ACTIONS OF THE DERIVED GROUP OF A MAXIMAL UNIPOTENT SUBGROUP ON G-VARIETIES

DMITRI I. PANYUSHEV

INTRODUCTION

The ground field k is algebraically closed and of characteristic zero. Let G be a semisimple simply-connected algebraic group over k and U a maximal unipotent subgroup of G. One of the fundamental invariant-theoretic facts, which goes back to Hadžiev [9], is that k[G/U] is a finitely generated k-algebra and regarded as G-module it contains every finite-dimensional simple G-module exactly once. From this, one readily deduces that the algebra of U-invariants, $k[G/U]^U$, is polynomial. More precisely, choose a maximal torus $T \subset \operatorname{Norm}_G(U)$. Let F be the rank of F0, F1, ..., F2, the fundamental weights of F3 corresponding to F4, and F5, and let F6, denote the simple F6-module with highest weight F6. Then

$$\mathbb{k}[G/U] \simeq \bigoplus_{\lambda \in \mathfrak{X}_+} \mathsf{R}(\lambda).$$

Let f_i be a non-zero element of one-dimensional space $R(\varpi_i)^U \subset k[G/U]^U$. Then $k[G/U]^U$ is freely generated by f_1, \ldots, f_r .

For an affine G-variety X, the algebra of U-invariants, $\mathbb{k}[X]^U$, is multigraded (by T-weights). If X = V is a G-module, then there is an integral formula for the corresponding Poincaré series [4, Theorem 1]. Using that formula, M. Brion discovered useful "symmetries" of the Poincaré series and applied them (in case G is simple) to obtaining the classification of simple G-modules with polynomial algebras $\mathbb{k}[V]^U$ [4, Ch. III]. Afterwards, I proved that similar "symmetries" of Poincaré series occur for conical factorial G-varieties with only rational singularities [16], [17, Ch. 5]. Since there is no integral formula for Poincaré series in general, another technique was employed. Namely, I used the transfer principle for U, "symmetries" of the Poincaré series of $\mathbb{k}[G/U]$, and results of F. Knop relating the canonical module of an algebra and a subalgebra of invariants [13].

Our objective is to extend these results to the derived group U' = (U, U). In Section 1, we prove that $R(\lambda)^{U'}$ is a cyclic U/U'-module for any $\lambda \in \mathfrak{X}_+$ and $\dim R(\lambda)^{U'} = \prod_{i=1}^r ((\lambda, \alpha_i^\vee) + 1)$, where $\alpha_i^\vee = 2\alpha_i/(\alpha_i, \alpha_i)$, see Theorem 1.6. From these properties, we deduce that $\mathbb{k}[G/U]^{U'}$ is a polynomial algebra of Krull dimension 2r. More precisely, we have $\dim R(\varpi_i)^{U'} = 2$ for each i, and if (f_i, \tilde{f}_i) is a basis in $R(\varpi_i)^{U'}$, then $\{f_i, \tilde{f}_i \mid i = 1, \ldots, r\}$

freely generate $\mathbb{k}[G/U]^{U'}$ (see Theorem 1.8). This fact seems to have remained unnoticed before. As a by-product, we show that the subgroup $TU' \subset G$ is epimorphic (i.e., $\mathbb{k}[G]^{TU'} = \mathbb{k}$) if and only if $G \neq SL_2, SL_3$.

Section 2 is devoted to general properties of U'-actions on affine G-varieties. We show that $\Bbbk[G/U']$ is generated by fundamental G-modules sitting in it, and using this fact we explicitly construct an equivariant affine embedding of G/U' with the boundary of codimension $\geqslant 2$ (Theorem 2.2). Since $\Bbbk[G/U']$ is finitely generated, $\Bbbk[X]^{U'}$ is finitely generated for any affine G-variety X [8]. Furthermore, $\operatorname{Spec}(\Bbbk[X]^{U'})$ inherits some other good properties of X (factoriality, rationality of singularities) (Theorem 2.3). We also give an algorithm for constructing a finite generating system of $\Bbbk[X]^{U'}$, if generators of $\Bbbk[X]^U$ are already known (Theorem 2.4). This appears to be very helpful in classifying simple G-modules with polynomial algebras of U'-invariants (for G simple).

In Section 3, we study the Poincaré series of multigraded algebras $\mathbb{k}[X]^{U'}$, where X is factorial affine G-variety with only rational singularities (e.g. X can be a G-module). Assuming that $G \neq SL_2, SL_3$, we obtain analogues of our results for Poincaré series of $\mathbb{k}[X]^U$. One of the practical outcomes concerns the case in which V is a G-module and $\mathbb{k}[V]^U$ is polynomial. If d_1,\ldots,d_m (resp. μ_1,\ldots,μ_m) are the degrees (resp. T-weights) of basic U'-invariants, then $\sum_i d_i \leqslant \dim V$ and $\sum_i \mu_i \leqslant 2\rho - \sum_{j=1}^r \alpha_j$, where $\rho = \sum_{j=1}^r \varpi_j$. The second inequality requires some explanations, though. Unlike the case of U-invariants, there is no natural free monoid containing the T-weights of all U'-invariants. But for $G \neq SL_2, SL_3$, these T-weights generate a convex cone. Therefore, such a free monoid does exist, and the above inequality for $\sum_i \mu_i$ is understood as componentwise inequality with respect to any such monoid and its basis. Moreover, $\sum_i d_i = \dim V$ if and only if $\sum_i \mu_i = 2\rho - \sum_{j=1}^r \alpha_j$. Again, these relations are to be useful for our classification of polynomial algebras $\mathbb{k}[V]^{U'}$, which is obtained in Section 5. Note that $2\rho - \sum_{j=1}^r \alpha_j$ is the sum of all positive non-simple roots, i.e., the roots of U'.

Section 4 is a kind of combinatorial digression. Let \mathcal{C} be the cone generated by all T-weights occurring in $\mathbb{k}[G/U]^{U'}$. Our description of generators shows that \mathcal{C} is actually generated by $\varpi_i, \varpi_i - \alpha_i$ ($i = 1, \ldots, r$). We prove that the dual cone of \mathcal{C} is generated by the non-simple positive roots (Theorem 4.2). We also obtain a partition of \mathcal{C} in simplicial cones, which is parametrised by the disjoint subsets on the Dynkin diagram of G.

My motivation to consider U'-invariants arose from attempts to understand the structure of centralisers of certain nilpotent elements in simple Lie algebras. For applications to centralisers one needs Theorem 1.6 in case of SL_3 , and this was the result initially proved. This application will be the subject of a subsequent article.

<u>Notation</u>. If an algebraic group Q acts on an irreducible affine variety X, then

• $Q_x = \{q \in Q \mid q \cdot x = x\}$ is the stabiliser of $x \in X$;

- $\mathbb{k}[X]^Q$ is the algebra of Q-invariant polynomial functions on X. If $\mathbb{k}[X]^Q$ is finitely generated, then $X/\!\!/ Q := \operatorname{Spec}(\mathbb{k}[X]^Q)$, and the *quotient morphism* $\pi_{X,Q} : X \to X/\!\!/ Q$ is the mapping associated with the embedding $\mathbb{k}[X]^Q \hookrightarrow \mathbb{k}[X]$.
 - $\mathbb{k}(X)^Q$ is the field of *Q*-invariant rational functions;

Throughout, G is a semisimple simply-connected algebraic group and $r = \operatorname{rk} G$.

- Δ is the root system of (G,T), $\Pi = \{\alpha_1, \ldots, \alpha_r\}$ are the simple roots corresponding to U, and $\varpi_1, \ldots, \varpi_r$ are the corresponding fundamental weights.
- The character group of T is denoted by \mathfrak{X} . All roots and weights are regarded as elements of the r-dimensional vector space $\mathfrak{X} \otimes \mathbb{Q} =: \mathfrak{X}_{\mathbb{Q}}$. For any $\lambda \in \mathfrak{X}_+$, λ^* is the highest weight of the dual G-module. The μ -weight space of $\mathsf{R}(\lambda)$ is denoted by $\mathsf{R}(\lambda)_{\mu}$.

Acknowledgements. This work was done during my stay at the Max-Planck-Institut für Mathematik (Bonn). I am grateful to this institution for the warm hospitality and support.

1. The algebra of
$$U'$$
-invariants on G/U

For any $\lambda \in \mathfrak{X}_+$, we wish to study the subspace $\mathsf{R}(\lambda)^{U'}$. First of all, we notice that $B \subset \mathsf{Norm}_G(U')$ (actually, they are equal if G has no simple factors SL_2) and therefore $\mathsf{R}(\lambda)^{U'}$ is a B/U'-module. In particular, T normalises U' and hence $\mathsf{R}(\lambda)^{U'}$ is a direct sum of its own weight spaces. Let $\mathfrak{P}(\lambda)$ be the set of weights of $\mathsf{R}(\lambda)$. It is a poset with respect to the *root order*. This means that μ covers ν if $\mu - \nu \in \Pi$. Then λ is the unique maximal element of $\mathfrak{P}(\lambda)$. Let $e_i \in \mathfrak{g} = \mathrm{Lie}(G)$ be a root vector corresponding to $\alpha_i \in \Pi$.

Given a nonzero $x \in R(\lambda)^{U'}$, consider

$$M_x = \{(n_1, \dots, n_r) \in \mathbb{N}^r \mid e_1^{n_1} \dots e_r^{n_r}(x) \neq 0\}.$$

We also write $\mathbf{n}=(n_1,\ldots,n_r)$ and $\mathbf{e}^{\mathbf{n}}=e_1^{n_1}\ldots e_r^{n_r}$. Notice that $\mathbf{e}^{\mathbf{n}}(x)$ does not depend on the ordering of e_i 's since $[e_i,e_j]\in \mathrm{Lie}\,(U')$ for all i,j and $\mathsf{R}(\lambda)^{U'}$ is an U/U'-module. We regard M_x as poset with respect to the componentwise inequalities, i.e., $\mathbf{n}\succcurlyeq\mathbf{n}'$ if and only if $n_i\geqslant n_i'$ for all i. Clearly, M_x is finite and $(0,\ldots,0)$ is the unique minimal element of it.

Lemma 1.1. Let $x \in R(\lambda)^{U'}$ be a weight vector. The poset M_x contains a unique maximal element, say $\mathbf{m} = (m_1, \dots, m_r)$. Furthermore, $\mathbf{e}^{\mathbf{m}}(x)$ is a highest vector of $R(\lambda)$.

Proof. If $n \in M_x$ is maximal, then $e_i(e^n(x)) = 0$ for each i. Hence $e^n(x)$ is a highest vector of $R(\lambda)$. Next,

the weight of
$$e^{n}(x) = (\text{the weight of } x) + \sum_{i=1}^{r} n_{i}\alpha_{i}$$
.

Hence all nonzero vectors of the form $e^{n}(x)$ are linearly independent. This yields the uniqueness of a maximal element.

Corollary 1.2. M_x is a multi-dimensional array, i.e., $M_x = \{(n_1, \dots, n_r) \mid 0 \leqslant n_i \leqslant m_i \ \forall i\}.$

Let I_{λ} denote the set of T-weights in $R(\lambda)^{U'}$. It is a subset of $\mathcal{P}(\lambda)$.

Proposition 1.3. For any $\lambda \in \mathfrak{X}_+$, $\mathsf{R}(\lambda)^{U'}$ is a multiplicity free T-module. More precisely,

$$\mathsf{R}(\lambda)^{U'} = \bigoplus_{\mu \in I_{\lambda}} \mathsf{R}(\lambda)_{\mu}^{U'} \,,$$

where dim $R(\lambda)_{\mu}^{U'}=1$ for each μ and $I_{\lambda}\subset\{\lambda-\sum_{i}a_{i}\alpha_{i}\mid 0\leqslant a_{i}\leqslant(\lambda,\alpha_{i}^{\vee})\}.$

Proof. If $x \in \mathsf{R}(\lambda)^{U'}_{\mu}$ and (m_1, \ldots, m_r) is the maximal element of M_x , then $\mu + \sum_i m_i \alpha_i = \lambda$ and $\mu + \sum_i n_i \alpha_i \in \mathcal{P}(\lambda)$ for any $(n_1, \ldots, n_r) \in M_x$. In particular, $\lambda - m_i \alpha_i \in \mathcal{P}(\lambda)$. Whence $m_i \leq (\lambda, \alpha_i^{\vee})$ and $I_{\lambda} \subset \{\lambda - \sum_i a_i \alpha_i \mid 0 \leq a_i \leq (\lambda, \alpha_i^{\vee})\}$.

