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THETA BLOCKS RELATED TO ROOT SYSTEMS

MORITZ DITTMANN AND HAOWU WANG

ABSTRACT. Gritsenko, Skoruppa and Zagier associated to a root system R a theta block ¥z, which
is a Jacobi form of lattice index. We classify the theta blocks ¥r of g-order 1 and show that
their Gritsenko lift is a strongly-reflective Borcherds product of singular weight, which is related to
Conway’s group Cog. As a corollary we obtain a proof of the theta block conjecture by Gritsenko,
Poor and Yuen for the pure theta blocks obtained as specializations of the functions Jr.

1. INTRODUCTION

Eichler and Zagier introduced the theory of Jacobi forms in their monograph [EZ85]. Let k and
m be non-negative half-integers and x a character (or multiplier system) of SLy(Z). A holomorphic
Jacobi form of weight k, character y and index m is a holomorphic function ¢: H x C — C which

satisfies ) ,
) en (¢ )

ct+d er+d c d
and
S0(7_7 2+ M+ ,U') — (_1)Zm()d»,u)eme'm(/\QTJrQ)\z)SO(T’ Z)
for all T € H, z € C, (‘é 2) € SLy(Z) and A, € Z and which has a Fourier expansion of the form

_ n _ 2mirz n __ 2minT
p(r,2) =Y Y cln,r)g"e™, gt =P
neQ rez
n>0 r2<4mn

Examples of holomorphic Jacobi forms of small weight and index are the Dedekind eta function
n(r)=q¢" [0 -q")
n=1

of weight 1/2 and index 0 with a multiplier system which we denote by v, (note that Jacobi forms
of index 0 do not depend on z and their definition reduces to that of a classical modular form) and
the Jacobi theta function of weight and index 1/2 and multiplier system 1/2, given by

9] 4 ,
) = _ - n?/8 minz
(=Y ()q rin:.
n=—o0
or by the triple product identity
0o
19(,7_7 Z) — ql/Sem'z H(l _ qn)(l _ qn€27ri2)(1 _ qn—16—27riz)'
n=1

For a non-zero integer a we denote by ¥, the function
Vo7, 2) = (T, az2).
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This is a Jacobi form of weight 1/2 and index a?/2. More generally, to a function f: Z>q — Z with
finite support, we associate a theta block

oo

05(r,2) = n'O(7) [T Walr, 2) /n(r))/,

a=1
which is a meromorphic Jacobi form. If the image of f is contained in the non-negative integers,
then O is called a pure theta block. For more details on the theory of theta blocks, we refer the
reader to [GSZ19].

Jacobi forms can be used to construct paramodular forms. These are Siegel modular forms of

degree two with respect to the paramodular group

*  Nx % *
| o= * x  x/N
In=1, Ne s . N Sp2(Q), alxeZ

Nx Nx Nx *

of some level N. One method to construct paramodular forms is the Gritsenko lift, which sends a
holomorphic Jacobi form ¢ to a paramodular form G(¢) of the same weight. Another method asso-
ciates to a nearly holomorphic Jacobi form v of weight 0 with integral singular Fourier coefficients a
meromorphic paramodular form B(v). This method is essentially the multiplicative Borcherds lift.
In [GPY15], Gritsenko, Poor and Yuen investigated paramodular forms which are simultaneously
Borcherds products and Gritsenko lifts. From the shapes of the arising paramodular forms, one
sees that if G(¢) is a Borcherds product, then ¢ must be a theta block with vanishing order one in
q.

In [GPY15], the following conjecture, which gives a sufficient condition for G(¢) being a Borcherds
product, was formulated.

Conjecture (Theta Block Conjecture). Let the pure theta block ©¢ be a holomorphic Jacobi form
of weight k and index m with vanishing order 1 in q, where k,m € Z~g. We define the nearly
holomorphic Jacobi form Wy = —(©f|T_(2))/O of weight 0 and index m, where T_(2) is the index
raising Hecke operator. Then

G(©5) = B(¥y).

In this paper we prove a higher-dimensional analogue of the theta block conjecture for certain
Jacobi forms ¥ in many variables. More precisely, to a root system R we can attach a holomorphic
Jacobi form ¥g of weight k£ = rk(R)/2 and lattice index R (see Theorem 2.3). The Borcherds and
Gritsenko lifts of a classical Jacobi form are special cases of more general Borcherds and Gritsenko
lifts for Jacobi forms of lattice index. Their images are modular forms for orthogonal groups of
signature (2,n) (in the case of a classical Jacobi form n = 3 and paramodular forms arise because
they can be realized as modular forms for orthogonal groups of signature (2,3)). Our main result
is the following theorem.

Theorem (Theorem 5.1). Let R be a root system such that Yg has vanishing order 1 in q. Then

B 29R|11(2)>
9n )

In particular, G(¥Rr) is a Borcherds product. It turns out that this Borcherds product already
appears in the work of Scheithauer [Sch06, Sch] and its expansion at a level 1 cusp is a twisted
denominator identity of the fake monster algebra corresponding to an element g in Conway’s group
CO().

The theorem is proved by showing that the divisor of the right hand side is contained in the

divisor of G(9g) for all possible choices of R. There are eight such root systems R. We remark that
2
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for R = 8A;,3A, and Ay this proof can already be found in the literature (see [Gril8, Theorem
5.2] for 845, [Gril8, Theorem 5.6] for 342 and [GW20, Theorem 3.9] for Ay).

The specialization ©, of ¥r at a non-zero vector = € R is defined by ©,(7,2) = Vg(7,22). We
only consider vectors x € R such that ©, is not identically zero and has integral index. Then O, is
a pure theta block and the identity in our main theorem remains true after replacing ¥z with ©,.
This implies the following corollary, which proves the theta block conjecture for all known infinite
families of theta blocks of ¢-order 1.

Corollary (Corollary 7.6). The following infinite series of pure theta blocks of g-order 1 satisfy
the theta block conjecture.

weight | root system theta block

2 Ay 0550400190+ VetdVatbrcVorerdVatbrerd
A1 @ B3 1500504Vt 2e+2d0b4cdVb+c+2a0eVcr-d¥c 2494
A1 @ C3 10500020 420+ a0+ U204 d0b+ctrdPe¥2e+aVcrald
By & Ga N %00 a69a126960 030+ a¥3c+2a92c+a¥c+dVd

3 34, 77_31%1 Var+51 Vb1 Vay Vag+by Vb Vas Vag-+bs Vg
3A1 © A3 77_319a1 19@2 ﬁag ﬁa4 19% 19% §a4 +as 19&5 +ae 19a4 +as+ae

2A1 ® Ay @ By 777379(11 0a2 0a3 0a3 +aq 19(14 19(15 19(15 +ag 79as +2a¢ 79616
4 8A, Vay Pay Va3V, Va5 VagVar ag

The paper is structured as follows. In Sections 2 and 3 we recall the definitions and some
constructions of Jacobi forms of lattice index and modular forms for the Weil representation. In
Section 4 we recall the definition of the Gritsenko lift and of the Borcherds lift. In Section 5
we determine those root systems R for which ¥ has vanishing order 1 in ¢ and investigate the
corresponding lattices R. In Section 6 we construct strongly-reflective Borcherds products Wg of
singular weight on the maximal even sublattice of R and observe that they already appear in the
work of Scheithauer. In Section 7 we prove that G(¥g) = Vi and deduce our main theorem.

