus, each b; is nonnegative and ;. € C. O

Remark 4.3. The argument in the second part of proof shows that C is the union of sim-
plicial cones parametrised by the disjoint subset of the Dynkin diagram. For any such set
J C [r], let C; denote the simplicial cone generated by w; (i ¢ J), @w; — a; (j € J). Then

c= J ¢

J disjoint



18 D.PANYUSHEV

Here Cy is the dominant Weyl chamber and C; = (]]
{ZiQJ bzwz + Zje.] (lj(w]‘ — Oéj) | a; > 0, bz = O}, then

c=|] ¢

J disjoint

ics 5i)Ca. Furthermore, if C5 =

Remark 4.4. 1t is a natural problem to determine the edges (one-dimensional faces) of the
cone C. We can prove that, for A, and C,, the edges are precisely the roots of height 2 and
3. However, this is no longer true in the other cases, because a root of height 4 is needed.

5. IRREDUCIBLE REPRESENTATIONS OF SIMPLE LIE ALGEBRAS WITH POLYNOMIAL
ALGEBRAS OF U’-INVARIANTS

In this section, we obtain the list of all irreducible representations of simple Lie algebras
with polynomial algebras of U'-invariants. If G = SL,, then U’ is trivial and so is the
classification problem. Therefore we assume that rk G > 2.

Theorem 5.1. Let G be a connected simple algebraic group with rk G > 2 and R(\) a simple
G-module. The following conditions are equivalent:

(i) k[R(\)]Y" is generated by homogeneous algebraically independent polynomials;
(it) Up to the symmetry of the Dynkin diagram of G, the weight X occurs in Table 1.

For each item in the table, the degrees and weights of homogeneous algebraically inde-
pendent generators are indicated. We use the numbering of simple roots as in [24].

Table 1: The simple G-modules with polynomial algebras of U’-invariants

G A Degrees and weights of homogeneous generators of k[R(\)]"”

A, (r=2) w, (1,zm1), (1,01 — )

Ay w} (1,w9), (2,4), ..., (r — 1, @wa_2), (1,0),

(r=2) (1,09 — aa), (2,04 — )y ..., (r — 1, w092 — Qi2p—2)

A, w} (1,209), (2, @4), ... (r — 1, _a), (1, w2,),

(r=2) (1,09 — ag), (2,04 — ), ..., (7, 02 — Ctay)

B, w1 (1,201), (1,1 — aq),(2,0)

B; w3 (1,w3), (1,3 — a3), (2,0)

B, Wy (1,w4), (1,4 — ), (2,01), (2,501 — 1), (2,0)

B; w5 (1,@s), (1, ms—as), (2,w1), (2, w1—a1), (2, @2), (2, we—as),
(3,w5), (3, ws—as), (4, ws—as), (4, @), (4, ws—ay), (4,0)

C. w1 (1,m1), (1,01 — )

D, (r>4) w (1,20), (1,1 — aq),(2,0)

D; Ws (1,’@4),(1,@4—064),(27731)7(2,@1 —al)
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G A Degrees and weights of homogeneous generators of k[R(\)]""
Dsg e (1,w6), (1, mws—ap), (2, w2), (2, wa—as),

(3, w6), (3, wg—a), (4, ws—ay), (4,0)
Es w1 (1,ws), (1,5 — as), (2,1), (2,01 — 1), (3,0)
E; w1 (1,201), (1, m1—a1), (2, @6), (2, wg—as),

(3,@1), (3, m1—aq), (4, wa—az), (4,0)
F, w1 (1,1), (1, —aq), (2,w01), (2, m1—a1), (3, wa—az), (2,0), (3,0)
G, w1 (1,2), (1,1 —aq),(2,0)

Before starting the proof, we develop some more tools. Let V be a simple G-module.
A posteriori, it appears to be true that if rkG > 1 and k[V]V" is polynomial, then so is
k[V]Y. Therefore our list is contained in Brion’s list of representations with polynomial
algebras k[V]V [4, p.13]. However, we could not find a conceptual proof. The following
is a reasonable substitute:

Proposition 5.2. Suppose that k[V|V" is polynomial and G # SLs. Then k[V|% is polynomial.