Assume that $x, y \in \mathsf{R}(\lambda)^{U'}_{\mu}$ are linearly independent. It follows from Lemma 1.1 that $M_x = M_y$. Since $e^{\mathbf{m}}(x), e^{\mathbf{m}}(y) \in \mathsf{R}(\lambda)_{\lambda}$, we have $e^{\mathbf{m}}(x - cy) = 0$ for some $c \in \mathbb{k}^{\times}$. This means that $M_{x-cy} \neq M_x$, a contradiction! Thus, each $\mathsf{R}(\lambda)^{U'}_{\mu}$ is one-dimensional.

Lemma 1.4. I_{λ} is a connected subset in the Hasse diagram of $\mathfrak{P}(\lambda)$ that contains λ .

Proof. Indeed, suppose $0 \neq v \in \mathsf{R}(\lambda)^{U'}_{\mu}$. If $e_{\alpha_i} \cdot v = 0$ for all i, then v is a U-invariant and hence $\mu = \lambda$. Otherwise, we have $e_{\alpha_i} \cdot v \neq 0$ for some i and therefore $\mu + \alpha_i$ is also a weight of $\mathsf{R}(\lambda)^{U'}$. Then we argue by induction.

Proposition 1.5. For any fundamental weight ϖ_i , we have $R(\varpi_i)^{U'} = R(\varpi_i)_{\varpi_i} \oplus R(\varpi_i)_{\varpi_i - \alpha_i}$. In particular, $I_{\varpi_i} = \{\varpi_i, \varpi_i - \alpha_i\}$ and $\dim R(\varpi_i)^{U'} = 2$.

Proof. Note that $\varpi_i - \alpha_i \in \mathcal{P}(\varpi_i)$ and $\dim \mathsf{R}(\varpi_i)_{\varpi_i - \alpha_i} = 1$, while $\varpi_i - 2\alpha_i \notin \mathcal{P}(\varpi_i)$. We obviously have $\mathsf{R}(\varpi_i)^{U'} \supset \mathsf{R}(\varpi_i)_{\varpi_i} \oplus \mathsf{R}(\varpi_i)_{\varpi_i - \alpha_i}$. Any weight of $\mathsf{R}(\varpi_i)$ covered by $\varpi_i - \alpha_i$ is of the form $\varpi_i - \alpha_i - \alpha_j$, where α_j is a simple root adjacent to α_i in the Dynkin diagram of G. Since $\varpi_i - \alpha_j \notin \mathcal{P}(\varpi_i)$, Kostant's weight multiplicity formula shows that $\dim \mathsf{R}(\varpi_i)_{\varpi_i - \alpha_i - \alpha_j} = 1$. Since $\alpha_i + \alpha_j$ is a root of U', we have $\mathsf{R}(\varpi_i)_{\varpi_i - \alpha_i - \alpha_j} \notin \mathsf{R}(\varpi_i)^{U'}$ and it follows from Lemma 1.4 that there cannot be anything else in $\mathsf{R}(\varpi_i)^{U'}$.

Set $\tilde{X} = \operatorname{Spec}(\mathbb{k}[G]^U)$. It is an affine G-variety containing G/U as a dense open subset. Recall that \tilde{X} has the following explicit model, see [25]. Let $v_{-\varpi_i}$ be a lowest weight vector in $\mathsf{R}(\varpi_i)^*$. Then the stabiliser of $(v_{-\varpi_1},\ldots,v_{-\varpi_r})\in\mathsf{R}(\varpi_1)^*\oplus\ldots\oplus\mathsf{R}(\varpi_r)^*$ is the maximal unipotent subgroup that is opposite to U and

$$\tilde{X} \simeq \overline{G \cdot (v_{-\varpi_1}, \dots, v_{-\varpi_r})} \subset \mathsf{R}(\varpi_1)^* \oplus \dots \oplus \mathsf{R}(\varpi_r)^*$$
.

Let $p_i: \tilde{X} \to \mathsf{R}(\varpi_i)^*$ be the projection to the *i*-th component. Then the pull-back of the linear functions on $\mathsf{R}(\varpi_i)^*$ yields the unique copy of the *G*-module $\mathsf{R}(\varpi_i)$ in $\Bbbk[\tilde{X}]$. The additive decomposition $\Bbbk[\tilde{X}] = \bigoplus_{\lambda \in \mathfrak{X}_+} \mathsf{R}(\lambda)$ is a polygrading; i.e., if $f_i \in \mathsf{R}(\lambda_i) \subset \Bbbk[\tilde{X}]$, i = 1, 2, then $f_1 f_2 \in \mathsf{R}(\lambda_1 + \lambda_2)$.

Definition 1. Let Q be an algebraic group with Lie algebra \mathfrak{q} . A Q-module V is said to be *cyclic* if there is $v \in V$ such that $\mathcal{U}(\mathfrak{q}) \cdot v = V$, where $\mathcal{U}(\mathfrak{q})$ is the enveloping algebra of \mathfrak{q} . Such v is called a *cyclic vector*.

Theorem 1.6. For any $\lambda \in \mathfrak{X}_+$, we have

- (i) $I_{\lambda} = \{\lambda \sum_{i=1}^{r} a_i \alpha_i \mid 0 \leqslant a_i \leqslant (\lambda, \alpha_i^{\vee})\};$
- (ii) $R(\lambda)^{U'}$ is a cyclic U/U'-module of dimension $\prod_{i=1}^{r}((\lambda, \alpha_i^{\vee}) + 1)$. Up to a scalar multiple, there is a unique cyclic vector that is a T-eigenvector.

Proof. In view of Lemma 1.1 and Proposition 1.3, it suffices to prove that $R(\lambda)^{U'}$ contains a vector of weight $\lambda - \sum_{i=1}^r (\lambda, \alpha_i^\vee) \alpha_i$. This vector have to be cyclic, because applying the e_i 's to it we obtain weight vectors with all weights from $\{\lambda - \sum_{i=1}^r a_i \alpha_i \mid 0 \leqslant a_i \leqslant (\lambda, \alpha_i^\vee)\}$, hence the whole of $R(\lambda)^{U'}$.

Let \tilde{f}_i be a nonzero vector in one-dimensional space $\mathsf{R}(\varpi_i)_{\varpi_i-\alpha_i}$. Using the unique copy of $\mathsf{R}(\varpi_i)$ inside $\Bbbk[\tilde{X}]$, we regard \tilde{f}_i as U'-invariant polynomial function on \tilde{X} . Take the product (monomial) $F:=\prod_{i=1}^r \tilde{f}_i^{(\lambda,\alpha_i^\vee)}\in \Bbbk[\tilde{X}]$. Since $\Bbbk[\tilde{X}]$ is a domain, $F\neq 0$. The multiplicative structure of $\Bbbk[\tilde{X}]$ shows that $F\in \mathsf{R}(\lambda)^{U'}$ and the weight of F equals $\sum_{i=1}^r (\lambda,\alpha_i^\vee)(\varpi_i-\alpha_i)=\lambda-\sum_{i=1}^r (\lambda,\alpha_i^\vee)\alpha_i$.

Remark 1.7. For the group $TU' \subset B$, we have $\dim TU' = \dim U$. It is well known that TU' is a spherical subgroup of G (e.g. apply [5, Prop. 1.1]). The sphericity also follows from the fact $\mathsf{R}(\lambda)^{U'}$ is a multiplicity free T-module (Proposition 1.3). That $\mathsf{R}(\lambda)^{U'}$ is a multiplicity free T-module follows also from [10, Corollary 8]. However, we obtain the explicit description of the corresponding weights and the U/U'-module structure of $\mathsf{R}(\lambda)^{U'}$.

Theorem 1.8. Let f_i (resp. \tilde{f}_i) be a nonzero vector in one-dimensional space $R(\varpi_i)_{\varpi_i}$ (resp. $R(\varpi_i)_{\varpi_i-\alpha_i}$). Then the algebra of U'-invariants, $k[G/U]^{U'}$, is freely generated by $f_1, \tilde{f}_1, \ldots, f_r, \tilde{f}_r$.

Proof. It follows from (the proof of) Theorem 1.6 that the monomials $\prod_{i=1}^r f_i^{c_i} \tilde{f}_i^{(\lambda,\alpha_i^\vee)-c_i}$, $0 \leqslant c_i \leqslant (\lambda,\alpha_i^\vee)$, form a basis for $\dim \mathsf{R}(\lambda)^{U'}$ for each $\lambda \in \mathfrak{X}_+$. Hence $\Bbbk[G/U]^{U'}$ is generated by $f_1,\tilde{f}_1,\ldots,f_r,\tilde{f}_r$. Since U' is unipotent and $\dim(G/U)-\dim U'=2r$, the Krull dimension of $\Bbbk[G/U]^{U'}$ is at least 2r. Hence there is no relations between the above generators. \square

Recall that a closed subgroup $H \subset G$ is said to be *epimorphic* if $\mathbb{k}[G/H] = \mathbb{k}$ or, equivalently, $\mathsf{R}(\lambda)^H = \{0\}$ unless $\lambda = 0$, see e.g. [8, § 23B].

Proposition 1.9. Suppose G is simple. The subgroup TU' is epimorphic if and only if $G \neq SL_2$ or SL_3 .

Proof. The case of SL_2 is obvious, so we assume that $r \geqslant 2$. In view of Theorem 1.8, we have to check that neither of the monomials $\prod_{i=1}^r (f_i^{c_i} \tilde{f}_i^{(\lambda, \alpha_i^\vee) - c_i})$, $0 \leqslant c_i \leqslant (\lambda, \alpha_i^\vee)$, has zero weight if $G \neq SL_3$. The weight in question equals

$$\mu := \sum_{i=1}^r (\lambda, \alpha_i^{\vee}) \varpi_i - \sum_{i=1}^r c_i \alpha_i .$$

Set $\rho^{\vee} = \frac{1}{2} \sum_{\gamma \in \Delta^+} \gamma^{\vee}$. Then $(\mu, \rho^{\vee}) = \sum_{i=1}^r (\lambda, \alpha_i^{\vee})(\varpi_i, \rho^{\vee}) - \sum_{i=1}^r c_i$. Notice that

$$2(\varpi_i, \rho^{\vee}) = \sum_{\gamma \in \Delta^+} (\varpi_i, \gamma^{\vee}) \geqslant \#\{\gamma \in \Delta^+ \mid (\gamma, \varpi_i) > 0\}.$$

That is, $2(\varpi_i, \rho^{\vee})$ is at least the dimension of the nilpotent radical of the maximal parabolic subalgebra corresponding to ϖ_i . This readily implies that $(\varpi_i, \rho^{\vee}) > 1$ for all i whenever $\mathfrak{g} \neq \mathfrak{sl}_3$. Whence (μ, ρ^{\vee}) is positive.

For SL_3 , the monomial $(\tilde{f}_1\tilde{f}_2)^a$ has zero weight. That is, $R(a(\varpi_1 + \varpi_2))^{TU'} \neq \{0\}$.

Remark 1.10. If $G = SL_3$, then TU' is a Borel subgroup of a reductive subgroup $GL_2 \subset SL_3$. Proposition 1.9 can also be deduced from a result of Pommerening [18, Korollar 3.6].

Example 1.11. Let U_n be a maximal unipotent subgroup of $G = SL_n$ and let U_{n-1} be a maximal unipotent subgroup of a standardly embedded group $SL_{n-1} \subset SL_n$. It is well known that $\mathbb{k}[SL_n/U_n]^{U_{n-1}}$ is a polynomial algebra of Krull dimension 2(n-1) and its generators have a simple description, see e.g. [1, Sect. 3]. The reason is that SL_n/U_n is a spherical SL_{n-1} -variety and the branching rule $SL_n \downarrow SL_{n-1}$ is rather simple. That is, $\mathbb{k}[SL_n/U_n]^{U_{n-1}}$ and $\mathbb{k}[SL_n/U_n]^{U'_n}$ are polynomial rings of the same dimension, and also $\dim U_{n-1} = \dim U'_n$. However, the subgroups U'_n , $U_{n-1} \subset SL_n$ are essentially different unless n=2,3.