2. JACOBI FORMS OF LATTICE INDEX

We denote by H = {7 € C : Im(7) > 0} the complex upper-half plane and for a complex number
z we write e(z) for €2™* and we denote by y/z the principal branch of the square root. Let L be
an integral positive definite lattice with bilinear form (-,-) and LV its dual lattice. The shadow L*®
of L is defined by

L*={yeQ®L:(z,x)/2=(y,x) mod Z for all x € L}.
Note that L®* = LV if L is even.

Definition 2.1. For k € Z and a character (or multiplier system) x: SLa(Z) — C* of finite order
a holomorphic function ¢ : H x (C® L) — C is called a nearly holomorphic Jacobi form of weight
k, character y and index L, if it satisfies

ar+b 3 a b 2k c(3,3) a b
= vV d —_— 4 SLo(Z
¢<CT+d70’7’+d> X<<C d>> et e<2(c¢+d) #(7:3); c d) € 2(Z),
30(773 + a7+ y) = €<(.’L’,IIZ‘)/2 + (y7 y)/2)€(—T(IE, .CU)/Q - ($,3))Q0(T,3), vx7y € La
and if its Fourier expansion takes the form

o(1,3) = Z Z F(n,0)g"¢t, ¢ = e2minT ¢t = (2milts)

neQ (eL*
n>ng




for some constant ng. The coefficients f(n,¢) with 2n—(¢,¢) < 0 are called the singular coefficients.
If all singular coefficients vanish, then ¢ is called a holomorphic Jacobi form. We denote the spaces
of nearly holomorphic and holomorphic Jacobi forms of weight k, character x and index L by
J,L’L(X) and Ji, 1,(x). If the character is trivial, we omit it.

Remark 2.2. If L has rank 1 and determinant |L"/L| = m, then the space of Jacobi forms of index
L equals the space of classical Jacobi forms of index m/2 introduced in the introduction.

In the introduction we have seen that theta blocks are examples of classical Jacobi forms. Simi-
larly, one can try to obtain Jacobi forms of lattice index as products of a power of 1 and of functions
of the form (7,3) — 9(7,(¢,3)) for 7 € H, £ € LY and 3 € C® L. The following theorem gives
examples of Jacobi forms of lattice index of this form.

Theorem 2.3 ([GSZ19, Theorem 10.1]). Let R be a root system (in the strict sense, see [Hum72],
§9.2) of rankn. Let R be a system of positive roots of R and let F' denote the subset of simple roots
in RT. Forr in RT and f in F, let v, s be the (non-negative) integers such that r = Y pervnff-
The function

Dr(r,3) =n(m)" N [ 9 (7D wrer

reRt fEF
defines an element of J,, o (V) T*N), where N = |RT, 3 = (zf)ser € CF, and the lattice R equals

2
ZF equipped with the quadratic form Q(3) = %ng}ﬁ (ZfeF 'y,,,fzjc> )

If ¢ € Jp1(x) is a Jacobi form of lattice index, then every non-zero element x € L can be used
to obtain a classical Jacobi form in the following way. Let K be the lattice Z with bilinear form
(u,v) = muv, where m = (z,x). We define the embedding s;: K — L by s;(u) = uz and

Spt IuL = Jer, 0(7,3) = (7,82 (w))  (w e C® K).

The image is a Jacobi form of index K and we recall that this is the same thing as a classical
Jacobi form of index m/2. We call the classicial Jacobi form s} the specialization of ¢ at x. By
specializing the functions ¥ at an integer vector = (xf) rep with xy # 0 (if one of the x equals
zero, then s’vr vanishes), we obtain a pure theta block

n()" N T 9 (72 D0 s | € Tnjpqe ()
reR+ fer

in the variables (7,2) in H x C.

3. MODULAR FORMS FOR THE WEIL REPRESENTATION

We recall the definition of a discriminant form. For more details we refer the reader to [Sch09,
Section 2|. A discriminant form is a finite abelian group D with a Q/Z-valued non-degenerate
quadratic form ¢: D — Q/Z. We denote by b: D x D — Q/Z the associated bilinear form
b(71,72) = q(v1 + 72) — ¢(71) — ¢(72). The level of D is the smallest positive integer N such that
Ngq(v) =0 mod 1 for all v € D and the signature sign(D) € Z/8Z of D is defined by

> ela(m) = VIDle(sign(D)/8).

yeD
For a positive integer ¢ we define D, = {y € D : ¢y = 0} and D = {¢f : B € D}. Then the
sequence

0—-D.—D—D°“—0
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is exact. Let k be the largest integer such that 2% | N. We define the oddity of D to be the signature
of Dox. If the signature of D is even, we define a Dirichlet character xp of conductor N by

(@) = (1) ella = 1) oddity(D)5).

If M is an even lattice with dual lattice MV, then the reduction ¢ of the quadratic form z
(z,x)/2 on MY modulo Z turns D(M) = M" /M into a discriminant form and every discriminant
form arises in this way for some even lattice M. The level of D(M) coincides with the level of
M and the signature of D is equal to the reduction of the signature of M modulo 8 by Milgram’s
formula.

Definition 3.1. Let D be a discriminant form of even signature. Let C[D] be the group ring of D
with basis {e, : v € D}. Then

pp(T)ey = e(—q(v))ey,

e(sign(D)/8)
(S)ey = ———F=—=) e(b(y,p))e
PD y ‘D| 626;) Y B

defines a representation of SLg(Z) on C[D]. This representation is called the Weil representation
associated to D.

Definition 3.2. Let F(r) = > .p F,(7)e, be a holomorphic function on H with values in C[D]
and k € Z. The function F' is called a nearly holomorphic modular form of weight k for pp if
) = (et + d)*pp(A)F(1), VA= (‘CL Z) € SLy(7Z)

and if I’ has a Fourier expansion of the form

FO =3 Y omde,.

veD neZ—q(v)
n>ngo

F(m’—f—b
ct+d

The sum Z'ye D 2on<o Cy(n)q ey is called the principal part of F. If the principal part vanishes,
then F' is called holomorphic.