Proof. As in Section 3, consider the I'-grading k[V]V" = @ k[V]gl.
vyel
If G # SLs, then TU' is epimorphic and hence k[V]y" = k[V]®. Furthermore, since I

generates a convex cone, @ k[V]]

a minimal system of homogeneous generators for k[V]¢ is a part of a minimal system of

"is a complementary ideal to k[V]¢. In this situation,

homogeneous generators for k[V]V". O

Remark 5.3. For G = SLs, it is not hard to verify that the only representations with polyno-
mial algebras of U’-invariants are R(w;) and R(w,). The reason is that U’ is the maximal
unipotent subgroup of SL, C SLs. Therefore, by classical Roberts” theorem, we have
k[V]V" ~ K[V @ Ry]2, where V is regarded as SL,-module and R, is the tautological
SLy-module. All SLy-modules with polynomial algebras of invariants are known [19,
Theorem 4], and the restriction of the simple S Ls-modules to S L, are easily computed.

Let U, denote a U’-stabiliser of minimal dimension for points in R()A). Recall that
Lemma 2.5 and Remark 2.6 provide effective tools for computing U, and dimU}. If a
ring of invariants 2l is polynomial, then elements of a minimal generating system of  are
said to be basic invariants.

Proposition 5.4. Suppose that k[R(\)]Y" is polynomial and G # SLs. Then

dimR(\) < 2dim(U’/U)) + ﬁ((A, o) +1).

=1

In particular, dim R(\) < 2dim U’ + [['_, (A, o) + 1).



20 D.PANYUSHEV

Proof. We consider k[R(\)] with the usual N-grading by the total degree of polynomial.
Then k[R(\)]V" is I x N-graded, and it has a minimal generating system that consists of
(multi)homogeneous polynomials. Let fi, ..., f; be such a system. By Theorem 3.6(ii), we
have
> deg(fi) = ¢(RN)JU') < q(R(V)) = dimR(N).
On the other hand, s = dim R(\) —dim(U’/U}) and the number of basic invariants of degee
+

1 equals a(\) := [['_,((A, o) + 1). All other basic invariants are of degree > 2, and we

obtain
a(A) + 2(dim R(A\) — dim(U'/U}) — a(N)) = a(A) + 2(s — a(N)) < ¢(RN) JU’) < dim R(A).
Hence dim R(\) < 2dim(U’/U}) + a(N). O
Proof of Theorem 5.1.

(i) = (ii). The list of irreducible representations of simple Lie algebras with polynomial
algebras k[V]¢ is obtained in [11]. By Proposition 5.2, it suffices to prove that the rep-
resentations in [11, Theorem 1] that do not appear in Table 1 cannot have a polynomial
algebra of U’-invariants. The list of representation in question is the following:

I) (AT7 w3)/ r= 67 7a 8/ (A77 w4)/ (A27 3721)/ (BT7 2wl)/ r 2 2/ (DT7 2@1), r > 41 (Bﬁa wb)/
(Ds, ws); (Cy,w2), 1 = 4; (Cy4, w04); the adjoint representations.
II) (As,ws); (Cs,w2); (Cs,w3); (D7, w7); (A, 2w0,).

e For list I), a direct application of Proposition 5.4 yields the conclusion. For instance,
consider R(w3) for A, and r = 6,7, 8. Here a(w;) = 2 and the second inequality in Propo-
sition 5.4 becomes

(r+r(r—-1/6<r(r—1)+2,
which is wrong for r = 6,7,8. The same argument applies to all representations in I),
except (Ag, 3w ). (The SLs-case is explained in Remark 5.3.)

e For list II), the inequality of Proposition 5.4 is true, and more accurate estimates are
needed.
Consider the case (As, w3). Here dimR(w;3) = 20, dimU’ = 10 and U] = {1}. Hence
dim R(w3) /U’ = 10. Assume that R(w3) /U’ ~ A'°. The number of basic invariants of
degree 1 equals a(w3) = 2. It is known that k[R(w3)]“ is generated by a polynomial of
degree 4. This is our third basic invariant. Since we must have Y.°, deg f; < dim R(cww3) =
20, the only possibility is that the other 7 basic invariants are of degree 2. However,
S?(R(w3)) = R(2w3) @ R(w;+ws), which shows that the number of basic invariants of

U

degree 2 is at most dim R(w;+w;)Y" = 4. This contradiction shows that k[R(z3)]Y" cannot

be polynomial. Such an argument also works for (Cs, ws), (Cs, ws), and (D7, w7).

For (A,,2w,), r > 2, we argue as follows. Here the algebra of U-invariants is polyno-
mial, and the degrees and weights of basic U-invariants are (1, 2a), (2, 2w3), . . ., (r, 2w,),
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(r +1,0) [4]. Using Theorem 2.4, we conclude that k[R(2w,)]Y" can be generated by
3r + 1 polynomials whose degrees are 1,1,1;2,2,2;...;r,r,7;r + 1. This set of polyno-
mials can be reduced somehow to a minimal generating system. Here dim R(2w,) /U’ =
dim R(2w,) — dim U’ = 2r + 1. Assume that R(2w,) /U’ ~ A?*!. Then we can remove r
polynomials from the above (non-minimal) generating system such that the sum of de-
grees of the remaining polynomials is at most dim R(2w,) = (r + 1)(r + 2)/2. This means
that the sum of degrees of the r removed polynomials must be at least r(r + 1). Clearly,
this is impossible.