2. Some properties of algebras of U'-invariants

The main result of Section 1 says that $\mathbb{k}[G/U]^{U'}$ is a polynomial algebra of Krull dimension 2r. This can also be understood in the other way around, since $\mathbb{k}[G/U]^{U'}$ and $\mathbb{k}[G/U']^U$ are canonically isomorphic. Indeed, for any closed subgroup $H \subset G$, we regard $\mathbb{k}[G/H]$ as subalgebra of $\mathbb{k}[G]$:

$$\Bbbk[G/H] = \{f \in \Bbbk[G] \mid f(gh) = f(g) \text{ for any } g \in G, h \in H\}.$$

Any subgroup of G acts on G/H by left translations. Therefore

$$\mathbb{k}[G/U]^{U'} \simeq \{ f \in \mathbb{k}[G] \mid f(u_1 g u_2) = f(g) \text{ for any } g \in G, u_1 \in U', u_2 \in U \},$$

 $\mathbb{k}[G/U']^U \simeq \{ f \in \mathbb{k}[G] \mid f(u_2 g u_1) = f(g) \text{ for any } g \in G, u_1 \in U', u_2 \in U \}.$

The involutory mapping $(f \in \mathbb{k}[G]) \mapsto \hat{f}$, where $\hat{f}(g) = f(g^{-1})$, takes $\mathbb{k}[G/U]^{U'}$ to $\mathbb{k}[G/U']^U$, and vice versa.

One can deduce some properties of k[G/U'] using the known structure of $k[G/U']^U$. Set $\mathcal{A} = \mathbb{k}[G/U']$. It is a rational *G*-algebra, which can be decomposed as *G*-module:

$$\mathcal{A} = \bigoplus_{\lambda \in \mathfrak{X}_+} m_{\lambda, \mathcal{A}} \mathsf{R}(\lambda).$$

By Frobenius reciprocity, the multiplicity $m_{\lambda,\mathcal{A}}$ is equal to dim $R(\lambda^*)^{U'}$. Therefore, it is finite. In our situation,

$$\dim \mathsf{R}(\lambda^*)^{U'} = \dim \mathsf{R}(\lambda)^{U'} = \prod_{i=1}^r ((\lambda, \alpha_i^{\vee}) + 1).$$

In particular, $m_{\varpi_i,A} = 2$ for any i. One can also argue as follows.

The group $G \times G$ acts on G by left and right translations and the decomposition of $\mathbb{k}[G]$ as $G \times G$ -module is of the form:

$$\mathbb{k}[G] = \bigoplus_{\lambda \in \mathfrak{X}_+} \mathsf{R}(\lambda^*) \otimes \mathsf{R}(\lambda) \;,$$

where the first (resp. second) copy of G in $G \times G$ acts on the first (resp. second) factor of tensor product in each summand [14, Ch. 2, § 3, Theorem 3]. Then

(2·1)
$$\mathcal{A} = \mathbb{k}[G/U'] = \bigoplus_{\lambda \in \mathfrak{X}_{+}} \mathsf{R}(\lambda^{*}) \otimes \mathsf{R}(\lambda)^{U'},$$
(2·2)
$$\mathcal{A}^{U} = \bigoplus_{\lambda \in \mathfrak{X}_{+}} \mathsf{R}(\lambda^{*})^{U} \otimes \mathsf{R}(\lambda)^{U'}.$$

(2·2)
$$\mathcal{A}^{U} = \bigoplus_{\lambda \in \mathfrak{X}_{+}} \mathsf{R}(\lambda^{*})^{U} \otimes \mathsf{R}(\lambda)^{U'}$$

In this context, Theorem 1.8 asserts that any basis of the 2r-dimensional vector space $\bigoplus_{i=1}^r \mathsf{R}(\varpi_i^*)^U \otimes \mathsf{R}(\varpi_i)^{U'}$ freely generates the polynomial algebra \mathcal{A}^U . It is known that k[G/U'] is finitely generated (see [7, Theorem 7]). Below, we obtain a more precise assertion.

Lemma 2.1. A is generated by the copies of fundamental G-modules, i.e., by the subspace $\bigoplus_{i=1}^r \mathsf{R}(\varpi_i^*) \otimes \mathsf{R}(\varpi_i)^{U'}$.

Proof. We know that $\mathcal{A}^U = \mathbb{k}[G/U']^U$ is a polynomial algebra, generated by 2r functions. Using Equations (2·1) and (2·2), one sees that the generators of \mathcal{A}^U are just the highest vectors of all fundamental G-module sitting in A. It follows that the subalgebra of Agenerated by all fundamental G-modules is G-stable and contains the highest vectors of all simple G-modules inside A. Hence it is equal to A.

For a quasi-affine G/H, it is known that $\mathbb{k}[G/H]$ is finitely generated if and only if there is a G-equivariant embedding $i: G/H \to V$, where V is a finite-dimensional G-module, such that the boundary of i(G/H) is of codimension ≥ 2 [8, § 4]. As U' is unipotent, G/U'is quasi-affine. Hence such an embedding of G/U' exists and, making use of Lemma 2.1, we explicitly construct it.

Recall that f_i and \tilde{f}_i are nonzero weight vectors in $R(\varpi_i)_{\varpi_i}$ and $R(\varpi_i)_{\varpi_i-\alpha_i}$, respectively.

Theorem 2.2. Let $p = (f_1, \tilde{f}_1, \dots, f_r, \tilde{f}_r) \in 2R(\varpi_1) \oplus \dots \oplus 2R(\varpi_r)$. Then

- (i) $G_p = U'$;
- (ii) $\mathbb{k}[\overline{G \cdot p}] = \mathbb{k}[G/U']$ and $\overline{G \cdot p} \simeq \operatorname{Spec}(A)$ is normal;
- (iii) $\operatorname{codim}(\overline{G \cdot p} \setminus G \cdot p) \geqslant 2$.

Proof. Part (i) is obvious. Then $G \cdot p \simeq G/U'$ and hence $\mathcal{B} := \mathbb{k}[\overline{G \cdot p}]$ is a subalgebra of \mathcal{A} . By the very construction, $m_{\varpi_i,\mathcal{B}} \geqslant 2$. (Consider different non-trivial projections $\overline{G \cdot p} \to \mathbb{R}(\varpi_i)$ for all i.) Since $m_{\varpi_i,\mathcal{B}} \leqslant m_{\varpi_i,\mathcal{A}} = 2$ and \mathcal{A} is generated by the fundamental G-modules, we must have $\mathcal{B} = \mathcal{A}$. This yields the rest.

Let X be an algebraic variety equipped with a regular action of G. Then X is said to be a G-variety. The "transfer principle" ([3, Ch. 1], [20, § 3], [8, § 9]) asserts that

$$\mathbb{k}[X]^H \simeq (\mathbb{k}[X] \otimes \mathbb{k}[G/H])^G$$

for any affine G-variety X and any subgroup $H \subset G$. In particular, if $\Bbbk[G/H]$ is finitely generated, then so is $\Bbbk[X]^H$. In view of Lemma 2.1, this applies to H = U', hence $\Bbbk[X]^{U'}$ is always finitely-generated. Moreover, the polynomiality of $\Bbbk[G/U']^U$ implies that $\Bbbk[X]^{U'}$ inherits a number of other good properties from $\Bbbk[X]$. Recall that $\mathrm{Spec}(\Bbbk[X]^{U'})$ is denoted by $X/\!\!/U'$; hence $\Bbbk[X/\!\!/U']$ and $\Bbbk[X]^{U'}$ are the same objects.

We often use below the notion of a *variety with rational singularities*. Let us provide some relevant information for the affine case.

- a) If $\phi: \tilde{X} \to X$ is a resolution of singularities, then X is said to have rational singularities if $H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}) = \Bbbk[X]$ and $H^i(\tilde{X}, \mathcal{O}_{\tilde{X}}) = 0$ for $i \geqslant 1$. In particular, X is necessarily normal.
- b) If X has only rational singularities and G is a reductive group acting on X, then $X/\!\!/ G$ has only rational singularities (Boutot [2]).
- c) If X has only rational singularities, then X is Cohen-Macaulay (Kempf [12]). It follows that if X is factorial and has rational singularities, then X is Gorenstein.

Theorem 2.3. Let X be an irreducible affine G-variety. If X has only rational singularities, then so has $X/\!\!/U'$. Furthermore, if X is factorial, then $X/\!\!/U'$ is factorial, too.

Proof. This is a straightforward consequence of known technique. Since $\mathbb{k}[G/U']^U$ is a polynomial algebra, G/U' has rational singularities by Kraft's theorem [3, Theorem 1.6], [20]. By the transfer principle for H = U', we have $X/U' \simeq (X \times (G/U'))/G$. Applying Boutot's theorem [2] to the right-hand side, we conclude that X/U' has rational singularities. The second assertion stems from the fact that U' has no non-trivial rational characters.

We have $\mathbb{k}[X]^U \subset \mathbb{k}[X]^{U'}$, and both algebras are finitely generated. Assuming that generators of $\mathbb{k}[X]^U$ are known, we obtain a finite set of generators for $\mathbb{k}[X]^{U'}$, as follows.

Theorem 2.4. Suppose that f_1, \ldots, f_m is a set of T-homogeneous generators of $\mathbb{k}[X]^U$ and the weight of f_i is λ_i . (That is, there is a G-submodule $\mathbb{V}_i \subset \mathbb{k}[X]$ such that $\mathbb{V}_i \simeq \mathsf{R}(\lambda_i)$ and $f \in (\mathbb{V}_i)^U$.) Then the union of bases of the spaces $(\mathbb{V}_i)^{U'}$, $i = 1, \ldots, m$, generate $\mathbb{k}[X]^{U'}$. In particular, $\mathbb{k}[X]^{U'}$ is generated by at most $\sum_{i=1}^m \prod_{j=1}^r \left((\lambda_i, \alpha_j^{\vee}) + 1 \right)$ functions.

Proof. Let \mathcal{B} be the algebra generated by the spaces $(\mathbb{V}_i)^{U'}$. Clearly, \mathcal{B} is B/U'-stable and contains $\mathbb{k}[X]^U$. Hence it meets every simple G-submodule of $\mathbb{k}[X]$. Therefore, it is sufficient to prove that \mathcal{B} contains U/U'-cyclic vectors of all simple G-submodules.

We argue by induction on the root order ' \preccurlyeq ' on the set of dominant weights. Let $c_i \in (\mathbb{V}_i)^{U'}$ be the unique U/U'-cyclic weight vector. By definition, $c_i \in \mathcal{B}$. We normalise f_i and c_i such that $E(\lambda_i)(c_i) = f_i$, where the operator $E(\lambda)$, $\lambda \in \mathfrak{X}_+$, is defined by $E(\lambda) := \prod_{i=1}^r e_i^{(\lambda,\alpha_i^\vee)}$. Assume that for any simple G-module $\mathbb W$ of type $\mathsf R(\mu)$ occurring in k[X], with $\mu \prec \lambda$, the cyclic vector of \mathbb{W} belong to \mathcal{B} . Consider an arbitrary simple submodule $\mathbb{V} \subset \mathbb{k}[X]$ of type $\mathsf{R}(\lambda)$. Take a polynomial P in m variables such that $f=P(f_1,\ldots,f_m)$ is a highest vector of \mathbb{V} . Without loss of generality, we may assume that every monomial of P is of weight λ . We claim that $P(c_1,\ldots,c_m)\neq 0$. Indeed, it is easily seen that $E(\lambda)P(c_1,\ldots,c_m)=P\big(E(\lambda_1)(c_1),\ldots,E(\lambda_m)(c_m)\big)=f$. The last equality does not guarantee us that $P(c_1,\ldots,c_m)\in\mathbb{V}$. However, this means that the projection of this element to \mathbb{V} is well-defined and it must be a U/U'-cyclic vector of \mathbb{V} , say c. More precisely, $P(c_1, \ldots, c_m) = c + \tilde{c}$, where \tilde{c} belong to a sum of simple submodules of types $R(\nu_i)$ with $\nu_i \prec \lambda$. If P is a monomial, then this follows from the uniqueness of the Cartan component in tensor products. In our case, the Cartan component of the tensor product associated with every monomial of P is $R(\lambda)$, which easily yields the general assertion. By definition, $P(c_1, \ldots, c_m) \in \mathcal{B}$, and by the induction assumption, $\tilde{c} \in \mathcal{B}$. Thus, $c \in \mathcal{B}$.