Remark 3.3. The orthogonal group O(D) acts on C[D] via o (ZweD a,ye,y> = > eD Uv€s(y) and
this action commutes with that of pp on C[D]. Thus O(D) acts on modular forms for the Weil
representation.

One way to obtain vector-valued modular forms is given by the following proposition.

Proposition 3.4 ([Schl5, Theorem 3.1]). Let f be a scalar-valued modular form of weight k and
character xp for To(N). Let S be an isotropic subset of D, which is invariant under (Z/NZ)*.

Then
Frony,1,5(7) = > > fIM(T)pp(M e,
MeTo(N)\ SLz(Z) veS

is a vector-valued modular form of weight k for pp. The function Fry(ny y,s s nvariant under the
automorphisms of D which stabilize S.

Suppose L is an even positive definite lattice with discriminant form D(L). The theta series
@5: H x (C® L) — C associated to L and v € D = D(L) is defined by

olrs) =Y ¢“97%¢ yeD.

levy+L
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The map

(3.1) =Y F(r)ey — > Fy(1)0k(r,3)

yeD yeD

defines an isomorphism between the spaces of nearly holomorphic modular forms of weight & for pp
and of nearly holomorphic Jacobi forms of weight k£ +rk(L)/2 and index L. The principal part of F’
corresponds to the singular Fourier coefficients of the Jacobi form. Hence the map also induces an
isomorphism between the subspaces of holomorphic modular forms for pp and holomorphic Jacobi
forms of index L.

4. AUTOMORPHIC FORMS ON ORTHOGONAL GROUPS

Let M be an even lattice of signature (2,n) with n > 3. The Hermitian symmetric domain of
type IV attached to M is defined as (we choose one of the two connected components)

DM)={[Z]eP(CoM):(2,2)=0,(Z,2)>0}".

Let O1(M) C O(M) be the index 2 subgroup preserving the component D(M). The discriminant

kernel (~)+(M) is the kernel of the natural homomorphism O1 (M) — O(D(M)). Let T be a finite
index subgroup of O" (M) and k € Z. A modular form of weight k£ and character x : I' — C* for T’
is a meromorphic function F' : D(M)® — C on the affine cone D(M)® over D(M) satisfying

F(tZ2)=t"*F(2), VvteC,
F(g2) =x(9)F(2), Vgel.

If F' is holomorphic, then it either has weight 0 in which case it is constant, or has weight at
least n/2 — 1 (see [Bor95, Corollary 3.3]). The minimal possible positive weight n/2 — 1 is called
the singular weight.

For any negative norm vector v € M"Y, we define the rational quadratic divisor associated to v
as

Dy(M) =vND(M) = {[Z] € D(M) : (Z,v) = 0}.

We say that a holomorphic orthogonal modular form F' for 6+(M ) is reflective if its divisor is a
union of divisors of the form D, (M) for roots v € MY (a root is a primitive vector v € MY such that
the reflection 2 — x —2(x, v)v/(v,v) at v+ maps M to M) and we say that F is strongly-reflective,
if in addition the multiplicities of all zeros are 1.

In his famous paper [Bor98], Borcherds described the following way to construct orthogonal
modular forms with zeros and poles on rational quadratic divisors from vector-valued modular
forms. Since they have an infinite product expansion at every 0-dimensional cusp, they are called
Borcherds products.

Theorem 4.1 ([Bor98, Theorem 13.3]). Let M be an even lattice of signature (2,n), n > 3. Let
D be the discriminant form of M(—1). Let

F=3> > olmd"e

YED meZ—q(y )

be a nearly holomorphic modular form of weight 1 —n/2 for pp with integral Fourier coefficients
cy(m) for all m < 0. Then there is a meromorphic function V: D(M)®* — C with the following
properties.
(1) W is a modular form of weight co(0)/2 for the group O(M, F)* = {0 € OT (M) : o(F) = F}
and some multiplier system x of finite order. If co(0) is even, then x is a character.
6



(2) The only zeros or poles of ¥ lie on rational quadratic divisors D, (M), where v is a primitive
vector of negative norm in M. The divisor Dy(M) has order

(4.1) Z Cmv(m2(vvv)/2)-
m€Z>0
(3) For each primitive norm 0 vector z € M, an associated vector 2’ € MY with (z,2') =1 and
for each Weyl chamber W of K = L/Zz = M Nzt nN 2t with L= M N 2L, the restriction

W, has an infinite product expansion converging when Z is in a neighbourhood of the cusp
z and Im(Z) € W which is some constant times

H H (I—e((N\2)+ (9, Z’)))cs(()\,A)/z)‘

AeKY seMV /M
(AW)>0 §|L=x

For the rest of this section we assume that M splits two hyperbolic planes, i.e. M =U @ Uy @
L(—1), where U = Ze @ Zf ((e,e) = (f,f) =0, (e,f) = 1), Uy = Zex1 & Zf1 and L is an even
positive definite lattice. We choose (e, e1, ..., f1, f) as a basis of M. Here ... denotes a basis of
L(-1).

Every [Z] € D(M) has a unique representative of the form (x,7,3,w,1) € D(M)® with 7,w € H
and 3 € C® L. Therefore, at the one-dimensional cusp determined by the isotropic plane (e, eq),
the symmetric space D(M) can be realized as the tube domain

H(L)={Z = (13,w) e Hx (C®L)xH: (ImZ,ImZ) > 0},
where (Im Z,Im Z) = 2Im7Imw — (Im3,Im 3)7. In this realization an orthogonal modular form F
of weight k£ and trivial character for 6+(M ) has a Fourier-Jacobi expansion

F(Tvﬁaw) = Z cpm(T,g,)e(mw)

mEZZO

where ¢, is a Jacobi form of weight k£ and index L(m).
The Gritsenko lift associates an orthogonal modular form to a Jacobi form of lattice index.

Theorem 4.2 ([Gri94, Theorem 3.1]). Let k be integral and ¢ € Jy 1. For a positive integer m,

we let ;
_ at +
PlIT (m)(r,3)=m™" > db < y ,a5> :

ad=m,a>0
0<b<d

Then the function
G(#)(2) = F(0,00Gk() + Y @|T-(m)(7,5)e(mw)

m>1

is a modular form of weight k and trivial character for (~)+(2U @ L(—1)). Moreover, this modular
form is symmetric, i.e. G(p)(7,3,w) = G(¢)(w,3,7). Here f(0,0) is the zeroth Fourier coefficient
of p and Gy, is the normalized Fisenstein series of weight k.