(i) = (i). All representations in Table 1 have a polynomial algebra of U-invariants whose
structure is well-understood. Therefore, using Theorem 2.4 we obtain an upper bound
on the number of generators of k[R(A)]Y". On the other hand, we can easily compute
dim R(A)/U’. In many cases, these two numbers coincide, which immediately proves that
k[R(\)]Y" is polynomial. In the remaining cases, we use a simple procedure that allows us
to reduce the non-minimal generating system provided by Theorem 2.4. This appears to
be sufficient for our purposes.

e For G = D;, the algebra k[R(ws)]Y has two generators whose degrees and weights
are (1,,) and (2, @, ). By Theorem 2.4, k[R(cw5)]Y" can be generated by polynomials of de-
grees and weights (1, w,), (1, ws—au), (2, 1), (2, w1 —a1). On the other hand, the monoid
M(R(ws)) is generated by w;, w,. Therefore a generic stabiliser U, is generated by the
root unipotent subgroups U*?, U**, and U (see Remark 2.6). Hence dimU, = 6 and
dim U] = 3. Thus dim R(ws) /U’ = 16 — 15 4+ 3 = 4 and the above four polynomials freely

generate k[R(zs5)]Y".

The same method works for (A,,w@,); (A,,w,-1); (B,,@1); (C,,w1); (Dy,w1); (B, @,),
r= 374/ (E67 wl)'

There still remain four cases, where this method yields the number of generators that
is one more than dimR(\)/U’. Therefore, we have to prove that one of the functions
provided by Theorem 2.4 can safely be removed. The idea is the following. Suppose
that k[R()\)]Y contains two basic invariants of the same fundamental weight w;, say
p1 ~ (dv,@;), p2 ~ (d2, w;). Consider the corresponding U’-invariant functions pi, ¢, p2, g2,
where g; ~ (d;,w; — «;), j = 1,2. Assuming that p;, ¢; are normalised such that e;-g; = p;,
the polynomial pi1g2 — p2q1 € k[R()\)] appears to be U-invariant, of degree d;+d, and
weight 2w, —a;. If we know somehow that there is a unique U-invariant of such de-
gree and weight, then this U-invariant is not required for the minimal generating sys-
tem of k[R(\)]V". For instance, consider the case (F,, @;). According to Brion [4], the free
generators of k[R(w,)]Y®) are (1, @), (2,@1), (3,@2), (2,0), (3,0). Theorem 2.4 provides a

U’ (Fy

generating system for k[R(cw;)]Y"(F+) that consists of eight polynomials, namely:

(1L,z), (1, —aq), (2, 1), (2, m1—a1), (3, 2), (3, w2—an), (2,0), (3,0).
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Here the weight @, occurs twice and 2w, — «; = w,. Therefore the polynomial (3, w,) can
be removed form this set. Since dim R(zw;) = 26, dim U’ = 20, and dim U, = 1, we have
dimR(w,) /U’ = 7. The other three cases, where it works, are (B;, w5), (D¢, ws), (E7, @1).

This completes the proof of Theorem 5.1. O

Remark 5.5. For a G-module V, let ed(k[V]V") denote the embedding dimension of k[V]V', i.e.,
the minimal number of generators. Since k[V]Y" is Gorenstein, ed(k[V]V") — dim VU’ =
hd(k[V]V") is the homological dimension of k[V/]V" (see [19]). The same argument as in the
proof of (i) = (i) shows that for (Cs, @s), (C3, ws), and (As, w3), we have hd(k[V]Y") < 2.
Hence these Gorenstein algebras of U'-invariants are complete intersections. We can also
prove that k[R(2z,.)]Y"(*) is a complete intersection, of homological dimension 7 — 1. This
means that a postreriori the following is true: If G is simple, V is irreducible, and k[V]Y is
polynomial, then k[VV" is a complete intersection. It would be interesting to realise whether
it is true in a more general situation.

Remark 5.6. There is a unique item in Table 1, where the sum of degrees of the basic
invariants equals dim R(\) or, equivalently, the sum of weights equals 2p — |II|. This is
(Bs,ws). By Theorem 3.6(iii), this is also the only case, where the set of points in R(\)
with non-trivial U’-stabiliser does not contain a divisor.
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