This theorem provides a good upper bound on the number of generators of $\mathbb{k}[X]^{U'}$. However, it is not always the case that a minimal generating system of $\mathbb{k}[X]^U$ is a part of a minimal generating system of $\mathbb{k}[X]^{U'}$. (See examples in Section 5.)

Since U' has no rational characters, $\dim X/\!\!/U' = \operatorname{trdeg} \mathbb{k}(X)^{U'} = \dim X - \dim U' + \min_{x \in X} \dim(U')_x$. To compute the last quantity, we use the existence of a generic stabiliser for U-actions on irreducible G-varieties [6, Thm. 1.6].

Lemma 2.5. Let U_{\star} be a generic stabiliser for (U:X). Then $\min_{x\in X}\dim(U')_x=\dim(U_{\star}\cap U')$.

Proof. Let $\Psi \subset X$ be a dense open subset of generic points, i.e., U_x is U-conjugate to U_* for any $x \in \Psi$. Since U' is a normal subgroup, $U_x \cap U'$ is also U-conjugate to $U_* \cap U'$. Thus, all U'-orbits in Ψ are of dimension $\dim U' - \dim(U_* \cap U')$.

Remark 2.6. 1) If X is (quasi)affine, then one can choose U_{\star} in a canonical way. Let $\mathcal{M}(X)$ be the monoid of highest weight of all simple G-modules occurring in $\mathbb{k}[X]$. Then U_{\star} is the product of all root unipotent subgroup U^{μ} ($\mu \in \Delta^{+}$) such that ($\mu, \mathcal{M}(X)$) = 0 [17, Ch. 1, § 3]. Equivalently, U_{\star} is generated by the simple root unipotent subgroups $U^{\alpha_{i}}$ such that $(\alpha_{i}, \mathcal{M}(X)) = 0$. It follows that $U_{\star} \cap U' = (U_{\star}, U_{\star})$. This also means that if $\mathcal{M}(X)$ is known, then $\min_{x \in X} \dim(U')_{x}$ can effectively be computed.

2) The group U_{\star} is a maximal unipotent subgroup of a generic stabiliser for the diagonal G-action on $X \times X^*$ [17, Theorem 1.2.2]. Here X^* is the so-called *dual G-variety*. It coincides with the dual G-module, if X is a G-module. Using tables of generic stabilisers for representations of G, one can again compute U_{\star} and (U_{\star}, U_{\star}) .

3. Poincaré series of multigraded algebras of U'-invariants

Let X be an irreducible affine G-variety. (Eventually, we impose other constraints on X.) Since T normalises U', it acts on $X/\!\!/ U'$ and the algebra $\mathbb{k}[X]^{U'}$ acquires a multigrading (by T-weights). Our objective is to describe some properties of the corresponding Poincaré series. Before we stick to considering U'-invariants, let us give a brief outline of notation and results to be used below.

Let \mathcal{R} be a finitely generated \mathbb{N}^m -graded \mathbb{k} -algebra such that $\mathbb{k}[\mathcal{R}]_0 = 0$. Set $X = \operatorname{Spec}(\mathcal{R})$.

• The Poincare series of \Re is (the Taylor expansion of) a rational function in t_1, \ldots, t_m :

$$\mathcal{F}(\mathcal{R};\underline{t}) = P(\underline{t})/Q(\underline{t})$$

for some polynomials P,Q.

• If \Re is Cohen-Macaulay, then Ω_{\Re} (or Ω_X) stands for the canonical module of \Re ; Ω_{\Re} is naturally \mathbb{Z}^m -graded such that the Poincaré series of Ω_{\Re} is

$$\mathcal{F}(\Omega_{\mathcal{R}};\underline{t}) = (-1)^{\dim X} \mathcal{F}(\mathcal{R};\underline{t}^{-1}).$$

• If $\mathbb R$ is Gorenstein, then the rational function $\mathcal F(\mathbb R;\underline t)$ satisfies the equality

$$\mathcal{F}(\mathcal{R}; t^{-1}) = (-1)^{\dim X} t^{q(X)} \mathcal{F}(\mathcal{R}; t),$$

for some $q(X) = (q_1(X), \dots, q_m(X)) \in \mathbb{Z}^m$, and the degree of a homegeneous generator $\omega_{\mathcal{R}}$ of $\Omega_{\mathcal{R}}$ is $\deg(\omega_{\mathcal{R}}) = q(X)$ [22, Theorem 6.1], [23, 1.12].

- If X has only rational singularities, then $q_i(X) \ge 0$ and $q(X) \ne (0, ..., 0)$ [3, Proposition 4.3]
- Let G be a semisimple group acting on X (of course, it is assumed that G preserves the \mathbb{N}^m -grading of \mathbb{R}). Then there is a relationship betweem $\Omega_{\mathbb{R}}$ and $\Omega_{\mathbb{R}^G}$ [13] and hence between q(X) and $q(X/\!\!/ G)$, see below.

We begin with the case of X=G, where G is regarded as G-variety with respect to right translations. That is, we are going to study the graded structure of $\mathcal{A}=\Bbbk[G/U']$. Since G is simply-connected, it is a factorial variety. Therefore, $\operatorname{Spec}(\mathcal{A})=G/U'$ is factorial (and has only rational singularities). In particular, G/U' is Cohen-Macaulay (= CM). There is the direct sum decomposition

$$\mathcal{A} = \bigoplus_{\gamma \in \mathfrak{X}} \mathcal{A}_{\gamma},$$

where $\mathcal{A}_{\gamma}=\{f\in\mathcal{A}\mid f(gt)=\gamma(t)f(g) \text{ for any }g\in G,t\in T\}$. The weights γ such that $\mathcal{A}_{\gamma}\neq 0$ form a finitely generated monoid, which is denoted by Γ . Since $\mathsf{R}(\lambda)^{U'}$ is a multiplicity free T-module, it follows from Eq. (2·1) that, for any $\lambda\in\mathfrak{X}_+$, different copies of $\mathsf{R}(\lambda^*)$ lie in the different weight spaces \mathcal{A}_{γ} . More precisely, the corresponding set of weights is I_{λ} (see Section 1). In particular, two copies of $\mathsf{R}(\varpi_i^*)$ belong to \mathcal{A}_{ϖ_i} and $\mathcal{A}_{\varpi_i-\alpha_i}$. Therefore, Γ is generated by the weights $\varpi_i, \varpi_i - \alpha_i, i = 1, \ldots, r$. Note that the group generated by Γ coincides with \mathfrak{X} , since Γ contains all fundamental weights.

Lemma 3.1. If G has no simple factors SL_2 or SL_3 , then $\Gamma \setminus \{0\}$ lies in an open half-space of $\mathfrak{X}_{\mathbb{Q}}$, $A_0 = \mathbb{k}$, and dim $A_{\gamma} < \infty$ for all $\gamma \in \Gamma$.

Proof. It is shown in the proof of Proposition 1.9 that $(\rho^{\vee}, \varpi_i - \alpha_i) > 0$ for all i. Hence the half-space determined by ρ^{\vee} will do. We have $\mathcal{A}_0 = \mathbb{k}[G/TU'] = \mathbb{k}$, since TU' is epimorphic. This also implies the last claim, because \mathcal{A} is finitely generated.

The algebra \mathcal{A} is Γ -graded, and we are going to study the corresponding Poincaré series. Unfortunately, Γ is not always a free monoid. Therefore we want to embed Γ into a free monoid \mathbb{N}^r . This is always possible, if Γ generates a convex cone in $\mathfrak{X}_{\mathbb{Q}}$, see e.g. [15, Corollary 7.23]. For this reason, we assume below that G has no simple factors SL_2 or SL_3 , and choose an embedding $\Gamma \hookrightarrow \mathbb{N}^r$. In other words, we find $v_1, \ldots, v_r \in \mathfrak{X}$ such that $\mathfrak{X} = \bigoplus_{i=1}^r \mathbb{Z} v_1$ and $\Gamma \subset \bigoplus_{i=1}^r \mathbb{N} v_1$. Furthermore, one can achieve that $(v_i, \rho^{\vee}) > 0$ for all i. Then (v_1, \ldots, v_r) is said to be a Γ -adapted basis for \mathfrak{X} . Thus, every $\gamma \in \Gamma$ gains a unique expression of the form $\gamma = \sum_i k_i(\gamma) v_i$, $k_i(\gamma) \in \mathbb{N}$.

Now, we define the multigraded Poincaré series of A as the power series

$$\mathcal{F}(\mathcal{A}; t_1, \dots, t_r) = \mathcal{F}(\mathcal{A}; \underline{t}) = \sum_{\gamma \in \Gamma} (\dim \mathcal{A}_{\gamma}) \underline{t}^{\gamma},$$

where $\underline{t}^{\gamma} = t_1^{k_1(\gamma)} \dots t_r^{k_r(\gamma)}$. As is well-known, $\mathcal{F}(\mathcal{A};\underline{t})$ is a rational function. Since \mathcal{A} is a factorial CM domain, it is Gorenstein. Therefore, there exists $\underline{a} = (a_1, \dots, a_r) \in \mathbb{Z}^r$ such that

(3·1)
$$\mathcal{F}(\mathcal{A};\underline{t}^{-1}) = (-1)^{\dim G/U'}\underline{t}^{\underline{a}}\mathcal{F}(\mathcal{A};\underline{t}),$$

where $\underline{t}^{-1} = (t_1^{-1}, \dots, t_r^{-1})$ [22, § 6]. Moreover, since $G/\!\!/U'$ has only rational singularities, all a_i are actually non-negative, and $\underline{a} \neq (0, \dots, 0)$ [3, Proposition 4.3].

Set $b(A) := \sum_{i=1}^{r} a_i v_i \in \mathfrak{X}$. A priori, this element might depend on the choice of an embedding $\Gamma \hookrightarrow \mathbb{N}^r$. Fortunately, it doesn't. Roughly speaking, this can be explained via properties of the *canonical module* Ω_A , which is a free A-module of rank one. However, even if we accurately accomplish this program, then we still do not find the very element $b(A) \in \mathfrak{X}$. Therefore, we choose another path. Our plan consists of the following steps:

- (1) \mathcal{A}^U is a polynomial algebra and its Poincaré series can be written down explicitly;
- (2) Using the formula for this Poincare series, we determine $b(A^U) \in \mathfrak{X}$;
- (3) Using results of [17, 5.4], we prove that $b(A) = b(A^U)$.

The algebra \mathcal{A}^U is acted upon by $T \times T$. Two copies of T acts on $\mathcal{A}^U \subset \mathbb{k}[G]$ via left and right translations. For the presentation of Eq. (2·2), the first (resp. second) copy of T acts on the first (resp. second) factor in tensor products. Then

$$\mathcal{A}^U = \bigoplus_{\lambda \in \mathfrak{X}_+, \gamma \in \Gamma} \mathcal{A}^U_{\lambda, \gamma},$$

where $\mathcal{A}_{\lambda,\gamma}^U=\{f\in\mathcal{A}^U\subset \Bbbk[G]\mid f(tgt')=\lambda(t)^{-1}\gamma(t')f(g) \text{ for all } t,t'\in T\}$, and we set

$$\mathcal{F}(\mathcal{A}^U; \underline{s}, \underline{t}) = \sum_{\lambda, \gamma} (\dim \mathcal{A}^U_{\lambda, \gamma}) \underline{s}^{\lambda} \underline{t}^{\gamma}.$$

Here $\underline{s} = (s_1, \dots, s_r)$ and $\underline{s}^{\lambda} = s_1^{n_1} \dots s_r^{n_r}$ if $\lambda = \sum_i n_i \varpi_i$.

Proposition 3.2. We have

$$\mathcal{F}(\mathcal{A}^U; \underline{s}, \underline{t}) = \prod_{i=1}^r \frac{1}{(1 - s_{i^*} \underline{t}^{\varpi_i})(1 - s_{i^*} \underline{t}^{\varpi_i - \alpha_i})},$$

where i^* is defined by $(\varpi_i)^* = \varpi_{i^*}$.