Remark 4.3. Let ¢ be a non-zero vector in LY such that ¢ vanishes on
{(r,3) e Hx (C®L): (4,3) € ZT + Z}.

Then the same is true for ¢|pT—(m) for every m > 1. Therefore, if f(0,0) = 0, then G(p) vanishes
on D,(M) for every v € MV of the form v = (0,0, ¢,n,0) with n € Z.

Remark 4.4. Using (3.1), the Gritsenko lift can also be described in terms of vector-valued modular
forms instead of Jacobi forms. In this setting the Gritsenko lift is known as the additive Borcherds
lift, which also exists if M does not split two hyperbolic planes (see [Bor98, Theorem 14.3)).

7



Using the correspondence between Jacobi forms and vector-valued modular forms, we can also
describe Theorem 4.1 in terms of Jacobi forms.

Theorem 4.5 ([Gril8, Theorem 4.2]). Let L be an even positive definite lattice. Let
p(ra)= Y. [fn0g ¢ ey,
nezZLeLY
with f(n,?) € Z for all 2n — (¢,£) < 0. There is a meromorphic modular form of weight f(0,0)/2
Jr(2U @ L(—1)) defined as

and character x with respect to 0)
(12 B9) = (©0. () ) exp (~Gip).

where C' = ﬁ(L) Y oeerv J(0,0)(4,£) and

T £(0,0)
Of (0,0 (1:3) = n(r) OO (W>

£>0

s a theta block. The character x is induced by the character of the theta block and by the relation
X(V) = (_1)D) where V': (7-73¢w) = (%377'); and D = En<0 GO(_n)f(n7O)'

The poles and zeros of B(yp) lie on the rational quadratic divisors D, where v € 2U & LY (—1)
is a primitive vector with (v,v) < 0. The multiplicity of this divisor is given by

multD, = Y f(d’n,de),
d€Z>0
where n € Z, £ € LY such that (v,v) = 2n — (¢,£) and v —(0,0,¢,0,0) € 2U & L(-1).

Remark 4.6 ([Gril8, Corollary 4.3]). From (4.2), we see that the Fourier-Jacobi expansion of B(y)
at the one-dimensional cusp determined by the decomposition M = 2U @& L(—1) is given by

(P (8) =T )™ 1),

In particular, we see that if the Gritsenko lift G(9g) = Vge*™™ +9p|T_(2)e*™™ + ... is a Borcherds
product B(y), then C' =1, Oy ,) = U and

B()(1,3,w) = © (0.0 (7, 3)€27C <1 (. 3)e?

_UR|T-(2)
dr

5. THETA BLOCKS RELATED TO ROOT SYSTEMS

The theta block conjecture mentioned in the introduction states that every pure theta block ©
with order of vanishing 1 in ¢ satisfies G(©) = B(—%). Recall from Section 2 that one way
to obtain theta blocks is by specializing the Jacobi forms ¥r from Theorem 2.3. The following
theorem, which we prove in Section 7, implies that the theta block conjecture is true for theta

blocks obtained in this way.

Theorem 5.1. Let R be a root system and let 9 be as in Theorem 2.3. Suppose that 9r has
vanishing order 1 in q. Then
B ﬁR\T—(2>>
IR '
We first determine those root systems for which ¥ has vanishing order 1 in gq.
8
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Proposition 5.2. Let R be a root system such that ¥r has g-order 1. Then R is one of the
following root systems.
weight root systems

2 | Ay, A1 © Bs, A1 © C3, By ® Go

3 3A5,3A1 @ A3,2A1 ® Ay ® Bs

4 8A;
Proof. Since n has g-order 1/24 and ¥ has g-order 1/8, the function ¥g has g-order n/24 + N/12.
Therefore, we obtain the condition n 4+ 2N = 24. We see that n and N are bounded. The root

system R can be decomposed into irreducible root systems of type A, Bn, Cn, Dn, Eg, E7, Eg, Fy
and (g, so there are only finitely many possibilities for R which can be checked by hand. O

Specializing these Jacobi forms of lattice index yields the infinite series of theta blocks with
g-order 1 given in Table 1.

TABLE 1. Theta blocks of g-order 1

weight | root system theta block

2 Ay 199099040 a1 0p4-cV et d¥atbreVptetrd¥arbrerd
A1 @ Bs 1900501 Ut 2e+ 2404 e+ Vbt et 2a0 Vet dVct2dVa
A1 ©C3 10099201 20+ a0 Dot 20+ a0 e+ a¥eV2c4dVcrad
By & G 1000150042599 c030 4 a¥3c42d092c+d0c4-dVa

3 3A, 17300, Vay 18, Uty VagVag+bo Vb Vaz Vag+bs Uns
3A; @ Az N300, 905005901 Vas o Vas+as Vas+aVas-+as+a

241 @ A2 @ By 191 Va3 a3 Va3 404 Vas¥as Vas+a Vas+2a5 Vag
4 84, D1 9oy Vg Vs Vs Vg Vs Dag

Remark 5.3. As explained above, we prove the theta block conjecture in the case of a pure theta
block © obtained by specializing one of the functions 9. In fact, every pure theta block of g-order
1 has weight less than 12 and every pure theta block of weight 4 < k < 11 is of the form

8—t

7 [[Ye,, 0<t<7,

j=1
and is therefore related to the infinite family of type 841, so the theta block conjecture is true for
weights k£ > 4 without the condition that © is a specialization of some ¥ (see [GPY15, Theorem
8.2]). However, for weights 2 and 3 there could be theta blocks of g-order 1 not in any of the
families given in Table 1.

If the root system R is irreducible, there is also the following description of the lattice R, which
will be more useful for our purposes (cf. [GSZ19, Section 10]).
Let RY be the dual root system of R, i.e.

2
RY = r:reR,.
(r,7)
The weight lattice of RV is

AMR)={veQ®R: (v,r) €Z, V1€ R}.
9




With the definition h = 1 3" _ o (r,r), the identity

> (13 =h(33)

reR+

holds. Let {wy}ep denote the fundamental weights of RY, i.e. the dual basis of F. We let L be
the integral lattice A(RV)(h), i.e. L is the Z-module A(RY) with bilinear form (v, w) = h(v,w).
Then v — Y vswys, v = (vf)fer € Z¥ defines an isomorphism between R and L. The function 95
then takes the form
Ur(1,3) =n(T ”NHﬂ (r/h,3))
reRt

for all ;3 e C® L.

If R is reducible, we can decompose R into a direct sum of irreducible root systems and the
lattice R is then isomorphic to the direct sum of the corresponding lattices L.