Proof. This follows from the fact that \mathcal{A}^U is freely generated by the space $R = \bigoplus_{i=1}^r \mathsf{R}(\varpi_i^*)^U \otimes \mathsf{R}(\varpi_i)^{U'}$, and the $(T \times T)$ - weights of a bi-homogeneous basis of R are $(\varpi_i^*, \varpi_i), (\varpi_i^*, \varpi_i - \alpha_i), i = 1, \ldots, r$.

Of course, \underline{t}^{ϖ_i} should be understood as $t_1^{k_1(\varpi_1)} \dots t_r^{k_r(\varpi_r)}$, and likewise for $\varpi_i - \alpha_i$. Since $\sum_i (\varpi_i + \varpi_i - \alpha_i) = 2\rho - |\Pi| = |\Delta^+ \setminus \Pi|$, we readily obtain

Corollary 3.3.
$$\mathcal{F}(\mathcal{A}^U; \underline{s}^{-1}, \underline{t}^{-1}) = (s_1 \dots s_r)^2 \underline{t}^{2\rho - |\Pi|} \mathcal{F}(\mathcal{A}^U; \underline{s}, \underline{t}).$$

One can disregard (for a while) the \mathfrak{X}_+ -grading of \mathcal{A}^U and consider only the Γ -grading induced from \mathcal{A} . This amount to letting $s_i=1$ for all i. Then we obtain $b(\mathcal{A}^U)=2\rho-|\Pi|$, and, surely, this does not depend on the choice of $\Gamma\hookrightarrow\mathbb{N}^r$. Thus, we have completed steps (1) and (2) of the above plan.

Now, we recall a relationship between the multigraded Poincaré series of algebras $\mathbb{k}[X]$ and $\mathbb{k}[X]^U$. For G-modules, these results are due to M. Brion [3, Ch. IV], [4, Theorem 2].

A general version is found in [16], [17, Ch. 5]. We will consider two types of conditions imposed on G-varieties X:

- $\begin{cases} X \text{ is an irreducible factorial } G\text{-variety with only rational singularities and} \\ \mathbb{k}[X]^G = \mathbb{k}. \end{cases}$
- $\begin{pmatrix} X \text{ is an irreducible factorial } G\text{-variety with only rational singularities; } \mathbb{k}[X] \text{ is } \\ \mathbb{N}^m\text{-graded, } \mathbb{k}[X] = \bigoplus_{n \in \mathbb{N}^m} \mathbb{k}[X]_n \text{, and } \mathbb{k}[X]_0 = \mathbb{k}.$

In particular, X is Gorenstein in both cases. Suppose X satisfies (\mathfrak{C}_2). The Poincaré series of the Gorenstein algebra $\mathbb{k}[X]$ satisfies an equality of the form

(3.2)
$$\mathcal{F}(\mathbb{k}[X];\underline{t}^{-1}) = (-1)^{\dim X} \underline{t}^{q(X)} \mathcal{F}(\mathbb{k}[X];\underline{t}),$$

where $\underline{t} = (t_1, \dots, t_m)$ and $q(X) = (q_1(X), \dots, q_m(X))$. The affine variety $X /\!\!/ U$ inherits all good properties of X, i.e., it is irreducible, factorial, etc. Furthermore, $\mathbb{k}[X]^U$ is naturally $\mathfrak{X}_+ \times \mathbb{N}^m$ -graded, and one defines the Poincaré series

$$\mathcal{F}(\mathbb{k}[X]^U; \underline{s}, \underline{t}) = \sum_{\lambda \in \mathfrak{X}_{\perp}, n \in \mathbb{N}^m} (\dim \mathbb{k}[X]^U_{\lambda, n}) \underline{s}^{\lambda} \underline{t}^n.$$

Since X/U is again Gorenstein, this series satisfies an equality of the form

$$\mathcal{F}(\Bbbk[X]^U;\underline{s}^{-1},\underline{t}^{-1}) = (-1)^{\dim X/\!\!/ U}\underline{s}^{\underline{b}}\,\underline{t}^{q(X/\!\!/ U)}\mathcal{F}(\Bbbk[X]^U;\underline{s},\underline{t})$$

for some $\underline{b} = \underline{b}(X/\!\!/U) = (b_1, \dots, b_r)$ and $q(X/\!\!/U) = (q_1(X/\!\!/U), \dots, q_m(X/\!\!/U))$.

Theorem 3.4 (see [17, Theorem 5.4.26]). Suppose that X satisfies condition (\mathfrak{C}_2). Then

- (1) $0 \le b_i \le 2$;
- (2) $0 \leqslant q_i(X//U) \leqslant q_i(X)$ for all i;
- (3) the following conditions are equivalent:
 - $\underline{b} = (2, \dots, 2);$
 - For $D = \{z \in X \mid \dim U_z > 0\}$, we have $\operatorname{codim}_X D \geqslant 2$;
 - $\bullet \ q(X/\!\!/ U) = q(X);$

Let us apply this theorem to the G-variety $\operatorname{Spec}(\mathcal{A}) = G/\!\!/ U'$. The algebra \mathcal{A} is Γ -graded and hence suitably \mathbb{N}^r -graded, as explained before. Note that $\operatorname{Spec}(\mathcal{A})$ satisfies both conditions (\mathfrak{C}_1) and (\mathfrak{C}_2) . At the moment, we consider $X = \operatorname{Spec}(\mathcal{A})$ as variety satisfying condition (\mathfrak{C}_2) , with m = r. Comparing Eq. (3·1) and (3·2), we see that $\underline{a} = q(X)$. Proposition 3.2 and Corollary 3.3 show that here $\underline{b}(X/\!\!/U) = (2, \dots, 2)$ and $q(X/\!\!/U)$ corresponds to $b(\mathcal{A}^U) = 2\rho - |\Pi|$. Now, Theorem 3.4(3) guarantee us that $q(X) = q(X/\!\!/U)$, i.e.,

$$(3.3) b(\mathcal{A}) = b(\mathcal{A}^U) = 2\rho - |\Pi|.$$

This completes our computation of b(A). Note that we computed b(A) without knowing an explicit formula of the Poincaré series $\mathcal{F}(A;\underline{t})$.

Our next goal is to obtain analogues of results of [17, 5.4], where U is replaced with U', i.e., results on Poincaré series of algebras $\mathbb{k}[X]^{U'}$.

Suppose X satisfies (\mathfrak{C}_1) . The algebra $\mathbb{k}[X]^{U'}$ is Γ -graded, and we consider the Poincaré series

$$\mathcal{F}(\mathbb{k}[X]^{U'};\underline{t}) = \sum_{\gamma \in \Gamma} \dim \mathbb{k}[X]_{\gamma}^{U'} \underline{t}^{\gamma},$$

where $\mathbb{k}[X]_{\gamma}^{U'} = \{f \in \mathbb{k}[X]^{U'} \mid f(t.z) = \gamma(t)^{-1}f(z)\}$ and, as above, \underline{t}^{γ} is determined via the choice of a Γ -adapted basis (v_1,\ldots,v_r) for \mathfrak{X} . The assumption $\mathbb{k}[X]^G = \mathbb{k}$ and the convexity of the cone generated by Γ guarantee us that $\mathbb{k}[X]_0^{U'} = \mathbb{k}$ and all spaces $\mathbb{k}[X]_{\gamma}^{U'}$ are finite-dimensional. Since $X/\!\!/U'$ is again factorial, with only rational singularities (Theorem 2.3), it is Gorenstein and hence

$$\mathcal{F}(\mathbb{k}[X]^{U'};\underline{t}^{-1}) = (-1)^{\dim X/\!\!/U'}\underline{t}^a \,\mathcal{F}(\mathbb{k}[X]^{U'};\underline{t})$$

for some $a=(a_1,\ldots,a_r)\in\mathbb{N}^r$. Using the basis (v_1,\ldots,v_r) , we set $b(X/\!\!/U')=\sum_{i=1}^r a_iv_i\in\mathfrak{X}$.

Theorem 3.5. Suppose that X satisfies (\mathfrak{C}_1) . Then

- (1) $0 \le b(X/U') \le b(A) = 2\rho |\Pi|$ (componentwise, with respect to any Γ -adapted basis v_1, \ldots, v_r);
- (2) the following conditions are equivalent:
 - a) $b(X//U') = 2\rho |\Pi|;$
 - b) For $D = \{x \in X \mid \dim(U')_x > 0\}$, we have $\operatorname{codim}_X D \ge 2$;

Proof. Using our results on A and A^U obtained above, one can easily adapt the proof of [17, Theorem 5.4.21]. For the reader's convenience, we recall the argument.

(1) We have $0 \le b(X//U')$, since X//U' has rational singularities.

Set $Z=X\times (G/\!\!/U')$. It is a factorial G-variety with only rational singularities and $\Bbbk[Z]=\Bbbk[X]\otimes\mathcal{A}$. Define the Γ -grading of $\Bbbk[Z]$ by $\Bbbk[Z]_{\beta}=\Bbbk[X]\otimes\mathcal{A}_{\beta},\ \beta\in\Gamma$. By the transfer principle, $\Bbbk[Z]^G\simeq \Bbbk[X]^{U'}$ and the Γ -grading of $\Bbbk[X]^{U'}$ corresponds under this isomorphism to the Γ -grading of $\Bbbk[Z]^G$ as subalgebra of $\Bbbk[Z]$.

In this situation (a semisimple group G acting on a factorial variety Z with only rational singularities), one can apply results of Knop to the quotient morphism $\pi_G: Z \to Z/\!\!/ G$. Set $m = \max_{z \in Z} \dim G.z$. Recall that Ω_X is the canonical module of k[X]. By Theorems 1,2 in [13], there is an injective G-equivariant homomorphism of degree 0 of graded k[Z]-modules

$$\bar{\gamma}: \Omega_Z \to \wedge^m \mathfrak{g}^* \otimes \pi_G^*(\Omega_{Z/\!\!/G}).$$

Here $\Omega_Z = \Omega_X \otimes \Omega_{G/\!\!/U'}$ and grading of Ω_Z comes from the grading of $\Omega_{G/\!\!/U'}$. The injectivity of $\bar{\gamma}$ implies that

$$b(X/\!\!/ U') = \begin{cases} \text{degree of a homogeneous} \\ \text{generator of } \Omega_{X/\!\!/ U'} \simeq \Omega_{Z/\!\!/ G} \end{cases} \leqslant \begin{cases} \text{degree of a homogeneous} \\ \text{generator of } \Omega_{G/\!\!/ U'} \end{cases} = b(\mathcal{A}).$$

This yields the rest of part (1).

- (2) To prove the equivalence of a) and b), we replace each of them with an equivalent condition stated in terms of Z:
 - a') $\deg(\omega_{Z/\!\!/G}) = \deg(\omega_Z);$
 - b') $\operatorname{codim}_{Z} \tilde{D} \geqslant 2$, where $\tilde{D} = \{z \in Z \mid \dim G_z > 0\}$.

The argument in part (1) shows that a) and a') are equivalent. The equivalence of b) and b') follows from the fact that G/U' is dense in G/U' and the complement is of codimension ≥ 2 , see Theorem 2.2.

The injectivity and G-equivariance of $\bar{\gamma}$ means that there is $c \in (\wedge^m \mathfrak{g}^* \otimes \mathbb{k}[Z])^G$ such that $\bar{\gamma}(\omega_Z) = c \cdot \omega_{Z/\!\!/ G}$. We can regard c as G-equivariant morphism $c': Z \to \wedge^m \mathfrak{g}^*$. It is shown in [13] that if $\dim G.z = m$ and $z \in Z_{reg}$, then c'(z) is nonzero and it yields (normalised) Plücker coordinates of the m-dimensional space $\mathfrak{g}_z^\perp \subset \mathfrak{g}^*$.

Assume a'), i.e., $\deg(\omega_{Z/\!\!/G}) = \deg(\omega_Z)$. Then $\deg c = 0$, i.e.,

$$c \in (\wedge^m \mathfrak{g}^* \otimes \mathbb{k}[Z]_0)^G = (\wedge^m \mathfrak{g}^* \otimes \mathbb{k}[X])^G.$$

This means that c' can be pushed through the projection to X:

$$Z = X \times (G /\!\!/ U') \to X \to \wedge^m \mathfrak{g}^*.$$

Let $z=(x,v)\in X\times (G/\!\!/U')$ be a generic point, i.e., $x\in X_{reg}, v\in G/U'$, and $\dim G.z=m$. Since c'(z) depends only on x, we see that \mathfrak{g}_z does not depend on v. But this is only possible if $\dim \mathfrak{g}_z=0$, that is, $m=\dim G$. This already proves that $\operatorname{codim}_Z \tilde{D}\geqslant 1$. If $\operatorname{codim}_Z \tilde{D}=1$, then formulae (6), (7), (12) in [13] show that $\tilde{D}=\{z\in Z\mid c'(z)=0\}$. However, $\wedge^m\mathfrak{g}^*$ is the trivial 1-dimensional G-module, hence $c\in \mathbb{k}[X]^G=\mathbb{k}$. That is, c' is a constant (nonzero) mapping. This contradiction shows that $\operatorname{codim}_Z \tilde{D}\geqslant 2$.

Conversely, if b') holds, then \tilde{D} is a proper subvariety of Z, i.e., $m = \dim G$ and $c \in (\wedge^{\dim G} \mathfrak{g}^* \otimes \mathbb{k}[Z])^G = \mathbb{k}[Z]^G$. Furthermore, since $\operatorname{codim}_Z \tilde{D} \geqslant 2$, c has no zeros on Z (because Z is normal and $c'(z) = c(z) \neq 0$ for any $z \in Z_{reg} \setminus \tilde{D}$.) It follows that c is constant, $\deg c = 0$ and hence $\deg(\omega_{Z/\!\!/G}) = \deg(\omega_Z)$.

If X satisfies (\mathfrak{C}_2) , then the algebra $\mathbb{k}[X]^{U'}$ is naturally $\Gamma \times \mathbb{N}^m$ -graded, and we consider the Poincaré series

$$\mathcal{F}(\Bbbk[X]^{U'};\underline{s},\underline{t}) = \sum_{n \in \mathbb{N}^m, \gamma \in \Gamma} \dim \Bbbk[X]_{n,\gamma}^{U'} \underline{s}^n \underline{t}^{\gamma},$$

where $\mathbb{k}[X]_{n,\gamma}^{U'}=\{f\in\mathbb{k}[X]_n^{U'}\mid f(t.z)=\gamma(t)^{-1}f(z)\}$ and \underline{t}^{γ} is as above. Since $X/\!\!/U'$ is again Gorenstein, we have

$$\mathcal{F}(\Bbbk[X]^{U'};\underline{s}^{-1},\underline{t}^{-1}) = (-1)^{\dim X/\!\!/U'}\underline{t}^a\,\underline{s}^{q(X/\!\!/U')}\mathcal{F}(\Bbbk[X]^{U'};\underline{s},\underline{t})$$

for some $a=(a_1,\ldots,a_r)\in\mathbb{N}^r$ and $q(X/\!\!/U')\in\mathbb{N}^m$. Using the basis (v_1,\ldots,v_r) , we set $b(X/\!\!/U')=\sum_{i=1}^r a_iv_i\in\mathfrak{X}$. The following is a U'-analogue of Theorem 3.4.

Theorem 3.6. Suppose that X satisfies (\mathfrak{C}_2) . Then

- (1) $0 \le b(X//U') \le b(A) = 2\rho |\Pi|$ (componentwise, with respect to any Γ -adapted basis v_1, \ldots, v_r);
- (2) $0 \leqslant q_i(X//U') \leqslant q_i(X)$ for all i;
- (3) the following conditions are equivalent:
 - (i) $b(X//U') = 2\rho |\Pi|;$
 - (ii) For $D = \{x \in X \mid \dim(U')_x > 0\}$, we have $\operatorname{codim}_X D \geqslant 2$;
 - (iii) $q(X/\!\!/ U') = q(X)$.

We leave it to the reader to adapt the proof of Theorem 5.4.26 in [17] to the U'-setting.

These results may (and will) be applied to describing G-varieties X with polynomial algebras $\mathbb{k}[X]^{U'}$. Suppose for simplicity that $\mathbb{k}[X]$ is \mathbb{N} -graded (i.e., m=1). If f_1,\ldots,f_s are algebraically independent homogeneous generators of $\mathbb{k}[X]^{U'}$, then $\sum \deg f_i = q(X/\!\!/U') \leqslant q(X)$. In particular, if X is a G-module with the usual \mathbb{N} -grading of $\mathbb{k}[X]$, then $\sum \deg f_i \leqslant \dim X$. Similarly, if ω_i is the T-weight of f_i , then $\sum_{i=1}^s \omega_i \leqslant 2\rho - |\Pi|$. The idea to use an a priori information on the Poincaré series for classifying group actions with polynomial algebras of invariants is not new. It goes back to T.A. Springer [21]. Since then it was applied many times to various group actions.

4. Some combinatorics related to U'-invariants

In previous sections, we have encountered some interesting objects in $\mathfrak X$ related to the study of U'-invariants. These are $b(\mathcal A)=2\rho-|\Pi|$, the set of T-weights in $\mathsf R(\lambda)^{U'}$ (denoted I_λ), and the monoid Γ generated by $\varpi_i,\varpi_i-\alpha_i$ for all $i\in\{1,\ldots,r\}=:[r]$.

Proposition 4.1.

- (i) If G has no simple ideals SL_2 , then $2\rho |\Pi|$ is a strictly dominant weight;
- (ii) For any $\lambda \in \mathfrak{X}_+$, the weight $|I_{\lambda}|$ is dominant. Furthermore, $(|I_{\lambda}|, \alpha_i) > 0$ if and only if there is j such that $(\lambda, \alpha_j^{\vee}) > 0$ and $(\alpha_i, \alpha_j) > 0$.

Proof. (i) is obvious.

(ii) Recall that $I_{\lambda} = \{\lambda - \sum_{i=1}^{r} c_i \alpha_i \mid 0 \leqslant c_i \leqslant (\lambda, \alpha_i^{\vee}), i = 1, \dots, r\}$. Choose $i \in [r]$ and slice I_{λ} into the layers, where all coordinates c_j with $j \neq i$ are fixed, i.e., consider

$$I_{\lambda}(c_1, \dots, \widehat{c_i}, \dots, c_r) = \{\lambda - \sum_{j: j \neq i} c_j \alpha_j - c_i \alpha_i \mid 0 \leqslant c_i \leqslant (\lambda, \alpha_i^{\vee})\}.$$

Then one easily verifies that $(|I_{\lambda}(c_1,\ldots,\widehat{c_i},\ldots,c_r)|,\alpha_i^{\vee})=((\lambda,\alpha_i^{\vee})+1)(-\sum_{j\neq i}c_j\alpha_j,\alpha_i^{\vee})\geqslant 0$. Hence $(|I_{\lambda}|,\alpha_i^{\vee})\geqslant 0$, and the condition of positivity is also inferred.

Let \mathcal{C} be the cone in $\mathfrak{X}_{\mathbb{Q}}$ generated Γ , i.e., by all weights $\varpi_i, \varpi_i - \alpha_i$. Consider the dual cone $\check{\mathcal{C}} := \{ \eta \in \mathfrak{X}_{\mathbb{Q}} \mid (\eta, \varpi_i) \geq 0 \ \& \ (\eta, \varpi_i - \alpha_i) \geq 0 \ \text{for all} \ i \}.$

Theorem 4.2. The cone \check{C} is generated by the non-simple positive roots.

- *Proof.* 1) Let \mathcal{K} denote the cone in $\mathfrak{X}_{\mathbb{Q}}$ generated by $\Delta^+ \setminus \Pi$. It is easily seen that $\mathcal{K} \subset \mathring{\mathcal{C}}$. Indeed, let $\delta \in \Delta^+ \setminus \Pi$. Then $(\varpi_i, \delta) \geqslant 0$. If $s_i \in W$ is the reflection corresponding to $\alpha_i \in \Pi$, then $s_i(\varpi_i) = \varpi_i \alpha_i$ and $s_i(\delta) \in \Delta^+$. Hence $(\varpi_i \alpha_i, \delta) = (\varpi_i, s_i(\delta)) \geqslant 0$.
- 2) Conversely, we prove that $\check{\mathcal{K}} \subset \mathcal{C}$. We construct a partition of $\check{\mathcal{K}}$ into finitely many simplicial cones, and show that each cone belong in \mathcal{C} .

Suppose that $\mu \in \mathfrak{X}$ and $(\mu, \delta) \geqslant 0$ for all $\delta \in \Delta^+ \backslash \Pi$. Set $J = J_{(\mu)} = \{j \in [r] \mid (\mu, \alpha_j) < 0\}$. We identify the elements of [r] with the corresponding nodes of the Dynkin diagram of G. The obvious but crucial observation is that the nodes in J are disjoint on the Dynkin diagram. (Such subsets J are said to be disjoint.)

Claim. The r vectors ϖ_i ($i \notin J$), $\varpi_j - \alpha_j$ ($j \in J$) form a basis for $\mathfrak{X}_{\mathbb{Q}}$. Proof. Since J is disjoint, $\prod_{j \in J} s_j \in W$ takes these r vectors to $\varpi_1, \ldots, \varpi_r$.

Thus, we can uniquely write

$$\mu = \sum_{i \notin J} b_i \varpi_i + \sum_{j \in J} a_j (\varpi_j - \alpha_j), \quad b_i, a_j \in \mathbb{Q}.$$

By the assumption, $(\mu, \alpha_i) \geqslant 0$ if and only if $i \not\in J$. For $j \in J$, we have $(\mu, \alpha_j^{\vee}) = -a_j < 0$, i.e., $a_j > 0$. It is therefore suffices to prove that all b_i are nonnegative. Choose any $i \not\in J$. Let J[i] denote the set of all nodes in J that are adjacent to i. Set $w_i = \prod_{j \in J[i]} s_j \in W$. (If $J[i] = \varnothing$, then w = 1.) Then $w_i(\alpha_i)$ is either α_i or a non-simple positive root. In both cases, we know that $(\mu, w_i(\alpha_i)) \geqslant 0$. On the other hand, this scalar product is equal to $(w_i(\mu), \alpha_i) = b_i(\varpi_i, \alpha_i)$. Thus, each b_i is nonnegative and $\mu \in \mathcal{C}$.

Remark 4.3. The argument in the second part of proof shows that C is the union of simplicial cones parametrised by the disjoint subset of the Dynkin diagram. For any such set $J \subset [r]$, let C_J denote the simplicial cone generated by ϖ_i ($i \notin J$), $\varpi_j - \alpha_j$ ($j \in J$). Then

$$\mathcal{C} = \bigcup_{J \text{ disjoint}} \mathcal{C}_J.$$

Here $\mathcal{C}_{\varnothing}$ is the dominant Weyl chamber and $\mathcal{C}_{J}=(\prod_{j\in J}s_{j})\mathcal{C}_{\varnothing}$. Furthermore, if $\mathcal{C}_{J}^{o}=\{\sum_{i\notin J}b_{i}\varpi_{i}+\sum_{j\in J}a_{j}(\varpi_{j}-\alpha_{j})\mid a_{j}>0,\ b_{i}\geqslant 0\}$, then

$$\mathcal{C} = \bigsqcup_{J ext{ disjoint}} \mathcal{C}_J^o.$$

Remark 4.4. It is a natural problem to determine the edges (one-dimensional faces) of the cone \check{C} . We can prove that, for \mathbf{A}_r and \mathbf{C}_r , the edges are precisely the roots of height 2 and 3. However, this is no longer true in the other cases, because a root of height 4 is needed.

5. Irreducible representations of simple Lie algebras with polynomial algebras of U'-invariants

In this section, we obtain the list of all irreducible representations of simple Lie algebras with polynomial algebras of U'-invariants. If $G = SL_2$, then U' is trivial and so is the classification problem. Therefore we assume that $\operatorname{rk} G \geqslant 2$.

Theorem 5.1. Let G be a connected simple algebraic group with $\operatorname{rk} G \geqslant 2$ and $R(\lambda)$ a simple G-module. The following conditions are equivalent:

- (i) $\mathbb{k}[\mathsf{R}(\lambda)]^{U'}$ is generated by homogeneous algebraically independent polynomials;
- (ii) Up to the symmetry of the Dynkin diagram of G, the weight λ occurs in Table 1.

For each item in the table, the degrees and weights of homogeneous algebraically independent generators are indicated. We use the numbering of simple roots as in [24].