The following table gives the lattice L and its maximal even sublattice Le, for all root systems
R from Proposition 5.2. We also list the genus of L.

weight R L ‘ Ley ‘ genus of Ley
2 Ay Aj(5) Aj(5) Iy 0(5%°)
A1 @ B3 YASYALG) Ly II,0(2575%3)
A& Cs 7. AY(8) A1(2) @ AY(8) | IT40(2514118,%)
By & Gy Z2(3) @ Ax(4) | 241(3) @ Ax(4) | Myp0(24%4,2373)
3 3A2 3A2 3A2 116’0(373)
3A; @ A3 Z3 D Ag (4) S6 116’0(2:{24;12)
241 D Ay @ By VA DAy D 22(3) Lg II670(2;;—23_3)
4 8A; VA Dy II5.0(2}%)
where L4, S¢ and Lg have the following Gram matrices:
4 2 2 2
2 6 1 1
La=19 161 |
2 1 16
2 01 110 4 2 0O 0 -2 0
0 21110 2 4 0 0 -1 0
g 11 4 2 2 3 I — 0 O 2 -1 0 0
71112401 | =1 0 0 -1 2 0 0
11 2 0 41 -2 -1 0 0 2 1
003 114 0 O 0 O 1 4

For every Lo, in the above table, its genus contains only one class. Thus the lattice M =
2U @ Ley(—1) has only one model splitting two hyperbolic planes. We view the Gritsenko lifts and
Borcherds products in Theorem 5.1 as orthogonal modular forms on 2U @ Ley(—1).

Remark 5.4. Suppose once again that R is an irreducible root system. The function ¥g: H x (C®
L) — C is a Jacobi form of index L and hence also a Jacobi form of index Le,. Since the Jacobi
theta function J(7, z) vanishes for z € Z7 + Z, we see that 9 vanishes along the divisor

{(1,3) e H x (C® Ley) : (r/h,3) € ZT + 7},
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where 7 is a positive root in R. The element A\ = r/h is an element of LY C LY, and (\,\) = (r,7)/h.
In the following table we list the order of A in LV/L and in LY,/Ley and the norm (A, \). This

depends on whether r is a long or a short root of R.

R long or short root | ord(\) in LY /L ‘ ord(\) in LY,/ Ley ‘ (A N)

Aq 1 2 1
Ap(n>1) n+1 n+1 2/(n+1)
B,(n>1) short root 1+2(n—1) 24+4(n—1) 1/(1+2(n—-1))

long root 1+2(n—1) 1+2(n—1) 2/(142(n—-1))
Cr(n > 2) short root 442(n—1) 442(n—1) 2/(442(n—-1))
long root 24+ (n—-1) 24+ (n—-1) 2/2+ (n—1))
Gy short root 12 12 1/6
long root 4 4 1/2

6. BORCHERDS PRODUCTS RELATED TO CONWAY’S GROUP

Let R be one of the root systems from the previous section and let L and L., as before. Let
M =2U @ Ley(—1). We show that in all of these cases, there exists a strongly-reflective Borcherds

product Wg of singular weight on M, which can be constructed explicitly as described in the
following theorem.

Theorem 6.1. Let R be one of the root systems from Proposition 5.2 and M = 2U@ Le,(—1). There
exists a strongly-reflective modular form Vg of singular weight for the full modular group OF(M).

This function is the Borcherds product corresponding to the following vector-valued modular form
F for the Weil representation pp associated to D = D(Ley).

weight R F
2 Ay FT(5),5m, 51,0
A1 @ Bs Fro(10),m, 15 25-312.:0
A1 @ Cs Fro(8),2n, 25 1,-352:0 T FT0(8),8n, 6014556+ 291,352, D
By & G Fro(12)my15-1,-26-2192:0 T FT0(12)m, —a14-2,191,D
3 34, FT(3),97, 0430
3A1 @ A3 Fro),an, 4y 6,00 T FTo(4),~20, 4y _6,4.02
241 Ay @ By FTo(6),m 15— 15-544.0
4 84 FTo(2),16n, 16,8.0
We write F' = nyeD F,e,. If the level N of M is square-free, then the Fourier expansion of F,
s given by
rk(R) + O(q) if v =0,
Ey =< q Y4 0(¢"Y4) if ord(y) =d and q(y) = 1/d mod 1 for a divisor d > 1 of N,
o(1) in all other cases.

The cases where N is not square-free are R = A1 & Cs, Bo ® Go and 3A1 @ As.
11



In the case R = Ay & Cs, the discriminant form D is given by D = 2gl4f181_12. We let xo and
x4 be the unique elements of order 2 in 2§1 and 4?1. Then the Fourier expansion of F is given by

4+0(q) if v =0,

¢+ 0(¢"?)  ify =

E, =g Y+ 0(P*)  ifye{xa+25:0€ D,2q(8) +b(x2,0) =3/4 mod 1},
¢ B +0"®)  if ord(y) =8 and q(y) =1/8 mod 1,

0(1) in all other cases.

\

In the case R = By & Ga, the discriminant form D is given by D = 2;24;123*3. We let x5 be the
unique element with q(x2) = 1/2 mod 1 in 2;{2. Then the Fourier expansion of F, is given by

4+0(q) if v =0,

¢ +0(?) iy =,

Ey = q Y4 0(¢"Y4)  if ord(y) =d and q(y) = 1/d mod 1 for some d € {3,4,12},
q /5 + 0(¢%/%) ify€{xg+d:6€373¢(0) =2/3 mod 1},

o(1) in all other cases.

In the case R = 3A1 & As, the discriminant form D is given by D = 23241}2. We let xo be the
unique element with g(x2) =1/2 mod 1 in 232. Then the Fourier expansion of F, is given by

6+ O(q) ifv=0,

g2+ 0(¢"?)  ify =,

gVt + O(q3/4) if ord(y) =4 and q(y) =1/4 mod 1,
0(1) in all other cases.

F, =

Proof. The Fourier expansion of F' can be calculated using the formula in [Sch15, Theorem 3.2].
The Fourier coefficients of the principal part of F' are non-negative integers, so Theorem 4.1 yields a
holomorphic Borcherds product ¥ . We note that F' is invariant under O(D) by construction, hence
the modular form ¥ g is modular for the full group O1(M). In all cases, the constant coefficient of
Fy is given by rk(R), so ¥ has weight rk(R)/2, which is the singular weight. The divisor of ¥, is
determined by the principal part of F. In all cases, the only contributions to the principal part are
terms of the form ¢~/¢ in components F, with v € D of order d and ¢(v) = 1/d mod 1 for some
divisor d of N. This implies that W is strongly-reflective (cf. [Sch06, Section 9]). O

Remark 6.2. The cases where the level of M is square-free can be found in the table at the end
of Section 10 in [Sch06]. We reconstruct them at the standard 1-dimensional cusp in the above
theorem.

Borcherds conjectured that each conjugacy class of the automorphism group of the Leech lattice
with non-trivial fixed point lattice corresponds to a holomorphic Borcherds product of singular
weight. This is proved for classes of square-free level in [Sch04] and [Sch06]. The general case is
treated in [Sch]. We show that our Borcherds products W g also fit into this picture. We first apply
an Atkin-Lehner involution to the lattice M.

Proposition 6.3. Let R be one of the root systems from Proposition 5.2 and let M = 2U @ L¢y(—1).
Let N be the level of M. The lattice

WN(M):JN(MM;[M) CROM
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can be written as U @ U(N) ® L for a negative definite lattice L. Let A be the Leech lattice. There
exists an element g in Conway’s group Cog = O(A) such that L(—1) is isomorphic to Ay, where Ag

is the lattice of all vectors in A that are fized by g. In the following table we list g and the genus of
Ay

R class of g | cycle shape of g genus of Ay
Ay 5C 1-15° I o(572)
A, @ B3 —10D 122352101 II40(25'57%)
A @ Cy —8F 172234182 I 0(2514718 %)
By ® Go —121 172223241128 | 11, 0(2524,7313)
34, 3C 17337 s 0(37°)
3A1 ® A3 —4C 142644 I 0 (25241
241 @ Ao ® By | —6C 17425346 I6.0(2;,°37°)
8A; —24 18216 s 0(25°)

Proof. Since M has level N, we have that MY C &M, which yields that Wx (M) = MV(N). The
statement that the lattice W (M) is of the form U @ U(N) @ L can be checked separately for each
R. In all of these cases the genus of U @ U(IN) @ A4 contains only one class, so to finish the proof
it suffices to prove that the genera of ﬂ(—l) and A4 coincide, which can be checked for each of the
cases separately. O

Remark 6.4. In those cases where the level N of M is square-free, Scheithauer gave the following
natural construction of Wg. Let K =U @ U(N) ® A4 and define 7, by the cycle shape of g, i.e. if
g has characteristic polynomial [](X® — 1), we define 7,(7) = [[n(b7)™. Then the scalar-valued
modular form 1/, of weight —1k(Ag)/2 can be lifted to a vector-valued modular form Fr(n).1/n,,0
for the Weil representation pp (k). The Fourier coefficients of the principal part of this vector-valued
modular form are non-negative integers, hence we obtain a holomorphic Borcherds product ¥, on
K(—1). This Borcherds product ¥, has singular weight. Its expansion at a level N cusp is the
twisted denominator identity of the fake monster algebra corresponding to g.

The constructions of ¥, and Wx are related in the following way. As explained in the previous
paragraph, the function W, is given by B(Fp ()1 /%70). Similarly, by Theorem 6.1, the function
U is given by B(FFO(N),f,O) for a suitable modular form f. It turns out that f is up to a constant
given by the Atkin-Lehner involution Wy (1/n,). We can therefore say that Wg is obtained from
U, by taking the Atkin-Lehner involution of both the lattice K(—1) and the input function 1/7,.

There is another way to see the relationship between the two modular forms. Since KY(N) =
U(N)® U@ Ay (N) is isomorphic to 2U @ Ley, we have

OT(K(-1)) = OT(KY(-1)) = OT(KY(-N)) = 0" (M),

and ¥, can be viewed as a modular form for O"(M). We then obtain ¥, = ¥ by comparing their
divisors or their Fourier expansions at suitable 0-dimensional cusps.

Remark 6.5. In the three cases where the level of M is not square-free, one can still construct a
strongly-reflective Borcherds product ¥, of singular weight whose expansion at a level N cusp is
the twisted denominator identity of the fake monster algebra corresponding to g. However, one has
to replace the vector-valued modular form F on D(K) by F = Frovy,1/m,0 + FFO(N)JL’DN/Q for a
suitable scalar-valued modular form h (see [Sch]). After identifying O (K (—1)) with O" (M) we
again obtain W, = V.
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7. PROOF OF THE MAIN THEOREM

By comparing their divisors, we want to prove that the Borcherds product Vg constructed in
Theorem 6.1 equals G(Ug) for all root systems R from Proposition 5.2. In order to do so, we first
prove that G(Jg) is a modular form for the full modular group O (M).

Lemma 7.1. Let R be one of the root systems from Proposition 5.2. Then G(9g) is a modular
form for the full group O (M) (possibly with a character).

Proof. Let D = D(Ley) and let g be the modular form of weight 0 for pp corresponding to Yr
under (3.1). Then the Gritsenko lift of ¥ is the additive Borcherds lift ®r of . The additive
Borcherds lift is constructed as an integral of the inner product of 6 and the Siegel theta function
(see [Bor98, Section 6]). The Siegel theta function is invariant under O (M). This implies that
for every automorphism o € O" (M), the additive lift of 0(6) equals o(®r), where the action of o
on O is given by its action on D. Therefore, if fp is invariant under O(D) up to a character, then
®r is a modular form for the full group O (M) (with character given by the lift of the character
of Or to OT(M)). The invariance of fr under O(D) can be checked for each of the root systems
R. This is done in the following lemma. ([l

Lemma 7.2. Let R be one of the root systems from Proposition 5.2 and let D = D(Le,). Let O be
the modular form of weight 0 for pp corresponding to one of the functions ¥r under (3.1). Then
Or is invariant under O(D) up to a character of order 2.

Proof. The space of holomorphic modular forms of weight 0 for the Weil representation pp is
the space of invariants of pp and can be computed using [ES17, Algorithm 4.2]. If R is one of
Ay, A1 & C3,By ® G9,3A45 and 341 @ Az, then the dimension of this space is 1. It follows that
O is invariant under O(D) up to a character. Since the space of holomorphic modular forms of
fixed weight k for pp has a basis consisting of modular forms with integer coefficients (see [McGO03,
Theorem 5.6]), this character must have order at most 2.

In the other cases, the discriminant form D can be decomposed as D = Dy @ D’, where Dy = 2}}2
and D' = 513,373 or 1. The space of invariants of pp is the tensor product of the spaces of invariants
of pp, and ppr. The first space has dimension 2 and is spanned by v; = eg+e,, and v2 = ey +e,,
where 1 and 7y are generators of Dy with ¢(71) = ¢(72) = 0 mod 1. The space of invariants
of D" is 1-dimensional for all of the three cases. Therefore, the space of invariants of pp is two
dimensional. Let v be the tensor product of v1 — v and a generator of the space of invariants of
D'. Then v is invariant under the action of O(D) up to a character of order 2. It therefore suffices
to prove that 6r is a multiple of v.