Table 1: The simple G-modules with polynomial algebras of U'-invariants

G	λ	Degrees and weights of homogeneous generators of $\mathbb{k}[R(\lambda)]^{U'}$
$\mathbf{A}_r \ (r \geqslant 2)$	ϖ_r	$(1,\varpi_1),(1,\varpi_1-\alpha_1)$
\mathbf{A}_{2r-1}	ϖ_2^*	$(1, \overline{\omega}_2), (2, \overline{\omega}_4), \ldots, (r-1, \overline{\omega}_{2r-2}), (r, \underline{0}),$
$(r\geqslant 2)$		$(1, \varpi_2 - \alpha_2), (2, \varpi_4 - \alpha_4), \dots, (r - 1, \varpi_{2r-2} - \alpha_{2r-2})$
\mathbf{A}_{2r}	ϖ_2^*	$(1, \overline{\omega}_2), (2, \overline{\omega}_4), \dots (r-1, \overline{\omega}_{2r-2}), (r, \overline{\omega}_{2r}),$
$(r\geqslant 2)$		$(1, \overline{\omega}_2 - \alpha_2), (2, \overline{\omega}_4 - \alpha_4), \dots, (r, \overline{\omega}_{2r} - \alpha_{2r})$
\mathbf{B}_r	$\overline{\omega}_1$	$(1, \varpi_1), (1, \varpi_1 - \alpha_1), (2, \underline{0})$
\mathbf{B}_3	$\overline{\omega}_3$	$(1, \varpi_3), (1, \varpi_3 - \alpha_3), (2, \underline{0})$
\mathbf{B}_4	$\overline{\omega}_4$	$(1, \overline{\omega}_4), (1, \overline{\omega}_4 - \alpha_4), (2, \overline{\omega}_1), (2, \overline{\omega}_1 - \alpha_1), (2, \underline{0})$
\mathbf{B}_5	$\overline{\omega}_5$	$(1, \overline{\omega}_5), (1, \overline{\omega}_5 - \alpha_5), (2, \overline{\omega}_1), (2, \overline{\omega}_1 - \alpha_1), (2, \overline{\omega}_2), (2, \overline{\omega}_2 - \alpha_2),$
		$(3, \varpi_5), (3, \varpi_5 - \alpha_5), (4, \varpi_3 - \alpha_3), (4, \varpi_4), (4, \varpi_4 - \alpha_4), (4, \underline{0})$
$\overline{\mathbf{C}_r}$	$\overline{\omega}_1$	$(1,\varpi_1),(1,\varpi_1-\alpha_1)$
$\mathbf{D}_r \ (r \geqslant 4)$	$\overline{\omega}_1$	$(1, \varpi_1), (1, \varpi_1 - \alpha_1), (2, \underline{0})$
\mathbf{D}_5	$\overline{\omega}_5$	$(1, \varpi_4), (1, \varpi_4 - \alpha_4), (2, \varpi_1), (2, \varpi_1 - \alpha_1)$
-		

G	λ	Degrees and weights of homogeneous generators of $\mathbb{k}[R(\lambda)]^{U'}$
\mathbf{D}_6	ϖ_6	$(1, \varpi_6), (1, \varpi_6 - \alpha_6), (2, \varpi_2), (2, \varpi_2 - \alpha_2),$
		$(3, \varpi_6), (3, \varpi_6 - \alpha_6), (4, \varpi_4 - \alpha_4), (4, \underline{0})$
\mathbf{E}_6	ϖ_1	$(1, \varpi_5), (1, \varpi_5 - \alpha_5), (2, \varpi_1), (2, \varpi_1 - \alpha_1), (3, \underline{0})$
\mathbf{E}_7	ϖ_1	$(1, \varpi_1), (1, \varpi_1 - \alpha_1), (2, \varpi_6), (2, \varpi_6 - \alpha_6),$
		$(3, \varpi_1), (3, \varpi_1 - \alpha_1), (4, \varpi_2 - \alpha_2), (4, \underline{0})$
\mathbf{F}_4	$\overline{\omega}_1$	$(1, \varpi_1), (1, \varpi_1 - \alpha_1), (2, \varpi_1), (2, \varpi_1 - \alpha_1), (3, \varpi_2 - \alpha_2), (2, \underline{0}), (3, \underline{0})$
\mathbf{G}_2	$\overline{\omega}_1$	$(1, \varpi_1), (1, \varpi_1 - \alpha_1), (2, \underline{0})$

Before starting the proof, we develop some more tools. Let V be a simple G-module. A *posteriori*, it appears to be true that if $\operatorname{rk} G > 1$ and $\operatorname{k}[V]^{U'}$ is polynomial, then so is $\operatorname{k}[V]^{U}$. Therefore our list is contained in Brion's list of representations with polynomial algebras $\operatorname{k}[V]^{U}$ [4, p. 13]. However, we could not find a conceptual proof. The following is a reasonable substitute:

Proposition 5.2. Suppose that $\mathbb{k}[V]^{U'}$ is polynomial and $G \neq SL_3$. Then $\mathbb{k}[V]^G$ is polynomial.

Proof. As in Section 3, consider the
$$\Gamma$$
-grading $\mathbb{k}[V]^{U'} = \bigoplus_{\gamma \in \Gamma} \mathbb{k}[V]_{\gamma}^{U'}$.

If $G \neq SL_3$, then TU' is epimorphic and hence $\mathbb{k}[V]_0^{U'} = \mathbb{k}[V]^G$. Furthermore, since Γ generates a convex cone, $\bigoplus_{\gamma \neq 0} \mathbb{k}[V]_{\gamma}^{U'}$ is a complementary ideal to $\mathbb{k}[V]^G$. In this situation, a minimal system of homogeneous generators for $\mathbb{k}[V]^G$ is a part of a minimal system of homogeneous generators for $\mathbb{k}[V]^{U'}$.

Remark 5.3. For $G=SL_3$, it is not hard to verify that the only representations with polynomial algebras of U'-invariants are $R(\varpi_1)$ and $R(\varpi_2)$. The reason is that U' is the maximal unipotent subgroup of $SL_2 \subset SL_3$. Therefore, by classical Roberts' theorem, we have $\mathbb{k}[V]^{U'} \simeq \mathbb{k}[V \oplus R_1]^{SL_2}$, where V is regarded as SL_2 -module and R_1 is the tautological SL_2 -module. All SL_2 -modules with polynomial algebras of invariants are known [19, Theorem 4], and the restriction of the simple SL_3 -modules to SL_2 are easily computed.

Let U'_{\star} denote a U'-stabiliser of minimal dimension for points in $R(\lambda)$. Recall that Lemma 2.5 and Remark 2.6 provide effective tools for computing U'_{\star} and $\dim U'_{\star}$. If a ring of invariants $\mathfrak A$ is polynomial, then elements of a minimal generating system of $\mathfrak A$ are said to be *basic invariants*.

Proposition 5.4. Suppose that $\mathbb{k}[\mathsf{R}(\lambda)]^{U'}$ is polynomial and $G \neq SL_3$. Then

$$\dim \mathsf{R}(\lambda) \leqslant 2\dim(U'/U'_{\star}) + \prod_{i=1}^{r} ((\lambda, \alpha_{i}^{\vee}) + 1).$$

In particular, dim $R(\lambda) \leq 2 \dim U' + \prod_{i=1}^{r} ((\lambda, \alpha_i^{\vee}) + 1)$.

Proof. We consider $\mathbb{k}[\mathsf{R}(\lambda)]$ with the usual \mathbb{N} -grading by the total degree of polynomial. Then $\mathbb{k}[\mathsf{R}(\lambda)]^{U'}$ is $\Gamma \times \mathbb{N}$ -graded, and it has a minimal generating system that consists of (multi)homogeneous polynomials. Let f_1, \ldots, f_s be such a system. By Theorem 3.6(ii), we have

$$\sum \deg(f_i) = q(\mathsf{R}(\lambda) /\!\!/ U') \leqslant q(\mathsf{R}(\lambda)) = \dim \mathsf{R}(\lambda).$$

On the other hand, $s = \dim \mathsf{R}(\lambda) - \dim(U'/U'_{\star})$ and the number of basic invariants of degee 1 equals $a(\lambda) := \prod_{i=1}^r ((\lambda, \alpha_i^{\vee}) + 1)$. All other basic invariants are of degree $\geqslant 2$, and we obtain

$$a(\lambda) + 2(\dim \mathsf{R}(\lambda) - \dim(U'/U'_{\star}) - a(\lambda)) = a(\lambda) + 2(s - a(\lambda)) \leqslant q(\mathsf{R}(\lambda) /\!\!/ U') \leqslant \dim \mathsf{R}(\lambda).$$
 Hence $\dim \mathsf{R}(\lambda) \leqslant 2\dim(U'/U'_{\star}) + a(\lambda)$.

Proof of Theorem 5.1.

- $(i) \Rightarrow (ii)$. The list of irreducible representations of simple Lie algebras with polynomial algebras $\mathbb{k}[V]^G$ is obtained in [11]. By Proposition 5.2, it suffices to prove that the representations in [11, Theorem 1] that do not appear in Table 1 cannot have a polynomial algebra of U'-invariants. The list of representation in question is the following:
 - I) (\mathbf{A}_r, ϖ_3) , r = 6, 7, 8; (\mathbf{A}_7, ϖ_4) ; $(\mathbf{A}_2, 3\varpi_1)$; $(\mathbf{B}_r, 2\varpi_1)$, $r \geqslant 2$; $(\mathbf{D}_r, 2\varpi_1)$, $r \geqslant 4$; (\mathbf{B}_6, ϖ_6) ; (\mathbf{D}_8, ϖ_8) ; (\mathbf{C}_r, ϖ_2) , $r \geqslant 4$; (\mathbf{C}_4, ϖ_4) ; the adjoint representations.
 - II) (\mathbf{A}_5, ϖ_3) ; (\mathbf{C}_3, ϖ_2) ; (\mathbf{C}_3, ϖ_3) ; (\mathbf{D}_7, ϖ_7) ; $(\mathbf{A}_r, 2\varpi_r)$.
- For list I), a direct application of Proposition 5.4 yields the conclusion. For instance, consider $R(\varpi_3)$ for \mathbf{A}_r and r=6,7,8. Here $a(\varpi_3)=2$ and the second inequality in Proposition 5.4 becomes

$$(r+1)r(r-1)/6 \leqslant r(r-1)+2,$$

which is wrong for r = 6, 7, 8. The same argument applies to all representations in I), except $(\mathbf{A}_2, 3\omega_1)$. (The SL_3 -case is explained in Remark 5.3.)

• For list II), the inequality of Proposition 5.4 is true, and more accurate estimates are needed.

Consider the case (\mathbf{A}_5, ϖ_3) . Here $\dim \mathsf{R}(\varpi_3) = 20$, $\dim U' = 10$ and $U'_\star = \{1\}$. Hence $\dim \mathsf{R}(\varpi_3) /\!\!/ U' = 10$. Assume that $\mathsf{R}(\varpi_3) /\!\!/ U' \simeq \mathbb{A}^{10}$. The number of basic invariants of degree 1 equals $a(\varpi_3) = 2$. It is known that $\mathbb{k}[\mathsf{R}(\varpi_3)]^G$ is generated by a polynomial of degree 4. This is our third basic invariant. Since we must have $\sum_{i=1}^{10} \deg f_i \leqslant \dim \mathsf{R}(\varpi_3) = 20$, the only possibility is that the other 7 basic invariants are of degree 2. However, $\mathcal{S}^2(\mathsf{R}(\varpi_3)) = \mathsf{R}(2\varpi_3) \oplus \mathsf{R}(\varpi_1 + \varpi_5)$, which shows that the number of basic invariants of degree 2 is at most $\dim \mathsf{R}(\varpi_1 + \varpi_5)^{U'} = 4$. This contradiction shows that $\mathbb{k}[\mathsf{R}(\varpi_3)]^{U'}$ cannot be polynomial. Such an argument also works for (\mathbf{C}_3, ϖ_2) , (\mathbf{C}_3, ϖ_3) , and (\mathbf{D}_7, ϖ_7) .