For all of the three cases, the lattice L is odd. There thus exists a vector 2 € L such that (z,z) is

odd. The transformation formula for Jacobi forms of lattice index yields ¥g(,3 + ) = —URr(7,3).
Since Jp is given by
Ir(r,3) =Y (Or)y > ¢“92,
~yeD LEy+Ley
this condition forces (fr)y = 0 unless (v, z) is in 1/2 + Z. Therefore, v can not be an element of
D?, which implies that 6 is a multiple of v. (]

Before we can prove Theorem 5.1, we also need the following lemma.

Lemma 7.3. Let Y be one of the strongly-reflective modular forms of Theorem 6.1 and let v and
v' be two primitive vectors of M such that (v,v) = (v';v") and v and v' have the same order in
D(M). If Y vanishes along both divisors D, and Dy, then v and v’ are conjugate under O (M).

Proof. First suppose that M has square-free level. This is the case for all R except R = A1 ®
C3,By @ G5 and 3A; @ As. The elements v and v’ have the same norm and the same order in
14



D = D(M). By [Schl5, Proposition 5.1] and the paragraph after [Sch15, Proposition 5.2], there
exists an element o € O(D) such that o(v) = v mod M. The projection from O(M) to O(D) is
surjective by [Nik80, Theorem 1.14.2]. The reflection at a norm 2 element in one of the hyperbolic
planes is an element of O(M) \ O (M) and has trivial image in O(D). Therefore, the images of
O(M) and of O (M) in O(D) are the same. We therefore find an element o’/ € O" (M) such that
o'(v) =v" mod M. The Eichler criterion (see e.g. [GHS09, Proposition 3.3]) then yields that v’ is
conjugate to o’(v) and hence also to v under O (M).

If the level of M is not square-free, we can use the same argument, except that we cannot apply
[Sch15, Proposition 5.1] to show that there exists an element o € O(D) with o(v) = v mod M.
However, it is not difficult to prove this by hand for each of the three remaining cases.

As an example, we do the case By @ G5. The lattice M has genus 116,2(23241_123*3). We can
decompose D = Dy @ D3. The discriminant form Dy can be decomposed as Dy = A ® B, where
A = 202 is generated by elements v; and 42 of order 2 with ¢(y1) = ¢(y2) = 3/4 mod 1 and
b(v1,72) = 0 mod 1, and B = 4;12 is generated by elements §; and o of order 4 with ¢(d;) =
q(d2) = b(d1,62) = 1/4 mod 1. The modular form ¥ is the Borcherds product corresponding to
the vector-valued modular form

F = FFO(12)77717137147267212270 + FFO(12)a77174416721217D6'

The Fourier expansion of F' was given in Theorem 6.1. For a € {1/2,1/3,1/4,1/6,1/12} we let
R,={ye€D:F,=q¢%4+0(¢""*)}. We need to prove that O(D) is transitive on R,.

For a = 1/2 there is nothing to show because R, consists of a single element.

The discriminant form D3 has prime level, so we can apply [Sch15, Proposition 5.1] to prove the
transitivity of O(D3) and hence of O(D) on R, for a =1/3 and a = 1/6.

The O(D) is transitive on Ry 4, i.e. on the set of elements v of order 4 with ¢(y) =1/4 mod 1,
can be easily checked by hand.

Similarly, to prove that O(D) is transitive on R;/j5, we note that R; /i consists of all elements
of the form a +  with a € D3 and 5 € Dy such that ¢(a) = 1/3 mod 1, while 8 has order 4
with ¢(8) = 3/4 mod 1. As remarked above O(D3) is transitive on the set of all such o and the
transitivity of O(Dy) on all such 5 can again be easily checked by hand. O

With the help of the fact that G(Jg) is modular for the full group O1 (M), we can prove that
the divisor of the Borcherds product U is contained in the divisor of G(Jg).

Proposition 7.4. For all root systems R from Proposition 5.2, the divisor of Wy is contained in
the divisor of G(UR).

Proof. Let N be the level of M. From Theorem 6.1, we know that the only possible zeros of Up
are simple zeros along the divisor D, for primitive v € M" of norm (v,v) = —2/d and order d in
D = D(M) for divisors d > 1 of N. Moreover, ¥ has a simple zero at such a divisor D, if and
only if the image of v in D is contained in the set R, /4 defined in the proof of Lemma 7.3. In view
of Lemmas 7.1 and 7.3 it suffices to prove that for each divisor d > 1 of N there is a primitive
vector v € MY of norm (v,v) = —2/d whose image in D(M) is contained in Ry /4 and such that
G(YR) vanishes on D,,.

First suppose R is one of the root systems, for which Le, has square-free level N (as mentioned
before, these are all cases, except R = A1 ®C3, Bo® G2 and 3A1 @ As). In these cases Ry /4 consists
of all elements v € D with ord(y) = d and ¢(v) = 1/d mod 1. Using Remark 5.4, it is not difficult
to see that we can find a root 7 € RT such that A\ = r/h € LY, (if R is the direct sum of irreducible
root systems R;, then r € R; for a unique ¢ and we define h = h;) has order d in L% /Le, and
satisfies (A, A\) = 2/d. The function Yg(7,3) vanishes along the divisor

{(1,3) e Hx (C® Lev) : (N, 3) € ZT + Z}.
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By Remark 4.3, G(Jg) then vanishes along the divisor D,, where v = (0,0,,1,0) € M". Note
that v is a primitive vector in M" of norm (v,v) = —2/d and order d in D. This completes the
proof for these cases.

We now prove the statement for the case of R = By @ Go. For d = 3,4 and 12, the image of
every primitive v € MY of norm (v,v) = —2/d and order d in D is in Ry /4. For these d the proof
can be completed as in the case of square-free level.

We next look at the case d = 6. We write L = L; & Lo, where Ly = A(By)(h1) and Ly =
A(GY)(h2), where hy = %ZTGB; (r,7) =3 and hy = %ZTGG; (r,r) = 12. Since L3 is already even,
we have Ley = Liey ® Lo and LY, /Ley = L1Y/Liev © LY /L. The discriminant form LY /Lo is
isomorphic to 4]}23_1 and L1, /L1ey is isomorphic to 2323“. Let r be a short root of By and
A =1/hy. As before we see that G(Jg) vanishes along the divisor D, for v = (0,0,),1,0) € M".
But the image of v in D is equal to the image of A, which lies in 2g 23+2. From the singular part of
F given in Theorem 6.1, we see that every element v € 2%“23Jr2 of order 6 with ¢(y) =1/6 mod 1
is in Ry /. In particular, the image of v in D is in Ry /6. This completes the proof for d = 6.

The case d = 2 is more complicated. To prove this case we let r be as above, i.e. a short root of
Bs. Then (r,r) = 3 and r has order 2 in L1% /L1, Let v =(0,1,7,1,0) € M. Then (v,v) = —1
and v and r have the same image in D, which is the unique element in R; /5. We need to show that
G(Yg) vanishes along D,,. This is proved in the next lemma.

The arguments for the cases R = A; & C5 and R = 3A; @ A3 are similar to the ones with d # 2
for the case R = By @ Gs. O

Lemma 7.5. Let R = By ® Gy and let r be a short root of By. Let v = (0,1,7,1,0) € M"Y and let
o € OT(M) be the reflection along v*. Then o(G(Ir)) = —G(IR). In particular, G(Ig) vanishes
along D,.

Proof. Let D = D(Ley) and let g be the modular form of weight 0 for pp corresponding to ¥r
under (3.1). Then G(VR) is the additive lift of 8z. Moreover, o(G(Yr)) is equal to the additive
lift of o(0r). It therefore suffices to prove that o(g) = —6Or, where the action of o on 0p is
given by its action on D. The space of modular forms of weight 0 for pp is the tensor product
of the spaces of modular forms of weight 0 for pp, and pp,, which both have dimension one.
Recall that Dy = A @ B, where A = 2} 2 is generated by two elements ; and 75 of order 2 with
q(1) = q(72) = 3/4 mod 1 and b(y1,72) = 0 mod 1, and B = 4, is generated by elements &;
and dy of order 4 with ¢(d1) = ¢(d2) = b(d1,d2) = 1/4 mod 1. The image of v in D is 1 + 2. It
follows that o acts trivially on D3 and on B and it permutes 77 and 73. Using [ES17, Algorithm
4.2], we can compute a generator G = Zve p, Gy€y of the space of modular forms of weight 0 for
pp,- We obtain

1 if v € {y1 401,71 — 02,7 — 1 + 2,72 — 01,72 + 2,72 + 61 — d2},

Gy=4q-1 ifye{y1—3d,7 + 3,7+ — 02,72+ 61,7 — 02,72 — 61 + 02},
0 otherwise.
We see that 0(G) = —G. Since 0 is a multiple of the tensor product of G and a modular form of
weight 0 for pp, (which is invariant under o), we obtain o(6r) = —0g. O

We can now complete the proof of our main theorem.

Proof of Theorem 5.1. By Proposition 7.4, the divisor of W is contained in the divisor of G(Jg).
Therefore, the quotient of G(Jgr) by ¥g is a holomorphic modular form of weight 0 and therefore
constant. Comparing the first Fourier-Jacobi coefficient, we see that G(Jr) = B(y) for some .
By Remark 4.6 the Jacobi form ¢ must be equal to —9g|7T_(2)/9r. This completes the proof. [

Corollary 7.6. The theta block conjecture is true for the pure theta blocks from Table 1.
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Proof. Let x = (xf) ;e € R be an integer vector with xy # 0 for all f. Let K be the lattice Z with
bilinear form (u,v) = muv, where m = (z,z). Recall that we defined s;: K — R by sy(u) = ux
and

syt IR = T = Jpm, o(1,3) = 0(T,8:(2)) (2 € CoK).

Each of the pure theta blocks from Table 1 is of the form s}9g for such a vector x € R. Each of
the pure theta blocks of integral index from Table 1 is of the form s}vg for some vector x € Ley.
For the theta block conjecture, we only care about theta blocks of integral index. Let us assume
that z € Loy and sj9YpR is not identically zero. We also denote by s} the pullback of a modular
form F on D(2U @ Ley(—1))® to D(2U @ K(—1))®. From the defintion of the Gritsenko lift and the
linear action of 7 (m) in the variable 3, we see that G(s}¢) = s5LG(p) for any ¢ € Ji 1.,. Similarly,
we have B(sky) = sk B(p) for any ¢ € '](!),Lev with integral singular coefficients, whenever s%¢ # 0.
Since T_(2) also commutes with s%, this completes the proof. O

We end this paper with several remarks.

Remark 7.7. Like the cases R = A4,3A5,8A1, when R = 3A; ® As, the associated lattice Lo, = Sg
also satisfies the following norms condition:

normg : Vé € LY/L 3h.€¢ such that (he he) < 2.
Thus we can use the much simpler method in [GW20] to prove this case.

Remark 7.8. 1t is easy to check directly that each ¥ appears as the first Fourier-Jacobi coefficient of
the Borcherds product ¥ g constructed in Theorem 6.1. Since Wg is holomorphic, its Fourier-Jacobi
coefficients will be holomorphic Jacobi forms. This provides a new proof that ¥p is holomorphic
at infinity (i.e. Theorem 2.3) for all root systems from Proposition 5.2.

Remark 7.9. When R = Ay ® B3, Ley = Ly (see §5). We can check that Ly is a sublattice of A)(5).
There are two different embeddings of lattices. The associated two pull-backs of ¥4, from A} (5)
to L4 give two theta blocks which are Jacobi forms of weight 2 and index L4. This gives a basis of
Ja,1, because we know from the proof of Lemma 7.2 that dim J 1, = 2. Their specializations are
as follows

(1) -6
04, =1 VaWpVp+cr2c+2d¥atbV0+c+2d0cV0a—cVct2dVatbtc+2d,
2 —6
924) =0 Va—c—dUIp+cb+2c+ 2000t bt et dVb+c+2dVcVa+dVc+2aVa+b+d-

The same specialization of ¥4, ¢, gives

0a,08; = N *V2016+a06 00+ Vb 204 2a0b+c+d0b+c+2a0cVctaVct2aV4-
Then we have the following identities

01416933 - 95414) - ‘9,(424)7

1 2
p (el T (T2
04,08; 9214) 91(424)
The lattice Lg is a sublattice of 3As. This gives similar results.

Remark 7.10. As an application, we can construct special orthogonal modular forms using our
reflective Borcherds products W g of singular weight. We discuss an interesting example in the case
R =2A,® Ay ® Bs. In this case, the lattice Loy, = Lg can be decomposed as a direct sum of As and
a lattice Ty of rank 4. The quasi pull-back of ¥ from D(2U @ Lg(—1)) to D(2U @ Ty(—1)) gives a
strongly reflective cusp form of canonical weight 6 (see [Gril8] for the details of quasi pull-backs).
By [Gril8, Theorem 1.5], the corresponding modular variety has geometric genus 1 and Kodaira
dimension 0.
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