For $(\mathbf{A}_r, 2\varpi_r)$, $r \geqslant 2$, we argue as follows. Here the algebra of U-invariants is polynomial, and the degrees and weights of basic U-invariants are $(1, 2\varpi_1), (2, 2\varpi_2), \ldots, (r, 2\varpi_r)$,

(r+1,0) [4]. Using Theorem 2.4, we conclude that $\mathbb{k}[\mathsf{R}(2\varpi_r)]^{U'}$ can be generated by 3r+1 polynomials whose degrees are $1,1,1;2,2,2;\ldots;r,r,r;r+1$. This set of polynomials can be reduced somehow to a minimal generating system. Here $\dim \mathsf{R}(2\varpi_r)/\!\!/U' = \dim \mathsf{R}(2\varpi_r) - \dim U' = 2r+1$. Assume that $\mathsf{R}(2\varpi_r)/\!\!/U' \simeq \mathbb{A}^{2r+1}$. Then we can remove r polynomials from the above (non-minimal) generating system such that the sum of degrees of the remaining polynomials is at most $\dim \mathsf{R}(2\varpi_r) = (r+1)(r+2)/2$. This means that the sum of degrees of the r removed polynomials must be at least r(r+1). Clearly, this is impossible.

- (ii) \Rightarrow (i). All representations in Table 1 have a polynomial algebra of U-invariants whose structure is well-understood. Therefore, using Theorem 2.4 we obtain an upper bound on the number of generators of $\mathbb{k}[\mathsf{R}(\lambda)]^{U'}$. On the other hand, we can easily compute $\dim \mathsf{R}(\lambda) /\!\!/ U'$. In many cases, these two numbers coincide, which immediately proves that $\mathbb{k}[\mathsf{R}(\lambda)]^{U'}$ is polynomial. In the remaining cases, we use a simple procedure that allows us to reduce the non-minimal generating system provided by Theorem 2.4. This appears to be sufficient for our purposes.
- For $G = \mathbf{D}_5$, the algebra $\mathbb{k}[\mathsf{R}(\varpi_5)]^U$ has two generators whose degrees and weights are $(1, \varpi_4)$ and $(2, \varpi_1)$. By Theorem 2.4, $\mathbb{k}[\mathsf{R}(\varpi_5)]^{U'}$ can be generated by polynomials of degrees and weights $(1, \varpi_4), (1, \varpi_4 \alpha_4), (2, \varpi_1), (2, \varpi_1 \alpha_1)$. On the other hand, the monoid $\mathcal{M}(\mathsf{R}(\varpi_5))$ is generated by ϖ_1, ϖ_4 . Therefore a generic stabiliser U_\star is generated by the root unipotent subgroups U^{α_2} , U^{α_3} , and U^{α_5} (see Remark 2.6). Hence $\dim U_\star = 6$ and $\dim U_\star' = 3$. Thus $\dim \mathsf{R}(\varpi_5)/\!\!/U' = 16 15 + 3 = 4$ and the above four polynomials freely generate $\mathbb{k}[\mathsf{R}(\varpi_5)]^{U'}$.

The same method works for (\mathbf{A}_r, ϖ_r) ; $(\mathbf{A}_r, \varpi_{r-1})$; (\mathbf{B}_r, ϖ_1) ; (\mathbf{C}_r, ϖ_1) ; (\mathbf{D}_r, ϖ_1) ; (\mathbf{B}_r, ϖ_r) , r = 3, 4; (\mathbf{E}_6, ϖ_1) .

There still remain four cases, where this method yields the number of generators that is *one more* than $\dim \mathsf{R}(\lambda)/\!\!/U'$. Therefore, we have to prove that one of the functions provided by Theorem 2.4 can safely be removed. The idea is the following. Suppose that $\mathbb{k}[\mathsf{R}(\lambda)]^U$ contains two basic invariants of the same fundamental weight ϖ_i , say $p_1 \sim (d_1, \varpi_i), p_2 \sim (d_2, \varpi_i)$. Consider the corresponding U'-invariant functions p_1, q_1, p_2, q_2 , where $q_j \sim (d_j, \varpi_i - \alpha_i), j = 1, 2$. Assuming that p_j, q_j are normalised such that $e_i \cdot q_j = p_j$, the polynomial $p_1q_2 - p_2q_1 \in \mathbb{k}[\mathsf{R}(\lambda)]$ appears to be U-invariant, of degree $d_1 + d_2$ and weight $2\varpi_i - \alpha_i$. If we know somehow that there is a unique U-invariant of such degree and weight, then this U-invariant is not required for the minimal generating system of $\mathbb{k}[\mathsf{R}(\lambda)]^{U'}$. For instance, consider the case (\mathbf{F}_4, ϖ_1) . According to Brion [4], the free generators of $\mathbb{k}[\mathsf{R}(\varpi_1)]^{U(\mathbf{F}_4)}$ are $(1, \varpi_1), (2, \varpi_1), (3, \varpi_2), (2, \underline{0}), (3, \underline{0})$. Theorem 2.4 provides a generating system for $\mathbb{k}[\mathsf{R}(\varpi_1)]^{U'(\mathbf{F}_4)}$ that consists of eight polynomials, namely:

$$(1, \varpi_1), (1, \varpi_1 - \alpha_1), (2, \varpi_1), (2, \varpi_1 - \alpha_1), (3, \varpi_2), (3, \varpi_2 - \alpha_2), (2, \underline{0}), (3, \underline{0}).$$

Here the weight ϖ_1 occurs twice and $2\varpi_1 - \alpha_1 = \varpi_2$. Therefore the polynomial $(3, \varpi_2)$ can be removed form this set. Since $\dim R(\varpi_1) = 26$, $\dim U' = 20$, and $\dim U'_{\star} = 1$, we have $\dim R(\varpi_1) /\!\!/ U' = 7$. The other three cases, where it works, are (\mathbf{B}_5, ϖ_5) , (\mathbf{D}_6, ϖ_6) , (\mathbf{E}_7, ϖ_1) .

This completes the proof of Theorem 5.1.

Remark 5.5. For a G-module V, let $\operatorname{ed}(\Bbbk[V]^{U'})$ denote the embedding dimension of $\Bbbk[V]^{U'}$, i.e., the minimal number of generators. Since $\Bbbk[V]^{U'}$ is Gorenstein, $\operatorname{ed}(\Bbbk[V]^{U'}) - \dim V /\!\!/ U' = \operatorname{hd}(\Bbbk[V]^{U'})$ is the homological dimension of $\Bbbk[V]^{U'}$ (see [19]). The same argument as in the proof of (ii) \Rightarrow (i) shows that for (\mathbf{C}_3, ϖ_2) , (\mathbf{C}_3, ϖ_3) , and (\mathbf{A}_5, ϖ_3) , we have $\operatorname{hd}(\Bbbk[V]^{U'}) \leqslant 2$. Hence these Gorenstein algebras of U'-invariants are complete intersections. We can also prove that $\Bbbk[\mathsf{R}(2\varpi_r)]^{U'(\mathbf{A}_r)}$ is a complete intersection, of homological dimension r-1. This means that a postreriori the following is true: If G is simple, V is irreducible, and $\Bbbk[V]^U$ is polynomial, then $\Bbbk[V]^{U'}$ is a complete intersection. It would be interesting to realise whether it is true in a more general situation.

Remark 5.6. There is a unique item in Table 1, where the sum of degrees of the basic invariants equals $\dim R(\lambda)$ or, equivalently, the sum of weights equals $2\rho - |\Pi|$. This is (\mathbf{B}_5, ϖ_5) . By Theorem 3.6(iii), this is also the only case, where the set of points in $R(\lambda)$ with non-trivial U'-stabiliser does not contain a divisor.

REFERENCES

- [1] D. AKHIEZER and D. PANYUSHEV. Multiplicities in the branching rules and the complexity of homogeneous spaces, *Moscow Math. J.* **2**(2002), 17–33.
- [2] J.-F. BOUTOT. Singularités rationnelles et quotients par les groupes réductifs, *Invent. Math.* **88**, no. 1 (1987), 65–68.
- [3] M. BRION. Sur la théorie des invariants, Publ. Math. Univ. Pierre et Marie Curie, no. 45 (1981), pp. 1–92.
- [4] M. BRION. Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple. *Ann. Inst. Fourier* **33**(1983), 1–27.
- [5] M. BRION. Classification des espaces homogènes sphériques. Compositio Math. 63, no. 2 (1987), 189–208.
- [6] M. BRION, D. LUNA and TH. VUST. Espaces homogènes sphériques, *Invent. Math.* **84**(1986), no. 3, 617–632.
- [7] F. GROSSHANS. Hilbert's fourteenth problem for nonreductive groups. *Math. Z.* **193** (1986), no. 1, 95–103.
- [8] F. GROSSHANS. "Algebraic homogeneous spaces and Invariant Theory", Lect. Notes Math. 1673, Berlin: Springer, 1997.
- [9] Д. ХАДЖИЕВ. Некоторые вопросы теории векторных инвариантов, *Mamem. Сборник* т.**72**, № 3 (1967), 420–435 (Russian). English translation: Dž. HADŽIEV. Some questions in the theory of vector invariants, *Math. USSR-Sbornik*, **1**(1967), 383–396.
- [10] J. HORVATH. Weight spaces of invariants of certain unipotent group actions, *J. Algebra* **126** (1989), 293–299.
- [11] V.G. KAC, V.L. POPOV and E.B. VINBERG. Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre, *C. R. Acad. Sci. Paris*, Sér. A-B, **283**, no. 12 (1976), A875–A878.

- [12] G. KEMPF. Cohomology and convexity, in "Toroidal Embeddings", Lect. Notes Math. **339** (1973), 42–52.
- [13] F. KNOP. Über die Glattheit von Quotientenabbildungen, Manuscripta Math. 56(1986), no. 4, 419–427.
- [14] H. KRAFT. "Geometrische Methoden in der Invariantentheorie", Aspekte der Mathematik **D1**, Braunschweig: Vieweg & Sohn, 1984.
- [15] E. MILLER and B. STURMFELS. "Combinatorial commutative algebra", Graduate Texts in Mathematics, 227. Springer-Verlag, New York, 2005. xiv+417 pp.
- [16] D. PANYUSHEV. A restriction theorem and the Poincare series for *U*-invariants, *Math. Annalen* **301**(1995), 655–675.
- [17] D. PANYUSHEV. Complexity and rank of actions in invariant theory, *J. Math. Sci.* (New York) **95**(1999), 1925–1985.
- [18] K. POMMERENING. Observable radizielle Untergruppen von halbeinfachen algebraischen Gruppen, *Math. Z.* **165**(1979), 243–250.
- [19] V.L. POPOV. Homological dimension of algebras of invariants, *J. Reine Angew. Math.*, Bd. 341 (1983), 157–173.
- [20] В.Л. Попов. Стягивания действий редуктивных алгебраических групп, *Mamem. Сборник* т.**130** (1986), 310–334 (Russian). English translation: V.L. POPOV. Contractions of actions of reductive algebraic groups, *Math. USSR-Sbornik* **58** (1987), 311–335.
- [21] T.A. SPRINGER. On the invariant theory of SU_2 , Indag. Math. 42(1980), no. 3, 339–345.
- [22] R.P. STANLEY. Hilbert functions of graded algebras, Adv. Math., 28(1978), 57–83.
- [23] R.P. STANLEY. Combinatorics and commutative algebra, 2nd ed., (Progress in Math. vol. 41). Basel: Birkhäuser, 1996.
- [24] Э.Б. Винберг, В.В. Горбацевич, А.Л. Онищик. "Группы и алгебры Ли 3", Современные проблемы математики. Фундаментальные направления, т. 41. Москва: ВИНИТИ 1990 (Russian). English translation: V.V. GORBATSEVICH, A.L. ONISHCHIK and E.B. VINBERG. "Lie Groups and Lie Algebras" III (Encyclopaedia Math. Sci., vol. 41) Berlin Heidelberg New York: Springer 1994.
- [25] Э.Б. ВИНБЕРГ, В.Л. ПОПОВ. Об одном классе аффинных квазиоднородных многообразий, *Изв. АН СССР. Сер. Матем.*, **36**(1972), 749–764 (Russian). English translation: E.B. VINBERG and V.L. POPOV. On a class of quasihomogeneous affine varieties, *Math. USSR Izv.*, **6**(1972), 743–758.

Independent University of Moscow, Bol'shoi Vlasevskii per. 11, 119002 Moscow, Russia Institute for Information Transmission Problems, B. Karetnyi per. 19, Moscow 127994

E-mail address: panyush@mccme.ru

URL: http://www.mccme.ru/~panyush